WorldWideScience

Sample records for nonpoint-source contamination wisconsin

  1. Evaluation of nonpoint-source contamination, Wisconsin: water year 1999

    Science.gov (United States)

    Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.

    2001-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMPs) for controlling nonpoint-source pollution in rural and urban watersheds. This progress report provides a summary of the data collected by the U.S Geological Survey for the program and a discussion of the results from several different detailed analyses conducted within this program.

  2. Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995

    Science.gov (United States)

    Owens, D.W.; Corsi, Steven R.; Rappold, K.F.

    1997-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss

  3. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  4. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  5. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  6. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  7. National Water-Quality Assessment Program, western Lake Michigan drainages: Summaries of liaison committee meeting, Green Bay, Wisconsin, March 28-29, 1995

    Science.gov (United States)

    Peters, Charles A.

    1995-01-01

    The Western Lake Michigan Drainages (WMIC) study unit, under investigation since 1991, drains 20,000 square miles (mi2) in eastern Wisconsin and Upper Michigan (fig. 1). The major water-quality issues in the WMIC study unit are: (1) nonpoint-source contamination of surface and ground water by agricultural chemicals, (2) contamination in bottom sediments of rivers and harbors by toxic substances, including polychlorinated biphenyls (PCB's), other synthetic organic compounds, and trace elements, (3) nutrient enrichment of rivers and lakes resulting from nonpoint- and point-source discharges, and (4) acidification and mercury contamination of lakes in poorly buffered watersheds in the northwestern part of the study unit.

  8. Reduction of non-point source contaminants associated with road-deposited sediments by sweeping.

    Science.gov (United States)

    Kim, Do-Gun; Kang, Hee-Man; Ko, Seok-Oh

    2017-09-19

    Road-deposited sediments (RDS) on an expressway, residual RDS collected after sweeping, and RDS removed by means of sweeping were analyzed to evaluate the degree to which sweeping removed various non-point source contaminants. The total RDS load was 393.1 ± 80.3 kg/km and the RDS, residual RDS, and swept RDS were all highly polluted with organics, nutrients, and metals. Among the metals studied, Cu, Zn, Pb, Ni, Ca, and Fe were significantly enriched, and most of the contaminants were associated with particles within the size range from 63 μm to 2 mm. Sweeping reduced RDS and its associated contaminants by 33.3-49.1% on average. We also measured the biological oxygen demand (BOD) of RDS in the present work, representing to our knowledge the first time that this has been done; we found that RDS contains a significant amount of biodegradable organics and that the reduction of BOD by sweeping was higher than that of other contaminants. Significant correlations were found between the contaminants measured, indicating that the organics and the metals originated from both exhaust and non-exhaust particles. Meanwhile, the concentrations of Cu and Ni were higher in 63 μm-2 mm particles than in smaller particles, suggesting that some metals in RDS likely exist intrinsically in particles, rather than only as adsorbates on particle surfaces. Overall, the results in this study showed that sweeping to collect RDS can be a good alternative for reduction of contaminants in runoff.

  9. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  10. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  11. Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States

    Science.gov (United States)

    Puckett, Larry J.

    1994-01-01

    Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.

  12. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  13. Polluted Runoff: Nonpoint Source Pollution

    Science.gov (United States)

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  14. Stochastic Management of Non-Point Source Contamination: Joint Impact of Aquifer Heterogeneity and Well Characteristics

    Science.gov (United States)

    Henri, C. V.; Harter, T.

    2017-12-01

    Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and

  15. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  16. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  17. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  18. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  19. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    Science.gov (United States)

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  20. Evaluation of nonpoint-source contamination, Wisconsin: Selected data for 1992 water year

    Science.gov (United States)

    Graczyk, D.J.; Walker, J.F.; Greb, S.R.; Corsi, Steven R.; Owens, D.W.

    1993-01-01

    This report presents the annual results of the U.S. Geological Survey's (USGS) watershed-management evaluation monitoring program in Wisconsin. The overall objective of each individual project in the program is to determine if the water chemistry in the receiving stream has changed as a result of the implementation of land-management practices in the watershed. This is accomplished through monitoring of water chemistry and ancillary variables before best-management practices (BMP's) are installed ('pre-BMP'), during installation ('transitional'), and after ('post-BMP') watershed- management plans have been completely implemented. Fecal-coliform (FC) counts ranged between 10 and 310,00/100 mL. A large range of values occurred within duplicate and triplicate samples as well as over time. The median percentage difference between duplicate and triplicate samples was 17 percent although 4 out of the total 60 duplicate and triplicate samples had differences greater than 100 percent. A decrease in FC counts generally occurred over the duration of the 4-day analyses. Linear regression models of the log-concentration values (dependent variable) with respect to time (independent variable) were calculated for all samples. Negative slopes were found for 14 of the 15 samples. Slopes varied from +0.5 to -38.4 percent gain/loss/day, with a median slope of -8.5 percent/day. A t-test was applied to the data to examine whether or not significant differences in FC counts exist with respect to holding times. Because the T-test only compares two treatments, the test was conducted 3 times (0 versus 24-hr holding time, 0 versus 48-hr holding time, and 0 versus 72-hr holding time). Setting the level of significance at p less than 0.05 and assuming equal variances, 27 percent (all from Bower and Otter Creeks) of the samples demonstrated a significant difference in colony count over the first 24 hr, 40 percent over 48 hr, and 47 percent over 72 hr. All samples that exhibited a significant

  1. An economic optimal-control evaluation of achieving/maintaining ground-water quality contaminated from nonpoint agricultural sources

    International Nuclear Information System (INIS)

    Cole, G.V.

    1991-01-01

    This study developed a methodology that may be used to dynamically examine the producer/consumer conflict related to nonpoint agricultural chemical contamination of a regional ground-water resource. Available means of obtaining acceptable ground-water quality included pollution-prevention techniques (restricting agricultural-chemical inputs or changing crop-production practices) and end-of-pipe abatement methods. Objectives were to select an agricultural chemical contaminant, estimate the regional agricultural costs associated with restricting the use of the selected chemical, estimate the economic costs associated with point-of-use ground-water contaminant removal and determine the least-cost method for obtaining water quality. The nitrate chemical derived from nitrogen fertilizer was selected as the contaminate. A three-county study area was identified in the Northwest part of Tennessee. Results indicated that agriculture was financially responsible for obtaining clean point-of-use water only when the cost of filtering increased substantially or the population in the region was much larger than currently existed

  2. Clean Water Act Section 319 Nonpoint Source Pollution Control Projects Grants, US EPA Region 9, 2008, California Nonpoint Source Program

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  3. Studies of the contributions of nonpoint terrestrial sources to mineral water quality

    International Nuclear Information System (INIS)

    Huff, D.D.

    1977-05-01

    The contributions of nonpoint sources of water quality constituents represent a background loading rate that will not be reduced easily. Consequently, those contributions may have a dominant effect on aquatic ecosystems once point sources have been controlled. Modeling studies conducted at the Tennessee Valley Authority and Oak Ridge National Laboratory represent contrasting approaches that highlight some of the possibilities for predicting nonpoint source inputs to aquatic systems

  4. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  5. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 18O isotopic characterisation of non-point source contributed heavy metals (Zn and Cu) contamination of groundwater

    International Nuclear Information System (INIS)

    Datta, P.S.; Manjaiah, K.M.; Tyagi, S.K.

    1999-01-01

    In many urbanised areas, fast depletion and severe degradation of the of groundwater resource with contaminants such as nitrate, fluoride, and heavy metals is a common phenomenon, resulting in zonal disparity in fresh water availability. Therefore, for protection of groundwater from pollution and depletion, it is a matter of concern for the planners and decision makers to clearly characterise the sources of contamination and to search for an alternative approach for groundwater development and management. In this context, a new approach is presented here, based on monitoring of 18 O stable isotopic and heavy metals composition of groundwater, to clearly characterise non-point source contributed heavy metals pollution of groundwater in northern parts of Delhi area. In the investigated area, the Cu content in the groundwater ranges from 3-41 μg/l and Zn content ranges from 5-182 μg/l, showing considerable variation from location to location as well as within the small parts of a location. Wide variation in the 18 O stable isotope content of groundwater (δ value of -5.7 per mille to -8.5 per mille) is due to significant variation in the δ 18 O-contents of rainfall with space and time, as well as intensity and distribution of rainfall. Enrichment in 18 O composition with increasing Cu and Zn levels in groundwater suggest that infiltration of rain water, irrigation water and surface run-off water from the surrounding farm lands, along with agrochemicals and other salts present in the soil, to be the main processes causing groundwater contamination. The concentration of Cu and Zn in groundwater vary spatially, due to different degrees of evaporation/recharge, amounts of fertiliser applied and wastes disposed, adsorption/dispersion of species in the soils and lateral mixing of groundwater. Two opposite mechanisms adsorption and redistribution of infiltrating water along with Zn and Cu species in the soil zone are likely to affect the movement of the Zn and Cu species

  7. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  8. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  9. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  10. Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations

    Science.gov (United States)

    Ryan, Clare M.

    2009-06-01

    States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.

  11. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  12. Introducing nonpoint source transferable quotas in nitrogen trading: The effects of transaction costs and uncertainty.

    Science.gov (United States)

    Zhou, Xiuru; Ye, Weili; Zhang, Bing

    2016-03-01

    Transaction costs and uncertainty are considered to be significant obstacles in the emissions trading market, especially for including nonpoint source in water quality trading. This study develops a nonlinear programming model to simulate how uncertainty and transaction costs affect the performance of point/nonpoint source (PS/NPS) water quality trading in the Lake Tai watershed, China. The results demonstrate that PS/NPS water quality trading is a highly cost-effective instrument for emissions abatement in the Lake Tai watershed, which can save 89.33% on pollution abatement costs compared to trading only between nonpoint sources. However, uncertainty can significantly reduce the cost-effectiveness by reducing trading volume. In addition, transaction costs from bargaining and decision making raise total pollution abatement costs directly and cause the offset system to deviate from the optimal state. While proper investment in monitoring and measuring of nonpoint emissions can decrease uncertainty and save on the total abatement costs. Finally, we show that the dispersed ownership of China's farmland will bring high uncertainty and transaction costs into the PS/NPS offset system, even if the pollution abatement cost is lower than for point sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nonpoint Source Pollution Control Projects Grants (Section 319) - 2008 active projects

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  14. EPA Office of Water (OW): Nonpoint Source Projects NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — GRTS locational data for nonpoint source projects. GRTS locations are coded onto NHDPlus v2.1 flowline features to create point and line events or coded onto NHDPlus...

  15. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  16. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  17. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    Science.gov (United States)

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  18. A method to analyze “source–sink” structure of non-point source pollution based on remote sensing technology

    International Nuclear Information System (INIS)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-01-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the “source–sink” theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of “source” of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km 2 in 2008, and the “sink” was 172.06 km 2 . The “source” of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the “sink” was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of “source” gets weaker along with the distance from the seas boundary increase, while “sink” gets stronger. -- Highlights: •We built an index to study the “source–sink” structure of NSP in a space scale. •The Index was applied in Jiulongjiang estuary and got a well result. •The study is beneficial to discern the high load area of non-point source pollution. -- “Source–Sink” Structure of non-point source nitrogen and phosphorus pollution in Jiulongjiang estuary in China was worked out by the Grid Landscape Contrast Index

  19. Using enteric pathogens to assess sources of fecal contamination in the Silurian Dolomite Aquifer: Preliminary results

    Science.gov (United States)

    Muldoon, Maureen A; Borchardt, Mark A.; Spencer, Susan K.; Hunt, Randall J.; Owens, David

    2018-01-01

    The fractured Silurian dolomite aquifer is an important, but vulnerable, source of drinking water in northeast Wisconsin (Sherrill in Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite, 1978; Bradbury and Muldoon in Hydrogeology and groundwater monitoring of fractured dolomite in the Upper Door Priority Watershed, Door County, Wisconsin, 1992; Muldoon and Bradbury in Assessing seasonal variations in recharge and water quality in the Silurian aquifer in areas with thicker soil cover. p 45, 2010). Areas underlain by the Silurian dolomite aquifer are extremely vulnerable to groundwater contamination from various land-use activities, especially the disposal of human wastewater and dairy manure. Currently there is no consensus as to which source of wastewater generates the greater impact to the aquifer.

  20. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  1. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  2. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  3. Reduction Assessment of Agricultural Non-Point Source Pollutant Loading

    OpenAIRE

    Fu, YiCheng; Zang, Wenbin; Zhang, Jian; Wang, Hongtao; Zhang, Chunling; Shi, Wanli

    2018-01-01

    NPS (Non-point source) pollution has become a key impact element to watershed environment at present. With the development of technology, application of models to control NPS pollution has become a very common practice for resource management and Pollutant reduction control in the watershed scale of China. The SWAT (Soil and Water Assessment Tool) model is a semi-conceptual model, which was put forward to estimate pollutant production & the influences on water quantity-quality under different...

  4. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    Science.gov (United States)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  5. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  6. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  7. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    Science.gov (United States)

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  8. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    Science.gov (United States)

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  10. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    Science.gov (United States)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  11. Evaluation of nonpoint-source contamination, Wisconsin; selected streamwater-quality data, land-use and best-management practices inventory, and quality assurance and quality control, water year 1993

    Science.gov (United States)

    Corsi, Steven R.; Walker, John F.; Graczyk, D.J.; Greb, S.R.; Owens, D.W.; Rappold, K.F.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of the best-management practices (BMPs) for rural streams, urban streams, and urban storm sewers. This report is an annual summary of the data collected for the program and a report of the results from several different special studies conducted within this program.

  12. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  13. Non-point Source Pollutants Loss of Planting Industry in the Yunnan Plateau Lake Basin, China

    Directory of Open Access Journals (Sweden)

    ZHAO Zu-jun

    2017-12-01

    Full Text Available Non-point source pollution of planting has become a major factor affecting the quality and safety of water environment in our country. In recent years, some studies show that the loss of nitrogen and phosphorus in agricultural chemical fertilizers has led to more serious non-point source pollution. By means of the loss coefficient method and spatial overlay analysis, the loss amount, loss of strength and its spatial distribution characteristics of total nitrogen, total phosphorus, ammonium nitrogen and nitrate nitrogen were analyzed in the Fuxian Lake, Xingyun Lake and Qilu Lake Basin in 2015. The results showed that:The loss of total nitrogen was the highest in the three basins, following by ammonium nitrogen, nitrate nitrogen and total phosphorus, which the loss of intensity range were 2.73~22.07, 0.003~3.52, 0.01~2.25 kg·hm-2 and 0.05~1.36 kg·hm-2, respectively. Total nitrogen and total phosphorus loss were mainly concentrated in the southwest of Qilu Lake, west and south of Xingyun Lake. Ammonium nitrogen and nitrate nitrogen loss mainly concentrated in the south of Qilu Lake, south and north of Xingyun Lake. The loss of nitrogen and phosphorus was mainly derived from cash crops and rice. Therefore, zoning, grading and phased prevention and control schemes were proposed, in order to provide scientific basis for controlling non-point source pollution in the study area.

  14. Current status of agricultural and rural non-point source Pollution assessment in China

    International Nuclear Information System (INIS)

    Ongley, Edwin D.; Zhang Xiaolan; Yu Tao

    2010-01-01

    Estimates of non-point source (NPS) contribution to total water pollution in China range up to 81% for nitrogen and to 93% for phosphorus. We believe these values are too high, reflecting (a) misuse of estimation techniques that were developed in America under very different conditions and (b) lack of specificity on what is included as NPS. We compare primary methods used for NPS estimation in China with their use in America. Two observations are especially notable: empirical research is limited and does not provide an adequate basis for calibrating models nor for deriving export coefficients; the Chinese agricultural situation is so different than that of the United States that empirical data produced in America, as a basis for applying estimation techniques to rural NPS in China, often do not apply. We propose a set of national research and policy initiatives for future NPS research in China. - Estimation techniques used in China for non-point source pollution are evaluated as a basis for recommending future policies and research in NPS studies in China.

  15. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  16. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County

    International Nuclear Information System (INIS)

    Wang Long; Wei Jiahua; Huang Yuefei; Wang Guangqian; Maqsood, Imran

    2011-01-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. - Highlights: → An improved urban NPS model was developed. → It performs well in areas where storm events have great temporal variation. → Threshold of total runoff volume for ignoring residual pollutant was determined. - An improved urban NPS model was developed. Threshold of total runoff volume for ignoring residual pollutant was determined.

  17. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  18. BOOK REVIEW OF "ASSESSMENT AND CONTROL OF NONPOINT SOURCE POLLUTION OF AQUATIC ECOSYSTEMS: A PRACTICAL APPROACH"

    Science.gov (United States)

    This book is geared to environmental specialists and planners, heavy on the technical side. It goes beyond tranditional nonpoint source (NPS) approaches which typically only look at stormwater as athe sole NPS pollution driver. There is some overreaching material beyond the conte...

  19. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  20. Predicting nonpoint stormwater runoff quality from land use

    Science.gov (United States)

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  1. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  2. Mining-related nonpoint-source pollution

    International Nuclear Information System (INIS)

    Cohen, R.H.; Gorman, J.

    1991-01-01

    This article describes the effects of increased mining activity on surface and groundwater. The topics covered include pollutant sources, contaminant transport and fate, trace element toxicity, pollution control and abatement, treating acid mine drainage, modern constructed wetlands and site reclamation including site stabilization, refuse burial and sludge application

  3. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    Science.gov (United States)

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge

  4. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  5. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    Science.gov (United States)

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  6. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  7. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  8. State survey of silviculture nonpoint source programs: a comparison of the 2000 northeastern and national results

    Science.gov (United States)

    Pamela J. Edwards; Gordon W. Stuart

    2002-01-01

    The National Association of State Foresters conducts surveys of silviculture nonpoint source (NPS) pollution control programs to measure progress and identify needs. The 2000 survey results are summarized here for the nation and for the 20-state northeastern region. Current emphasis of NPS pollution programs is on education, training, and monitoring. Educational...

  9. Research and information needs related to nonpoint source pollution and wetlands in the watershed: An EPA perspective

    International Nuclear Information System (INIS)

    Ethridge, B.J.; Olson, R.K.

    1992-01-01

    Two related Environmental Protection Agency (EPA) efforts, wetlands protection and nonpoint source pollution control, fail to fully consider landscape factors when making site-specific decisions. The paper discusses the relationship of the two programs and the use of created and natural wetlands to treat nonpoint source (NPS) pollution. Recommendations to improve the programs include increased technical transfer of existing information, and more research on construction methods and siting of created wetlands to effectively manage NPS pollution. Additional research is also needed to determine (1) the maximum pollutant loading rates to assure the biological integrity of wetlands, (2) the effectiveness of current land-use practices in protecting habitat and water quality functions, (3) wetland functions as pollutant sinks, (4) NPS pollution threats to wildlife, (5) practical watershed models, and (6) indicators and reference sites for monitoring wetland condition. Model watershed demonstrations, jointly implemented by the research and conservation communities, are recommended as a means of integrating research results. (Copyright (c) 1992 - Elsevier Science Publishers B.V.)

  10. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    Science.gov (United States)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity

  11. A model for evaluating the three-dimensional groundwater dividing pathline between a contaminant source and a partially penetrating water-supply well

    Science.gov (United States)

    Harmsen, Eric W.; Converse, James C.; Anderson, Mary P.; Hoopes, John A.

    1991-09-01

    Effluent from septic tank-drainfields can degrade groundwater quality and contaminate nearby water-supply wells. Such groundwater contamination is a problem in the unsewered subdivisions of the sand plain of central Wisconsin, for example. To help planners minimize the risk of direct contamination of a water-supply well by a septic system, a model was developed to estimate the location of the critical dividing pathline between a rectangular contaminant source (the septic tank drainfield) and a partially penetrating pumping well. The model is capable of handling three-dimensional, transient flow in an unconfined, homogeneous, anisotropic aquifer of infinite areal extent, under a regional horizontal hydraulic gradient. Model results are in very good agreement with several other numerical and analytical models. Examples are given for which the safe, horizontal and vertical separation distances to avoid well water contamination are determined for typical central Wisconsin sand plain conditions. A companion paper (Harmsen et al., 1991) describes the application of this model, using a Monte-Carlo analysis, to study the variation of these separation distances in the Wisconsin sand plain. The model can also be applied to larger scale problems and, therefore, could be useful in implementing the U.S. Environmental Protection Agency's new well head protection program.

  12. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    Science.gov (United States)

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  13. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    Science.gov (United States)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  14. Prevention and Control of Agricultural Non-Point Source Pollutions in UK and Suggestions to China

    OpenAIRE

    Liu, Kun; Ren, Tianzhi; Wu, Wenliang; Meng, Fanquiao; Bellarby, Jessica; Smith, Laurence

    2016-01-01

    Currently, the world is facing challenges of maintaining food production growth while improving agricultural ecological environmental quality. The prevention and control of agricultural non-point source pollution, a key component of these challenges, is a systematic program which integrates many factors such as technology and its extension, relevant regulation and policies. In the project of UK-China Sustainable Agriculture Innovation Network, we undertook a comprehensive analysis of the prev...

  15. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  16. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  17. 四川省农村面源污染状况与治理对策研究%Environmental Protection Countermeasures Against Rural Non-point Pollution Sources in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    郭卫广; 雍毅; 陈杰; 吴怡; 薛嘉

    2016-01-01

    Rural non-point source pollution is mainly divided into agricultural non-point source, livestock excrement non-point source and rural life non-point source pollution. Based on the emission factor method, this study calculated the two main pollutants( COD and NH3 -N) emissions and researched on the environmental protection countermeasures against rural non-point source pollution. Agricultural non-point source pollution control measures include:promoting soil testing and fertilizer recommen-dation, scientific and safe use of pesticides, agricultural tail water collection and treatment, ecological interception technology, etc. Livestock and poultry non-point source pollution control measures include:strengthen the pollution control of small livestock and poultry farmers, integration of agriculture and husbandry for treating non -point source pollution, promoting dry cleaning process, fermentation bed treatment technology, etc. Rural life pollution control measures include:promoting the construction of rural sewage collection and treatment infrastructure, promoting the application of small sewage treatment facilities in rural areas, etc.%四川省农村面源主要分为农田面源、畜禽养殖粪便污染面源和农村生活污染面源,研究根据排放因子法计算了两种主要考核污染物化学需氧量和氨氮的排放量.根据四川省农村面源污染状况特征提出了面源治理对策措施,其中农田面源治理措施包括:推广测土配方施肥、农田面源生态拦截技术等;畜禽养殖污染治理措施包括:加强小型畜禽养殖污染治理,推广农牧结合、干清粪、发酵床处理工艺等;农村生活污染治理措施包括:推进农村生活污水收集及小型污水处理设施等.

  18. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  19. DISCRIMINATION OF NATURAL AND NON-POINT SOURCE EFFECTS FROM ANTHROGENIC EFFECTS AS REFLECTED IN BENTHIC STATE IN THREE ESTUARIES IN NEW ENGLAND

    Science.gov (United States)

    In order to protect estuarine resources, managers must be able to discern the effects of natural conditions and non-point source effects, and separate them from multiple anthropogenic point source effects. Our approach was to evaluate benthic community assemblages, riverine nitro...

  20. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    Science.gov (United States)

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  1. Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture

    NARCIS (Netherlands)

    Kruseman, G.; Blokland, P.W.; Bouma, F.; Luesink, H.H.; Vrolijk, H.C.J.

    2008-01-01

    Non-point source pollution is notoriously difficult to asses. A relevant example is ammonia emissions in the Netherlands. Since the mid 1980s the Dutch government has sought to reduce emissions through a wide variety of measures, the effect of which in turn is monitored using modeling techniques.

  2. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    John Luczaj

    2015-06-01

    Full Text Available The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.

  3. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China.

    Science.gov (United States)

    Wang, Yandong; Yang, Jun; Liang, Jiping; Qiang, Yanfang; Fang, Shanqi; Gao, Minxue; Fan, Xiaoyu; Yang, Gaihe; Zhang, Baowen; Feng, Yongzhong

    2018-08-15

    The environmental behavior of farmers plays an important role in exploring the causes of non-point source pollution and taking scientific control and management measures. Based on the theory of planned behavior (TPB), the present study investigated the environmental behavior of farmers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China. Results showed that TPB could explain farmers' environmental behavior (SMC=0.26) and intention (SMC=0.36) well. Furthermore, the farmers' attitude towards behavior (AB), subjective norm (SN), and perceived behavioral control (PBC) positively and significantly influenced their environmental intention; their environmental intention further impacted their behavior. SN was proved to be the main key factor indirectly influencing the farmers' environmental behavior, while PBC had no significant and direct effect. Moreover, environmental knowledge following as a moderator, gender and age was used as control variables to conduct the environmental knowledge on TPB construct moderated mediation analysis. It demonstrated that gender had a significant controlling effect on environmental behavior; that is, males engage in more environmentally friendly behaviors. However, age showed a significant negative controlling effect on pro-environmental intention and an opposite effect on pro-environmental behavior. In addition, environmental knowledge could negatively moderate the relationship between PBC and environmental intention. PBC had a greater impact on the environmental intention of farmers with poor environmental knowledge, compared to those with plenty environmental knowledge. Altogether, the present study could provide a theoretical basis for non-point source pollution control and management. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  5. Regulation and perceived compliance: Nonpoint pollution reduction programs in four states

    International Nuclear Information System (INIS)

    Floyd, D.W.; MacLeod, M.A.

    1993-01-01

    Examining nonpoint-source water pollution programs in foresty is one way of looking at the complicated policy questions of striking a balance between voluntary and regulatory approaches to forest management on private lands. States have developed a variety of approaches in this area from completely voluntary to highly regulatory to archeive compliance. This article looks at several aspects: federal requirements, program types, predictive behavior theories, and specific state programs (Ohio, West Virginia, Maryland, Massachusetts). The study results indicate a significant difference in preceived compliance based on program type: as stringency increases, perceived compliance increases. The authors suggest that successful forestry nonpoint source water pollution reduction plans should combine regulatory and educational elements. 16 refs., 3 tabs

  6. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  7. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  8. The Non-point Source Pollution Effects of Pesticides Based on the Survey of 340 Farmers in Chongqing City

    OpenAIRE

    YU, Lianchao; GU, Limeng; BI, Qian

    2015-01-01

    Using the survey data on 340 farmers in Chongqing City, this paper performs an empirical analysis of the factors influencing the non-point source pollution of pesticides. The results show that the older householders will apply more pesticides, which may be due to the weak physical strength and weak ability to accept the concept of advanced cultivation; the householders with high level of education will choose to use less pesticides; the pesticide application rate is negatively correlated with...

  9. Emerging technologies to remove nonpoint phosphorus sources from surface water and groundwater

    NARCIS (Netherlands)

    Buda, A.R.; Koopmans, G.F.; Bryant, R.B.; Chardon, W.J.

    2012-01-01

    Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be

  10. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  11. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Science.gov (United States)

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  12. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  13. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  14. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  15. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  16. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    2011-01-01

    According to the European Water Framework Directive, member states are obliged to ensure that all surface water bodies achieve at least good ecological status and to identify major anthropogenic stressors. Non-point source contamination of agricultural pesticides is widely acknowledged as one of ...

  17. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution

  18. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    Science.gov (United States)

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  19. Contaminant profiles in Southeast Asian immigrants consuming fish from polluted waters in northeastern Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Schantz, Susan L., E-mail: schantz@illinois.edu [Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Gardiner, Joseph C. [Department of Epidemiology, Michigan State University (United States); Aguiar, Andrea [Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Tang, Xiaoqin; Gasior, Donna M. [Department of Epidemiology, Michigan State University (United States); Sweeney, Anne M. [Department of Epidemiology and Biostatistics, Texas A and M University System Health Science Center USA (United States); Peck, Jennifer D. [Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center (United States); Gillard, Douglas; Kostyniak, Paul J. [Toxicology Research Center, University at Buffalo (United States)

    2010-01-15

    Recent immigrants to the USA from Southeast Asia may be at higher risk of exposure to fish-borne contaminants including polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethene (DDE) and methylmercury (MeHg) because of their propensity to engage in subsistence fishing. Exposure to contaminants was assessed in men and women of Hmong descent living in Green Bay, Wisconsin, where the Fox River and lower Green Bay are contaminated with PCBs, and to a lesser extent with mercury. Serum samples from 142 people were analyzed for PCBs and p,p'-DDE by capillary column gas chromatography with electron capture detection (ECD). Whole blood was analyzed for total mercury by cold vapor atomic absorption spectrometry and atomic fluorescence spectroscopy. Lipid-adjusted total PCB concentrations ranged from 8.7 to 3,091 ng/g (full range of the data), with a geometric mean of 183.6 ng/g (estimated after eliminating one outlier). DDE ranged from 0.3 to 7,083 (full range of the data) with a geometric mean of 449.8 ng/g (estimated after eliminating two outliers). Men had higher PCB and DDE concentrations than women. Serum PCB concentrations were significantly correlated with fish consumption (r=0.43, p<0.0001), whereas DDE concentrations were not (r=0.09,p=0.29). Instead, serum DDE was strongly associated with the number of years spent in a Thai refugee camp before immigrating to the USA (r=0.60;p<0.0001). PCB congeners 138, 153, 118 and 180 accounted for a smaller percentage of the total PCBs than has been reported in other fish-eating populations, and several lightly chlorinated congeners were present in relatively large amounts. Mercury exposure was low in this population. In conclusion, Hmong immigrants in northeastern Wisconsin are at risk of elevated PCB exposure from consumption of locally caught fish. The pattern of exposure is somewhat different than patterns in other fish-eating populations, possibly due to use of Aroclor 1242 by the paper industry in

  20. Contaminant profiles in Southeast Asian immigrants consuming fish from polluted waters in northeastern Wisconsin

    International Nuclear Information System (INIS)

    Schantz, Susan L.; Gardiner, Joseph C.; Aguiar, Andrea; Tang, Xiaoqin; Gasior, Donna M.; Sweeney, Anne M.; Peck, Jennifer D.; Gillard, Douglas; Kostyniak, Paul J.

    2010-01-01

    Recent immigrants to the USA from Southeast Asia may be at higher risk of exposure to fish-borne contaminants including polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethene (DDE) and methylmercury (MeHg) because of their propensity to engage in subsistence fishing. Exposure to contaminants was assessed in men and women of Hmong descent living in Green Bay, Wisconsin, where the Fox River and lower Green Bay are contaminated with PCBs, and to a lesser extent with mercury. Serum samples from 142 people were analyzed for PCBs and p,p'-DDE by capillary column gas chromatography with electron capture detection (ECD). Whole blood was analyzed for total mercury by cold vapor atomic absorption spectrometry and atomic fluorescence spectroscopy. Lipid-adjusted total PCB concentrations ranged from 8.7 to 3,091 ng/g (full range of the data), with a geometric mean of 183.6 ng/g (estimated after eliminating one outlier). DDE ranged from 0.3 to 7,083 (full range of the data) with a geometric mean of 449.8 ng/g (estimated after eliminating two outliers). Men had higher PCB and DDE concentrations than women. Serum PCB concentrations were significantly correlated with fish consumption (r=0.43, p<0.0001), whereas DDE concentrations were not (r=0.09,p=0.29). Instead, serum DDE was strongly associated with the number of years spent in a Thai refugee camp before immigrating to the USA (r=0.60;p<0.0001). PCB congeners 138, 153, 118 and 180 accounted for a smaller percentage of the total PCBs than has been reported in other fish-eating populations, and several lightly chlorinated congeners were present in relatively large amounts. Mercury exposure was low in this population. In conclusion, Hmong immigrants in northeastern Wisconsin are at risk of elevated PCB exposure from consumption of locally caught fish. The pattern of exposure is somewhat different than patterns in other fish-eating populations, possibly due to use of Aroclor 1242 by the paper industry in this region.

  1. Urban Runoff: Getting to the Nonpoint

    OpenAIRE

    Pendall, Rolf

    1994-01-01

    Mandates for water-quality improvement have forced regulators and planners to confront the problem of urban runoff, still an important source of water pollution. This ar­ticle discusses those mandates and how to meet them, and provides examples of ongoing nonpoint water pollution control programs in the San Francisco Bay Area. These examples suggest that cleanup of urban runoff may require more comprehensive regional planning to encourage a de­velopment pattern conducive to pollution control.

  2. Source Water Protection Contaminant Sources

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Simplified aggregation of potential contaminant sources used for Source Water Assessment and Protection. The data is derived from IDNR, IDALS, and US EPA program...

  3. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  4. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    Science.gov (United States)

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  5. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review.

    Science.gov (United States)

    Liu, Feng; Zhang, Shunan; Luo, Pei; Zhuang, Xuliang; Chen, Xiang; Wu, Jinshui

    2018-01-01

    In this review, the applications of Myriophyllum-based integrative biotechnology to remove common non-point source (NPS) pollutants, such as nitrogen, phosphorus, heavy metals, and organic pollutants (e.g., pesticides and antibiotics) are summarized. The removal of these pollutants via various mechanisms, including uptake by plant and microbial communities in macrophyte-based treatment systems are discussed. This review highlights the potential use of Myriophyllum biomass to produce animal feed, fertilizer, and other valuable by-products, which can yield cost-effective returns and attract more attention to the regulation and recycling of NPS pollutants. In addition, it demonstrates that utilization of Myriophyllum species is a promising and reliable strategy for wastewater treatment. The future development of sustainable Myriophyllum-based treatment systems is discussed from various perspectives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  7. Contamination sources, prevention, and research

    Science.gov (United States)

    Contamination is defined as anything other than cotton in cotton lint. Worldwide, contamination is on the rise and plastic contamination has increased at a faster rate than contamination overall. In the U.S., there are many sources of plastic contaminants, such as plastic trash that collects in cott...

  8. Event-based nonpoint source pollution prediction in a scarce data catchment

    Science.gov (United States)

    Chen, Lei; Sun, Cheng; Wang, Guobo; Xie, Hui; Shen, Zhenyao

    2017-09-01

    Quantifying the rainfall-runoff-pollutant (R-R-P) process is key to regulating non-point source (NPS) pollution; however, the impacts of scarce measured data on R-R-P simulations have not yet been reported. In this study, we conducted a comprehensive study of scarce data that addressed both rainfall-runoff and runoff-pollutant processes, whereby the impacts of data scarcity on two commonly used methods, including Unit Hydrograph (UH) and Loads Estimator (LOADEST), were quantified. A case study was performed in a typical small catchment of the Three Gorges Reservoir Region (TGRR) of China. Based on our results, the classification of rainfall patterns should be carried out first when analyzing modeling results. Compared to data based on a missing rate and a missing location, key information generates more impacts on the simulated flow and NPS loads. When the scarcity rate exceeds a certain threshold (20% in this study), measured data scarcity level has clear impacts on the model's accuracy. As the model of total nitrogen (TN) always performs better under different data scarcity conditions, researchers are encouraged to pay more attention to continuous the monitoring of total phosphorus (TP) for better NPS-TP predictions. The results of this study serve as baseline information for hydrologic forecasting and for the further control of NPS pollutants.

  9. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  10. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    Science.gov (United States)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  11. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    Science.gov (United States)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  12. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  13. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    Science.gov (United States)

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  15. Morphological Deformities as Biomarkers in Fish from Contaminated Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Nancy J. Brown-Peterson

    2009-08-01

    Full Text Available Tilapia (Oreochromis spp. were collected seasonally from four contaminated rivers in southwestern Taiwan for studies of morphological deformities that could be used as biomarkers of contamination. Morphological deformities found in tilapia were separated into 15 categories. Overall, the prevalence of deformities such as split fins, lower lip extension and gill deformities were significantly related to various water quality parameters, including low DO and high ammonium, lead and zinc concentrations. The persistence of tilapia in polluted waters and the development of a suite of morphological deformities suggest that tilapia can be used as sentinels of non-point source pollution in rivers.

  16. Morphological Deformities as Biomarkers in Fish from Contaminated Rivers in Taiwan

    Science.gov (United States)

    Sun, Peter Lin; Hawkins, William E.; Overstreet, Robin M.; Brown-Peterson, Nancy J.

    2009-01-01

    Tilapia (Oreochromis spp.) were collected seasonally from four contaminated rivers in southwestern Taiwan for studies of morphological deformities that could be used as biomarkers of contamination. Morphological deformities found in tilapia were separated into 15 categories. Overall, the prevalence of deformities such as split fins, lower lip extension and gill deformities were significantly related to various water quality parameters, including low DO and high ammonium, lead and zinc concentrations. The persistence of tilapia in polluted waters and the development of a suite of morphological deformities suggest that tilapia can be used as sentinels of non-point source pollution in rivers. PMID:19742162

  17. Faecal contamination of water and sediment in the rivers of the Scheldt drainage network.

    Science.gov (United States)

    Ouattara, Nouho Koffi; Passerat, Julien; Servais, Pierre

    2011-12-01

    The Scheldt watershed is characterized by a high population density, intense industrial activities and intensive agriculture and breeding. A monthly monitoring (n = 16) of the abundance of two faecal indicator bacteria (FIB), Escherichia coli and intestinal enterococci (IE), showed that microbiological water quality of the main rivers of the Scheldt drainage network was poor (median values ranging between 1.4 × 10(3) and 4.0 × 10(5) E. coli (100 mL)( -1) and between 3.4 × 10(2) and 7.6 × 10(4) IE (100 mL)( -1)). The Zenne River downstream from Brussels was particularly contaminated. Glucuronidase activity was measured in parallel and was demonstrated to be a valid surrogate for a rapid evaluation of E. coli concentration in the river waters. FIB were also investigated in the river sediments; their abundance was sometimes high (average values ranging between 2.1 × 10(2) and 3.3 × 10(5) E. coli g( -1) and between 1.0 × 10(2) and 1.7 × 10(5) IE g( -1)) but was not sufficient to contribute significantly to the river water contamination during resuspension events, except for the Scheldt and the Nethe Rivers. FIB were also quantified in representative point sources (wastewater treatment plants) and non-point sources (runoff water and soil leaching on different types of land use) of faecal contamination. The comparison of the respective contribution of point and non-point sources at the scale of the Scheldt watershed showed that point sources were largely predominant.

  18. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  19. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    Science.gov (United States)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  20. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  1. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  2. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  3. Sources and chronology of nitrate contamination in spring waters, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, Brian G.; Hornsby, H.D.; Bohlke, J.K.; Mokray, M.F.

    1999-01-01

    A multi-tracer approach, which consisted of analyzing water samples for n aturally occurring chemical and isotopic indicators, was used to better understand sources and chronology of nitrate contamination in spring wate rs discharging to the Suwannee and Santa Fe Rivers in northern Florida. Dur ing 1997 and 1998, as part of a cooperative study between the Suwannee River Water Management District and the U.S. Geological Survey, water samples were collected and analyzed from 24 springs and two wells for major ions, nutrients, dissolved organic carbon, and selected environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N]. To better understand when nitrate entered the ground-water system, water samples were analyzed for chlorofluorocarbons (CFCs; CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H); in this way, the apparent ages and residence times of spring waters and water from shallow zones in the Upper Floridan aquifer were determined. In addition to information obtained from the use of isotopic and other chemical tracers, information on changes in land-use activities in the basin during 1954-97 were used to estimate nitrogen inputs from nonpoint sources for five counties in the basin. Changes in nitrate concentrations in spring waters with time were compared with estimated nitrogen inputs for Lafayette and Suwannee Counties. Agricultural activities [cropland farming, animal farming operations (beef and dairy cows, poultry, and swine)] along with atmospheric deposition have contributed large quantities of nitrogen to ground water in the Suwannee River Basin in northern Florida. Changes in agricultural land use during the past 40 years in Alachua, Columbia, Gilchrist, Lafayette, and Suwannee Counties have contributed variable amounts of nitrogen to the ground-water system. During 1955-97, total estimated nitrogen from all nonpoint sources (fertilizers, animal wastes, atmospheric deposition, and septic tanks) increased continuously in Gilchrist and Lafayette Counties. In

  4. Modeling non-point source pollutants in the vadose zone: Back to the basics

    Science.gov (United States)

    Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.

    More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models

  5. Coastal nonpoint pollution control program: Program development and approval guidance

    International Nuclear Information System (INIS)

    1993-01-01

    The document, developed by NOAA and EPA, contains guidance for states in developing and implementing their coastal nonpoint pollutant source programs. It describes the requirements that must be met, including: the geographic scope of the program; the pollutant sources to be addressed; the types of management measures used; the establishment of critical areas; technical assistance, public participation, and administrative coordination; and, the process for program submission and Federal approval. The document also contains the criteria by which NOAA and EPA will review the states' submissions

  6. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    Science.gov (United States)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical

  7. Modelling nonpoint source pollution of MUDA river basin using GIS (Geographic Information System)

    International Nuclear Information System (INIS)

    Nyon Yong Chik; Taher Buyong

    2000-01-01

    The management of our rivers is under increasing pressure to conserve and sustain as it remains the focus of human civilization and subjected to increasing demand from man and its activities. Integrated river basin management represents comprehensive form of terrestrial water resources management while GIS is a promising tool to be used in the management strategy. In efforts to display the true capabilities of GIS in analysing nonpoint source pollution (NPS), an assessment of NPS was carried out at MUDA river basin using Arc View 3.0 Spatial Analyst. Expected Mean Concentration (EMC) which is associated with land use was used to predict the amount of pollutants constituents. A runoff grid was then processed to model the flow domain. Finally, the modelling of the pollutant loads downstreams towards the basin outlet is achieved by flow direction and accumulation analysis of the product of EMC and runoff grid. A user interface was programmed to display each application data theme via a pop-up window. In addition, users will be able to enter EMG values for the corresponding land use through an application dialog developed in Visual Basic. (Author)

  8. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  9. Relationship Between Non-Point Source Pollution and Korean Green Factor

    Directory of Open Access Journals (Sweden)

    Seung Chul Lee

    2015-01-01

    Full Text Available In determining the relationship between the rational event mean concentration (REMC which is a volume-weighted mean of event mean concentrations (EMCs as a non-point source (NPS pollution indicator and the green factor (GF as a low impact development (LID land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated with storm factors whereas they showed significant differences according to the land use types. The calculated REMCs for BOD, COD, TSS, TN, and TP showed negative correlations with the GFs. However, even though the GFs of the agricultural area were concentrated in values of 80 like the green areas, the REMCs for TSS, TN, and TP were especially high. There were few differences in REMC runoff characteristics according to the GFs such as recreational facilities areas in suburbs and highways and trunk roads that connect to major roads between major cities. Except for those areas, the REMCs for BOD and COD were significantly related to the GFs. The REMCs for BOD and COD decreased when the rate of natural green area increased. On the other hand, some of the REMCs for TSS, TN, and TP were still high where the catchments encountered mixed land use patterns, especially public facility areas with bare ground and artificial grassland areas. The GF could therefore be used as a major planning indicator when establishing land use planning aimed at sustainable development with NPS management in urban areas if the weighted GF values will be improved.

  10. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  11. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    Non-point source contamination with agricultural pesticides is widely acknowledged as one of the greatest sources of pollution in stream ecosystems, and surface runoff is an important transport route. Consequently, maximum pesticide concentrations occur briefly during heavy precipitation events......) of agricultural pesticides originating from normal agricultural practices. We link the findings to a predictive model for pesticide surface runoff (RP) and evaluate the potential impact of pesticides on benthic macroinvertebrates. Furthermore, we apply detailed land-use data and field characteristics to identify...

  12. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  13. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  14. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    Science.gov (United States)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  15. Evaluation of beach grooming techniques on Escherichia coli density in foreshore sand at North Beach, Racine, WI

    Science.gov (United States)

    Kinzelman, Julie L.; Whitman, Richard L.; Byappanahalli, Muruleedhara N.; Jackson, Emma; Bagley, Robert C.

    2003-01-01

    Elevated levels of Escherichia coli(E. coli) in bathing waters at North Beach, a popular recreational site in Racine, Wisconsin, have been a persistent problem often resulting in the issuance of poor water quality advisories. Moreover, waterfowl (mostly Larus delawarensis and L. argentatus) in nearshore and offshore areas are common and may serve as non-point sources for bacterial contamination of recreational waters. Current beach management practice involves daily mechanical grooming of the nearshore sand for aesthetics and removal of hazardous debris. However, this practice has not been evaluated in terms of its effects on E. coli loading to beach sand and potential introduction to contiguous swimming water. In this study, we tested E. coli responses to three treatments: mechanical groomer, daily and twice weekly hand raking, and a control (no raking/grooming). A randomized block design consisted of replicated treatments and one control (10 each), for a total of 40 blocks sampled daily for 10 days. Foreshore sand samples were collected by hand coring to an average depth of 10 cm. Median E. colirecovered were 73 (mechanically groomed), 27 (hand-raked daily), 32 (hand-raked twice weekly), and 22 (control) colony-forming units (CFU) per gram dry weight sand. E. colicounts in sand that was groomed were significantly higher than hand rakings and control (p grooming efficacy and the importance of understanding non-point sources of bacterial contamination.

  16. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  17. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  18. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    NARCIS (Netherlands)

    Peng, Feng Jiao; Pan, Chang Gui; Zhang, Min; Zhang, Nai Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Brink, Van den Paul J.; Ying, Guang Guo

    2017-01-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting

  19. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  20. The Treatment Train approach to reducing non-point source pollution from agriculture

    Science.gov (United States)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  1. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  2. Method to Locate Contaminant Source and Estimate Emission Strength

    Directory of Open Access Journals (Sweden)

    Qu Hongquan

    2013-01-01

    Full Text Available People greatly concern the issue of air quality in some confined spaces, such as spacecraft, aircraft, and submarine. With the increase of residence time in such confined space, contaminant pollution has become a main factor which endangers life. It is urgent to identify a contaminant source rapidly so that a prompt remedial action can be taken. A procedure of source identification should be able to locate the position and to estimate the emission strength of the contaminant source. In this paper, an identification method was developed to realize these two aims. This method was developed based on a discrete concentration stochastic model. With this model, a sensitivity analysis algorithm was induced to locate the source position, and a Kalman filter was used to further estimate the contaminant emission strength. This method could track and predict the source strength dynamically. Meanwhile, it can predict the distribution of contaminant concentration. Simulation results have shown the virtues of the method.

  3. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  4. Water Use in Wisconsin, 2005

    Science.gov (United States)

    Buchwald, Cheryl A.

    2009-01-01

    The U.S. Geological Survey (USGS) Wisconsin Water Science Center is responsible for presenting data collected or estimated for water withdrawals and diversions every 5 years to the National Water-Use Information Program (NWUIP). This program serves many purposes such as quantifying how much, where, and for what purpose water is used; tracking and documenting water-use trends and changes; and providing these data to other agencies to support hydrologic projects. In 2005, data at both the county and subbasin levels were compiled into the USGS national water-use database system; these data are published in a statewide summary report and a national circular. This publication, Water Use in Wisconsin, 2005, presents the water-use estimates for 2005; this publication also describes how these water-use data were determined (including assumptions used), limitations of using these data, and trends in water-use data presented to the NWUIP. Estimates of water use in Wisconsin indicate that about 8,608 million gallons per day (Mgal/d) were withdrawn during 2005. Of this amount, about 7,622 Mgal/d (89 percent) were from surface-water sources and about 986 Mgal/d (11 percent) were from ground-water sources. Surface water used for cooling at thermoelectric-power plants constituted the largest portion of daily use at 6,898 Mgal/d. Water provided by public-supply water utilities is the second largest use of water and totaled 552 Mgal/d. Public supply served approximately 71 percent of the estimated 2005 Wisconsin population of 5.54 million people; two counties - Milwaukee and Dane - accounted for more than one-third of the public-supply withdrawal. Industrial and irrigation were the next major water uses at 471 and 402 Mgal/d, respectively. Non-irrigational agricultural (livestock and aquaculture) accounted for approximately 155 Mgal/d and is similar to the combined withdrawal for the remaining water-use categories of domestic, commercial, and mining (131 Mgal/d). Data on water use

  5. 水源保护地农业面源污染防治对策探讨——以昆明松花坝水源保护区为例%Discus on the Prevention and Control Countermeasures of Agricultural Non-point Pollution in Water Source Protected Areas

    Institute of Scientific and Technical Information of China (English)

    罗婷; 王崇云; 彭明春; 李其阳; 孔维琳; 杨莎; 董磊

    2012-01-01

    This paper analyzed the contamination sources,pollutants migration processes and causes,which related to water source protection. Best management practices system (BMPs) and ecologic and clean-type small watersheds approaches were two commonly used methods for abating the non-point source (NPS) pollution. We detailedly reviewed the countermeasures in two methods. Then,we took Kunming Songhuaba water protected area as an example to oudine the framework to fight against the NPS pollution,based on the functional zones of water conservation areas,BMPs and ecologic and clean-type small watersheds approaches were specifically elaborated for water protection implements and for agricultural non-point pollution prevention and control. Finally,the paper probed into the NPS pollution control of the water protected areas in future.%分析了水源保护地的污染物来源和迁移过程、形成原因,对最佳管理措施( BMPs)和生态清洁型小流域建设2种水源保护地常用的污染防治对策进行了详细概述;并以昆明松花坝为例,在其水源地保护功能区划的基础上,具体阐述了BMPs与生态清洁小流域建设在水源保护地农业面源污染防治中的应用.最后,探讨了我国水源保护地污染控制的研究方向.

  6. Interpolating precipitation and its relation to runoff and non-point source pollution.

    Science.gov (United States)

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  7. Science, information, technology, and the changing character of public policy in non-point source pollution

    Science.gov (United States)

    King, John L.; Corwin, Dennis L.

    Information technologies are already delivering important new capabilities for scientists working on non-point source (NPS) pollution in the vadose zone, and more are expected. This paper focuses on the special contributions of modeling and network communications for enhancing the effectiveness of scientists in the realm of policy debates regarding NPS pollution mitigation and abatement. The discussion examines a fundamental shift from a strict regulatory strategy of pollution control characterized by a bureaucratic/technical alliance during the period through the 1970's and early 1980's, to a more recently evolving paradigm of pluralistic environmental management. The role of science and scientists in this shift is explored, with special attention to the challenges facing scientists working in NPS pollution in the vadose zone. These scientists labor under a special handicap in the evolving model because their scientific tools are often times incapable of linking NPS pollution with individuals responsible for causing it. Information can facilitate the effectiveness of these scientists in policy debates, but not under the usual assumptions in which scientific truth prevails. Instead, information technology's key role is in helping scientists shape the evolving discussion of trade-offs and in bringing citizens and policymakers closer to the routine work of scientists.

  8. 78 FR 65875 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Removal of Gasoline...

    Science.gov (United States)

    2013-11-04

    ...] Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Removal of Gasoline Vapor... Administrative Code, Chapter NR 420 Control of Organic Compound Emissions from Petroleum and Gasoline Sources... FROM PETROLEUM AND GASOLINE SOURCES. NR 420.01 as published in the (Wisconsin) Register, February, 1990...

  9. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  10. Source-water susceptibility assessment in Texas—Approach and methodology

    Science.gov (United States)

    Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.

    2011-01-01

    and time; that increased levels of COC-producing activities within a source area may increase susceptibility to COC exposure; and that natural and manmade conditions within the source area may increase, decrease, or have no observable effect on susceptibility to COC exposure. Incorporating these assumptions, eight SWSA components were defined: identification, delineation, intrinsic susceptibility, point- and nonpoint-source susceptibility, contaminant occurrence, area-of-primary influence, and summary components. Spatial datasets were prepared to represent approximately 170 attributes or indicators used in the assessment process. These primarily were static datasets (approximately 46 gigabytes (GB) in size). Selected datasets such as PWS surface-water-intake or groundwater-well locations and potential source of contamination (PSOC) locations were updated weekly. Completed assessments were archived, and that database is approximately 10 GB in size. SWSA components currently (2011) are implemented in the Source Water Assessment Program-Decision Support System (SWAP-DSS) computer software, specifically developed to produce SWSAs. On execution of the software, the components work to identify the source of water for the well or intake, assess intrinsic susceptibility of the water- supply source, assess susceptibility to contamination with COCs from point and nonpoint sources, identify any previous detections of COCs from existing water-quality databases, and summarize the results. Each water-supply source's susceptibility is assessed, source results are weighted by source capacity (when a PWS has multiple sources), and results are combined into a single SWSA for the PWS.'SWSA reports are generated using the software; during 2003, more than 6,000 reports were provided to PWS operators and the public. The ability to produce detailed or summary reports for individual sources, and detailed or summary reports for a PWS, by COC or COC group was a unique capability of SWAP

  11. Evaluation of parasitic contamination from local sources of drinking ...

    African Journals Online (AJOL)

    A survey on the parasitic contamination of drinking-water sources was carried out ... the extent of contamination of these water sources and their public health implication. ... of the water bodies and boil their drinking-water before consumption.

  12. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    Science.gov (United States)

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    Science.gov (United States)

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  14. Molds contamination of raw milk and dairy products: Occurrence, diversity and contamination source

    Directory of Open Access Journals (Sweden)

    T Moshtaghi Maleki

    2015-11-01

    Full Text Available This study aimed to assess the occurrence and diversity of mold species in raw milk and its products along with the identification of potential contamination sources. For this reason, a total of 260 samples consisting of 80 raw milk, 100 dairy products (i.e., pasteurized milk, yoghurt, cheese and buttermilk and 80 environmental (i.e. ingredients, packaging materials, surface of processing equipments and air specimens were collected. Using culture assay and microscopic observation, the occurrence as well as the diversity of mold species was investigated. According to the results, 82.3% of the samples were identified as positive for mold contamination. The percentage of mold contamination for raw milk was estimated as 97.5%. In the case of pasteurized milk, yoghurt, buttermilk, cheese and environmental samples, it was determined as 52%, 76%, 52%, 56% and 96.25%, respectively. Mold diversity among various samples consisted of Aspergillus, Geotrichum, Penicillium, Mucor, Alternaria, Rhizopus, Stemphylium, Cladosporium, and Fusarium. Results revealed a significant (p < 0.01 correlation between kind of mold species isolated from raw milk and dairy products. Similarly, a correlation was observed between dairy products and environmental sources. Regarding the high occurrence of mold contamination in raw milk and environmental sources, it seems that in some instances heat treatment was not effective enough to inactivate all molds; whereas in some other cases, cross contamination may have resulted in mold contamination. Therefore, it is crucial to maintain hygienic conditions during raw milk handling as well as processing steps. These practices could efficiently reduce the occurrence of mold contaminations in dairy products.

  15. 靖江市农业面源污染现状及防治对策研究%Current Status and Countermeasures of Agriculture Non-point Source Pollution control in Xinhua City

    Institute of Scientific and Technical Information of China (English)

    张明; 曹学章

    2016-01-01

    农业面源污染治理情况是生态文明创建的重要指标之一。本文总结了江苏省靖江市在生态市创建过程中治理农业面源污染所采取的措施以及取得的成效,并提出了靖江市“十三五”期间创建生态文明示范市过程中推进农业面源污染治理工作的对策建议:一,推广种植业清洁生产,控制种植业化肥农药使用;第二,优化养殖业布局,加强畜禽粪污综合利用;第三,调整渔业产业结构,强化水产养殖业污染管控;第四,推进农村环境综合整治。%Agricultural non-point source pollution is one of the important indicators during the construction of ecological civilization. This paper summarizes the measures taken by the management of agricultural non-point source pollution in Jingjiang during the construction of National Eco-city, and the results obtained. Then, it puts forward countermeasures and suggestions for promoting the pollution control of agricultural non-point source in Jingjiang during the 13’ th Five Year. First, the promotion of planting industry clean production, control the farming fertilizer pesticide use; Second, optimize the breeding industry layout, strengthen the comprehensive utilization of livestock and poultry waste; Third, adjust the structure of fishery industry, strengthen the aquaculture pollution control; Fourth, to promote the comprehensive improvement of the rural environment.

  16. A summary of total mercury concentrations in flora and fauna near common contaminant sources in the Gulf of Mexico.

    Science.gov (United States)

    Lewis, M; Chancy, C

    2008-02-01

    Total mercury concentrations are summarized for environmental media and biota collected from near-coastal areas, several impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were collected during 1993-2002 from targeted areas affected by point and non-point source contaminants. Mean concentrations in water and sediment were 0.02 (+/-1 standard deviation=0.06) microg l(-1) and 96.3 (230.8) ng g(-1) dry wt, respectively. Mean total mercury concentrations in fish, blue crabs, brackish clams and mussels were significantly greater than those in sediment, seagrass, colonized periphyton and oysters. Concentrations (ng g(-1) dry wt) averaged 23.1 (two seagrass species), 220.1 (oysters), 287.8 (colonized periphyton), 604.0 (four species of freshwater mussels), 772.4 (brackish clam), 857.9 (blue crabs) and 933.1 (nine fish species). Spatial, intraspecific and interspecific variability in results limited most generalizations concerning the relative mercury contributions of different stressor types. However, concentrations were significantly greater for some biota collected from areas receiving wastewater discharges and golf course runoff (fish), agricultural runoff (oysters) and urban stormwater runoff (colonized periphyton and sediment). Marine water quality criteria and proposed sediment quality guidelines were exceeded in 1-12% of total samples. At least one seafood consumption guideline, criteria or screening value were exceeded in edible tissues of blue crabs (6% total samples) and nine fish species (8-33% total samples) but all residues were less than the US Federal Drug Administration action limit of 1.0 ppm and the few reported toxic effect concentrations available for the targeted biota.

  17. Use of a constucted wetland to reduce nonpoint-source pesticide contamination of the Lourens River, South America

    Science.gov (United States)

    Ralf Schulz

    2000-01-01

    The Lourens River, Western Cape, South Africa, and its tributaries situated in an intensively cultivated orchard area receive pesticide contamination during rainfall-induced runoff and during spraydrift. A 0.44-ha constructed wetland, built in 1991 in one of the tributaries (summer flow 0.03 m3 per second), was studied in order to assess its effectiveness in reducing...

  18. Non-Point Source Nitrogen and Phosphorus Pollution Simulation and Irrigation Mode Optimization of the North Canal Basin%北运河流域非点源氮磷污染模拟分析及灌溉模式优化

    Institute of Scientific and Technical Information of China (English)

    刘银迪; 徐建新; 陆建红; 赵鹏

    2011-01-01

    In order to reduce the non-point source pollution caused by the farmland irrigation of the North Canal Basin and develop a sound farmland management model,the improved SWAT model is adopted to simulate the surface-runoff non-point source nitrogen and phosphorus pollution under different irrigation modes in the Wuqing area in the North Canal Basin.The simulation results indicate that under the same irrigation quota,with the increaseof the number of the sewage irrigation times,the total nitrogen and phosphorus load amount in the water body of the basin firstly reduces and then increases;in all the instituted irrigation modes,it could make the total non-point source pollution load minimum to irrigate sewage in the wintering period and the jointing stage of the winter wheat,and the tasseling stage of the summer maize.Besides,under water-saving irrigation,the irrigation quota change has little effect on the total nitrogen and phosphorus load amount in the water body.The results demonstrate that the characteristics of the non-point source nitrogen and phosphorus pollution under different irrigation modes are different,and it could control the transport of the non-point source nitrogen and phosphorus pollutants well to adopt small-quota rotation irrigation of clean and sewage water in growth periods of crops.%为了减轻北运河流域农田灌溉引起的非点源污染,探索良性农田管理模式,选取北运河流域武清区为研究对象,采用改进的SWAT模型模拟不同灌溉方案下武清区地表径流非点源氮磷污染。结果表明:同一灌溉定额下,随着污灌次数的增加,流域水体内氮磷负荷总量呈先降后升的趋势;在所制定的灌溉情景中,冬小麦越冬、拔节期和夏玉米抽雄期进行污灌,其余生育阶段进行清水灌溉时,非点源污

  19. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    Science.gov (United States)

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  20. Hazardous emissions, operating practices, and air regulations at industrial wood-fired facilities in Wisconsin

    International Nuclear Information System (INIS)

    Hubbard, A.J.

    1993-01-01

    Since October of 1988 the State of Wisconsin Department of Natural Resources has regulated over four hundred substances as hazardous air pollutants. The rule regulates new as well as existing sources of air pollution in Wisconsin. Consequently, all permits to operate an air pollution source in Wisconsin must address the hazardous air emissions potential of the source. While widely perceived as a clean-burning fuel, wood is often burned in a manner which clearly results in significant emissions of very hazardous air pollutants. Research conducted on a 20 million BTU per hour wood-fired spreader stoker boiler in northern Wisconsin showed that this boiler has the potential to emit 0.022 pound of benzene and 0.012 pound of formaldehyde per ton (lb/ton) of wood fired. Recent stack tests at more than a dozen other small industrial wood-fired facilities in Wisconsin show a range of formaldehyde emissions of 0.0007--0.1950 lb/ton. Work at Birchwood Lumber ampersand Veneer showed that the benzene and formaldehyde emission rates under good firing conditions are an order of magnitude lower than the benzene and formaldehyde emission rates under poor firing conditions. This finding has supported Wisconsin's regulatory approach of encouraging wood-fired facilities to enhance the quality of the combustion process as a technique to minimize the hazardous air pollution potential of industrial wood combustion. The Wisconsin strategy is to define open-quotes good combustion technologyclose quotes through easily measurable combustion parameters rather than emission standards. This paper presents several techniques in use in Wisconsin to comply with open-quotes good combustion technologyclose quotes for industrial wood-fired furnaces. These techniques include fuel blending overfire air, furnace insulation, and proper grate design

  1. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    Science.gov (United States)

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  2. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  3. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  4. Preliminary preview for a geographic and monitoring program project; a review of point source-nonpoint source effluent trading/offset systems in watersheds

    Science.gov (United States)

    Wood, Alexander Warren; Bernknopf, Richard L.

    2003-01-01

    Watershed-based trading and offset systems are being developed to improve policy-maker?s and regulator?s ability to assess nonpoint source impacts in watersheds and to evaluate the efficacy of using market-incentive programs for preserving environmental quality. An overview of the history of successful and failed trading programs throughout the United States suggests that certain political, economic, and scientific conditions within a temporal and spatial setting help meet water quality standards. The current lack of spontaneous trading among dischargers does not mean that a marketable permit trading system is an inherently inefficient regulatory approach. Rather, its infrequent use is the result of institutional and informational barriers. Improving and refining the earth science information and technologies may help determine whether trading is a suitable policy for improving water quality. However, it is debatable whether or not environmental information is the limiting factor. This paper reviews additional factors affecting the potential for instituting a trading policy. The motivation for investigating and reviewing the history of offsets and trading was inspired by a project in the preliminary stages being developed by U.S. Geological Survey Western Geographic Science Center and the Environmental Protection Agency Region IX. An offset feasibility study will be an integrated, map-based approach that incorporates environmental, economic, and statistical information to investigate the potential for using offsets to meet mercury Total Maximum Daily Loads in the Sacramento River watershed. A regional water-quality offset program is being studied that may help known point sources reduce mercury loading more cost effectively by the remediation of abandoned mines or other diffuse sources as opposed to more costly treatment at their own sites. An efficient offset program requires both a scientific basis and methods to translate that science into a regulatory decision

  5. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    Science.gov (United States)

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher

  6. 78 FR 69664 - Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint...

    Science.gov (United States)

    2013-11-20

    ... Collection Request; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs AGENCY... to submit an information collection request (ICR), ``Approval of State Coastal Nonpoint Pollution... Watershed Protection Division, Office of Wetlands Oceans and Watersheds, Mail Code 4503-T, Environmental...

  7. Wisconsin State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  8. Wisconsin State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin

  9. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    Directory of Open Access Journals (Sweden)

    Chunlan Mao

    2013-01-01

    Full Text Available This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  10. Sample intake position and loading rates from nonpoint source pollution

    Science.gov (United States)

    McGuire, P. E.; Daniel, T. C.; Stoffel, D.; Andraski, B.

    1980-01-01

    Paired water samples were simultaneously activated from two different vertical positions within the approach section of a flow-control structure to determine the effect of sample intake position on nonpoint runoff parameter concentrations and subsequent event loads. Suspended solids (SS), total phosphorus (TP) and organic plus exchangeable nitrogen [(Or+Ex)-N] were consistently higher throughout each runoff event when sampled from the floor of the approach section as opposed to those samples taken at midstage. Dissolved molybdate reactive phosphorus (DMRP) and ammonium (NH4-N) concentrations did not appear to be significantly affected by the vertical difference in intake position. However, the nitrate plus nitrite nitrogen [(NO3+NO2)-N] concentrations were much higher when sampled from the midstage position. Although the concentration differences between the two methods were not appreciable, when evaluated in terms of event loads, discrepancies were evident for all parameters. Midstage sampling produced event loads for SS, TP, (Or + Ex)-N, DMRP, NH4-N, and (NO3+NO2)-N that were 44,39,35,80,71, and 181%, respectively, of floor sampling loads. Differences in loads between the two methods are attributed to the midstage position, sampling less of the bed load. The correct position will depend on the objective; however, such differences should be recognized during the design phase of the monitoring program.

  11. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  12. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  13. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  14. Distribution and Source Identification of Pb Contamination in industrial soil

    Science.gov (United States)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb

  15. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  16. Empirical yield tables for Wisconsin.

    Science.gov (United States)

    Jerold T. Hahn; Joan M. Stelman

    1989-01-01

    Describes the tables derived from the 1983 Forest Survey of Wisconsin and presents ways the tables can be used. These tables are broken down according to Wisconsin`s five Forest Survey Units and 14 forest types.

  17. Assessing the Hydrologic Performance of the EPA's Nonpoint Source Water Quality Assessment Decision Support Tool Using North American Land Data Assimilation System (Products)

    Science.gov (United States)

    Lee, S.; Ni-Meister, W.; Toll, D.; Nigro, J.; Guiterrez-Magness, A.; Engman, T.

    2010-01-01

    The accuracy of streamflow predictions in the EPA's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) decision support tool is affected by the sparse meteorological data contained in BASINS. The North American Land Data Assimilation System (NLDAS) data with high spatial and temporal resolutions provide an alternative to the NOAA National Climatic Data Center (NCDC)'s station data. This study assessed the improvement of streamflow prediction of the Hydrological Simulation Program-FORTRAN (HSPF) model contained within BASINS using the NLDAS 118 degree hourly precipitation and evapotranspiration estimates in seven watersheds of the Chesapeake Bay region. Our results demonstrated consistent improvements of daily streamflow predictions in five of the seven watersheds when NLDAS precipitation and evapotranspiration data was incorporated into BASINS. The improvement of using the NLDAS data is significant when watershed's meteorological station is either far away or not in a similar climatic region. When the station is nearby, using the NLDAS data produces similar results. The correlation coefficients of the analyses using the NLDAS data were greater than 0.8, the Nash-Sutcliffe (NS) model fit efficiency greater than 0.6, and the error in the water balance was less than 5%. Our analyses also showed that the streamflow improvements were mainly contributed by the NLDAS's precipitation data and that the improvement from using NLDAS's evapotranspiration data was not significant; partially due to the constraints of current BASINS-HSPF settings. However, NLDAS's evapotranspiration data did improve the baseflow prediction. This study demonstrates the NLDAS data has the potential to improve stream flow predictions, thus aid the water quality assessment in the EPA nonpoint water quality assessment decision tool.

  18. A Nondestructive Method to Identify POP Contamination Sources in Omnivorous Seabirds.

    Science.gov (United States)

    Michielsen, Rosanne J; Shamoun-Baranes, Judy; Parsons, John R; Kraak, Michiel H S

    2018-03-13

    Persistent organic pollutants (POPs) are present in almost all environments due to their high bioaccumulation potential. Especially species that adapted to human activities, like gulls, might be exposed to harmful concentrations of these chemicals. The nature and degree of the exposure to POPs greatly vary between individual gulls, due to their diverse foraging behavior and specialization in certain foraging tactics. Therefore, in order clarify the effect of POP-contaminated areas on gull populations, it is important to identify the sources of POP contamination in individual gulls. Conventional sampling methods applied when studying POP contamination are destructive and ethically undesired. The aim of this literature review was to evaluate the potential of using feathers as a nondestructive method to determine sources of POP contamination in individual gulls. The reviewed data showed that high concentrations of PCBs and PBDEs in feathers together with a large proportion of less bioaccumulative congeners may indicate that the contamination originates from landfills. Low PCB and PBDE concentrations in feathers and a large proportion of more bioaccumulative congeners could indicate that the contamination originates from marine prey. We propose a nondestructive approach to identify the source of contamination in individual gulls based on individual contamination levels and PCB and PBDE congener profiles in feathers. Despite some uncertainties that might be reduced by future research, we conclude that especially when integrated with other methods like GPS tracking and the analysis of stable isotopic signatures, identifying the source of POP contamination based on congener profiles in feathers could become a powerful nondestructive method.

  19. Atmospheric mercury in northern Wisconsin: sources and species

    International Nuclear Information System (INIS)

    Lamborg, C.H.; Fitzgerald, W.F.; Vandal, G.M.; Rolfhus, K.R.

    1995-01-01

    The atmospheric chemistry, deposition and transport of mercury (Hg) in the Upper Great Lakes region is being investigated at a near-remote sampling location in northern Wisconsin. Intensive sampling over two years has been completed. A multi-phase collection strategy was used to gain insight into the processes controlling concentrations and chemical/physical speciation of atmospheric Hg. Additional chemical and physical atmospheric determinations were also made during these periods to aid in the interpretation of the Hg determinations. For example, correlations of Hg with ozone, sulfur dioxide and synopticscale meteorological features suggest a regionally discernible signal in Hg. Comparison to isosigma backward air parcel trajectories confirms this regionality and implicates the areas south, southeast and northwest of the size to be source for Hg. Particle-phase Hg (Hg p ) was found to be approximately 40% in an oxidized form, or operationally defined as reactive but was variable. Hg p and other particle constituents show significant correlation and similarity in behavior. These observations support the hypothesis that precipitation-phase Hg arises from the scavenging of atmospheric particulates bearing Hg. Observed concentrations of rain and particle-Hg fit the theoretical expectations for nucleation and below-cloud scavenging. Increases in the Hg/aerosol mass ratio appear to take place during transport. Enrichment of aerosols is taken as evidence of gas/particle conversion which could represent the step linking gas-phase Hg with rain. The refined budget indicates ca. 24% of total deposition is from summer particle dry deposition, and that this deposition also contributes ca. 24% of all reactive Hg deposition. Most deposition occurs during the summer months. 40 refs., 4 figs., 7 tabs

  20. Contamination at a hospital from a leaking radiotherapy source

    International Nuclear Information System (INIS)

    Ward, R.S.

    1979-01-01

    Routine monitoring of waste arising from the use of small sealed radiotherapy sources led to the discovery of extensive cesium-137 contamination of the floor, walls and equipment in the source preparation room. The origin of the contamination was a damaged cesium chloride bead which was part of a 'train' of beads reassembled in the room about a month beforehand. The sterilising fluid used to clean the sources was still in use, and was responsible for the spread of radioactive contamination. Whole body monitoring revealed two members of staff recording 1100 Bq and 5500 Bq respectively as a result of cesium-137 intake, but the committed dose equivalent did not exceed 500 μSv in the worst case. The incident was expensive, but could have been far worse without the good working procedures by the hospital staff which minimized the radiation doses to staff and patients. (UK)

  1. Refurbishing tritium contaminated ion sources

    International Nuclear Information System (INIS)

    Wright, K.E.; Carnevale, R.H.; McCormack, B.E.; Stevenson, T.; Halle, A. von

    1995-01-01

    Extended tritium experimentation on TFTR has necessitated refurbishing Neutral Beam Long Pulse Ion Sources (LPIS) which developed operational difficulties, both in the TFTR Test Cell and later, in the NB Source Refurbishment Shop. Shipping contaminated sources off-site for repair was not permissible from a transport and safety perspective. Therefore, the NB source repair facility was upgraded by relocating fixtures, tooling, test apparatus, and three-axis coordinate measuring equipment; purchasing and fabricating fume hoods; installing exhaust vents; and providing a controlled negative pressure environment in the source degreaser/decon area. Appropriate air flow monitors, pressure indicators, tritium detectors and safety alarms were also included. The effectiveness of various decontamination methods was explored while the activation was monitored. Procedures and methods were developed to permit complete disassembly and rebuild of an ion source while continuously exhausting the internal volume to the TFTR Stack to avoid concentrations of tritium from outgassing and minimize personnel exposure. This paper presents upgrades made to the LPIS repair facility, various repair tasks performed, and discusses the effectiveness of the decontamination processes utilized

  2. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  3. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  4. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  5. Contaminant source identification using semi-supervised machine learning

    International Nuclear Information System (INIS)

    Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan

    2017-01-01

    Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).

  6. Efficient Bayesian experimental design for contaminant source identification

    Science.gov (United States)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  7. Viral Contamination Source in Clinical Microbiology Laboratory.

    Science.gov (United States)

    Wang, Xin Ling; Song, Juan; Song, Qin Qin; Yu, Jie; Luo, Xiao Nuan; Wu, Gui Zhen; Han, Jun

    2016-08-01

    To understand the potential causes of laboratory-acquired infections and to provide possible solutions that would protect laboratory personnel, samples from a viral laboratory were screened to determine the main sources of contamination with six subtypes of Rhinovirus. Rhinovirus contamination was found in the gloves, cuffs of protective wear, inner surface of biological safety cabinet (BSC) windows, and trash handles. Remarkably, high contamination was found on the inner walls of the centrifuge and the inner surface of centrifuge tube casing in the rotor. Spilling infectious medium on the surface of centrifuge tubes was found to contribute to contamination of centrifuge surfaces. Exposure to sodium hypochlorite containing no less than 0.2 g/L available chlorine decontaminated the surface of the centrifuge tubes from Rhinovirus after 2 min. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  9. Identification of fecal contamination sources in water using host-associated markers.

    Science.gov (United States)

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  10. Experimental study on source efficiencies for estimating surface contamination level

    International Nuclear Information System (INIS)

    Ichiji, Takeshi; Ogino, Haruyuki

    2008-01-01

    Source efficiency was measured experimentally for various materials, such as metals, nonmetals, flooring materials, sheet materials and other materials, contaminated by alpha and beta emitter radioactive nuclides. Five nuclides, 147 Pm, 60 Co, 137 Cs, 204 Tl and 90 Sr- 90 Y, were used as the beta emitters, and one nuclide 241 Am was used as the alpha emitter. The test samples were prepared by placing drops of the radioactive standardized solutions uniformly on the various materials using an automatic quantitative dispenser system from Musashi Engineering, Inc. After placing drops of the radioactive standardized solutions, the test materials were allowed to dry for more than 12 hours in a draft chamber with a hood. The radioactivity of each test material was about 30 Bq. Beta rays or alpha rays from the test materials were measured with a 2-pi gas flow proportional counter from Aloka Co., Ltd. The source efficiencies of the metals, nonmetals and sheet materials were higher than 0.5 in the case of contamination by the 137 Cs, 204 Tl and 90 Sr- 90 Y radioactive standardized solutions, higher than 0.4 in the case of contamination by the 60 Co radioactive standardized solution, and higher than 0.25 in the case of contamination by the alpha emitter the 241 Am radioactive standardized solution. These values were higher than those given in Japanese Industrial Standards (JIS) documents. In contrast, the source efficiencies of some permeable materials were lower than those given in JIS documents, because source efficiency varies depending on whether the materials or radioactive sources are wet or dry. This study provides basic data on source efficiency, which is useful for estimating the surface contamination level of materials. (author)

  11. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has been found to migrate via seepage and groundwater into adjacent streams. The extent of the associated non-point pollution depends on the concentration of U in the groundwater as well as the volume and rate of groundwater ...

  12. Chemical Contaminants in the Wadden Sea: sources, transport, fate and effects

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Vethaak, A.D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M.M.; Strand, J.

    2013-01-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane

  13. Landsat change detection can aid in water quality monitoring

    Science.gov (United States)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  14. Microbial source tracking: a tool for identifying sources of microbial contamination in the food chain.

    Science.gov (United States)

    Fu, Ling-Lin; Li, Jian-Rong

    2014-01-01

    The ability to trace fecal indicators and food-borne pathogens to the point of origin has major ramifications for food industry, food regulatory agencies, and public health. Such information would enable food producers and processors to better understand sources of contamination and thereby take corrective actions to prevent transmission. Microbial source tracking (MST), which currently is largely focused on determining sources of fecal contamination in waterways, is also providing the scientific community tools for tracking both fecal bacteria and food-borne pathogens contamination in the food chain. Approaches to MST are commonly classified as library-dependent methods (LDMs) or library-independent methods (LIMs). These tools will have widespread applications, including the use for regulatory compliance, pollution remediation, and risk assessment. These tools will reduce the incidence of illness associated with food and water. Our aim in this review is to highlight the use of molecular MST methods in application to understanding the source and transmission of food-borne pathogens. Moreover, the future directions of MST research are also discussed.

  15. Engineering hyporheic zones for the attenuation of urban pesticides and other stormwater trace organic contaminants

    Science.gov (United States)

    Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ

  16. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    Science.gov (United States)

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  17. Comparison of enterococci and cow-specific qPAR markers in streams impacted by farms under different management practices

    Science.gov (United States)

    Nonpoint Sources (NPS) of pollution (e.g., agriculture, wildlife, urban runoff) are major contributors of microbial contaminants to surface waters. However, little is known about the behavior and the effect of environmental determinants on molecular markers of fecal contamination...

  18. Wisconsin's forests, 2004

    Science.gov (United States)

    Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall

    2008-01-01

    The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...

  19. A stratigraphic model to support remediation of groundwater contamination in the southern San Francisco Bay area

    International Nuclear Information System (INIS)

    Steinpress, M.G.

    1993-01-01

    Some early regional studies in the southern San Francisco Bay Area applied the term 'older bay mud' to Wisconsin and older deposits thought to be estuarine in origin. This outdated interpretation has apparently contributed to an expectation of laterally-continuous aquifers and aquitards. In fact, heterogeneous alluvial deposits often create complex hydrogeologic settings that defy simple remedial approaches. A more useful stratigraphic model provides a foundation for conducting site investigations and assessing the feasibility of remediation. A synthesis of recent regional studies and drilling results at one site on the southwest margin of the Bay indicate that the upper quaternary stratigraphy consists of four primary units in the upper 200 feet of sediments (oldest to youngest): (1) Illinoian glacial-age alluvium (an important groundwater source); (2) Sangamon interglacial-age deposits, which include fine-grained alluvial deposits and estuarine deposits equivalent to the Yerba Buena Mud (a regional confining layer); (3) Wisconsin glacial-age alluvial fan and floodplain deposits; and (4) Holocene interglacial-age sediments, which include fine-grained alluvial and estuarine deposits equivalent to the 'younger bay mud'. Remedial investigations generally focus on groundwater contamination in the Wisconsin and Holocene alluvial deposits. Detailed drilling results indicate that narrow sand and gravel channels occur in anastomosing patterns within a Wisconsin to Holocene floodplain sequence dominated by interchannel silts and clays. The identification of these small-scale high-permeability conduits is critical to understanding and predicting contaminant transport on a local scale. Discontinuous site-specific aquitards do not provide competent separation where stacked channels occur and the correlation of aquitards over even small distance is often tenuous at best

  20. Environmental surveillance of commonly-grown vegetables for investigating potential lead and chromium contamination intensification in Bangladesh.

    Science.gov (United States)

    Hossain, A M M Maruf; Islam, M Shahidul; Mamun, M Mustafa; Al-Jonaed, H M; Imran, M; Rahman, M Hasibur; Kazi, M Azizul Islam; Elahi, Syed Fazle

    2016-01-01

    With regard to previously reported Lead (Pb) and Chromium (Cr) contamination in egg, a semi-quantitative assessment of the general environment of Bangladesh is carried out through nation-wide sampling of commonly grown and consumed vegetables. Five vegetables, namely, White Potato ( Solanum tuberosum ), Green Cabbage ( Brassica oleracea capitata var. alba L.), Red Spinach ( Amaranthus dubius ), White Radish ( Raphanus sativus var. longipinnatus ), and Green Bean ( Phaseolus vulgaris ) were selected for sampling from all 64 Districts of the country as per their availability during the sampling season. This results in a collection of 292 samples. Due to the necessity of incorporating a wide spectrum of vegetable types (e.g. tuber, brassica, leafy, root, and fruiting vegetables) as well as the need for including the geographic expanse of the whole country, replicates were not accommodated in the study, hence, the study being semi-quantitative in nature. The results do not substantiate evidence of public health risk due to Cr yet, with only 0.69 % of the samples found contaminated with Cr. Pb contamination (concentrations above a health-based guidance value) is found in 29.47 % of the samples; and together with the insight of such contamination likely being non-point origin, communicates on potential public health risk due to Pb as residual effects of extensive ambient atmospheric Pb pollution in recent history of the country. For the purpose of comparison, Cadmium (Cd) contents of the samples are also analyzed. Although there is no extensive Cd pollution history/source in the country, the likely point-source nature of Cd contamination found in 17.83 % of the samples indicates the scope of managing any existing contamination source by directing efforts into the potential point-sources.

  1. Comparative evaluations of surface contamination detectors calibration with radioactive sources - used in the Goiania accident, and standard sources

    International Nuclear Information System (INIS)

    Becker, P.H.B.; Marecha, M.H.H.

    1997-01-01

    The construction of Cs-137 standard flat sources for calibration of surface contamination detectors, used in the Goiania accident in 1987, is described and the procedures adopted are reported. At that time, standard sources were not available. Nowadays the Instituto de Radioprotecao e Dosimetria has standard sources acquired from Amersham which are used as calibration standards for surface contamination detectors. Comparative evaluations between the standard flat sources constructed for the accident and the calibrated ones are presented

  2. Rooftop runoff as a source of contamination: a review.

    Science.gov (United States)

    Lye, Dennis J

    2009-10-15

    Scientific reports concerning chemical and microbiological contaminant levels of rainwater runoff from rooftop collection in both urban and rural areas are reviewed. This alternative source of water has been documented to often contain substantial amounts of contaminants. Studies describing levels of heavy metal contamination specific to runoff from rooftop catchment areas containing exposed metal surfaces are discussed. Depending upon the intended use, scientific evidence is also accumulating that various treatments and disinfections will be required prior to release of roof-runoff water either into surface waters or for more direct consumer usage. For microbial contamination, current proposed standards and guidelines regarding this type of water source are shown to vary widely worldwide. Scientific literature reveals a lack of clarity regarding water quality guidelines and health related standards for certain types of rooftop runoff. Studies suggests that rainwater collection systems which are properly designed, maintained, and treated may provide a valuable supplement to existing water supplies by reducing demand on community water supplies/infrastructure costs, enhancing effective management of storm water runoff, and increasing restoration of underground reservoirs through controlled infiltration.

  3. Sources of groundwater contamination

    International Nuclear Information System (INIS)

    Assaf, H.; Al-Masri, M. S.

    2007-09-01

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  4. Land use change detection with LANDSAT-2 data for monitoring and predicting regional water quality degradation. [Arkansas

    Science.gov (United States)

    Macdonald, H.; Steele, K. (Principal Investigator); Waite, W.; Rice, R.; Shinn, M.; Dillard, T.; Petersen, C.

    1977-01-01

    The author has identified the following significant results. Comparison between LANDSAT 1 and 2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing LANDSAT change detection analyses.

  5. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    Science.gov (United States)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  6. An assessment of air as a source of DNA contamination encountered when performing PCR.

    Science.gov (United States)

    Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A; Huggett, Jim F

    2009-12-01

    Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as a source of contamination, which might occur during PCR setup, we exposed tubes of water to the air of a laboratory and clean hood for up to 24 h. To increase the chances of contamination, we also investigated a busy open-plan office in the same way. All of the experiments showed the presence of human and rodent DNA contamination. However, there was no accumulation of the contamination in any of the environments investigated, suggesting that the air was not the source of contamination. Even the air from a busy open-plan office was a poor source of contamination for all of the DNA sequences investigated (human, bacterial, fungal, and rodent). This demonstrates that the personnel and immediate laboratory environment are not necessarily to blame for the observed contamination.

  7. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  8. Governing change: land-use change and the prevention of nonpoint source pollution in the north coastal basin of California.

    Science.gov (United States)

    Short, Anne G

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  9. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  10. Assessment of high penetration of solar photovoltaics in Wisconsin

    International Nuclear Information System (INIS)

    Myers, Kevin S.; Klein, Sanford A.; Reindl, Douglas T.

    2010-01-01

    This paper provides an assessment of the large-scale implementation of distributed solar photovoltaics in Wisconsin with regard to its interaction with the utility grid, economics of varying levels of high penetration, and displaced emissions. These assessment factors are quantified using simulations with measured hourly solar radiation and weather data from the National Solar Radiation Database as primary inputs. Hourly utility load data for each electric utility in Wisconsin for a complete year were used in combination with the simulated PV output to quantify the impacts of high penetration of distributed PV on the aggregate Wisconsin electric utility load. As the penetration rate of distributed PV systems increases, both economic and environmental benefits experience diminishing returns. At penetration rates exceeding 15-20% of the aggregate utility load peak, less of the PV-energy is utilized and the contribution of the aggregate electricity generated from PV approaches a practical limit. The limit is not affected by costs, but rather by the time-distribution of available solar radiation and mismatch with the coincidence of aggregate utility electrical loads. The unsubsidized levelized cost of electricity from PV is more than four times greater than the current market price for electricity, based on time-of-use rates, in Wisconsin. At the present time, the investment in solar PV as a cost-effective means to reduce emissions from traditional electricity generation sources is not justified. (author)

  11. Perfluoroalkyl substances in older male anglers in Wisconsin.

    Science.gov (United States)

    Christensen, Krista Y; Raymond, Michelle; Thompson, Brooke A; Anderson, Henry A

    2016-05-01

    Perfluoroalkyl substances (PFAS) are an emerging class of contaminants. Certain PFAS are regulated or voluntarily limited due to concern about environmental persistence and adverse health effects, including thyroid disease and to dyslipidemia. The major source of PFAS exposure in the general population is seafood. In this analysis we examine PFAS levels and their determinants, as well as associations between PFAS levels and self-reported health outcomes, in a group of older male anglers in Wisconsin with high fish consumption. A biomonitoring study of male anglers aged 50 and older living in Wisconsin collected detailed information on fish consumption, demographics and self-reported health outcomes, along with hair and blood samples for biomarker analysis. Sixteen different PFAS were extracted from serum samples. Regression models were used to identify factors (demographic characteristics and fish consumption habits) associated with PFAS biomarker levels in blood, as well as associations between PFAS and self-reported health outcomes, adjusting for potential confounders. Seven PFAS were detected in at least 30% of participants and were used in subsequent analyses (PFDA, PFHpS, PFHxS, PFNA, PFOA, PFOS, PFuDA). The PFAS with the highest levels were PFOS, followed by PFOA, PFHxS and PFNA (medians of 19.0, 2.5, 1.8 and 1.4ng/mL). In general, increasing age was associated with higher PFAS levels, while increasing BMI were associated with lower PFAS levels. Greater alcohol consumption was associated with higher levels of PFHpS, PFHxS and PFOA. Associations with smoking and employment did not show a consistent pattern. Associations between fish consumption and PFAS were generally weak, with the exception of notably higher PFDA and PFHpS with both other locally-caught fish, and restaurant-purchased fish. Regarding associations with health outcomes, PFuDA, PFNA and PFDA were all associated with increased risk of pre-diabetes and/or diabetes. PFHpS was associated with a

  12. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China.

    Science.gov (United States)

    Lu, Hua; Xie, Hualin

    2018-02-01

    This study systematically explores the likely mechanisms driving the effect of the transfer of agricultural land use rights (ALURs) on agricultural non-point source pollution (ANSP) in the context of changing agricultural labor resources. It quantitatively estimates the direction and degree of this influence from a microeconomic perspective using data from rural households. The results reveal that economies of scale caused by ALURs transfers contribute to reducing both the ANSP and marginal costs of inputs. Changes in agricultural labor resources lead to reductions in agricultural labor supply and negatively impact on ANSP. Encouraging farmers to participate in ALURs transfers, therefore, helps to reduce ANSP. The government and related departments should implement policies that support farmers who decide to rent an entire village's land or the adjacent land to achieve economies of scale. Accelerating the development of small farm machinery that is suitable for smaller farm plots and the elderly can serve to reduce the use of chemical fertilizer and promote green production and sustainable agricultural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Trustee Essentials: A Handbook for Wisconsin Public Library Trustees.

    Science.gov (United States)

    Wisconsin State Dept. of Public Instruction, Madison.

    This handbook for Trustees of the Wisconsin Public Library describes in detail the tasks involved in being a library trustee. The handbook comprises a number of "Trustee Essentials" that cover the basic essential information needed by Trustees, as well as sources of additional information. Contents include: The Trustee Job Description;…

  14. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  15. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    International Nuclear Information System (INIS)

    Kim, Jonathan J.; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan

    2016-01-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO_3−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO_3 (manure deposited in a ravine) was exhausted and NO_3 dropped from 34 mg/L to 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated with nitrates at a dairy farm in Vermont, U.S.A. • Nitrate concentration vs. time patterns for wells were spatially separable. • Multidisciplinary aquifer characterization used physical and chemical methods. • Denitrification dominant over dilution along fracture flowpaths • Conceptual model shows exhaustion of a nitrate point-source over 12 years.

  16. Forests of Wisconsin, 2013

    Science.gov (United States)

    Charles H. Perry

    2014-01-01

    This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...

  17. PRAMU. Contamination sources

    International Nuclear Information System (INIS)

    Asenjo, Armando R.

    2000-01-01

    Mining and milling activities have been carried out in Argentina during the last 40 years, and nowadays National Atomic Energy Commission (CNEA) of Argentina is undertaking the Uranium Mining Environmental Restoration Project (PRAMU). The aim of this project is to achieve that in all the places where uranium mining activities were developed, to restore the environment as much as it is possible, according to the legislation in force. The sites which are studied are: Malargue (Mendoza province), Cordoba (Cordoba province), Los Gigantes (Cordoba province), Huemul (Mendoza province), Pichinan (Chubut province), Tonco (Salta province), La Estela (San Luis province), Los Colorados (La Rioja province). In order to develop the restoration project in each site, one of the first task to be performed is to know quantities and the chemical, physicals and radiological characteristics of the contamination sources. In the present paper the activities of PRAMU in this field, are informed. (author)

  18. A national look at water quality

    Science.gov (United States)

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  19. Emerging contaminants in urban groundwater sources in Africa.

    Science.gov (United States)

    Sorensen, J P R; Lapworth, D J; Nkhuwa, D C W; Stuart, M E; Gooddy, D C; Bell, R A; Chirwa, M; Kabika, J; Liemisa, M; Chibesa, M; Pedley, S

    2015-04-01

    The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 μg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 μg/L), chlorination by-products - trihalomethanes (up to 50 μg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 μg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is

  20. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    Science.gov (United States)

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  1. Analysis of water-level fluctuations in Wisconsin wells

    Science.gov (United States)

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    More than 60 percent of the residents of Wisconsin use ground water as their primary water source. Water supplies presently are abundant, but ground-water levels continually fluctuate in response to natural factors and human-related stresses. A better understanding of the magnitude, duration, and frequency of past fluctuations, and the factors controlling these fluctuations may help anticipate future changes in ground-water levels.

  2. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour

    Directory of Open Access Journals (Sweden)

    Ombretta Paladino

    2017-01-01

    Full Text Available A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA, and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy. 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.

  3. The long-term problems of contaminated land: Sources, impacts and countermeasures

    International Nuclear Information System (INIS)

    Baes, C.F. III.

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'')

  4. Impact of over-exploitation on groundwater quality: A case study ...

    Indian Academy of Sciences (India)

    groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and ... non-point source contamination from agriculture, industrial and ...... nation of Water and Wastewater' (Handa 1981;.

  5. Contamination source review for Building E2370, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    O`Reilly, D.P.; Glennon, M.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, and geophysical investigation. This report provides the results of the contamination source review for Building E2370. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  6. Identifying Sources of Fecal Contamination in Streams Associated with Chicken Farms

    Science.gov (United States)

    Poultry is responsible for 44% of the total feces production in the U.S., followed by cattle and swine. The large U.S. production of feces poses a contamination risk for affected watersheds across the country. To aid in the identification of the sources of contamination, many D...

  7. Sources of electron contamination for the Clinac-35 25-MV photon beam

    International Nuclear Information System (INIS)

    Petti, P.L.; Goodman, M.S.; Sisterson, J.M.; Biggs, P.J.; Gabriel, T.A.; Mohan, R.

    1983-01-01

    A detailed Monte Carlo approach has been employed to investigate the sources of electron contamination for the 25-MV photon beam generated by Varian's Clinac-35. Three sources of contamination were examined: (a) the flattening filter and beam monitor chamber, (b) the fixed primary collimators downstream from the monitor chamber and the adjustable photon jaws, and (c) the air volume separating the treatment head from the observation point. Five source-to-surface distances (SSDs) were considered for a single field size, 28 cm in diameter at 80 cm SSD. It was found that for small SSDs (80-100 cm), the dominant sources of electron contamination were the flattening filter and the beam monitor chamber which accounted for 70% of the unwanted electrons. Thirteen percent of the remaining electrons originated in the downstream primary collimators and the photon jaws, and 17% were produced in air. At larger SSDs, the fraction of unwanted electrons originating in air increased. At 400 cm SSD, 61% of the contaminating electrons present in the beam were produced in air, 34% originated in the flattening filter and beam monitor chamber, and 5% were due to interactions in the fixed collimators downstream from the monitor chamber and the adjustable photon jaws. These calculated results are substantiated by recent experiments

  8. The long-term problems of contaminated land: Sources, impacts and countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  9. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    Science.gov (United States)

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone. © 2013.

  10. Endocrine active contaminants in aquatic systems and intersex in common sport fishes

    Science.gov (United States)

    Lee Pow, Crystal S. D.; Law, J. Mac; Kwak, Thomas J.; Cope, W. Gregory; Rice, James A.; Kullman, Seth W.; Aday, D. Derek

    2017-01-01

    Male fish are susceptible to developing intersex, a condition characterized by the presence of testicular oocytes. In the present study, the relationship between intersex and exposure to estrogenic endocrine active contaminants (EACs) was assessed for 2 genera of sport fish, Micropterus and Lepomis, at 20 riverine sites. Seasonal trends and relationships between EACs and intersex (prevalence and severity) were examined at varying putative sources of EACs throughout North Carolina, identified as point sources, nonpoint sources, and reference sites. Intersex was identified in both genera, which was documented for the first time in wild-caught Lepomis. Intersex was more prevalent (59.8%) and more severe (1.6 mean rank) in Micropterus, which was highly correlation to EACs in sediment. In contrast, intersex was less common (9.9%) and less severe (0.2 mean rank) in Lepomis and was highly correlated to EACs in the water column. The authors found that concentrations of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, industrial EACs, and estrogens were highest at point source sites; however, no source type variation was identified in the prevalence or severity of intersex, nor were there seasonal trends in intersex or EAC concentrations. The authors’ results associate genus-specific prevalence of intersex with specific EAC classes in common sport fishes having biological, ecological, and conservation implications.

  11. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  12. Contamination levels of domestic water sources in Maiduguri ...

    African Journals Online (AJOL)

    The study examines the levels of contamination of domestic water sources in Maiduguri Metropolis area of Borno State based on their physicochemical and bacteriological properties. It was informed by the global concern on good drinking water quality which is an indicator of development level; hence the focus on domestic ...

  13. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    Science.gov (United States)

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the results of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  15. Sources and remediation for mercury contamination in aquatic systems--a literature review

    International Nuclear Information System (INIS)

    Wang, Qianrui; Kim, Daekeun; Dionysiou, Dionysios D.; Sorial, George A.; Timberlake, Dennis

    2004-01-01

    Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared

  16. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  17. Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination.

    Science.gov (United States)

    Shibata, Tomoyuki; Solo-Gabriele, Helena M; Sinigalliano, Christopher D; Gidley, Maribeth L; Plano, Lisa R W; Fleisher, Jay M; Wang, John D; Elmir, Samir M; He, Guoqing; Wright, Mary E; Abdelzaher, Amir M; Ortega, Cristina; Wanless, David; Garza, Anna C; Kish, Jonathan; Scott, Troy; Hollenbeck, Julie; Backer, Lorraine C; Fleming, Lora E

    2010-11-01

    The objectives of this work were to compare enterococci (ENT) measurements based on the membrane filter, ENT(MF) with alternatives that can provide faster results including alternative enterococci methods (e.g., chromogenic substrate (CS), and quantitative polymerase chain reaction (qPCR)), and results from regression models based upon environmental parameters that can be measured in real-time. ENT(MF) were also compared to source tracking markers (Staphylococcus aureus, Bacteroidales human and dog markers, and Catellicoccus gull marker) in an effort to interpret the variability of the signal. Results showed that concentrations of enterococci based upon MF (turbidity and tidal height. Enterococci by MF and CS were also inversely correlated with solar radiation but enterococci by qPCR was not. The regression model based on environmental variables provided fair qualitative predictions of enterococci by MF in real-time, for daily geometric mean levels, but not for individual samples. Overall, ENT(MF) was not significantly correlated with source tracking markers with the exception of samples collected during one storm event. The inability of the regression model to predict ENT(MF) levels for individual samples is likely due to the different sources of ENT impacting the beach at any given time, making it particularly difficult to to predict short-term variability of ENT(MF) for environmental parameters.

  18. Wisconsin's forest resources in 2004

    Science.gov (United States)

    Charles H. Perry

    2006-01-01

    Results of the 2000-2004 annual inventory of Wisconsin show about 16.0 million acres of forest land, more than 22.1 billion cubic feet of live volume on forest land, and nearly 593 million dry tons of all live aboveground tree biomass on timberland. Populations of jack pine budworm are increasing, and it remains a significant pest in Wisconsin forests. A complete...

  19. The History of Petroleum Pollution in Malaysia; Urgent Need for Integrated Prevention Approach

    OpenAIRE

    Mahyar Sakari

    2010-01-01

    Petroleum pollution is known as point and non-point source of contaminations in the environment. A major class of petroleum contaminant is groups of compounds consist of two or more fused benzene rings called polycyclic aromatic hydrocarbons (PAHs) that are carcinogenic, mutagenic and toxic. Source identification of petroleum pollution is necessary to prevent pollution entry into the environment. Eight sedimentary cores were obtained from developed and developing areas around Peninsular Malay...

  20. Source Reduction Effectiveness at Fuel Contaminated Sites, Technical Summary Report

    National Research Council Canada - National Science Library

    2000-01-01

    This report assesses the degree to which various types or engineered source-reduction efforts at selected fuel-contaminated sites have resulted in decreasing concentrations of fuel constituents dissolved in groundwater...

  1. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources

    International Nuclear Information System (INIS)

    Farooqi, Abida; Masuda, Harue; Firdous, Nousheen

    2007-01-01

    The present study is the first attempt to put forward possible sources of As, F - and SO 4 2- contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F - (2.47-21.1 mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 μg/L), in excess of WHO drinking water standards. The SO 4 2- ranges from 110 to 1550 mg/L. δ 34 S data indicate three sources for SO 4 2- air pollutants (5.5-5.7 per mille ), fertilizers (4.8 per mille ), and household waste (7.0 per mille ). Our important finding is the presence of SO 4 2- , As and F - in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater. - Simultaneous As and F - contamination of groundwater and possible pollutant sources are discussed

  2. Wisconsin Inventors` Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor`s Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor`s information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  3. Nursing Quality Assurance: The Wisconsin System

    Science.gov (United States)

    Hover, Julie; Zimmer, Marie J.

    1978-01-01

    Evaluation model guidelines for hospital departments of nursing to use in their nursing quality assurance programs are presented as developed in Wisconsin. Four essential components of the Wisconsin outcome evaluation system are criteria, assessment, standards, and improvement of care. Sample tests and charts are included in the article. (MF)

  4. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  5. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  6. Synchrotron radiation as a source for quantitative XPS: advantages and consequences

    International Nuclear Information System (INIS)

    Rosseel, T.M.; Carlson, T.A.; Negri, R.E.; Beall, C.E.; Taylor, J.W.

    1986-01-01

    Synchrotron radiation (SR) has a variety of properties which make it an attractive source for quantitative x-ray photoelectron spectroscopy (XPS). Among the most significant are high intensity and tunability. In addition, the intensity of the dispersed radiation is comparable to laboratory line sources. Synchrotron radiation is also a clean source, i.e., it will not contaminate the sample, because it operates under ultra-high vacuum conditions. We have used these properties to demonstrate the advantages of SR as a source for quantitative XPS. We have also found several consequences associated with this source which can either limit its use or provide unique opportunities for analysis and research. Using the tunability of SR, we have measured the energy dependence of the 3p photoionization cross sections of Ti, Cr, and Mn from 50 to 150 eV above threshold at the University of Wisconsin's Tantalus electron-storage ring

  7. Sources of endocrine-disrupting compounds in North Carolina waterways: a geographic information systems approach

    Science.gov (United States)

    Sackett, Dana K.; Pow, Crystal Lee; Rubino, Matthew J.; Aday, D.D.; Cope, W. Gregory; Kullman, Seth W.; Rice, J.A.; Kwak, Thomas J.; Law, L.M.

    2015-01-01

    The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships.

  8. Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers.

    Science.gov (United States)

    Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C

    2012-09-01

    Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  10. Survey of medical radium installations in Wisconsin

    International Nuclear Information System (INIS)

    Tapert, A.C.; Lea, W.L.

    1975-05-01

    A radiation protection survey was performed at 70 medical radium installations in the State of Wisconsin. The requirements of the State's Radiation Protection Code were used as survey criteria. Radiation measurements of radium storage containers, radium capsule leakage tests, and monitoring of work surfaces for contamination were performed. Film badge monitoring data of whole body and extremity doses are presented for 221 individuals at 17 hospitals. Whole body doses during single treatments ranged from 10 to 1360 mrems per individual. The estimate of 500 mrems per treatment was determined as the dose aggregate to hospital personnel. Whole body doses from film badges are compared with analogous TLD doses. Four physicians and six technicians at nine hospitals participated in a study for monitoring the extremities with TLD. Cumulative extremity doses ranged from 28 to 6628 mrems per participant during the study. (U.S.)

  11. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  12. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi'an city, China.

    Science.gov (United States)

    Chen, Xiuduan; Lu, Xinwei

    2018-04-30

    As soil-extractable elements potentially pose ecological and health risks, identifying their contamination characteristics and sources is crucial. Therefore, to understand topsoil trace elements in the urban ring zone from the Second Ring Road to the Third Ring of Xi'an city in China, we determined the concentrations of Zn, Co, V, As, Cu, Mn, Ba, Ni and Pb, and analyzed the sources of the contamination. The results showed that the individual pollution indices of Pb, Co, Cu, Zn, Ba, Ni, Mn, As, and V were 1.79, 1.48, 1.41, 1.33, 1.20, 1.07, 1.04, 0.99, and 0.99, respectively. Evaluation with the aid of the pollution load index (PLI) indicated slight soil contamination by these elements in the study area. Using the positive matrix factorization (PMF) method, we identified four sources of contamination, namely (1) a natural source, (2) traffic emission source, (3) industrial emission source, and (4) mixed source. PMF is an effective tool for source apportionment of heavy metals in topsoil. The contribution rates of the natural source, traffic source, mixed source, and industrial source to the heavy metal contamination were specified as 25.04%, 24.71%, 24.99%, and 25.26%, respectively. Considering the above, any attempt to reduce the soil environmental cost of urban development, has to take into account the heavy metal contamination of the topsoil from industries, traffic, and other activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. AHP Expert Programme As A Tool For Unsealed Sources Contamination Control Of The Environment

    International Nuclear Information System (INIS)

    Amin, E.T.; Ibrahim, M.S.; Hussein, A.Z.

    2007-01-01

    Unsealed sources of radionuclides are widely used in hot laboratories of medical centers and hospitals which can be easily dispersed and may be taken undue into the body. The presence of radioactive substances inside the human body generates risk of internal intakes of radionuclides and organ's tissue retention. In order to make control for any contamination occurring from unsealed sources, an AHP programme (PC programme) has been developed so that it includes all data of most unsealed sources used in the hot laboratories of nuclear medicine units at hospitals/medical centers. Sequence of questions are retrieved by the programme in relevance to the place address, uses, activity and half life of the unsealed radioisotopes that may cause contamination. The programme will also give information output about the hospital that use the unsealed source and its location which facilitate emergency planning and contamination control to the environment

  14. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai

    International Nuclear Information System (INIS)

    Li Hongbo; Yu Shen; Li Guilin; Deng Hong; Luo Xiaosan

    2011-01-01

    Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg -1 , 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206 Pb and 208/206 Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy. - Highlights: → Coal combustion emission is identified as a main Pb source in Shanghai park soils. → HCl-extraction is sensitive in identifying anthropogenic isotope Pb sources. → Soil Pb contamination and its anthropogenic sources showed urbanization effects. - Coal combustion emission was identified as the main anthropogenic source of soil Pb contamination affecting Shanghai parks.

  15. Sources to radioactive contamination in Murmansk and Arkhangelsk counties

    International Nuclear Information System (INIS)

    Nilsen, T.; Boehmer, N.

    1994-02-01

    The report gives a general view of information gathered by the Bellona Foundation on the use of nuclear energy, as well as storage and processing of radioactive waste in the region. Information has been collected since 1989 through extensive field work in the Russian Federation. During the gathering of source material for the report, crucial importance has been attached to Russian sources encountered during the field work. The report intends to present a survey of the various sources of possible radioactive pollution, and the historical background for placing the sources in the region. As it appears from the report, the most significant contamination source is the military activity. The Bellona Foundation has made a point of describing the sources only on a technical base, and no attempts have been made to evaluate risks and consequences of conceivable accidents. 78 refs

  16. Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA

    Science.gov (United States)

    Schreiber, M. E.; Simo, J. A.; Freiberg, P. G.

    High arsenic concentrations (up to 12,000μg/L) have been measured in groundwater from a confined sandstone aquifer in eastern Wisconsin. The main arsenic source is a sulfide-bearing secondary cement horizon (SCH) that has variable thickness, morphology, and arsenic concentrations. Arsenic occurs in pyrite and marcasite as well as in iron oxyhydroxides but not as a separate arsenopyrite phase. Nearly identical sulfur isotopic signatures in pyrite and dissolved sulfate and the correlation between dissolved sulfate, iron, and arsenic concentrations suggest that sulfide oxidation is the dominant process controlling arsenic release to groundwater. However, arsenic-bearing oxyhydroxides can potentially provide another arsenic source if reducing conditions develop or if they are transported as colloids in the aquifer. Analysis of well data indicates that the intersection of the SCH with static water levels measured in residential wells is strongly correlated with high concentrations of arsenic in groundwater. Field and laboratory data suggest that the most severe arsenic contamination is caused by localized borehole interactions of air, water, and sulfides. Although arsenic contamination is caused by oxidation of naturally occurring sulfides, it is influenced by water-level fluctuations caused by municipal well pumping or climate changes, which can shift geographic areas in which contamination occurs. Résumé De fortes concentrations en arsenic, jusqu'à 12000μg/L, ont été mesurées dans l'eau souterraine d'un aquifère gréseux captif, dans l'est du Wisconsin. La principale source d'arsenic est un horizon à cimentation secondaire (SCH) comportant des sulfures, dont l'épaisseur, la morphologie et les concentrations en arsenic sont variables. L'arsenic est présent dans la pyrite et dans la marcassite, de même que dans des oxy-hydroxydes de fer, mais non pas dans une phase séparée d'arsénopyrite. Les signatures isotopiques du soufre presque identiques dans la

  17. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary

    Science.gov (United States)

    Granek, Elise F.; Conn, Kathleen E.; Nilsen, Elena B.; Pillsbury, Lori; Strecker, Angela L.; Rumrill, Steve; Fish, William

    2016-01-01

    Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and

  18. Regional variation and possible sources of brominated contaminants in breast milk from Japan

    International Nuclear Information System (INIS)

    Fujii, Yukiko; Ito, Yoshiko; Harada, Kouji H.; Hitomi, Toshiaki; Koizumi, Akio; Haraguchi, Koichi

    2012-01-01

    This study focuses on the regional trends and possible sources of brominated organic contaminants accumulated in breast milk from mothers in southeastern (Okinawa) and northwestern (Hokkaido) areas of Japan. For persistent brominated flame retardants, polybrominated diphenyl ethers (PBDEs; major components, BDE-47 and BDE-153) were distributed at higher levels in mothers from Okinawa (mean, 2.1 ng/g lipid), while hexabromobenzene (HeBB) and its metabolite 1,2,4,5-tetrabromobenzene were more abundantly detected in mothers from Hokkaido (0.86 and 2.6 ng/g lipid), suggesting that there are regional differences in their exposure in Japan. We also detected naturally produced brominated compounds, one of which was identified as 2′-methoxy-2,3′,4,5′-tetrabromodiphenyl ether (2′-MeO-BDE68) at higher levels in mothers from Okinawa (0.39 ng/g lipid), while the other was identified as 3,3′,4,4′-tetrabromo-5,5′-dichloro-2,2′-dimethyl-1,1′-bipyrrole in mothers from Hokkaido (0.45 ng/g lipid). The regional variation may be caused by source differences, i.e. southern seafood for MeO-PBDEs and northern biota for halogenated bipyrroles in the Japanese coastal water. - Highlights: ► In this study, we detected brominated organic contaminants in Japanese breast milk. ► Naturally produced brominated organic contaminants were also detected. ► Northern and southern Japan showed regional differences in these contaminants. ► Exposure to the contaminants is suggested to arise from different specific sources. - Brominated organic contaminants were detected in Japanese breast milk.

  19. Development of contamination-free x-ray optics for next-generation light sources

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu; Koyama, Takahisa; Miura, Takanori; Kishimoto, Hikaru [JASRI / SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materials in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.

  20. Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites

    Science.gov (United States)

    Hou, Zeyu; Lu, Wenxi

    2018-05-01

    Knowledge of groundwater contamination sources is critical for effectively protecting groundwater resources, estimating risks, mitigating disaster, and designing remediation strategies. Many methods for groundwater contamination source identification (GCSI) have been developed in recent years, including the simulation-optimization technique. This study proposes utilizing a support vector regression (SVR) model and a kernel extreme learning machine (KELM) model to enrich the content of the surrogate model. The surrogate model was itself key in replacing the simulation model, reducing the huge computational burden of iterations in the simulation-optimization technique to solve GCSI problems, especially in GCSI problems of aquifers contaminated by dense nonaqueous phase liquids (DNAPLs). A comparative study between the Kriging, SVR, and KELM models is reported. Additionally, there is analysis of the influence of parameter optimization and the structure of the training sample dataset on the approximation accuracy of the surrogate model. It was found that the KELM model was the most accurate surrogate model, and its performance was significantly improved after parameter optimization. The approximation accuracy of the surrogate model to the simulation model did not always improve with increasing numbers of training samples. Using the appropriate number of training samples was critical for improving the performance of the surrogate model and avoiding unnecessary computational workload. It was concluded that the KELM model developed in this work could reasonably predict system responses in given operation conditions. Replacing the simulation model with a KELM model considerably reduced the computational burden of the simulation-optimization process and also maintained high computation accuracy.

  1. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    Science.gov (United States)

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  2. Wisconsin's Lake Superior Basin Water Quality Study. Supplement. Technical Report No. 2.

    Science.gov (United States)

    Whisnant, David M., Ed.

    During the period extending from May 1972 through April 1973, an investigation of the overall water quality conditions of streams flowing into Lake Superior from the entire state of Wisconsin was conducted. The goal of this publication was to provide much needed regional information on water quality, drainage basins, pollution sources and loads,…

  3. Radioactive sources and contaminated materials in scrap: monitoring, detection and remedial actions

    International Nuclear Information System (INIS)

    Gallini, R.; Berna, V.; Bonora, A.; Santini, M.

    1999-01-01

    The scrap recycling in steel and other metal mills represents one of the most relevant activities in the Province of Brescia (Lombardy, Italy). In our Province more than 20 million tonnes of metal scrap are recycled every year by a melting process. Since 1990, many accidents which took place were caused by the unwanted melting of radioactive sources, that were probably hidden in metal scrap. In 1993, the Italian Government stated directives to monitor metal scrap imported from non-EC countries because of the suspicion of the illegal traffic of radioactive materials. In 1996, a law imposed the control of all metal scrap, regardless of their origins. Since 1993, our staff have controlled thousands of railway wagons and trucks. Approximately a hundred steel mills and foundries of aluminium, cooper, brass, etc. have also been controlled and many samples have been collected (flue dust, slag, finished products). During these controls, contaminated areas have been brought to light in two warehouses (Cs 137), in 6 companies (Cs 137 and Am 241), in two landfills of industrial waste (Cs 137) and in a quarry (Cs 137). Up to now the contaminated areas have been cleaned, except for the last one. About 150 radioactive sources on contaminated materials have been found in metal scrap. We found radioactive sources of Co 60, Ra 226, Ir 192, Kr 85, Am 241, while the contamination of metals was mainly due to Ra 226. The situation described above justifies an accurate control of the amount of scrap to reduce the risk of contamination of the workers in the working areas, in the environment and in the general public. (author)

  4. Sources of indoor air contamination on the ground floor of a high-rise commercial building

    International Nuclear Information System (INIS)

    Nayebzadeh, A.; Cragg-Elkouh, S.; Rancy, R.; Dufresne, A.

    1999-01-01

    Indoor air quality is a subject of growing concern in the developed world. Many sources of indoor air contamination in commercial and office buildings are recognised and have been investigated. In addition to the usual internal sources of air contaminants, other external sources from attached facilities can find their way into the building. This report presents the results of an indoor air quality survey in a high-rise office building which demonstrated an obvious seasonal change in regard to the concentrations of carbon dioxide (CO 2 ), nitric oxide (NO) and nitrogen dioxide (NO 2 ). Furthermore, a complementary survey in the same building was carried out to identify the relevant sources of air contamination in the building and the results indicated that an attached train station and the nearby street traffic had a significant impact on indoor air quality. (author)

  5. The accumulation of radioactive contaminants in drinking water distribution systems.

    Science.gov (United States)

    Lytle, Darren A; Sorg, Thomas; Wang, Lili; Chen, Abe

    2014-03-01

    The accumulation of trace contaminants in drinking water distribution system sediment and scales has been documented, raising concerns that the subsequent release of the contaminants back to the water is a potential human exposure pathway. Radioactive contaminants are of concern because of their known health effects and because of their persistence within associated distribution system materials. The objective of this work was to measure the amount of a number of radioactive contaminants (radium, thorium, and uranium isotopes, and gross alpha and beta activity) in distribution solids collected from water systems in four states (Wisconsin, Illinois, Minnesota, and Texas). The water utilities chosen had measurable levels of radium in their source waters. In addition, 19 other elements in the solids were quantified. Water systems provided solids primarily collected during routine fire hydrant flushing. Iron was the dominant element in nearly all of the solids and was followed by calcium, phosphorus, magnesium, manganese, silicon, aluminum and barium in descending order. Gross alpha and beta radiation averaged 255 and 181 pCi/g, and were as high as 1602 and 1169 pCi/g, respectively. Total radium, thorium and uranium averaged 143, 40 and 6.4 pCi/g, respectively. Radium-226 and -228 averaged 74 and 69 pCi/g, and were as high as 250 and 351 pCi/g, respectively. Published by Elsevier Ltd.

  6. Wisconsin Inventors' Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor's Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor's information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  7. Factors Affecting Physician Satisfaction and Wisconsin Medical Society Strategies to Drive Change.

    Science.gov (United States)

    Coleman, Michele; Dexter, Donn; Nankivil, Nancy

    2015-08-01

    Physicians' dissatisfaction in their work is increasing, which is affecting the stability of health care in America. The Wisconsin Medical Society (Society) surveyed 1016 Wisconsin physicians to determine the source of their dissatisfaction. The survey results indicate Wisconsin physicians are satisfied when it comes to practice environment, work-life balance, and income. In addition, they are extremely satisfied when it comes to rating their ability to provide high quality care, and they have identified some benefits related to the adoption of electronic health records. However, they are feeling burned out, very unsatisfied with the amount of time spent in direct patient care compared to indirect patient care, and that they are spending too much time on administrative and data entry tasks. In terms of future workforce, many physicians are either unsure or would not recommend the profession to a prospective medical student. Electronic health records serve as both a satisfier and dissatisfier and as a potential driver for future physician satisfaction interventions. Changes at the institutional, organizational, and individual levels potentially could address the identified dissatisfiers and build upon the satisfiers. The Society identifies 12 strategies to improve upon the physician experience.

  8. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  9. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  10. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    Science.gov (United States)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  11. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities

    International Nuclear Information System (INIS)

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2008-01-01

    The status of nitrate (NO 3 - ), nitrite (NO 2 - ) and ammonium (NH 4 + ) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate δ 15 N and δ 18 O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO 3 - -δ 15 N along with the NO 3 - reduction and clear δ 18 O/δ 15 N slopes of NO 3 - (∼ 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO 3 - contamination via active denitrification and reduced nitrification. Our results showed that NO 3 - and NH 4 + contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings

  12. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    Science.gov (United States)

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  13. Implementing high-speed rail in Wisconsin peer exchange.

    Science.gov (United States)

    2009-01-01

    The Wisconsin Department of Transportation Division of Transportation Investment Management hosted : a peer exchange on June 2 -4, 2009 in Milwaukee, Wisconsin. Representatives from four state DOTs and : two freight railroads joined representatives f...

  14. Sources of radioactive contamination inside houses

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2010-01-01

    People may be exposed at home to multiple sources of nuclear radiation such as gamma, beta and alpha rays emitters. House atmosphere is polluted with nuclear radiation from water pollutants and rocks used in the construction. Radon is the only radioactive non-metallic element. Environmental organizations estimated that all houses contain varying concentrations of radon gas, and the residents are exposed to levels of radon over the years. The source of radon in houses is uranium, which may be found in rocks of the house, soil of the garden, water of the deep artesian wells and building materials, especially granite rocks. Breathing air that contains high levels of radon causes lung cancer. Radon is the second cause of lung disease after smoking. There are many means to reduce house pollution including: utilisation of air filters to remove contaminated dust particles, keep residential areas away from the establishments that use nuclear technology or embedded by nuclear waste, avoid using materials made from asbestos in construction works and proper use and disposal of chemicals and medicines containing radioactive isotopes. (author)

  15. Survival of adult martens in Northern Wisconsin

    Science.gov (United States)

    Nicholas P. McCann; Patrick A. Zollner; Jonathan H. Gilbert

    2010-01-01

    Low adult marten (Martes americana) survival may be one factor limiting their population growth >30 yr after their reintroduction in Wisconsin, USA. We estimated annual adult marten survival at 0.81 in northern Wisconsin, with lower survival during winter (0.87) than summer-fall (1.00). Fisher (Martes pennanti) and raptor kills...

  16. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  17. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  18. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  19. Sources to environmental radioactive contamination from nuclear activities in the former USSR

    International Nuclear Information System (INIS)

    Polikarpov, G.G.; Aarkrog, A.

    1993-01-01

    There is three major sites of radioactive environmental contamination in the former USSR: the Cheliabinsk region in the Urals, Chernobyl NPP in Ukraine and Novaya Zemlya in the Arctic Ocean. The first mentioned is the most important with regard to local (potential) contamination, the last one dominates the global contamination. A number of sites and sources are less well known with regard to environmental contamination. This is thus the case for the plutonium production factories at Tomsk and Dodonovo. More information on nuclear reactors in lost or dumped submarines is also needed. From a global point of view reliable assessment of the radioactive run-off from land and deposits of nuclear waste in the Arctic Ocean are in particular pertinent

  20. Determining Sources of Fecal Contamination in Two Rivers of Northumberland County, Virginia

    OpenAIRE

    Szeles, Cheryl Lynne

    2003-01-01

    DETERMINING SOURCES OF FECAL CONTAMINATION IN TWO RIVERS OF NORTHUMBERLAND COUNTY, VIRGINIA By Cheryl Lynne Szeles Dr. Charles Hagedorn III, Chairman Crop and Soil Environmental Sciences (ABSTRACT) The goal of monitoring the water quality of shellfish beds is to provide protection against transmission of water-borne infectious diseases. The Coan River and the Little Wicomico River contain shellfish beds that are closed to harvest due to contamination with fecal ...

  1. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    Science.gov (United States)

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.

  2. Identifying potential sources of Sudan I contamination in Capsicum fruits over its growth period.

    Science.gov (United States)

    Wu, Naiying; Gao, Wei; Zhou, Li; Lian, Yunhe; Li, Fengfei; Han, Wenjie

    2015-04-15

    Sudan dyes in spices are often assumed to arise from cross-contamination or malicious addition. Here, experiments were carried out to identify the potential source of Sudan I-IV in Capsicum fruits through investigation of their contents in native Capsicum tissues, soils and associated agronomic materials. Sudan II-IV was not detected in any of the tested samples. Sudan I was found in almost all samples except for the mulching film. Sudan I concentrations decreased from stems to leaves and then to fruits or roots. Sudan I levels in soils were significantly elevated by vegetation treatment. These results exclude the possibility of soil as the main source for Sudan I contamination in Capsicum fruits. Further study found out pesticide and fertilizer constitutes the major source of Sudan I contamination. This work represents a preliminary step for a detailed Sudan I assessment to support Capsicum management and protection in the studied region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Environmental mercury contamination in China: Sources and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L; Wong, M H [Hong Kong Baptist University, Hong Kong (China)

    2007-01-15

    This review article focused on the current status of mercury (Hg) contamination in different ecological compartments in China, and their possible environmental and health impacts, focusing on some major cities. Mercury emission from non-ferrous metals smelting (especially zinc smelting), coal combustion and miscellaneous activities (of which battery and fluorescent lamp production and cement production are the largest), contributed about 45%, 38% and 17%, respectively, to the total Hg emission based on the data of 1999. Mercury contamination is widespread in different ecological compartments such as atmosphere, soil and water. There is evidence showing bioaccumulation and biomagnification of Hg in aquatic food chains, with higher concentrations detected in carnivorous fish. In terms of human exposure to Hg, fish consumption is the major exposure pathway for residents living in coastal cities such as Hong Kong, but inhalation may be another major source, affecting human health in areas with severe atmospheric Hg, such as Guiyang City (Guizhou Province). There is also increasing evidence showing that skin disorders and autism in Hong Kong children are related to their high Hg body loadings (hair, blood and urine), through prenatal methyl Hg exposure. There seems to be an urgent need to identify the sources of Hg, speciation and concentrations in different ecological compartments, which may lead to high body loadings in human beings.

  4. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  5. Progress toward the Wisconsin Free Electron Laser

    International Nuclear Information System (INIS)

    Bisognano, Joseph; Bosch, R.A.; Eisert, D.; Fisher, M.V.; Green, M.A.; Jacobs, K.; Kleman, K.J.; Kulpin, J.; Rogers, G.C.; Lawler, J.E.; Yavuz, D.; Legg, R.

    2011-01-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R and D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R and D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  6. An Assessment of Air As a Source of DNA Contamination Encountered When Performing PCR

    OpenAIRE

    Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A.; Huggett, Jim F.

    2009-01-01

    Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as...

  7. Proceedings of the 2000 contaminated site remediation conference. From source zones to ecosystems. 2 volumes

    International Nuclear Information System (INIS)

    Johnston, C.D.

    2000-01-01

    The conference theme, 'From Source Zones to Ecosystems' , indicate the recognition of the fact that once released into environment, contaminants followed a pathway from the source to the point of impact with an ecosystem or other receptors, consequently care is taken to associate remediation with reducing risk to these receptors. The papers, presented at the conference provide a guide to current practice and future direction of contaminated site remediation in Australia and internationally. Monitored natural attenuation is considered as is an increased body of evidence available to evaluate this approach when managing site contamination for Australian conditions. Remediation strategies for heavy metal contamination appear to be underdeveloped and indeed underrepresented. The phyto remediation is being developed to ameliorate the problem and there is also a focus on the bioavailability of metals and on better defining the risk they pose

  8. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Gårn Hansen, Lars

    2014-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...

  9. Linking chemical elements in forest floor humus (Oh-horizon) in the Czech Republic to contamination sources

    International Nuclear Information System (INIS)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-01-01

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the 'environmental memory' of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km 2 in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources. - Highlights: → Concentrations of 39 elements in forest floor humus are provided. → The capabilities of humus sampling for bio-monitoring purposes are demonstrated. → Geochemical anomalies are linked to known contamination sources. → The study shows the importance of scale for geochemical mapping projects. → Humus provides a picture of the long term contamination history of a country. - Forest floor humus, the atmosphere-biosphere-pedosphere interface, archives an environmental contamination signal over long time periods.

  10. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    Science.gov (United States)

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and

  11. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    Science.gov (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  12. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  13. Geographic and racial variation in teen pregnancy rates in Wisconsin.

    Science.gov (United States)

    Layde, Molly M; Remington, Patrick L

    2013-08-01

    Despite recent declines in teen birth rates, teenage pregnancy remains an important public health problem in Wisconsin with significant social, economic, and health-related effects. Compare and contrast teen birth rate trends by race, ethnicity, and county in Wisconsin. Teen (ages 15-19 years) birth rates (per 1000 teenage females) in Wisconsin from 2001-2010 were compared by racelethnicity and county of residence using data from the Wisconsin Interactive Statistics on Health. Teen birth rates in Wisconsin have declined by 20% over the past decade, from 35.5/1000 teens in 2001 to 28.3/1000 teens in 2010-a relative decline of 20.3%. However, trends vary by race, with declines among blacks (-33%) and whites (-26%) and increases among American Indians (+21%) and Hispanics (+30%). Minority teen birth rates continue to be 3 to 5 times greater than birth rates among whites. Rates varied even more by county, with an over 14-fold difference between Ozaukee County (7.8/1000) and Menominee County (114.2). Despite recent declines, teen pregnancy continues to be an important public health problem in Wisconsin. Pregnancy prevention programs should be targeted toward the populations and counties with the highest rates.

  14. Locating the Source of Atmospheric Contamination Based on Data From the Kori Field Tracer Experiment

    Directory of Open Access Journals (Sweden)

    Piotr Kopka

    2015-01-01

    Full Text Available Accidental releases of hazardous material into the atmosphere pose high risks to human health and the environment. Thus it would be valuable to develop an emergency reaction system which can recognize the probable location of the source based only on concentrations of the released substance as reported by a network of sensors. We apply a methodology combining Bayesian inference with Sequential Monte Carlo (SMC methods to the problem of locating the source of an atmospheric contaminant. The input data for this algorithm are the concentrations of a given substance gathered continuously in time. We employ this algorithm to locating a contamination source using data from a field tracer experiment covering the Kori nuclear site and conducted in May 2001. We use the second-order Closure Integrated PUFF Model (SCIPUFF of atmospheric dispersion as the forward model to predict concentrations at the sensors' locations. We demonstrate that the source of continuous contamination may be successfully located even in the very complicated, hilly terrain surrounding the Kori nuclear site. (original abstract

  15. Nurses for Wisconsin: A Collaborative Initiative to Enhance the Nurse Educator Workforce.

    Science.gov (United States)

    Young, Linda K; Adams, Jan L; Lundeen, Sally; May, Katharyn A; Smith, Rosemary; Wendt, L Elaine

    2016-01-01

    Wisconsin, like much of the nation, is currently suffering from a growing nursing shortage. The University of Wisconsin-Eau Claire College of Nursing and Health Sciences, in partnership with the University of Wisconsin-Madison, University of Wisconsin-Milwaukee, and University of Wisconsin Oshkosh nursing programs, took advantage of a University of Wisconsin System Incentive Grant for economic and workforce development to address this problem. With a $3.2 million award, the Nurses for Wisconsin goal is to increase the number of baccalaureate registered nurses by expanding the nursing education capacity within the University of Wisconsin System. Nurses for Wisconsin is accelerating the preparation of nursing faculty by supporting nurses to enroll in doctor of nursing practice or nursing doctor of philosophy programs with pre- and postdoctoral fellowship awards ranging from $21,500 to $90,000 and the recruitment of faculty with a loan repayment program of up to $50,000. In exchange for the financial support, fellows and faculty must make a 3-year commitment to teach in a UW System nursing program. Two conferences for program participants are also funded through the award. The first conference was held in October 2014. The second conference is scheduled for summer 2015. With the first year of the 2-year project completed, this article describes Nurses for Wisconsin from inception to implementation and midterm assessment with a focus on lessons learned. A follow-up article addressing final outcomes and next steps is planned. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Turbidity in extreme western Lake Superior. [contamination of Duluth, Minnesota water intake

    Science.gov (United States)

    Sydor, M.

    1975-01-01

    Data were obtained from ERTS images for western Lake Superior for 1972-74. Data examination showed that for easterly winds the turbidity originating along the Wisconsin shore and the resuspension areas are transported northward then out along a N.E. path where it disperses, and often, for large storms, contaminates the Duluth water intake. Contaminants such as dredging fines anywhere along these paths would likewise find their way to the intake areas in concentrations comparable to the relative red clay concentration.

  17. Variability in physical contamination assessment of source segregated biodegradable municipal waste derived composts.

    Science.gov (United States)

    Echavarri-Bravo, Virginia; Thygesen, Helene H; Aspray, Thomas J

    2017-01-01

    Physical contaminants (glass, metal, plastic and 'other') and stones were isolated and categorised from three finished commercial composts derived from source segregated biodegradable municipal waste (BMW). A subset of the identified physical contaminant fragments were subsequently reintroduced into the cleaned compost samples and sent to three commercial laboratories for testing in an inter-laboratory trial using the current PAS100:2011 method (AfOR MT PC&S). The trial showed that the 'other' category caused difficulty for all three laboratories with under reporting, particularly of the most common 'other' contaminants (paper and cardboard) and, over-reporting of non-man-made fragments. One laboratory underreported metal contaminant fragments (spiked as silver foil) in three samples. Glass, plastic and stones were variably underreported due to miss-classification or over reported due to contamination with compost (organic) fragments. The results are discussed in the context of global physical contaminant test methods and compost quality assurance schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Environmental Education in Wisconsin: What the Textbooks Teach.

    Science.gov (United States)

    Sanera, Michael

    1996-01-01

    This report contains a study done at the request of the Wisconsin Policy Research Institute, which studies public policy issues affecting the state of Wisconsin. Environmental education texts for Grades 6 through 10 were examined for scientific and economic accuracy, objectivity, and balance in accomplishing the following: 1) stating facts that…

  19. Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination

    Directory of Open Access Journals (Sweden)

    John Ogony Odiyo

    2018-02-01

    Full Text Available Due to inaccessibility of potable water, rural communities drill boreholes within their homesteads despite vulnerability to groundwater contamination and associated health risks. This study assessed the quality of groundwater, identified potential sources of contamination and potential human health risks in Siloam Village, South Africa. Statistical difference between similar water quality parameters at different sites was determined at a significance level (α of 0.05. Water quality parameters with serious potential health effects on human beings were correlated with selected water quality parameters to understand the nature of correlation and possible sources of contamination. Fluorides and nitrates had excessively high concentrations associated with tooth damage and pronounced skeletal fluorosis, and methaemoglobinaemia in infants and mucous membrane irritation in adults, respectively. There were statistically significant differences between means of most water quality parameters. Contrasting correlation of fluoride with calcium and pH indicated the need to further identify local sources and fluoride control mechanisms. Correlation of nitrate with chloride mostly indicated that faecal contamination is the potential source of high nitrates in groundwater. This requires further verification. Presence of total coliforms and E. coli in most boreholes indicated potential presence of faecal contamination. The need to educate borehole owners’ on possible strategies to minimise groundwater pollution was identified.

  20. The Wisconsin Test of Adult Basic Education (WITABE).

    Science.gov (United States)

    Pandey, Tej N.; Cleary, T. Anne

    A description is given of "The Wisconsin Test of Adult Basic Education (WITABE)" which was developed specifically to measure the achievement of the individuals enrolled in the Rural Family Development (RGD) program at the University Extension, University of Wisconsin. The test is divided into three main parts or subtests: subtests 1 and…

  1. A systems approach for detecting sources of Phytophthora contamination in nurseries

    Science.gov (United States)

    Jennifer L. Parke; Niklaus Grünwald; Carrie Lewis; Val Fieland

    2010-01-01

    Nursery plants are also important long-distance vectors of non-indigenous pathogens such as P. ramorum and P. kernoviae. Pre-shipment inspections have not been adequate to ensure that shipped plants are free from Phytophthora, nor has this method informed growers about sources of contamination in their...

  2. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    Directory of Open Access Journals (Sweden)

    Hairong Li

    2013-03-01

    Full Text Available Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators.

  3. Radioactive inventories and sources for contamination of the Kara Sea

    International Nuclear Information System (INIS)

    Bradley, D.J.; Jenquin, U.P.

    1995-01-01

    The focus of this paper is on detailing the magnitudes of the sources of radionuclides that may be available, or have already been released to the Ob and Yenisey river systems. The emphasis is on the amounts of radioactivity that have been discharged to the environment in the West Siberian Basin. This are potential source terms to the Kara Sea via the Ob and Yenisey rivers. Russian estimates of what has been discharged to the Barents and Kara Seas, including direct ocean discharges, are summarized to provide some perspective on contamination of the Kara Sea. 1 fig., 3 tabs

  4. The Advancing a Healthier Wisconsin Endowment: How a Health Care Conversion Foundation Is Transforming a Medical School.

    Science.gov (United States)

    Maurana, Cheryl A; Lucey, Paula A; Ahmed, Syed M; Kerschner, Joseph E; Bolton, G Allen; Raymond, John R

    2016-01-01

    Health care conversion foundations, such as the Advancing a Healthier Wisconsin Endowment (the endowment) at the Medical College of Wisconsin (MCW), result from the conversion of nonprofit health organizations to for-profit corporations. Over the past several decades, nearly 200 of these foundations have been created, and they have had a substantial impact on the field of health philanthropy. The MCW was a recipient of funds resulting from Blue Cross & Blue Shield United of Wisconsin's conversion from a nonprofit to a for-profit status in 1999. Established in 2004, the endowment has invested approximately $185 million in 337 research, education, and public and community health initiatives that benefit Wisconsin residents. However, the transformative potential of the health care conversion foundation has extended well beyond the opportunities provided through the endowment's financial resources. As the endowment celebrates its 10th anniversary, the authors describe the transformative nature of the endowment, as well as significant accomplishments and lessons learned, in the following areas: shared power, community partnerships, translational research, and integration of medicine and public health. It is the authors' hope that these lessons will be valuable to other medical schools and the communities they serve, as they invest in improving the health of their communities, irrespective of the funding source.

  5. Learning from Wisconsin

    Science.gov (United States)

    Daniel, Jamie Owen

    2011-01-01

    Like thousands of other people from around the country and around the world, this author was heartened and inspired by the tenacity, immediacy, and creativity of the pushback by Wisconsin's public-sector unions against Governor Scott Walker's efforts to limit their collective bargaining rights. And like many others who made the trek to Madison to…

  6. Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide

    Science.gov (United States)

    2016-08-30

    estimation process when applying the tool. The tool described here is focused on vapor-phase diffusion from the current vadose zone source , and is not...from the current defined vadose zone source ). The estimated soil gas contaminant concentration obtained from the pre-modeled scenarios for a building...need a full site-specific numerical model to assess the impacts beyond the current vadose zone source . 35 5.0 References Brennan, R.A., N

  7. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  8. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  9. Pupil Nondiscrimination Guidelines. Implementing S.118.13 of the Wisconsin Statutes and PI 9 of the Wisconsin Administrative Code. Bullein No. 8327.

    Science.gov (United States)

    Wisconsin State Dept. of Public Instruction, Madison.

    The new S. 118.13, Wisconsin Statutes, bans pupil discrimination in any curricular, extracurricular, pupil services, recreational, or other program or activity in the State of Wisconsin on the basis of sex; race; national origin; ancestry; creed; pregnancy; marital or parental status; sexual orientation; or physical, mental, emotional, or learning…

  10. 77 FR 59921 - Wisconsin Public Service Corporation; Notice of Environmental Site Review

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1940-000 Wisconsin; Project No. 1966-000 Wisconsin] Wisconsin Public Service Corporation; Notice of Environmental Site Review In anticipation of the filing of Notices of Intent (NOI) and Pre- Application Documents for the Grandfather Falls Hydroelectric Project No. 1966 and...

  11. University of Wisconsin - Extension

    Science.gov (United States)

    ... to know how to advance an innovative tech idea I want to know more about agricultural resources available in Wisconsin I want to learn how I can get training and support for my small business I want to learn how I can get ...

  12. Undergraduate Research and Economic Development: A Systems Approach in Wisconsin

    Science.gov (United States)

    Van Galen, Dean; Schneider-Rebozo, Lissa; Havholm, Karen; Andrews, Kris

    2015-01-01

    This chapter presents the state of Wisconsin and the University of Wisconsin System as an ongoing case study for best practices in systematic, intentional, statewide programming and initiatives connecting undergraduate research and economic development.

  13. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  14. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  15. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs.

    Science.gov (United States)

    Minet, E P; Goodhue, R; Meier-Augenstein, W; Kalin, R M; Fenton, O; Richards, K G; Coxon, C E

    2017-11-01

    Excessive nitrate (NO 3 - ) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO 3 - sources is critical to efficiently control or reverse NO 3 - contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15 N/ 14 N and 18 O/ 16 O in NO 3 - (expressed as δ 15 N-NO 3 - and δ 18 O-NO 3 - , respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO 3 - source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO 3 - problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO 3 - sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na + ) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P-), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ 15 N-NO 3 - and δ 18 O-NO 3 - data were superimposed on the classification. As δ 15 N-NO 3 - was plotted against δ 18 O-NO 3 - , comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p contamination groups revealed that denitrification did not occur in the absence of point

  16. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis.

    Science.gov (United States)

    Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2014-01-01

    Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.

  17. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  18. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    Energy Technology Data Exchange (ETDEWEB)

    Troge, Michael [Little Bear Development Center, Oneida, WI (United States)

    2014-12-01

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  19. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    International Nuclear Information System (INIS)

    Ma, Denglong; Zhang, Zaoxiao

    2016-01-01

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  20. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)

    2016-07-05

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  1. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Science.gov (United States)

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  2. Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality.

    Science.gov (United States)

    Chong, Meng Nan; Sidhu, Jatinder; Aryal, Rupak; Tang, Janet; Gernjak, Wolfgang; Escher, Beate; Toze, Simon

    2013-08-01

    Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical-toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events

  3. Development of Real-Time PCR to Monitor Groundwater Contaminated by Fecal Sources and Leachate from the Carcass

    Science.gov (United States)

    Park, S.; Kim, H.; Kim, M.; Lee, Y.; Han, J.

    2011-12-01

    The 2010 outbreak of foot and mouth disease (FMD) in South Korea caused about 4,054 carcass burial sites to dispose the carcasses. Potential environmental impacts by leachate of carcass on groundwater have been issued and it still needs to be studied. Therefore, we tried to develop robust and sensitive tool to immediately determine a groundwater contamination by the leachate from carcass burial. For tracking both an agricultural fecal contamination source and the leachate in groundwater, competitive real-time PCR and PCR method were developed using various PCR primer sets designed to detect E. Coli uidA gene and mtDNA(cytochrome B, cytB) of the animal species such as ovine, porcine, caprine, and bovine. The designed methods were applied to tract the animal species in livestock wastewater and leachate of carcass under appropriate PCR or real-time PCR condition. In the result, mtDNA primer sets for individual (Cow or Pig) and multiple (Cow and Pig) amplification, and E. Coli uidA primers for fecal source amplification were specific and sensitive to target genes. To determine contamination source, concentration of amplified mtDNA and uidA was competitively quantified in Livestock wastewater, leachate of carcass, and groundwater. The highest concentration of mtDNA and uidA showed in leachate of carcass and livestock wastewater, respectively. Groundwater samples possibly contaminated by leachate of carcass were analyzed by this assay and it was able to prove contamination source.

  4. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation.

    Science.gov (United States)

    Shankar, Shiv; Shanker, Uma; Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.

  5. Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation

    Directory of Open Access Journals (Sweden)

    Shiv Shankar

    2014-01-01

    Full Text Available Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial for mitigation of the problem of As contamination of groundwater.

  6. Contaminants of Emerging Concern in Bats from the Northeastern United States.

    Science.gov (United States)

    Secord, Anne L; Patnode, Kathleen A; Carter, Charles; Redman, Eric; Gefell, Daniel J; Major, Andrew R; Sparks, Daniel W

    2015-11-01

    We analyzed bat carcasses (Myotis lucifugus, M. sodalis, M. septentrionalis, and Eptesicus fuscus) from the northeastern United States for contaminants of emerging concern (CECs) such as polybrominated diphenyl ethers (PBDEs), and pharmaceuticals and personal care products. The CECs detected most frequently in samples were PBDEs (100 %), salicylic acid (81 %), thiabendazole (50 %), and caffeine (23 %). Other compounds detected in at least 15 % of bat samples were digoxigenin, ibuprofen, warfarin, penicillin V, testosterone, and N,N-diethyl-meta-toluamide (DEET). The CECs present at the highest geometric mean wet weight concentrations in bat carcasses were bisphenol A (397 ng/g), ΣPDBE congeners 28, 47, 99, 100, 153, and 154 (83.5 ng/g), triclosan (71.3 n/g), caffeine (68.3 ng/g), salicylic acid (66.4 ng/g), warfarin (57.6 ng/g), sulfathiazole (55.8 ng/g), tris(1-chloro-2-propyl) phosphate (53.8 ng/g), and DEET (37.2 ng/g). Bats frequently forage in aquatic and terrestrial habitats that may be subjected to discharges from wastewater-treatment plants, agricultural operations, and other point and nonpoint sources of contaminants. This study shows that some CECs are accumulating in the tissue of bats. We propose that CECs detected in bats have the potential to affect a number of physiological systems in bats including hibernation, immune function, and response to white-nose syndrome, a fungal disease causing population-level impacts to bats.

  7. Teaching Environmental Education to Wisconsin Teachers: A Review of University Course Materials.

    Science.gov (United States)

    Sanera, Michael

    1997-01-01

    This report contains a study done at the request of the Wisconsin Policy Research Institute, which studies public policy issues affecting the state of Wisconsin. The purpose of this study was to examine the content of environmental education (EE) materials used in courses required for teacher certification in Wisconsin to see if the knowledge and…

  8. Increasing educational disparities in premature adult mortality, Wisconsin, 1990-2000.

    Science.gov (United States)

    Reither, Eric N; Peppard, Paul E; Remington, Patrick L; Kindig, David A

    2006-10-01

    Public health agencies have identified the elimination of health disparities as a major policy objective. The primary objective of this study is to assess changes in the association between education and premature adult mortality in Wisconsin, 1990-2000. Wisconsin death records (numerators) and US Census data (denominators) were compiled to estimate mortality rates among adults (25-64 years) in 1990 and 2000. Information on the educational status, sex, racial identification, and age of subjects was gathered from these sources. The effect of education on mortality rate ratios in 1990 and 2000 was assessed while adjusting for age, sex, and racial identification. Education exhibited a graded effect on mortality rates, which declined most among college graduates from 1990 to 2000. The relative rate of mortality among persons with less than a high school education compared to persons with a college degree increased from 2.4 to 3.1 from 1990-2000-an increase of 29%. Mortality disparities also increased, although to a lesser extent, among other educational groups. Despite renewed calls for the elimination of health disparities, evidence suggests that educational disparities in mortality increased from 1990 to 2000.

  9. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    Science.gov (United States)

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183). Contaminant fate in coastal areas impacte...

  10. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    Science.gov (United States)

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  11. Linking chemical elements in forest floor humus (O{sub h}-horizon) in the Czech Republic to contamination sources

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie [Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnove namesti 391, 252 43 Pruhonice (Czech Republic); Reimann, Clemens, E-mail: Clemens.Reimann@ngu.no [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Boyd, Rognvald [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Filzmoser, Peter [Institute for Statistics and Probability Theory, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien (Austria); Englmaier, Peter [Faculty of Life Science, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2011-05-15

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the 'environmental memory' of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km{sup 2} in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources. - Highlights: > Concentrations of 39 elements in forest floor humus are provided. > The capabilities of humus sampling for bio-monitoring purposes are demonstrated. > Geochemical anomalies are linked to known contamination sources. > The study shows the importance of scale for geochemical mapping projects. > Humus provides a picture of the long term contamination history of a country. - Forest floor humus, the atmosphere-biosphere-pedosphere interface, archives an environmental contamination signal over long time periods.

  12. [Anticholinergic syndrome caused by contaminated herbal tea; acting swiftly to identify the source].

    Science.gov (United States)

    Oerlemans, C; de Vries, I; van Riel, A J H P

    2017-01-01

    Despite good manufacturing practice and quality control, consumer products can become contaminated. In some cases, this can result in severe and life-threatening intoxication with potentially fatal consequences. A 27-year-old man and a 28-year-old pregnant woman presented to the Emergency Department with severe anticholinergic syndrome after using a marshmallow root (Althaea officinalis) herbal remedy, mixed into hot chocolate drink, to reduce symptoms of common cold. After a short stay in Intensive Care, the symptoms diminished and the patients could be released from hospital. The herbs were found to be contaminated with atropine, most probably derived from deadly nightshade (Atropa belladonna). Analyses of the contaminated product indicated that the patients were exposed to 20-200 mg atropine, while a dose of 2 mg is already considered mildly toxic. Consultation of the Dutch National Poisons Information Center resulted in rapid detection of the contamination; close collaboration with the Netherlands Food and Consumer Product Safety Authority and the manufacturer of the product allowed rapid identification of the source of contamination and facilitated the prevention of an epidemic.

  13. The effects of lead sources on oral bioaccessibility in soil and implications for contaminated land risk management

    International Nuclear Information System (INIS)

    Palmer, Sherry; McIlwaine, Rebekka; Ofterdinger, Ulrich; Cox, Siobhan F.; McKinley, Jennifer M.; Doherty, Rory; Wragg, Joanna; Cave, Mark

    2015-01-01

    Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg −1 ) and mineralisation (199.8 mg kg −1 ) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg −1 ) and granite (36.0 mg kg −1 ) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land. - Highlights: • Urban, mineralisation, peat and granite sources accounted for elevated Pb in soil. • Pb solubility was higher in urban and mineralisation domains. • Higher Pb solubility resulted in high oral bioaccessibility compared to rural areas. • Diffuse background and natural Pb contamination could pose human health risks. • Contaminated land policy should not dismiss diffuse or geogenic pollution sources. - Diffuse and widespread Pb sources displayed high oral bioaccessibility, providing implications for contaminated land risk assessment guidance that excludes these forms of pollution

  14. Wisconsin EE Mandates: The Bad News and the Good News.

    Science.gov (United States)

    Lane, Jennie; And Others

    1996-01-01

    Examines Wisconsin teachers' perceived competencies in, attitudes toward, and amount of class time devoted to teaching about the environment. Discusses the effects of Wisconsin environmental education mandates concerning preservice preparation in environmental education and K-12 environmental education curriculum plans. Identifies areas where the…

  15. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites

    Directory of Open Access Journals (Sweden)

    Katarzyna Szwabe

    2017-03-01

    Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  16. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Science.gov (United States)

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  17. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania

    Science.gov (United States)

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods—dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was €6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  18. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  19. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    International Nuclear Information System (INIS)

    Fekiacova, Z.; Cornu, S.; Pichat, S.

    2015-01-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ 65 Cu values vary from − 0.15 to 0.44‰ and the δ 66 Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ 65 Cu and from − 0.53 to 0.64‰ for δ 66 Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing of the metal

  20. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  1. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.

    Science.gov (United States)

    Ritter, Len; Solomon, Keith; Sibley, Paul; Hall, Ken; Keen, Patricia; Mattu, Gevan; Linton, Beth

    2002-01-11

    On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans, and there have been countless numbers of disease outbreaks and poisonings throughout history resulting from exposure to untreated or poorly treated drinking water. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often globally ubiquitous in waters from which drinking water is derived. With this latter point in mind, the objective of this commission paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health. In assessing the relative risk of toxic contaminants in drinking water to humans, we have organized our discussion to follow the classical risk assessment paradigm, with emphasis placed on risk characterization. In doing so, we have focused predominantly on toxic contaminants that have had a demonstrated or potential effect on human health via exposure through drinking water. In the risk assessment process, understanding the sources and pathways for contaminants in the environment is a crucial step in addressing (and reducing) uncertainty associated with estimating the likelihood of exposure to contaminants in drinking water. More importantly, understanding the sources and pathways of contaminants strengthens our ability to quantify effects through accurate measurement and testing, or to predict the likelihood of effects based on empirical models. Understanding the sources, fate, and concentrations of chemicals in water, in conjunction with assessment of effects, not only forms the basis of risk characterization, but also provides critical information required to render decisions regarding regulatory

  2. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Bioremediation of oil-contaminated shorelines: Effects of different nitrogen sources

    International Nuclear Information System (INIS)

    Ramstad, S.; Sveum, P.

    1995-01-01

    The present study was designed to examine the fate and effect of various nitrogen sources in oil-contaminated sediments in a continuous-flow seawater column system fed with nutrient-enriched seawater. Degradation of oil components is stimulated by a supply of an enhanced concentration of nitrogen. The most pronounced effect was found with nitrate, compared to ammonium and organic nitrogen. Ammonium was more readily sorbed by the sediment system, either by chemical adsorption or by microbial immobilization

  4. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Nnabo Paulinus N

    2015-08-01

    Full Text Available Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area. This comprises of 12 samples of surface water 14 from mine ponds and 4 from underground borehole water. The samples were acidified to stabilize the metals for periods more than four days without the use of refrigeration. The acidified water samples were analysed by a commercial laboratory at Projects Development Institute PRODA Enugu using Atomic Absorption Spectroscopy AAS. The elements determined by this method are lead Pb zinc Zn copper Cu arsenic As cadmium Cd nickel Ni manganese Mn and cobalt Co. The result and analysis of contamination factor showed that in surface water Cd had the highest concentration followed by As and Pb while Ni had the lowest. In mine ponds Cd also had the highest concentration and followed by Pb and As and Ni the lowest. In borehole water Cd has the highest concentration followed by Pb and As while Ni had the lowest concentration. Compared to WHO permissible limits the contamination of the heavy metals in all water sources are in order CdAsPbNiZnCu. In surface water the order is CdAsPbNiZnCu in mine ponds it is CdPbAsNiZnCu and in borehole water the order is CdAsPbZnNiCu. The calculated contamination factors show very high contamination status for Cd Pb and As. These levels of contamination and values indicate that under the prevailing conditions and environmental regulations in Nigeria the mining district would face major and hazardous discharges of these metals to the water sources.

  5. Beech Range Extension and Vegetation History: Pollen Stratigraphy of Two Wisconsin Lakes.

    Science.gov (United States)

    Webb, Sara L

    1987-12-01

    The pollen stratigraphy of two small lakes in eastern Wisconsin (Radtke Lake, Washington county, and Gass Lake, Manitowoc County) records the Holocene (past 10 000 yr) spread of beech (Fagus grandifolia: Fagaceae). Radiocarbon dates were obtained for the oldest stratigraphic levels at which beech pollen appeared consistently in amounts > 0.5% of terrestrial pollen. A spatially continuous pattern of beech expansion from the north was ruled out, because beech trees grew in Wisconsin by 6000 BP, 2000 yr before adjacent populations were established to the north. Alternative geographic patterns of speed (from the south or east) were spatially discontinuous, requiring seed dispersal distances of perhaps 25-130 km. That beechnuts could be dispersed across such distances suggests (1) the involvement of Blue Jays, Passenger Pigeons, or other vertebrates, and (2) a capacity for reaching climatically controlled range limits, given sufficient time despite such discontinuities in habitat. A lag 1000-2000 yr between the establishment of source populations in Michigan and Indiana and the appearance of beech in Wisconsin suggests that low-probability dispersal events were involved and that dispersal constraints limited the range of beech during this time, although climatic and edaphic explanations for the lag cannot be ruled out. Pollen data from the two sites reveal other features of vegetation history in eastern Wisconsin: an open Picea-Fraxinus woodland prior to 11 000 BP; sequence of Picea, Abies, Betula, and then Pinus forests between 11 000 and 7500 BP; the establishment of a coniferous/deciduous forest ecotone ("tension zone") ° 7000 BP in this region; and the presence of Quercus-dominanted deciduous forests from 7000 BP until 110 BP (time of Euro-American settlement), a period punctuated by a gradual decrease in Ulmus populations (° 4500 and 5700 BP at the two sites) and by an increase in mesophytic tree abundance at the expense of Quercus after 3500 BP. © 1987 by the

  6. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    Science.gov (United States)

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    International Nuclear Information System (INIS)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on 90 Sr, 3 H, and 137 Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides

  8. Wisconsin Maternity Leave and Fringe Benefits: Policies, Practices and Problems.

    Science.gov (United States)

    Gerner, Jennifer

    The study examines the economic implications in Wisconsin of the 1972 Equal Employment Opportunity Commission guideline which requires employers to treat maternity leave as a temporary disability. First, the static cost of the maternity leave guideline to employers is estimated for the State of Wisconsin. Second, some examination of the economic…

  9. Estimation of pollutant source contribution to the Pampanga River Basin using carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Castaneda, Solidad S.; Sta Maria, Efren J.; Ramirez, Jennyvi D.; Collado, Mario B.; Samar, Edna D.

    2013-01-01

    This study assessed and estimated the percentage contribution of potential pollution sources in Pampanga River Basin using carbon and nitrogen isotopes as environmental tracers. The δ 13 C and δ 15 N values were determined in particulate organic matter, surface sediment, and plant tissue samples from point and non-point sources from several land use areas, namely domestic, croplands, livestock, fishery and forestry. Investigations were conducted in the wet and dry seasons (2012 and 2013). Some N sources do not have unique δ 15 N and there is overlapping among different N- sources type. δ 13 C data from the N sources provided an additional dimension which distinguished animal manure, human waste (septic and sewage), leaf litter, and synthetic fertilizer. Characterization of the non-point N-sources based on the isotopic fingerprints obtained from the point sources revealed that domestic, cropland, livestock, and fishery, influenced the isotopic composition of the materials but domestic and cropland land use provided the most significant influence. Livestock also contributed to a lesser extent. Isotope mixing model revealed that cropland sources generally contributed the most to pollutant loading during the wet season, from 22% to 98%, while domestic waste contributed higher in the dry season, from 55% to 65%. (author)

  10. Investigating the Lateral Mixing Coefficient in a Compound Channel with Emergent Vegetation over the Floodplain

    OpenAIRE

    Hossein hamidifar; Mohammad hossein Ommid; Mehdi Bahrami; Mohammad javad Amiri

    2017-01-01

    Introduction: Water quality control is very important for people, animals and plants. Predicting the spread of contaminants is important for managing and protecting rivers and streams to the balance of the ecosystem. Pollutants are introduced into waterways, though a variety of sources such as point and non-point sources. Under steady state conditions, where longitudinal mixing is not significant, studying the lateral mixing is essential in evaluating the influence of pollutants on water qual...

  11. The effects of a perturbed source on contaminant transport near the Weldon Spring quarry

    International Nuclear Information System (INIS)

    Tomasko, D.

    1989-03-01

    The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs

  12. Wisconsin's forest resources, 2010

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  13. Wisconsin's forest resources, 2005

    Science.gov (United States)

    Charles, H. (Hobie) Perry; Gary J. Brand

    2006-01-01

    The annual forest inventory of Wisconsin continues, and this document reports 2001-05 moving averages for most variables and comparisons between 2000 and 2005 for growth, removals, and mortality. Summary resource tables can be generated through the Forest Inventory Mapmaker website at http://ncrs2.fs.fed.us/4801/fiadb/index. htm. Estimates from this inventory show a...

  14. Wisconsin's forest resources, 2006

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2007-01-01

    Figure 2 was revised by the author in August 2008. This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service from 2002-2006. These estimates, along with associated core tables postedon the Internet, are...

  15. Wisconsin's Forest Resources, 2007

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2008-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, are updated annually. For more information please refer to page 4 of this report.

  16. Wisconsin's forest resources, 2009

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this report...

  17. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China.

    Science.gov (United States)

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu

    2018-06-15

    The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia.

    Science.gov (United States)

    Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin

    2014-09-01

    Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.30 Section 81.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  20. Fiscal Year 1990 program report: New York State Water Resources Institute

    International Nuclear Information System (INIS)

    Porter, K.S.

    1991-08-01

    New York has made major strides in reducing or eliminating point sources of water pollutants. Nonpoint sources have become the primary focus of many State water pollution control programs. Among the most critical remaining water pollutant sources in New York are toxics-contaminated sediments in surface water bodies and leaks and spills of toxic and hazardous materials. Contaminated sediments are implicated as a major origin of certain persistent synthetic organics accumulated by higher aquatic organisms, as well as representing an uncertain but large reservoir of contaminants which may be re-released during high flows. Spills and leaks represent threats to both surface and ground water. The State now responds to over 10,000 of these cases each year. A growing number of cases are leaking underground petroleum storage tanks, requiring long and expensive cleanup activities

  1. A study for estimate of contamination source with numerical simulation method in the turbulent type clean room

    International Nuclear Information System (INIS)

    Han, Sang Mok; Hwang, Young Kyu; Kim, Dong Kwon

    2015-01-01

    Contamination in a clean room may appear even more complicated by the effect of complicated manufacturing processes and indoor equipment. For this reason, detailed information about the concentration of pollutant particles in the clean room is needed to control the level of contamination financially and efficiently without any problem in manufacturing process. Allocation method has been developed as one of main ideas to fulfill a function of controlling contamination under the situation. By using this method, weighting factor can be predicted based on cleanliness on sampling spots and the values based on numerical analysis. In this point, the weighting factor indicates how each of contaminant sources influences the concentration of pollutant in the clean room. In this paper, when applied allocation method, we propose zoning method to accelerate the calculation time. And it was applied to cleanliness the actual improvement of the turbulent type clean room. As a result, we could estimate quantitatively the amount of contamination generated from the pollution sources. And was proved by experiments that it is possible to improve the level of cleanliness of the clean rooms by using these results.

  2. Coliform contamination of a coastal embayment: Sources and transport pathways

    Science.gov (United States)

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily by periodic tidal flooding and possibly by major rain events. Release of coliforms during resuspension of subtidal sediments was estimated to be a minor source in this system (<1.5 x 1012 FC yr-1 or < 3% of annual input), primarily associated with large storm events in the fall and winter. Based upon the relative source strengths and the spatial and temporal patterns of FC input

  3. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter

    Science.gov (United States)

    Xu, Teng; Gómez-Hernández, J. Jaime

    2018-02-01

    Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.

  4. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    Science.gov (United States)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  5. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  6. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  7. Exogenous sample contamination. Sources and interference.

    Science.gov (United States)

    Cornes, Michael P

    2016-12-01

    Clinical laboratory medicine is involved in the vast majority of patient care pathways. It has been estimated that pathology results inform 60-70% of critical patient care decisions. The primary goal of the laboratory is to produce precise and accurate results which reflect the true situation in vivo. It is not surprising that interference occurs in laboratory analysis given the complexity of some of the assays used to perform them. Interference is defined as "the effect of a substance upon any step in the determination of the concentration or catalytic activity of the metabolite". Exogenous interferences are defined as those that derive from outside of the body and are therefore not normally found in a specimen and can cause either a positive or negative bias in analytical results. Interferences in analysis can come from various sources and can be classified as endogenous or exogenous. Exogenous substances could be introduced at any point in the sample journey. The laboratory must take responsibility for the quality of results produced. It has a responsibility to have processes in place to identify and minimise the occurrence and effect contamination and interference. To do this well the laboratory needs to work with clinicians and manufacturers. Failure to identify an erroneous result could have an impact on patient care, patient safety and also on hospital budgets. However it is not always easy to recognise interferences. This review summarises the types and sources of exogenous interference and some steps to minimise the impact they have. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  8. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  9. Technical note: Efficient online source identification algorithm for integration within a contamination event management system

    Science.gov (United States)

    Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai

    2017-07-01

    Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.

  10. Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin

    Science.gov (United States)

    Knowles, Jared E.

    2015-01-01

    The state of Wisconsin has one of the highest four year graduation rates in the nation, but deep disparities among student subgroups remain. To address this the state has created the Wisconsin Dropout Early Warning System (DEWS), a predictive model of student dropout risk for students in grades six through nine. The Wisconsin DEWS is in use…

  11. Occurrence of pharmaceutical contaminants and screening of treatment alternatives for southeastern Louisiana.

    Science.gov (United States)

    Boyd, G R; Grimm, D A

    2001-12-01

    Recent studies conducted in Germany, Switzerland, Denmark, Brazil, Canada, the United States, and elsewhere indicate that low-level concentrations of pharmaceuticals and personal-care products (PPCPs) and their metabolites may be widespread contaminants in our aquatic environment. The persistence of pharmaceutical contaminants has been attributed to (1) human consumption of drugs and subsequent discharges from sewage treatment plants, and (2) veterinary use of drugs and nonpoint discharges from agricultural runoff. Contamination of water resources by these compounds, particularly endocrine disrupting chemicals (EDCs), is emerging as an international environmental concern. The long-term effects of continuous, low-level exposure to PPCPs is not well understood. Preliminary data for raw water samples collected from the Mississippi River and Lake Pontchartrain, Louisiana, are summarized. Three PPCP compounds (clofibric acid, naproxen, and estrone) were analyzed using solid-phase extraction, derivatization, and GC/MS. Batch experiments also were conducted to determine equilibrium capacity of activated carbon for clofibric acid. Preliminary results indicate the occurrence of the selected PPCP contaminants in raw water samples at or near method-detection limits. For batch equilibrium experiments, preliminary results indicate that activated carbon potentially can be used to remove clofibric acid from water. More research is needed to develop rapid and reliable methods for PPCP analysis and to determine the effectiveness of treatment processes for removal of PPCP contaminants in water.

  12. Methods Used to Assess the Susceptibility to Contamination of Transient, Non-Community Public Ground-Water Supplies in Indiana

    Science.gov (United States)

    Arihood, Leslie D.; Cohen, David A.

    2006-01-01

    The Safe Water Drinking Act of 1974 as amended in 1996 gave each State the responsibility of developing a Source-Water Assessment Plan (SWAP) that is designed to protect public-water supplies from contamination. Each SWAP must include three elements: (1) a delineation of the source-water protection area, (2) an inventory of potential sources of contaminants within the area, and (3) a determination of the susceptibility of the public-water supply to contamination from the inventoried sources. The Indiana Department of Environmental Management (IDEM) was responsible for preparing a SWAP for all public-water supplies in Indiana, including about 2,400 small public ground-water supplies that are designated transient, non-community (TNC) supplies. In cooperation with IDEM, the U.S. Geological Survey compiled information on conditions near the TNC supplies and helped IDEM complete source-water assessments for each TNC supply. The delineation of a source-water protection area (called the assessment area) for each TNC ground-water supply was defined by IDEM as a circular area enclosed by a 300-foot radius centered at the TNC supply well. Contaminants of concern (COCs) were defined by IDEM as any of the 90 contaminants for which the U.S. Environmental Protection Agency has established primary drinking-water standards. Two of these, nitrate as nitrogen and total coliform bacteria, are Indiana State-regulated contaminants for TNC water supplies. IDEM representatives identified potential point and nonpoint sources of COCs within the assessment area, and computer database retrievals were used to identify potential point sources of COCs in the area outside the assessment area. Two types of methods-subjective and subjective hybrid-were used in the SWAP to determine susceptibility to contamination. Subjective methods involve decisions based upon professional judgment, prior experience, and (or) the application of a fundamental understanding of processes without the collection and

  13. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koker, John [Univ. of Wisconsin, Oshkosh, WI (United States); Lizotte, Michael [Univ. of Wisconsin, Oshkosh, WI (United States)

    2017-02-08

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approach to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).

  14. Sources of heavy metal contamination in Swedish wood waste used for combustion

    International Nuclear Information System (INIS)

    Krook, J.; Martensson, A.; Eklund, M.

    2006-01-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW

  15. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    Science.gov (United States)

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  16. Using geographic distribution of well-screen depths and hydrogeologic conditions to identify areas of concern for contaminant migration through inactive supply wells

    Science.gov (United States)

    Gailey, Robert M.

    2018-02-01

    Contaminant migration through inactive supply wells can negatively affect groundwater quality and the combined effects from groups of such wells may cause greater impacts. Because the number of wells in many basins is often large and the geographic areas involved can be vast, approaches are needed to estimate potential impacts and focus limited resources for investigation and corrective measures on the most important areas. One possibility is to evaluate the geographic distribution of well-screen depths relative to hydrogeologic conditions and assess where contaminant migration through wells may be impacting groundwater quality. This approach is demonstrated for a geographically extensive area in the southern Central Valley of California, USA. The conditions that lead to wells acting as conduits for contaminant migration are evaluated and areas where the problem likely occurs are identified. Although only a small fraction of all wells appear to act as conduits, potential impacts may be significant considering needs to control nonpoint-source pollution and improve drinking water quality for rural residents. Addressing a limited number of areas where contaminant migration rates are expected to be high may cost-effectively accomplish the most beneficial groundwater quality protection and improvement. While this work focuses on a specific region, the results indicate that impacts from groups of wells may occur in other areas with similar conditions. Analyses similar to that demonstrated here may guide efficient investigation and corrective action in such areas with benefits occurring for groundwater quality. Potential benefits may justify expenditures to develop the necessary data for performing the analyses.

  17. SWAT modeling of Critical Source Area for Runoff and Phosphorus losses: Lake Champlain Basin, VT

    Science.gov (United States)

    Lake Champlain, located between Vermont, New York, and Quebec, exhibits eutrophication due to continuing phosphorus (P) inputs mainly from upstream nonpoint source areas. To address the Lake's eutrophication problem and as part of total maximum daily load (TMDL) requirements, a state-level P reducti...

  18. The Wisconsin experience with incentives for demand-side management

    International Nuclear Information System (INIS)

    Landgren, D.A.

    1990-01-01

    It has been noted that, within traditional regulatory frameworks for electric utilities, factors exist which discourage demand side management (DSM) and that there is a lack of positive incentives for DSM. Regulatory agencies should therefore make it possible for DSM measures to benefit from the same treatment as supply-side measures. The Wisconsin Public Service Commission (WPSC) has recognized this need and has adopted various measures accordingly. The need for efficiency incentives is described according to the particular experience of Wisconsin Electric concerning their recourse to a DSM incentive and according to new incentive models being tested in collaboration with other electricity suppliers in Wisconsin. The WPSC has concluded that the fact of considering the costs relating to DSM as expenses or capitalizing them within the rate base does not motivate the utility to promote DSM programs. The WPSC has thus decided to experiment with energy efficiency incentives in order to evaluate their eventual impact. The choice of the type of incentive had an objective of starting the process in an area where the lack of experience has created, from the regulatory point of view, a reticence on the part of utilities to engage in DSM programs. The WPSC has designed a variety of incentive models which have been adapted to each utility's own situation. Specific incentive programs developed for three Wisconsin utilities are reviewed

  19. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  20. Predicting Scour of Bedrock in Wisconsin

    Science.gov (United States)

    2017-04-01

    This research evaluates the scour potential of rocks supporting Wisconsin DOT bridge foundations. Ten highway bridges were selected for this study, of which seven are supported by shallow foundations, and five were built on sandstone in rivers/stream...

  1. Comparison of public exposures from different sources of radioactive contamination in recent years in Slovenia

    International Nuclear Information System (INIS)

    Vokal, B.; Krizman, M.

    2003-01-01

    In spite of that Slovenia is a small country it contains a considerable variety of radioactive sources, which cause radioactive contamination of the environment. These sources mostly belong to nuclear fuel cycle, as the Krsko Nuclear Power Plant, the Zirovski vrh Uranium Mine (in the decommissioning), the TRIGA Research Reactor and Central low and intermediate level radioactive waste storage. Some other technological enhanced natural radiation sources, for example, the Sostanj Thermal Power Plant have also an impact to the environment. The comparison of the public exposure due to various sources of radioactive releases to the exposure of a members of the public in Slovenia shows that the critical group in the vicinity of the Zirovski Vrh uranium mine is the most exposed one in Slovenia. The global contamination due to the Chernobyl accident and the past nuclear tests was estimated to be around 10 μSv in Slovenia while the estimated annual dose for all other radioactive facilities are in the order of magnitude of one μSv. In this review the releases from the hospitals are not reported but some studies showed that it is not negligible. (authors)

  2. Nonpoint Source: Urban Areas

    Science.gov (United States)

    Urbanization increases the variety and amount of pollutants carried into our nation's waters. Pavement and compacted landscapes do not allow rain and snow melt to soak into the ground. List of typical pollutants from Urban runoff.

  3. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children.

    Science.gov (United States)

    Probert, William S; Miller, Glen M; Ledin, Katya E

    2017-07-01

    In May 2016, an outbreak of Shiga toxin-producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  4. Total Nitrogen Sources of the Three Gorges Reservoir--A Spatio-Temporal Approach.

    Directory of Open Access Journals (Sweden)

    Chunping Ren

    Full Text Available Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world's third longest river, and impounded the famous Three Gorges Reservoir (TGR. In this study, we analyzed total nitrogen (TN concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR's total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River. Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence. TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.

  5. Creating a perfect storm to increase consumer demand for Wisconsin's Tobacco Quitline.

    Science.gov (United States)

    Sheffer, Megan A; Redmond, Lezli A; Kobinsky, Kate H; Keller, Paula A; McAfee, Tim; Fiore, Michael C

    2010-03-01

    Telephone quitlines are a clinically proven and cost-effective population-wide tobacco-dependence treatment, and this option is now available in all 50 states. Yet, only 1% of the smoking population accesses these services annually. This report describes a series of policy, programmatic, and communication initiatives recently implemented in Wisconsin that resulted in a dramatic increase in consumer demand for the Wisconsin Tobacco Quitline (WTQL). In 2007, the Wisconsin legislature voted to increase the state cigarette excise tax rate by $1.00, from $0.77/pack to $1.77/pack effective January 1, 2008. In preparation for the tax increase, the Wisconsin Tobacco Prevention and Control Program, the University of Wisconsin Center for Tobacco Research and Intervention, which manages the WTQL, and the state's quitline service provider, Free & Clear, Inc., collaborated to enhance quitline knowledge, availability, and services with the goal of increasing consumer demand for services. The enhancements included for the first time, a free 2-week supply of over-the-counter nicotine replacement medication for tobacco users who agreed to receive multi-session quitline counseling. A successful statewide earned media campaign intensified the impact of these activities, which were timed to coincide with temporal smoking-cessation behavioral patterns (i.e., New Year's resolutions). As a result, the WTQL fielded a record 27,000 calls during the first 3 months of 2008, reaching nearly 3% of adult Wisconsin smokers. This experience demonstrates that consumer demand for quitline services can be markedly enhanced through policy and communication initiatives to increase the population reach of this evidence-based treatment. Published by Elsevier Inc.

  6. Modeling the Precambrian Topography of Columbia County, Wisconsin Using Two-Dimensional Models of Gravity and Aeromagnetic Data

    Science.gov (United States)

    Rasmussen, J.; Skalbeck, J.; Stewart, E.

    2017-12-01

    The deep sandstone and dolomite aquifer of Wisconsin is the primary source of water in the central, southern, and western portions of the state, as well as a supplier for many high-capacity wells in the eastern portion. This prominent groundwater system is highly impacted by the underlying Precambrian basement, which includes the doubly plunging Baraboo Syncline in Columbia and Sauk Counties. This project is a continuation of previous work done in Dodge and Fond du Lac Counties by the University of Wisconsin-Parkside (UW-P) and the Wisconsin Geological & Natural History Survey (WGNHS). The goal of this project was to produce of an updated Precambrian topographic map of southern Wisconsin, by adding Gravity and Aeromagnetic data to the existing map which is based mainly on sparse outcrop and well data. Gravity and Aeromagnetic data from the United States Geological Survey (USGS) was processed using GM-SYS 3D modeling software in Geosoft Oasis Montaj. Grids of subsurface layers were created from the data and constrained by well and drilling records. The Columbia County basement structure is a complex network of Precambrian granites and rhyolites which is non-conformably overlain by quartzite, slate, and a layer of iron rich sedimentary material. Results from previously collected cores as well as drilling done in neighboring Dodge County, show that the iron rich layer was draped over much of the Baraboo area before being subject to the multitude of folding and faulting events that happened in the region during the late Precambrian. This layer provides telltale signatures that aided in construction of the model due to having an average density of 3.7 g/cm3 and a magnetic susceptibility of 8000 x 10-6 cgs, compared to the average density and susceptibility of the rest of the bedrock being 2.8 g/cm3 and 1500 x 10-6 cgs, respectively. The research done on the Columbia County basement is one part of a larger project aimed at improving groundwater management efforts of the

  7. Interpretative approaches to identifying sources of hydrocarbons in complex contaminated environments

    International Nuclear Information System (INIS)

    Sauer, T.C.; Brown, J.S.; Boehm, P.D.

    1993-01-01

    Recent advances in analytical instrumental hardware and software have permitted the use of more sophisticated approaches in identifying or fingerprinting sources of hydrocarbons in complex matrix environments. In natural resource damage assessments and contaminated site investigations of both terrestrial and aquatic environments, chemical fingerprinting has become an important interpretative tool. The alkyl homologues of the major polycyclic and heterocyclic aromatic hydrocarbons (e.g., phenanthrenes/anthracenes, dibenzothiophenes, chrysenes) have been found to the most valuable hydrocarbons in differentiating hydrocarbon sources, but there are other hydrocarbon analytes, such as the chemical biomarkers steranes and triterpanes, and alkyl homologues of benzene, and chemical methodologies, such as scanning UV fluorescence, that have been found to be useful in certain environments. This presentation will focus on recent data interpretative approaches for hydrocarbon source identification assessments. Selection of appropriate targets analytes and data quality requirements will be discussed and example cases including the Arabian Gulf War oil spill results will be presented

  8. Emerging organic contaminants in groundwater : a review of sources, fate and occurrence

    OpenAIRE

    Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S.

    2012-01-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, ‘life-style’ and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram...

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wisconsin. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Wisconsin.

  10. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  11. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Linking chemical elements in forest floor humus (Oh-horizon) in the Czech Republic to contamination sources.

    Science.gov (United States)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the "environmental memory" of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km2 in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3 (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pollutant Source Identification Project (MB-3) sought to provide a summary and analysis of pollutant loads to Mamala Bay from both point and nonpoint sources....

  14. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use.

    Science.gov (United States)

    Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K

    2017-09-18

    Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.

  15. Wisconsin's fourth forest inventory, 1983.

    Science.gov (United States)

    John S. Jr. Spencer; W. Brad Smith; Jerold T. Hahn; Gerhard K. Raile

    1988-01-01

    The fourth inventory of the timber resource of Wisconsin shows that growing-stock volume increased from 11.2 to 15.5 billion cubic feet between 1968 and 1983, and area of timberland increased from 14.5 to 14.8 million acres. Presented are analysis and statistics on forest area and timber volume, growth, mortality, removals, and projections.

  16. Introduction to radioactive waste management issues in Wisconsin

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This brief focused on wastes from commercial production of electricity and various industrial, medical and research applications of radioactive materials. Only traditionally solid wastes are dealt with. It was organized into five parts. Part I presented an introduction to radioactivity - what it is and the biological hazards associated with it. Federal regulation of the management of radioactive wastes was discussed in Part II. Existing state laws and bills currently before the Wisconsin Legislature were described in Part III. Part IV gave background information on specific areas of potential inquiry related to radioactive wastes in Wisconsin. Part V summarized the issues identified in the brief. 2 figures, 7 tables

  17. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Bing [Geological Survey, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Jianwei, E-mail: jw.zhou@cug.edu.cn [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Aiguo; Liu, Cunfu [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Xie, Lina [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China)

    2016-11-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and S{sub SO4} and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The S{sub SO4} and Sr isotope compositions in the water indicated that dissolved Sb and SO{sub 4}{sup 2} originated from sulfide mineral (Sb{sub 2}S{sub 3}) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ{sup 34}S{sub SO4} and δ{sup 87}Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO{sub 4}{sup 2} {sup −} had been influenced by slight bacterial SO{sub 4} reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of {sup 34}S{sub SO4} and {sup 87}Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. - Highlights: • Mining activities at XKS mine have caused serious water contamination. • The characteristics of Sb contamination in water environment are still unclear. • Combine S isotopes of sulfate and Sr isotopes with hydrochemical methods. • Sr, S, and Sb in natural water had a common source: silicified limestone and stibnite. • Shetianqiao aquifer water contaminated the Magunao

  18. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures

    International Nuclear Information System (INIS)

    Wen, Bing; Zhou, Jianwei; Zhou, Aiguo; Liu, Cunfu; Xie, Lina

    2016-01-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and S_S_O_4 and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The S_S_O_4 and Sr isotope compositions in the water indicated that dissolved Sb and SO_4"2 originated from sulfide mineral (Sb_2S_3) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ"3"4S_S_O_4 and δ"8"7Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO_4"2 "− had been influenced by slight bacterial SO_4 reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of "3"4S_S_O_4 and "8"7Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. - Highlights: • Mining activities at XKS mine have caused serious water contamination. • The characteristics of Sb contamination in water environment are still unclear. • Combine S isotopes of sulfate and Sr isotopes with hydrochemical methods. • Sr, S, and Sb in natural water had a common source: silicified limestone and stibnite. • Shetianqiao aquifer water contaminated the Magunao aquifer water via mixing.

  19. A Summary of Best Management Practices for Nonpoint Source Pollution

    Science.gov (United States)

    1992-08-01

    and concrete block material, and structures and systems for soil stabilization including erosion checks, revetments , retaining structures, and...industrial storage areas, and coal/ slag piles. Rural NPS pollution includes runoff from Some of the above sources plus runoff from agriculture...water quality. The effectiveness of detention ponds is reduced, however, when maintenance is neglected. Common problems include blocked outlets

  20. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  1. 76 FR 57646 - Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin

    Science.gov (United States)

    2011-09-16

    ... Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin AGENCY... aquatic life water quality criteria applicable to Wisconsin? C. Why is the EPA not withdrawing Wisconsin's chronic endrin aquatic life use criterion for waters designated as Warm Water Sportfish and Warm Water...

  2. Sterile paper points as a bacterial DNA-contamination source in microbiome profiles of clinical samples

    NARCIS (Netherlands)

    van der Horst, J.; Buijs, M.J.; Laine, M.L.; Wismeijer, D.; Loos, B.G.; Crielaard, W.; Zaura, E.

    2013-01-01

    Objectives High throughput sequencing of bacterial DNA from clinical samples provides untargeted, open-ended information on the entire microbial community. The downside of this approach is the vulnerability to DNA contamination from other sources than the clinical sample. Here we describe

  3. Persistent organic pollutants (POPs in fish collected from the urban tract of the river Tiber in Rome (Italy

    Directory of Open Access Journals (Sweden)

    Roberto Miniero

    2011-01-01

    Full Text Available European eel and chub samples were analyzed to determine the levels of non-dioxin-like polychlorobiphenyls (NDL-PCBs, polychlorodibenzodioxins (PCDDs and polychlorodibenzofurans (PCDFs, dioxin-like PCBs (DL-PCBs, and brominated polybromodiphenyl ethers (PBDEs in order to evaluate the extent of contamination of the river Tiber along the urban tract through the city of Rome (Italy. All samples presented detectable levels of the chemicals analyzed, and exhibited species-specific differences in terms of congener composition and total concentrations. On average the European eel presented the highest values. In this species the dioxin-like compound sums (WHO-TEQs exceeded the pertinent maximum levels (MLs. Non-ortho PCBs constituted approximately 80% of WHO-TEQ toxicological potential whereas NDL-PCB and PBDE concentrations appeared to match values determined in other polluted aquatic ecosystems where non-point contamination sources were present. The contamination patterns determined in fish tissues seemed to reflect the impact of generic contamination source(s.

  4. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Wei, E-mail: wei@itc.nl; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: Black-Right-Pointing-Pointer Spatial dynamics of NPS phosphorus

  5. Wisconsin Educators Tackle Violence Head On.

    Science.gov (United States)

    Jones, Katherine A.

    1999-01-01

    In August 1999, Wisconsin school business officials and other school administrators met with police officers to discuss cooperative ventures to ensure school safety. Conference participants attended sessions on identifying troubled students, physical security measures, safety planning, dealing with bomb threats, and prevention and punishment. (MLH)

  6. Libraries in Wisconsin Institutions: Status Report.

    Science.gov (United States)

    Merriam, Elizabeth B.

    The Wisconsin Library Association Round Table of Hospitals and Institutional Librarians became concerned about adequate funding of institutional libraries; the right of institutionalized persons to read and to have educational, legal, and recreational materials; and the development of staff libraries for treatment, rehabilitation, and research…

  7. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes

    Science.gov (United States)

    Baker, Beth H.; Martinovic-Weigelt, Dalma; Ferrey, Mark L.; Barber, Larry B.; Writer, Jeffrey H.; Rosenberry, Donald O.; Kiesling, Richard L.; Lundy, James R.; Schoenfuss, Heiko L.

    2014-01-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted.

  8. Rapidly locating sources and predicting contaminant dispersion in buildings

    International Nuclear Information System (INIS)

    Sohn, Michael D.; Reynolds, Pamela; Gadgil, Ashok J.; Sextro, Richard G.

    2002-01-01

    Contaminant releases in or near a building can lead to significant human exposures unless prompt response measures are taken. However, selecting the proper response depends in part on knowing the source locations, the amounts released, and the dispersion characteristics of the pollutants. We present an approach that estimates this information in real time. It uses Bayesian statistics to interpret measurements from sensors placed in the building yielding best estimates and uncertainties for the release conditions, including the operating state of the building. Because the method is fast, it continuously updates the estimates as measurements stream in from the sensors. We show preliminary results for characterizing a gas release in a three-floor, multi-room building at the Dugway Proving Grounds, Utah, USA

  9. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  10. Lyme disease in Wisconsin: epidemiologic, clinical, serologic, and entomologic findings.

    Science.gov (United States)

    Davis, J P; Schell, W L; Amundson, T E; Godsey, M S; Spielman, A; Burgdorfer, W; Barbour, A G; LaVenture, M; Kaslow, R A

    1984-01-01

    In 1980-82, 80 individuals (71 Wisconsin residents) had confirmed Lyme disease (LD-c) reported; 39 additional patients had probable or possible LD. All cases of LD-c occurred during May-November; 73 percent occurred during June-July; 54 (68 percent) occurred in males. The mean age was 38.7 years (range, 7-77 years). Among LD-c patients, likely exposure to the presumed vector Ixodes dammini (ID) occurred in 22 different Wisconsin counties. Antibodies to the ID spirochete that causes LD occurred in 33 of 49 LD-c cases versus 0 of 18 in ill controls (p less than .001) and in 13 of 26 LD-c cases treated with penicillin or tetracycline versus 16 of 19 LD-c cases not treated. Early antibiotic therapy appears to blunt the antibody response to the ID spirochete. Regional tick surveys conducted in Wisconsin during each November in 1979-82 have demonstrated regions of greater density of ID. Utilizing comparable tick collection in these surveys, increases were noted in the percentage of deer with ID from 24 percent (31/128) in 1979 to 38 percent (58/152) in 1981, in the standardized mean value of ID/deer from 1.0 in 1979 to 2.2 in 1981, in the percentage of ID of the total ticks collected from 13 percent in 1979 to 71 percent in 1981, or in the ratio of ID to Dermacentor albipictus ticks from 0.14 in 1979 to 2.44 in 1981. However, a reduction in the density of ID/deer was noted generally throughout Wisconsin in 1982 when compared to 1981. LD is widespread in Wisconsin, with ecologic and clinical features similar to those occurring along the eastern seaboard.

  11. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  12. Evaluation of the sources of contamination in the suburban area of Koropi-Markopoulo, Athens, Greece.

    Science.gov (United States)

    Kaitantzian, Agavni; Kelepertzis, Efstratios; Kelepertsis, Akindynos

    2013-07-01

    Heavy metal concentrations were monitored in agricultural soils and irrigation groundwaters of Koropi-Markopoulo area, a representative agricultural suburb in Athens, Greece, aiming at the identification of the sources of contaminants. Multivariate analyses of geochemical data demonstrated that agricultural practices and industrial activities considerably affected the quality of both environmental compartments. The levels of Ni, Cr, Co, Mn and Fe in agricultural soils were associated with geological parent materials whereas Pb, Zn and Cu mainly originated from anthropic activities. Referring to groundwaters, individual major anions and cations (K⁺, Na⁺, Ca²⁺, Mg²⁺, NO₃⁻, SO₄²⁻, Cl⁻) were influenced by various natural and anthropogenic factors whereas Ni, Cr, Cu and Zn were controlled by industrial and agronomic activities. The identification of the sources of contaminants in soil and groundwater environments is a valuable basis for encouraging mitigation strategies preventing further quality degradation.

  13. Spatial considerations of snow chemistry as a non-point contamination source in Alpine watersheds

    International Nuclear Information System (INIS)

    Elder, K.; Williams, M.; Dozier, J.

    1991-01-01

    Alpine watersheds act as a temporary storage basin for large volumes of precipitation as snow. Monitoring these basins for the presence and effects of acid precipitation is important because these areas are often weakly buffered and sensitive to acidification. Study of these sensitive areas may provide early detection of trends resulting form anthropogenic atmospheric inputs. In an intensive study of an alpine watershed in the Sierra Nevada in 1987 and 1988, the authors carefully monitored snow distribution and chemistry through space and time. They found that the volume-weighted mean ionic concentrations within the snowpack did not vary greatly over the basin at peak accumulation. However, the distribution of total snow water equivalence (SWE) was highly variable spatially. Coefficients of variation (CV) for SWE lead to a corresponding high spatial variance in the chemical loading of their study basin. Their results show that to obtain accurate estimates of chemical loading they must measure the chemical and physical snow parameters at a resolution proportional to their individual variances. It is therefore necessary to combine many SWE measurements with fewer carefully obtained chemistry measurements. They used a classification method based on physical parameters to partition the basin into similar zones for estimation of SWE distribution. This technique can also be used for sample design

  14. The evolution of Wisconsin's urban FIA program—yesterday today and tomorrow

    Science.gov (United States)

    Andrew M. Stoltman; Richard B. Rideout

    2015-01-01

    In 2002, Wisconsin was part of two pilot projects in cooperation with the US Forest Service. The first was a street tree assessment, and the second was an urban FIA project. The data generated by these pilots changed the way that Wisconsin DNRs’ Urban Forestry Program conducts its business. Although there have been several urban FIA pilot projects throughout the U.S.,...

  15. The Approximate Bayesian Computation methods in the localization of the atmospheric contamination source

    International Nuclear Information System (INIS)

    Kopka, P; Wawrzynczak, A; Borysiewicz, M

    2015-01-01

    In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found. (paper)

  16. Occurrence and sources of Escherichia coli in metropolitan St. Louis streams, October 2004 through September 2007

    Science.gov (United States)

    Wilkison, Donald H.; Davis, Jerri V.

    2010-01-01

    The occurrence and sources of Escherichia coli (E. coli), one of several fecal indicator bacteria, in metropolitan St. Louis streams known to receive nonpoint source runoff, occasional discharges from combined and sanitary sewers, and treated wastewater effluent were investigated from October 2004 through September 2007. Three Missouri River sites, five Mississippi River sites, and six small basin tributary stream sites were sampled during base flow and storm events for the presence of E. coli and their sources. E. coli host-source determinations were conducted using local library based genotypic methods. Human fecal contamination in stream samples was additionally confirmed by the presence of Bacteroides thetaiotaomicron, an anaerobic, enteric bacterium with a high occurrence in, and specificity to, humans. Missouri River E. coli densities and loads during base flow were approximately 10 times greater than those in the Mississippi River above its confluence with the Missouri River. Although substantial amounts of E. coli originated from within the study area during base flow and storm events, considerable amounts of E. coli in the Missouri River, as well as in the middle Mississippi River sections downstream from its confluence with the Missouri River, originated in Missouri River reaches upstream from the study area. In lower Mississippi River reaches, bacteria contributions from the numerous combined and sanitary sewer overflows within the study area, as well as contributions from nonpoint source runoff, greatly increased instream E. coli densities. Although other urban factors cannot be discounted, average E. coli densities in streams were strongly correlated with the number of upstream combined and sanitary sewer overflow points, and the percentage of upstream impervious cover. Small basin sites with the greatest number of combined and sanitary sewer overflows (Maline Creek and the River des Peres) had larger E. coli densities, larger loads, and a greater

  17. Geodemographic Features of Human Blastomycosis in Eastern Wisconsin

    Directory of Open Access Journals (Sweden)

    Megan E. Huber

    2016-04-01

    Full Text Available Purpose: Blastomycosis is an endemic fungal infection. In rural northern Wisconsin, blastomycosis cases are associated with certain environmental features including close proximity to waterways. Other studies have associated blastomycosis with particular soil chemicals. However, blastomycosis also occurs in urban and suburban regions. We explored the geodemographic associations of blastomycosis cases in the more urban/suburban landscape of eastern Wisconsin. Methods: We conducted a retrospective study of 193 laboratory-identified blastomycosis cases in a single eastern Wisconsin health system, 2007–2015. Controls were 250 randomly selected cases of community-diagnosed pneumonia from a similar time period. Geographic features of home addresses were explored using Google Maps. Categorical variables were analyzed with chi-square or Fisher’s exact tests and continuous variables by two-sample t-tests. Stepwise regression followed by binary logistic regression was used for multivariable analysis. Results: Compared to pneumonia cases, blastomycosis cases were younger (47.7 vs. 55.3 years and more likely to be male (67.9% vs. 45.6%, nonwhite (23.2% vs. 9.7% and machinists, automobile workers/mechanics or construction workers (32.7% vs. 7.2%; P 0.5 acres (30.4% vs. 14.2%, P = 0.0002, be < 0.25 miles from an automobile repair facility or junkyard (35.9% vs. 19.4%, P = 0.0005, and be < 0.1 miles from a park, forest or farm field (54.9% vs. 39.6%, P = 0.002. Only the latter association remained on multivariable analysis. Conclusions: Eastern Wisconsin blastomycosis case subjects were younger, more often male and more likely to live near parks/forests/fields. Novel associations of blastomycosis cases with machinery- and automobile-related occupations and/or facilities should be further explored.

  18. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    NARCIS (Netherlands)

    Ommen, van H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple

  19. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    Science.gov (United States)

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the

  20. Divided Wisconsin: Partisan Spatial Electoral Realignment

    Science.gov (United States)

    Zaniewski, Kazimierz J.; Simmons, James R.

    2016-01-01

    When the Republican and Democratic presidential candidates head into the general election this fall, they will be courting votes from a statewide electorate that has dramatically shifted over time, mirroring the political polarization that is happening across the country. Over the last three decades, Wisconsin's political geography has evolved…

  1. Changes in polychlorinated biphenyl (PCB) exposure in tree swallows (Tachycineta bicolor) nesting along the Sheboygan River, WI, USA

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Strom, Sean M.; Patnode, Kathleen A.; Franson, J. Christian

    2014-01-01

    Exposure to polychlorinated biphenyls (PCBs) in tree swallow (Tachycineta bicolor) eggs on the Sheboygan River, Wisconsin in the 1990s was higher at sites downstream (geometric means = 3.33–8.69 μg/g wet wt.) of the putative PCB source in Sheboygan Falls, Wisconsin than it was above the source (1.24 μg/g) with the exposure declining as the distance downstream of the source increased. A similar pattern of declining exposure was present in the 2010s as well. Although exposure to PCBs in eggs along the Sheboygan River at sites downstream of Sheboygan Falls has declined by ~60 % since the mid-1990s (8.69 down to 3.27 μg/g) there still seems to be residual pockets of contamination that are exposing some individuals (~25 %) to PCB contamination, similar to exposure found in the 1990s. The exposure patterns in eggs and nestlings among sites, and the changes between the two decades, are further validated by accumulation rate information.

  2. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    Science.gov (United States)

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  3. Thallium dispersal and contamination in surface sediments from South China and its source identification.

    Science.gov (United States)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Shen, Chuan-Chou; Jiang, Xiuyang; Xie, Xiaofan; Chen, Diyun; Lippold, Holger; Wang, Chunlin

    2016-06-01

    Thallium (Tl) is a non-essential element in humans and it is considered to be highly toxic. In this study, the contents, sources, and dispersal of Tl were investigated in surface sediments from a riverine system (the western Pearl River Basin, China), whose catchment has been contaminated by mining and roasting of Tl-bearing pyrite ores. The isotopic composition of Pb and total contents of Tl and other relevant metals (Pb, Zn, Cd, Co, and Ni) were measured in the pyrite ores, mining and roasting wastes, and the river sediments. Widespread contamination of Tl was observed in the sediments across the river, with the highest concentration of Tl (17.3 mg/kg) measured 4 km downstream from the pyrite industrial site. Application of a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme in representative sediments unveiled that 60-90% of Tl and Pb were present in the residual fraction of the sediments. The sediments contained generally lower (206)Pb/(207)Pb and higher (208)Pb/(206)Pb ratios compared with the natural Pb isotope signature (1.2008 and 2.0766 for (206)Pb/(207)Pb and (208)Pb/(206)Pb, respectively). These results suggested that a significant fraction of non-indigenous Pb could be attributed to the mining and roasting activities of pyrite ores, with low (206)Pb/(207)Pb (1.1539) and high (208)Pb/(206)Pb (2.1263). Results also showed that approximately 6-88% of Tl contamination in the sediments originated from the pyrite mining and roasting activities. This study highlights that Pb isotopic compositions could be used for quantitatively fingerprinting the sources of Tl contamination in sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modelling of contamination of surface atmosphere for deflation of Cesium-137 on contaminated territories

    International Nuclear Information System (INIS)

    Bogdanov, A.P.; Zhmura, G.M.

    1994-01-01

    Presence of Cesium 137 in near land air is caused at the contaminated territories by 'local' dusting and transport of the dust from the zone of strong contamination. For large distance is it caused by resuspension of radioactive dust from the surface in the given region. In accordance with the models of dusting round square sources based on Gauss statistical model of dissemination of admixtures in the atmosphere, the contaminated areas of european part of the former of USSR with the density of contamination over 1 Ci/km 2 with Cesium 137 were represented by 30 round square sources covering the main spots of contamination. The results of calculation of contamination of the atmosphere for several cities of Belarus, Russia and Ukraine, where there are the permanent points of observation for the content of radionuclides in the air, have shown that the proposed model of dusting sources describes the contamination of near land air with Cesium 137 reasonably well. 7 refs., 3 tabs

  5. Lead contamination in Eugenia dyeriana herbal preparations from different commercial sources in Malaysia.

    Science.gov (United States)

    Ang, H H

    2008-06-01

    The Drug Control Authority (DCA) of Malaysia implemented the phase three registration of traditional medicines on 1 January, 1992. A total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Eugenia dyeriana, either single or combined preparations (more than one medicinal plant), were analyzed for the presence of lead contamination, using atomic absorption spectrophotometry. These samples were bought from different commercial sources in the Malaysian market, after performing a simple random sampling. Results showed that 22% of the above products failed to comply with the quality requirement for traditional medicines in Malaysia. Although this study showed that 78% of the products fully complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.

  6. Informal workshop on intense polarized ion sources: a summary

    International Nuclear Information System (INIS)

    Schultz, P.F.

    1980-01-01

    An Informal Workshop on Intense Polarized Ion Sources was held on March 6, 1980, at the O'Hare Hilton Hotel, Chicago, Illinois. The purpose of the Workshop was to discuss problems in developing higher-intensity polarized proton sources, particularly the optically-pumped source recently proposed by L.W. Anderson of the University of Wisconsin. A summary of the discussions is reported

  7. Linking chemical elements in forest floor humus (O-h-horizon) in the Czech Republic to contamination sources

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, J.; Suchara, I.; Hola, M.; Reimann, C.; Boyd, R.; Filzmoser, P.; Englmaier, P. [Geological Survey of Norway, Trondheim (Norway)

    2011-05-15

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the 'environmental memory' of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km{sup 2} in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources.

  8. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  9. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    Science.gov (United States)

    Wilcott, Lynn; Naus, Monika

    2015-01-01

    Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant's water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant's open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence. PMID:25918702

  10. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    Directory of Open Access Journals (Sweden)

    Lorraine McIntyre

    2015-01-01

    Full Text Available Soft ripened cheese (SRC caused over 130 foodborne illnesses in British Columbia (BC, Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m., an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant’s water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant’s open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence.

  11. Source-term development for a contaminant plume for use by multimedia risk assessment models

    International Nuclear Information System (INIS)

    Whelan, Gene; McDonald, John P.; Taira, Randal Y.; Gnanapragasam, Emmanuel K.; Yu, Charley; Lew, Christine S.; Mills, William B.

    1999-01-01

    Multimedia modelers from the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: DOE's Multimedia Environmental Pollutant Assessment System (MEPAS), EPA's MMSOILS, EPA's PRESTO, and DOE's RESidual RADioactivity (RESRAD). These models represent typical analytically, semi-analytically, and empirically based tools that are utilized in human risk and endangerment assessments for use at installations containing radioactive and/or hazardous contaminants. Although the benchmarking exercise traditionally emphasizes the application and comparison of these models, the establishment of a Conceptual Site Model (CSM) should be viewed with equal importance. This paper reviews an approach for developing a CSM of an existing, real-world, Sr-90 plume at DOE's Hanford installation in Richland, Washington, for use in a multimedia-based benchmarking exercise bet ween MEPAS, MMSOILS, PRESTO, and RESRAD. In an unconventional move for analytically based modeling, the benchmarking exercise will begin with the plume as the source of contamination. The source and release mechanism are developed and described within the context of performing a preliminary risk assessment utilizing these analytical models. By beginning with the plume as the source term, this paper reviews a typical process and procedure an analyst would follow in developing a CSM for use in a preliminary assessment using this class of analytical tool

  12. 78 FR 48900 - Notice of Inventory Completion: State Historical Society of Wisconsin, Madison, WI

    Science.gov (United States)

    2013-08-12

    .... ADDRESSES: Jennifer Kolb, Wisconsin Historical Museum, 30 North Carroll Street, Madison, WI 53703, telephone (608) 261-2461, email Jennifer.Kolb@wisconsinhistory.org . SUPPLEMENTARY INFORMATION: Notice is here... request to Jennifer Kolb, Wisconsin Historical Museum, 30 North Carroll Street, Madison, WI 53703...

  13. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  14. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model%基于SWAT模型的浑太河流域农业面源污染物产生量估算

    Institute of Scientific and Technical Information of China (English)

    付意成; 臧文斌; 董飞; 付敏; 张剑

    2016-01-01

    The establishment of non-point source pollutants output load model under the mode of rainfall-runoff and land use, the analog calculation of agricultural non-point source pollutants in the process of migration and transformation, and the systematic analysis of non-point source pollutants discharge quantity, distribution and composition characteristics are based on actual monitoring data, calibration and validation model, in consideration of underlying surface, hydrology and meteorology, and physical features of Huntai River basin. The areas 1 km away from each side of master stream Huntai River, Taizihe River and Daliaohe River and 5 km away from reservoir were defined as buffer zone, where the mode of land use was transformed so as to restore the natural ecosystem. The process of pollutant migration and conversion was simulated based on the calibration of key hydrological parameters, and the causes as well as the migratory features of non-point source pollution were investigated. The primary area of water environment pollution was mainly distributed along both sides of the water channel of the mainstreams of Huntai River. The point-source pollutant was mainly related to the distribution of industry and the amount of discharged wastewater. The risk of non-point pollution was mainly related to the pattern of agricultural plantation and farmland utilization. The secondary area of water environment pollution was mainly distributed along both sides of the water channel of tributaries. Therefore, the situation of pollutant production corresponding to the intra-regional regulation of industrial structure, land utilization pattern surrounding the water channel should be highlighted. The non-point pollution in Huntai watershed was dominated by farmland pollution, and the main indices of pollutants were total nitrogen (N) and total phosphorus (P). The contribution rate of pollutants was farmland runoff > livestock and poultry breeding > urban runoff > water and soil erosion

  15. Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa

    International Nuclear Information System (INIS)

    Sun, Hongwei; Qi, Yueling; Zhang, Di; Li, Qing X.; Wang, Jun

    2016-01-01

    The organohalogenated contaminants (OCs) including 12 organochlorine pesticides (OCPs), 7 indicator polychlorinated biphenyls (PCBs) and 7 polybrominated diphenyl ethers (PBDEs) were determined in soils collected from Kenya, Eastern Africa. The total OCPs fell in the range of n.d–49.74 μg kg"−"1 dry weight (dw), which was dominated by DDTs and endosulfan. Identification of pollution sources indicated new input of DDTs for malaria control in Kenya. The total PCBs ranged from n.d. to 55.49 μg kg"−"1 dw, dominated by penta- and hexa-PCBs, probably associated with the leakage of obsolete transformer oil. The soils were less contaminated by PBDEs, ranging from 0.19 to 35.64 μg kg"−"1 dw. The predominant PBDE congeners were penta-, tri- or tetra-BDEs, varying among different sampling sites. Risk assessment indicated potential human health risks posed by OCs in soils from Kenya, with PCBs as the most contributing pollutants. The local authorities are recommended to make best efforts on management of OC pollution, particularly from DDTs and PCBs to meet the requirement of Stockholm Convention. - Highlights: • The first report on organohalogen contaminants (OCs) in soils from Kenya. • OCs including OCPs, PCBs and PBDEs were determined simultaneously. • Sources of OCPs, PCBs and PBDEs emission were identified. • Human health risk posed by OCs in soil from Kenya were assessed. • Measures for OCs management were suggested for local authority. - The soils from Kenya were heavily polluted by organohalogenated contaminants (OCs). New input of DDTs probably occurred. Among all OCs, PCBs were predominant.

  16. Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization

    International Nuclear Information System (INIS)

    Wang Jizhong; Li Huizhen; You Jing

    2012-01-01

    Current-use insecticides including organophosphate (OPs) and synthetic pyrethroid (SPs) insecticides were analyzed in 35 sediment samples collected from Chaohu Lake in China, where a transition from a traditional agricultural to a modern urbanized society is ongoing. Total concentrations of five OPs and eight SPs ranged from 0.029 to 0.681 ng/g dry weight and 0.016–301 ng/g dry weight, respectively. Toxic unit analysis showed that 13% of the sediment samples likely produced over 50% of the mortality for benthic invertebrates. Analysis also showed that cypermethrin was the principal contributor to the toxicity. Spatial distribution evaluation implied that OPs were mainly from non-point sources associated with agricultural activities. Conversely, SPs may have been derived from runoff of inflowing rivers through urban regions, as their concentrations were well-correlated with concentrations of other urban-oriented contaminants. - Highlights: ► Though lower than urban sites, pyrethroid insecticides in Chaohu Lake, China may cause toxicity to benthic invertebrates. ► Concentrations of pyrethroids were well correlated with those of other urban-oriented contaminants, e.g. PAHs and LABs. ► Spatial distribution showed urban runoff was the major source of pyrethroids deposited in the lake sediment. ► Conversely, organophosphate insecticides were mainly associated with agricultural non-point sources. - Evaluation of the distribution, potential toxicity, and input sources of organophosphate and pyrethroid insecticides in sediment from Chaohu Lake, China.

  17. Informed Forces for Environmental Quality, Conference Proceedings (University of Wisconsin, Green Bay, Wisconsin, March 28-29, 1968).

    Science.gov (United States)

    Wisconsin Univ., Green Bay.

    To increase understanding of the dimensions of man's impact on his environment and the key issues involved in improving that environment through education and action was the goal of the environmental quality conference held at the University of Wisconsin, Green Bay, on March 28-29, 1968. Contained in this document are the conference…

  18. Wisconsin's forest statistics, 1987: an inventory update.

    Science.gov (United States)

    W. Brad Smith; Jerold T. Hahn

    1989-01-01

    The Wisconsin 1987 inventory update, derived by using tree growth models, reports 14.7 million acres of timberland, a decline of less than 1% since 1983. This bulletin presents findings from the inventory update in tables detailing timberland area, volume, and biomass.

  19. Wisconsin Public Schools at a Glance

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2014

    2014-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2014-15); (2) Staff (2013-14); (3) Students (2013-14);(4) Report Cards (2013-14); (5) Attendance and Graduation (2012-13); (6) Student Performance (2013-14); and (7) School Funding.

  20. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  1. Organochlorine contaminants and reproductive success of double-crested cormorants from Green Bay, Wisconsin, USA

    Science.gov (United States)

    Custer, T.W.; Custer, Christine M.; Hines, R.K.; Gutreuter, S.; Stromborg, K.L.; Allen, P. David; Melancon, M.J.

    1999-01-01

    In 1994 and 1995, nesting success of double-crested cormorants (Phalacrocorax auritus) was measured at Cat Island, in southern Green Bay, Lake Michigan, Wisconsin, USA. Sample eggs at pipping and unhatched eggs were collected and analyzed for organochlorines (including total polychlorinated biphenyls [PCBs] and DDE), hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity in embryos, and eggshell thickness. Of 1,570 eggs laid, 32% did not hatch and 0.4% had deformed embryos. Of 632 chicks monitored from hatching to 12 d of age, 9% were missing or found dead; no deformities were observed. The PCB concentrations in sample eggs from clutches with deformed embryos (mean = 10.2 μg/g wet weight) and dead embryos (11.4 μg/g) were not significantly higher than concentrations in sample eggs from nests where all eggs hatched (12.1 μg/g). A logistic regression of hatching success versus DDE, dieldrin, and PCB concentrations in sibling eggs identified DDE and not dieldrin or PCBs as a significant risk factor. A logistic regression of hatching success versus DDE and eggshell thickness implicated DDE and not eggshell thickness as a significant risk factor. Even though the insecticide DDT was banned in the early 1970s, we suggest that DDE concentrations in double-crested cormorant eggs in Green Bay are still having an effect on reproduction in this species.

  2. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns.

    Science.gov (United States)

    Ratier, Aude; Dron, Julien; Revenko, Gautier; Austruy, Annabelle; Dauphin, Charles-Enzo; Chaspoul, Florence; Wafo, Emmanuel

    2018-03-01

    Lichen samples from contrasted environments, influenced by various anthropic activities, were investigated focusing on the contaminant signatures according to the atmospheric exposure typologies. Most of the contaminant concentrations measured in the 27 lichen samples, collected around the industrial harbor of Fos-sur-Mer (France), were moderate in rural and urban environments, and reached extreme levels in industrial areas and neighboring cities (Al up to 6567 mg kg -1 , Fe 42,398 mg kg -1 , or ΣPAH 1417 μg kg -1 for example). At the same time, a strong heterogeneity was noticed in industrial samples while urban and rural ones were relatively homogeneous. Several metals could be associated to steel industry (Fe, Mn, Cd), road traffic, and agriculture (Sb, Cu, Sn), or to a distinct chemical installation (Mo). As well, PCDFs dominated in industrial samples while PCDDs prevailed in urban areas. The particularities observed supported the purpose of this work and discriminated the contributions of various atmospheric pollution emission sources in lichen samples. A statistical approach based on principal component analysis (PCA) was applied and resolved these potential singularities into specific component factors. Even if a certain degree of mixing of the factors is pointed out, relevant relationships were observed with several atmospheric emission sources. By this methodology, the contribution of industrial emissions to the atmospheric metal, PAH, PCB, and PCDD/F levels was roughly estimated to be 60.2%, before biomass burning (10.2%) and road traffic (3.8%). These results demonstrate that lichen biomonitoring offers an encouraging perspective of spatially resolved source apportionment studies.

  3. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  4. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water.

    Science.gov (United States)

    Carter, Janet M; Moran, Michael J; Zogorski, John S; Price, Curtis V

    2012-08-07

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  5. Continuing the promise: Recruiting and preparing Hmong-American educators for Central Wisconsin

    Directory of Open Access Journals (Sweden)

    Leslie McClain-Ruelle

    2006-01-01

    Full Text Available The state of Wisconsin, and in the broader context, the middle states of the United States experienced a large influx of Hmong families starting in the early 1980’s and into the 1990’s. With this influx a large number of young, Southeast Asian children entered the PK-12 classrooms, often with the support of bilingual aides. While many of the children flourished within this newer context, they were mostly guided in their classrooms by white, Anglo educators. Although theseeducators work to meet the needs of all children, there were few to no Hmong educators working with these same children in the PK-12 setting. At the same time, a number of Hmong young adults were serving as bilingual aides in these classrooms. Project Forward, a federally funded Title VII grant, has worked to create a shift in these roles, preparing Hmong college students to become educators in the PK-12 settings. In 1999, Central Wisconsin enrolled approximately3,200 Hmong children in the PK-12 schools; at the same time, Central Wisconsin employed merely seven Hmong teachers in the classrooms. The goal of the grant program described in this paper is to prepare teachers of Southeast Asian background for early childhood, elementary, secondary and K-12 classrooms. The Central Wisconsin grant has supported a total of 35 Southeast Asian students in their pursuit of teaching careers. Fulfilling the goal of preparingteachers who can serve as role models for Southeast Asian children in our schools has met with successes and struggles. This article presents consideration of the central factors affectingrecruitment, retention and preparation of Hmong pre-service teachers in Central Wisconsin. The article includes a brief historical examination of the immigration of the Hmong population intothe United States, a consideration of the Hmong culture as it affects recruitment and retention of pre-service teachers and evidence related to successes and struggles experienced by Project

  6. Bridge Scour Monitoring Methods at Three Sites in Wisconsin

    National Research Council Canada - National Science Library

    Walker, John F; Hughes, Peter E

    2005-01-01

    .... Geological Survey, in cooperation with the Wisconsin Department of Transportation, the Marathon County Highway Department, and the Jefferson County Highway Department, performed routine monitoring...

  7. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    International Nuclear Information System (INIS)

    Ashley, J.T.F.; Baker, J.E.

    1999-01-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow's Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  8. Operability and location of Wisconsin's timber resource.

    Science.gov (United States)

    Jerold T. Hahn; Mark H. Hansen

    1989-01-01

    Data collected during the 1983 Wisconsin Statewide forest inventory were used to examine operability of the timber resource based on seven operability components. Operability is the ease or difficulty of managing or harvesting timber because of physical conditions in the stand or on the site.

  9. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    Science.gov (United States)

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 78 FR 44596 - Notice of Inventory Completion: State Historical Society of Wisconsin, Madison, WI

    Science.gov (United States)

    2013-07-24

    ... address in this notice by August 23, 2013. ADDRESSES: Jennifer Kolb, Wisconsin Historical Museum, 30 North Carroll Street, Madison, WI 53703, telephone (608) 261-2461, email Jennifer.Kolb@wisconsinhistory.org... request to Jennifer Kolb, Wisconsin Historical Museum, 30 North Carroll Street, Madison, WI 53703...

  11. Evaluation of some 90Sr sources in the White Oak Creek drainage basin

    International Nuclear Information System (INIS)

    Stueber, A.M.; Huff, D.D.; Farrow, N.D.; Jones, J.R.; Munro, I.L.

    1981-01-01

    The drainage basin was monitored to evaluate the relative importance of each source as a contributor to 90 Sr in White Oak Creek. The various sources fall into two general categories, those whose 90 Sr discharge is dependent upon rainfall and those relatively unaffected by the level of precipitation. The identification and ranking of existing non-point sources of 90 Sr in the White Oak Creek basin represents an important step in the ongoing comprehensive program at ORNL to provide a scientific basis for improved control measures and future disposal practices in solid waste disposal areas

  12. A simple laboratory project for introducing nonpoint source pollution concept to students of environmental and agricultural related courses Uma experiência laboratorial simples para introduzir o conceito de poluição disseminada a estudantes das áreas do ambiente e agricultura

    Directory of Open Access Journals (Sweden)

    M.M. Vidal

    2009-01-01

    Full Text Available This paper reports a simple laboratory project to introduce students to the nonpoint source pollution, which may be an issue of great interest to both undergraduate and graduate students of environmental or agricultural chemistry courses. The aim of this work is introduce to the students the concepts and techniques such as the polymericbased controlled release system of an agrochemical, theory of diffusion (first Fick law and spectrophotometric analysis. Thus, this laboratory project includes three experimental modules to be conducted during three weeks. Programmatic contents are described in this proceeding. Students must be aware that dissemination of nutrients and pesticides is prone to occur by both surface runoff and groundwater leaching, causing damages on all neighboring land. To demonstrate dissemination of such pollutants, we have chosen inorganic phosphorus as example of a common agrochemical. Students are invited to follow the eventual movement of the inorganic P into the groundwater. With this purpose, gelatin gels containing inorganic P were prepared to obtain a continuous release of inorganic P at a controlled rate. The slow release of P allows fewer applications and less active ingredient needed, helping to prevent leaching, with consequent reduction of groundwater contamination. At this point, students are able to compare the advantages of slow release inorganic P vs. its application by conventional methods.Este trabalho descreve uma experiência laboratorial simples para introduzir o conceito de poluição disseminada (nonpoint source pollution a estudantes do Ensino Secundário e Universitário das áreas de Ambiente e de Agricultura. O objectivo deste trabalho é introduzir aos estudantes conceitos e técnicas, tais como os sistemas de libertação controlada, a teoria da difusão (1ª lei de Fick e a análise espectrofotomética. Este projecto laboratorial inclui três módulos experimentais a serem efectuados durante 3

  13. The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    OpenAIRE

    Zia, Huma; Harris, Nick; Merrett, Geoff V.; Rivers, Mark; Coles, Neil

    2013-01-01

    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is cu...

  14. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    Science.gov (United States)

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  15. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    Science.gov (United States)

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  16. Advocacy and education in Wisconsin

    International Nuclear Information System (INIS)

    Wise, M.

    1986-01-01

    Wisconsin's Radioactive Waste Review Board is required by law to advocate for and educate the public on the high-level nuclear waste issue. The goal of its education program is to empower people by giving them information and skills. Environmental advocacy and public activism are part of the State's Progressive political tradition. The Board seeks and uses public input while developing education programs, and helps local areas organize committees to develop their own programs

  17. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  18. The University of Wisconsin OAO operating system

    Science.gov (United States)

    Heacox, H. C.; Mcnall, J. F.

    1972-01-01

    The Wisconsin OAO operating system is presented which consists of two parts: a computer program called HARUSPEX, which makes possible reasonably efficient and convenient operation of the package and ground operations equipment which provides real-time status monitoring, commanding and a quick-look at the data.

  19. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    Science.gov (United States)

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 75 FR 70026 - Notice of Inventory Completion: Wisconsin Historical Society, Museum Division, Madison, WI

    Science.gov (United States)

    2010-11-16

    ... with representatives of the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad... Division, is responsible for notifying the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River Reservation, Wisconsin; Forest County Potawatomi Community, Wisconsin; Lac Courte...

  1. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  2. Identification of immiscible NAPL contaminant sources in aquifers by a modified two-level saturation based imperialist competitive algorithm

    Science.gov (United States)

    Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.

    2017-07-01

    A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.

  3. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    Science.gov (United States)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  4. 75 FR 52369 - Notice of Inventory Completion: Wisconsin Historical Society, Museum Division, Madison, WI

    Science.gov (United States)

    2010-08-25

    ... member Indian tribes (Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River... Alliance and the Wisconsin Inter-tribal Repatriation Committee indicated that the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River Reservation, Wisconsin, and Red Cliff Band of...

  5. Career satisfaction and retention risk among Wisconsin internists.

    Science.gov (United States)

    Giriyappa, Pradeep; Sullivan, Kandis K

    2009-09-01

    Physician career satisfaction has been studied extensively, but career satisfaction as it relates to retention is less well studied. The objective was to assess the relationship between career satisfaction and retention in primary care internal medicine physicians in Wisconsin. In this descriptive quantitative study, survey data was assessed for correlations between career satisfaction, risk to retention, and demographics. The survey included 1231 primary care internal medicine physicians in the Wisconsin Medical Directory (2007). Responses were measured by career satisfaction variables, and demographics and retention variables for the purpose of correlations and regression analysis. Survey responses included 573 physicians. An additional 85 physicians were disqualified. The final survey group included 1146 physicians for a response rate of 50%. A total of 116 physicians (20.2%) reported anticipating leaving their current position, 84 (14.7%) physicians reported anticipating leaving the career of medicine. Identified at risk for retention were 144 (25.1%) physicians. The lowest career satisfaction scores were reported in the areas of compensation (3.19) and practice (3.42) on a scale of 1 (very dissatisfied) to 5 (very satisfied). The highest correlations to retention were associated with practice, followed by compensation satisfaction. The level of significance for this study was identified as 0.05, and the P-value was 0.000. The study findings reveal a significant risk to the stability of continuity of care for patients, and may cost Wisconsin health care organizations more than $35 million in recruitment costs to replace departing physicians.

  6. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.

    Science.gov (United States)

    Servais, Pierre; Garcia-Armisen, Tamara; George, Isabelle; Billen, Gilles

    2007-04-01

    The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied

  7. Molecular characterization and potential sources of aqueous humor bacterial contamination during phacoemulsification with intraocular lens implantation in dogs.

    Science.gov (United States)

    Lacerda, Luciana C C; de Souza-Pollo, Andressa; Padua, Ivan Ricardo M; Conceição, Luciano F; da Silveira, Camila P Balthazar; Silva, Germana A; Maluta, Renato P; Laus, José L

    2018-01-01

    Bacterial contamination of the anterior chamber during cataract surgery is one of the main responsible for endophthalmitis postoperative. Phacoemulsification is a less invasive technique for cataract treatment, although it does not exclude the possibility of contamination. In this study, bacterial contaminants of aqueous humor collected pre- and post-phacoemulsification with intraocular lens implantation (IOL) of twenty dogs were identified. As the conjunctival microbiota constitute a significant source of anterior chamber contamination, bacterial isolates from aqueous humor were genetically compared with those present in the conjunctival surface of the patients. Three dogs presented bacterial growth in both aqueous humor and conjunctival surface samples. Bacterial isolates from these samples were grouped according to their genetic profiles by repetitive-element PCR (rep-PCR) and their representatives were identified by 16S rRNA sequencing. Isolates from conjunctival surface were identified as Enterobacter spp., Staphylococcus spp. and S. aureus; and from aqueous humor samples as Enterobacter spp., Pantoea spp., Streptococcus spp. and Staphylococcus spp., respectively in decreasing order of prevalence. According to the rep-PCR analysis, 16.6% of Enterobacter spp. isolates from conjunctival surface were genetically similar to those from aqueous humor. The rest of isolates encountered in aqueous humor were genetically distinct from those of conjunctival surface. The significant genetic diversity of bacterial isolates found in the aqueous humor samples after surgery denoted the possibility of anterior chamber contamination during phacoemulsification by bacteria not only from conjunctival surface but also from different sources related to surgical environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of the homogeneity of reference flat sources used in calibration of surface contamination monitors

    International Nuclear Information System (INIS)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Potiens, M.P.A.

    2014-01-01

    The aim of this study was to re-evaluate the uniformity of the wide area reference sources of the Calibration Laboratory of Instruments (LCI-IPEN) used in the calibration of surface contamination monitors, according the recommendations of the ISO 8769 standard and the NRPB. In this work used six wide area reference sources of 150 cm 2 of 241 Am, 14 C, 36 Cl, 137 Cs, 90 Sr+ 90 Y and 99 Tc with reference dates between 1996 and 1997 and three sources of 100 cm 2 of 14 C, 137 Cs and 60 Co were used with reference dates 2007. Measurements were performed with a radiation monitor of the Thermo, model FH40GX with a pancake probe, model FHZ732GM. We also made several models on paper with the objective of define each measurement position and an aluminum plate with a square hole (6.25 cm 2 ) in its center, allowing the passage of the radiation only through the hole. Each wide area reference source was positioned in setup and measurements were performed in order to cover the entire surface of the source. The values of the uniformity obtained partially confirm previous data obtained in another study conducted by LCI-IPEN, showing that some wide area reference sources 150 cm 2 in disagree with ISO 8769. In the former work, just the source of 241 Am (7.3%) was within the range specified by the standard, now have sources of 241 Am (5.7%), 137 Cs (8.8%), 90 Sr+ 9 '0Y (8, 8%) and 99 Tc (9.2%) with values within the specified uniformity. The sources of 14 C (53.3%) and 36 Cl (16.6%) were outside the specified. The wide area reference sources of 100 cm 2 , show disagreement in values of uniformity of the sources 14 C (46.7%) and 60 Co (10.4%). The values of the uniformity of the wide area reference sources show that some fonts can not be used in calibrations, because not in accordance with the value of uniformity specified in ISO 8769:2010, this is a conditions to believe a laboratory according to ISO 17025, show the laboratory performs its services with a high quality. The

  9. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  10. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Contamination of wines and spirits by phthalates: types of contaminants present, contamination sources and means of prevention.

    Science.gov (United States)

    Chatonnet, P; Boutou, S; Plana, A

    2014-01-01

    This research determines the concentrations of various phthalates in French wines and grape spirits marketed in Europe or intended for export. Dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP) and butyl benzyl phthalate (BBP) were the most frequently detected compounds in the wines analysed. While only 15% of the samples examined contained quantifiable concentrations (> 0.010 mg kg(-1)) of DEHP and BBP, 59% of the wines contained significant quantities of DBP, with a median value as high as 0.0587 mg kg(-1). Only 17% of the samples did not contain any detectable quantity of at least one of the phthalates and 19% contained only non-quantifiable traces. In the spirits analysed, DBP (median = 0.105 mg kg(-1)) and DEHP (median = 0.353 mg kg(-1)) were the substances measured at the highest concentrations, as well as the most frequently detected (90% of samples). BBP was present in 40% of the samples at an average concentration of 0.026 mg kg(-1). Di-isobutyl phthalate (DiBP), which is not permitted in contact with food, was found in 25% of the spirits tested. According to the specific migration limits (SML) for materials in contact with food, slightly more than 11% of the wines analysed were non-compliant, as they exceeded the SML for DBP (0.3 mg kg(-1)); just under 4% were close to the SML for DEHP. Concerning spirits, 19% of the samples analysed were considered non-compliant to the SML for DBP and nearly 7% were close to the SML for DEHP. The aged grape spirits analysed were often excessively contaminated with DiBP, which is not permitted to be used in contact with food (> 0.01 mg kg(-1)). A study of various materials frequently present in wineries revealed that a relatively large number of polymers sometimes contained high concentrations of phthalates. However, the epoxy resin coatings used on vats represented the major source of contamination.

  12. An assessment of soybeans and other vegetable proteins as source of salmonella contamination in pig production

    Directory of Open Access Journals (Sweden)

    Häggblom Per

    2010-02-01

    Full Text Available Abstract Background The impact of salmonella contaminated feed ingredients on the risk for spreading salmonella to pigs was assessed in response to two incidences when salmonella was spread by feed from two feed mills to 78 swine producing herds. Methods The assessment was based on results from the salmonella surveillance of feed ingredients before introduction to feed mills and from HACCP - based surveillance of the feed mills. Results from the mills of the Company (A that produced the salmonella contaminated feed, were by the Chi. Square test compared to the results from all the other (B - E feed producers registered in Sweden. Isolated serovars were compared to serovars from human cases of salmonellosis. Results Salmonella (28 serovars was frequently isolated from imported consignments of soybean meal (14.6% and rape seed meal (10.0%. Company A largely imported soybean meal from crushing plants with a history of unknown or frequent salmonella contamination. The risk for consignments of vegetable proteins to be salmonella contaminated was 2.4 times (P Conclusions Salmonella contaminated feed ingredients are an important source for introducing salmonella into the feed and food chain. Effective HACCP-based control and associated corrective actions are required to prevent salmonella contamination of feed. Efforts should be taken to prevent salmonella contamination already at the crushing plants. This is challenge for the EU - feed industry due to the fact that 98% of the use of soybean/meal, an essential feed ingredient, is imported from crushing plants of third countries usually with an unknown salmonella status.

  13. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: jon.kim@vermont.gov [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)

    2016-11-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  14. The Legal Status of Homemakers in Wisconsin.

    Science.gov (United States)

    Melli, Marygold Shire

    This report focuses on laws in the state of Wisconsin as they relate to homemakers. Four areas are discussed, each in separate sections: marriage, widowhood, divorce, and wife abuse. The section on marriage includes information on property rights, disability and death of homemaker, federal Equal Credit Opportunity Act, domicile, interspousal…

  15. Reference sources for the calibration of surface contamination monitors - Beta-emitters (maximum beta energy greater than MeV) and alpha-emitters (International Standard Publication ISO 8769:1988)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    This International Standard specifies the characteristics of reference sources of radioactive surface contamination, traceable to national measurement standards, for the calibration of surface contamination monitors. This International Standard relates to alpha-emitters and to beta-emitters of maximum beta energy greater than 0,15 MeV. It does not describe the procedures involved in the use of these reference sources for the calibration of surface contamination monitors. Such procedures are specified in IEC Publication 325 and other documents. This International Standard specifies reference radiations for the calibration of surface contamination monitors which take the form of adequately characterized large area sources specified, without exception, in terms of activity and surface emission rate, the evaluation of these quantities being traceable to national standards

  16. Contamination with uranium from natural and anthropological sources

    International Nuclear Information System (INIS)

    Todorov, Peter Todorov; Ilieva, Elica Nikolova

    2005-01-01

    Our world is radioactive and always was since it was created. Radioactive elements are often called radioactive isotopes or radionuclides. Radionuclides are found in the environment as naturally occurring elements and as products or byproducts of nuclear technologies. One of the most common radionuclides is Uranium (U). U with atomic number of 92 is the heaviest known natural element. All U isotopes are radioactive. So it is very important their quantity to be under control. Natural U is used in the generation of nuclear fuel. U - 235 is one of two fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. Because of its use in the fission process U is found in large quantities in stored nuclear waste. Other important source of U to the environment was the nuclear weapon tests, especially during the second half of 20th century. Artificial radionuclides may also be released into the environment from non - nuclear cycle activities in industry and research and from usage in diagnostic and therapeutic medicine. Erosion of agricultural soils may input the 238 U decay radionuclides into drinking water supplies in areas with heavy fertilizer usage. The most common routes of U contamination are through handling, ingesting and inhaling. Inhaling and ingesting increase the risk of lung and bone cancer. U is also chemically toxic at high concentrations. U may also affect reproductive organs and the foetus, and may increase the risk of leukemia and soft tissue cancer. (authors)

  17. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  18. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: "Mar Piccolo" Taranto (South Italy).

    Science.gov (United States)

    Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero

    2017-10-01

    Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France)

    International Nuclear Information System (INIS)

    Lecoanet, H.; Leveque, F.; Ambrosi, J.-P.

    2003-01-01

    Biplots combining magnetic parameters allow identification of different pollutant emission sources. - Biplots combining magnetic parameters allow to identification and differentiation different pollutant emission sources. A major problem in soil pollution is the characterization of the relative contributions of different anthropogenic particles sources. This paper demonstrates the efficiency of magnetic techniques to provide identification and differentiation of contaminating emission sources. About 100 soil samples were collected across a mixed agricultural and industrial area (Crau plain/Berre-Fos basin) in southern France. Nine soil profiles were realized. They are aligned along a transect, from the Mediterranean cost to the north. Measurements of initial magnetic susceptibility (χ) and remanent magnetization (ARM, IRM) have been carried out at room temperature. Several ratios of magnetic parameters were calculated and tested. Bivariate analyses allow to characterize different pollution sources and graphic results suggest three dominant contributions originated from road traffic, airport and steel industry. Moreover, magnetic grain-size discrimination between surface-soil samples and bottom-soil samples is obtained. An increase of hard magnetic components from topsoil towards the bottom of the profiles is evidenced

  20. Pressure monitoring and characterization of external sources of contamination at the site of the payment drinking water epidemiological studies.

    Science.gov (United States)

    Besner, Marie-Claude; Broséus, Romain; Lavoie, Jean; Giovanni, George Di; Payment, Pierre; Prévost, Michèle

    2010-01-01

    The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.

  1. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    Science.gov (United States)

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  2. Regulación Óptima de Problemas de Contaminación Difusa

    OpenAIRE

    Guillermo Donoso

    1994-01-01

    Nonpoint sources of pollution have been receiving increasing attention in policy discussions. As progress is made in reducing emissions, from point sources of pollution, nonpoint sources account for growing shares of total pollution, so that further reduc

  3. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  4. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    Science.gov (United States)

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  5. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE

  6. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.

    Science.gov (United States)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several

  7. Wisconsin Public Schools at a Glance, 2016

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2016

    2016-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2015-16); (2) Student (2015-16); (3) Attendance & Graduation (2014-15);(4) Staff (2013-14); (5) School Funding; and (6) Student Performance (2014-15). [For the previous report…

  8. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    Baldasano Jose, M.

    1997-01-01

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  9. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    Science.gov (United States)

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of

  10. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge.

    Science.gov (United States)

    Cardoso, Olivier; Porcher, Jean-Marc; Sanchez, Wilfried

    2014-11-01

    Human and veterinary active pharmaceutical ingredients (APIs) are involved in contamination of surface water, ground water, effluents, sediments and biota. Effluents of waste water treatment plants and hospitals are considered as major sources of such contamination. However, recent evidences reveal high concentrations of a large number of APIs in effluents from pharmaceutical factories and in receiving aquatic ecosystems. Moreover, laboratory exposures to these effluents and field experiments reveal various physiological disturbances in exposed aquatic organisms. Also, it seems to be relevant to increase knowledge on this route of contamination but also to develop specific approaches for further environmental monitoring campaigns. The present study summarizes available data related to the impact of pharmaceutical factory discharges on aquatic ecosystem contaminations and presents associated challenges for scientists and environmental managers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to

  12. The Sources of Chemical Contaminants in Food and Their Health Implications

    Directory of Open Access Journals (Sweden)

    Irfan A. Rather

    2017-11-01

    Full Text Available Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.

  13. The Sources of Chemical Contaminants in Food and Their Health Implications

    Science.gov (United States)

    Rather, Irfan A.; Koh, Wee Yin; Paek, Woon K.; Lim, Jeongheui

    2017-01-01

    Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed. PMID:29204118

  14. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217

    Science.gov (United States)

    The Coastal Nonpoint Pollution Control Program (Section 6217) addresses nonpoint pollution problems in coastal waters.In its program, a state or territory describes how it will implement nonpoint source pollution controls, known as management measures.

  16. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  17. Stakeholders' Perceptions of Parcelization in Wisconsin's Northwoods

    Science.gov (United States)

    Mark G. Rickenbach; Paul H. Gobster

    2003-01-01

    Parcelization, the process by which relatively large forest ownerships become subdivided into smaller ones, is often related to changes in ownership and can bring changes to the use of the land. Landowners, resource professionals, and others interested in Wisconsin's Northwoods were asked their views on parcelization in a series of stakeholder forums. We analyzed...

  18. Chemical and microbiological monitoring of a sole-source aquifer intended for artificial recharge, Nassau County, New York

    Science.gov (United States)

    Katz, Brian G.; Mallard, Gail E.

    1980-01-01

    In late 1980, approximately 4 million gallons per day of highly treated wastewater will be used to recharge the groundwater reservoir in central Nassau County through a system of 10 recharge basins and 5 shallow injection wells. To evaluate the impact of large-scale recharge with reclaimed water on groundwater quality, the U.S. Geological Survey has collected hydrologic and water-quality data from a 1-square-mile area around the recharge site to provide a basis for future comparison. Extensive chemical and microbiological analyses are being made on samples from 48 wells screened in the upper glacial (water-table) aquifer and the upper part of the underlying Magothy (public-supply) aquifer. Preliminary results indicate that water from the upper glacial aquifer contains significant concentrations of nitrate and low-molecular-weight chlorinated hydrocarbons and detectable concentrations of organochlorine insecticides and polychlorinated biphenyls. At present, no fecal contamination is evident in either aquifer in the area studied. In the few samples containing fecal indicator bacteria, the numbers were low. Nonpoint sources provide significant loads of organic and inorganic compounds; major sources include cesspool and septic-tank effluent, cesspool and septic-tank cleaners and other over-the-counter domestic organic solvents, fertilizers, insecticides for termite and other pest control, and stormwater runoff to recharge basins. The water-table aquifer is composed mainly of stratified, well-sorted sand and gravel and, as a result, is highly permeable. In the 1-square-mile area studied, some contaminants seem to have traveled 200 feet downward to the bottom of the water-table aquifer and into the upper part of the public-supply aquifer. (USGS)

  19. Ion exchange-based treatment of "6"0Co contaminated well-water for storing γ irradiation source

    International Nuclear Information System (INIS)

    Bi Meng; Miao Shilin; Zhang Xiaolu; Zhang Youjiu

    2014-01-01

    Objective: To select an efficient ion exchange resin to purify the "6"0Co contaminated well-water for storing radioactive source and to ensure the radioactivity of "6"0Co in treated well-water below 10 Bq/L. Methods: The radioactivity of "6"0Co in the water samples was measured by using the potassium cobaltinitrite coprecipitation-β counting method. The treatment efficiencies of two different ion exchange resins for the simulated "6"0Co-bearing waste water were compared to select a better one to dispose of the "6"0Co contaminated well-water. Results: The treatment efficiency of MBD-15-SC mixed ion exchange resin was about 5.8 times higher than ZGCNR50 strong-acid cation exchange resin. The radioactivity of "6"0Co in the contaminated well-water could be reduced from 4.16 × 10"5 Bq/L to 1.16 Bq/L by two-stage sorption of MBD-15-SC mixed ion exchange resin. Conclusions: Using several times of two-stage MBD-15-SC mixed ion exchange resin could effectively purify the "6"0Co contaminated well-water. The quality of the treated well-water could meet the sewage discharge standards. (authors)

  20. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning