WorldWideScience

Sample records for nonpoint source pollutants

  1. Polluted Runoff: Nonpoint Source Pollution

    Science.gov (United States)

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  2. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  3. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  4. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  5. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  7. Reduction Assessment of Agricultural Non-Point Source Pollutant Loading

    OpenAIRE

    Fu, YiCheng; Zang, Wenbin; Zhang, Jian; Wang, Hongtao; Zhang, Chunling; Shi, Wanli

    2018-01-01

    NPS (Non-point source) pollution has become a key impact element to watershed environment at present. With the development of technology, application of models to control NPS pollution has become a very common practice for resource management and Pollutant reduction control in the watershed scale of China. The SWAT (Soil and Water Assessment Tool) model is a semi-conceptual model, which was put forward to estimate pollutant production & the influences on water quantity-quality under different...

  8. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  9. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  10. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  11. Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations

    Science.gov (United States)

    Ryan, Clare M.

    2009-06-01

    States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.

  12. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    Science.gov (United States)

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A method to analyze “source–sink” structure of non-point source pollution based on remote sensing technology

    International Nuclear Information System (INIS)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-01-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the “source–sink” theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of “source” of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km 2 in 2008, and the “sink” was 172.06 km 2 . The “source” of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the “sink” was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of “source” gets weaker along with the distance from the seas boundary increase, while “sink” gets stronger. -- Highlights: •We built an index to study the “source–sink” structure of NSP in a space scale. •The Index was applied in Jiulongjiang estuary and got a well result. •The study is beneficial to discern the high load area of non-point source pollution. -- “Source–Sink” Structure of non-point source nitrogen and phosphorus pollution in Jiulongjiang estuary in China was worked out by the Grid Landscape Contrast Index

  14. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    Science.gov (United States)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  15. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    Science.gov (United States)

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  16. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  17. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  18. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  19. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  20. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County

    International Nuclear Information System (INIS)

    Wang Long; Wei Jiahua; Huang Yuefei; Wang Guangqian; Maqsood, Imran

    2011-01-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. - Highlights: → An improved urban NPS model was developed. → It performs well in areas where storm events have great temporal variation. → Threshold of total runoff volume for ignoring residual pollutant was determined. - An improved urban NPS model was developed. Threshold of total runoff volume for ignoring residual pollutant was determined.

  1. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  2. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  3. Research and information needs related to nonpoint source pollution and wetlands in the watershed: An EPA perspective

    International Nuclear Information System (INIS)

    Ethridge, B.J.; Olson, R.K.

    1992-01-01

    Two related Environmental Protection Agency (EPA) efforts, wetlands protection and nonpoint source pollution control, fail to fully consider landscape factors when making site-specific decisions. The paper discusses the relationship of the two programs and the use of created and natural wetlands to treat nonpoint source (NPS) pollution. Recommendations to improve the programs include increased technical transfer of existing information, and more research on construction methods and siting of created wetlands to effectively manage NPS pollution. Additional research is also needed to determine (1) the maximum pollutant loading rates to assure the biological integrity of wetlands, (2) the effectiveness of current land-use practices in protecting habitat and water quality functions, (3) wetland functions as pollutant sinks, (4) NPS pollution threats to wildlife, (5) practical watershed models, and (6) indicators and reference sites for monitoring wetland condition. Model watershed demonstrations, jointly implemented by the research and conservation communities, are recommended as a means of integrating research results. (Copyright (c) 1992 - Elsevier Science Publishers B.V.)

  4. Non-point Source Pollutants Loss of Planting Industry in the Yunnan Plateau Lake Basin, China

    Directory of Open Access Journals (Sweden)

    ZHAO Zu-jun

    2017-12-01

    Full Text Available Non-point source pollution of planting has become a major factor affecting the quality and safety of water environment in our country. In recent years, some studies show that the loss of nitrogen and phosphorus in agricultural chemical fertilizers has led to more serious non-point source pollution. By means of the loss coefficient method and spatial overlay analysis, the loss amount, loss of strength and its spatial distribution characteristics of total nitrogen, total phosphorus, ammonium nitrogen and nitrate nitrogen were analyzed in the Fuxian Lake, Xingyun Lake and Qilu Lake Basin in 2015. The results showed that:The loss of total nitrogen was the highest in the three basins, following by ammonium nitrogen, nitrate nitrogen and total phosphorus, which the loss of intensity range were 2.73~22.07, 0.003~3.52, 0.01~2.25 kg·hm-2 and 0.05~1.36 kg·hm-2, respectively. Total nitrogen and total phosphorus loss were mainly concentrated in the southwest of Qilu Lake, west and south of Xingyun Lake. Ammonium nitrogen and nitrate nitrogen loss mainly concentrated in the south of Qilu Lake, south and north of Xingyun Lake. The loss of nitrogen and phosphorus was mainly derived from cash crops and rice. Therefore, zoning, grading and phased prevention and control schemes were proposed, in order to provide scientific basis for controlling non-point source pollution in the study area.

  5. Current status of agricultural and rural non-point source Pollution assessment in China

    International Nuclear Information System (INIS)

    Ongley, Edwin D.; Zhang Xiaolan; Yu Tao

    2010-01-01

    Estimates of non-point source (NPS) contribution to total water pollution in China range up to 81% for nitrogen and to 93% for phosphorus. We believe these values are too high, reflecting (a) misuse of estimation techniques that were developed in America under very different conditions and (b) lack of specificity on what is included as NPS. We compare primary methods used for NPS estimation in China with their use in America. Two observations are especially notable: empirical research is limited and does not provide an adequate basis for calibrating models nor for deriving export coefficients; the Chinese agricultural situation is so different than that of the United States that empirical data produced in America, as a basis for applying estimation techniques to rural NPS in China, often do not apply. We propose a set of national research and policy initiatives for future NPS research in China. - Estimation techniques used in China for non-point source pollution are evaluated as a basis for recommending future policies and research in NPS studies in China.

  6. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  7. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  8. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  9. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  10. BOOK REVIEW OF "ASSESSMENT AND CONTROL OF NONPOINT SOURCE POLLUTION OF AQUATIC ECOSYSTEMS: A PRACTICAL APPROACH"

    Science.gov (United States)

    This book is geared to environmental specialists and planners, heavy on the technical side. It goes beyond tranditional nonpoint source (NPS) approaches which typically only look at stormwater as athe sole NPS pollution driver. There is some overreaching material beyond the conte...

  11. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    Science.gov (United States)

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  12. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    Science.gov (United States)

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  13. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    Science.gov (United States)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity

  14. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  15. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  16. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    Science.gov (United States)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  17. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  18. 四川省农村面源污染状况与治理对策研究%Environmental Protection Countermeasures Against Rural Non-point Pollution Sources in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    郭卫广; 雍毅; 陈杰; 吴怡; 薛嘉

    2016-01-01

    Rural non-point source pollution is mainly divided into agricultural non-point source, livestock excrement non-point source and rural life non-point source pollution. Based on the emission factor method, this study calculated the two main pollutants( COD and NH3 -N) emissions and researched on the environmental protection countermeasures against rural non-point source pollution. Agricultural non-point source pollution control measures include:promoting soil testing and fertilizer recommen-dation, scientific and safe use of pesticides, agricultural tail water collection and treatment, ecological interception technology, etc. Livestock and poultry non-point source pollution control measures include:strengthen the pollution control of small livestock and poultry farmers, integration of agriculture and husbandry for treating non -point source pollution, promoting dry cleaning process, fermentation bed treatment technology, etc. Rural life pollution control measures include:promoting the construction of rural sewage collection and treatment infrastructure, promoting the application of small sewage treatment facilities in rural areas, etc.%四川省农村面源主要分为农田面源、畜禽养殖粪便污染面源和农村生活污染面源,研究根据排放因子法计算了两种主要考核污染物化学需氧量和氨氮的排放量.根据四川省农村面源污染状况特征提出了面源治理对策措施,其中农田面源治理措施包括:推广测土配方施肥、农田面源生态拦截技术等;畜禽养殖污染治理措施包括:加强小型畜禽养殖污染治理,推广农牧结合、干清粪、发酵床处理工艺等;农村生活污染治理措施包括:推进农村生活污水收集及小型污水处理设施等.

  19. Regulation and perceived compliance: Nonpoint pollution reduction programs in four states

    International Nuclear Information System (INIS)

    Floyd, D.W.; MacLeod, M.A.

    1993-01-01

    Examining nonpoint-source water pollution programs in foresty is one way of looking at the complicated policy questions of striking a balance between voluntary and regulatory approaches to forest management on private lands. States have developed a variety of approaches in this area from completely voluntary to highly regulatory to archeive compliance. This article looks at several aspects: federal requirements, program types, predictive behavior theories, and specific state programs (Ohio, West Virginia, Maryland, Massachusetts). The study results indicate a significant difference in preceived compliance based on program type: as stringency increases, perceived compliance increases. The authors suggest that successful forestry nonpoint source water pollution reduction plans should combine regulatory and educational elements. 16 refs., 3 tabs

  20. Prevention and Control of Agricultural Non-Point Source Pollutions in UK and Suggestions to China

    OpenAIRE

    Liu, Kun; Ren, Tianzhi; Wu, Wenliang; Meng, Fanquiao; Bellarby, Jessica; Smith, Laurence

    2016-01-01

    Currently, the world is facing challenges of maintaining food production growth while improving agricultural ecological environmental quality. The prevention and control of agricultural non-point source pollution, a key component of these challenges, is a systematic program which integrates many factors such as technology and its extension, relevant regulation and policies. In the project of UK-China Sustainable Agriculture Innovation Network, we undertook a comprehensive analysis of the prev...

  1. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    Science.gov (United States)

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  2. Event-based nonpoint source pollution prediction in a scarce data catchment

    Science.gov (United States)

    Chen, Lei; Sun, Cheng; Wang, Guobo; Xie, Hui; Shen, Zhenyao

    2017-09-01

    Quantifying the rainfall-runoff-pollutant (R-R-P) process is key to regulating non-point source (NPS) pollution; however, the impacts of scarce measured data on R-R-P simulations have not yet been reported. In this study, we conducted a comprehensive study of scarce data that addressed both rainfall-runoff and runoff-pollutant processes, whereby the impacts of data scarcity on two commonly used methods, including Unit Hydrograph (UH) and Loads Estimator (LOADEST), were quantified. A case study was performed in a typical small catchment of the Three Gorges Reservoir Region (TGRR) of China. Based on our results, the classification of rainfall patterns should be carried out first when analyzing modeling results. Compared to data based on a missing rate and a missing location, key information generates more impacts on the simulated flow and NPS loads. When the scarcity rate exceeds a certain threshold (20% in this study), measured data scarcity level has clear impacts on the model's accuracy. As the model of total nitrogen (TN) always performs better under different data scarcity conditions, researchers are encouraged to pay more attention to continuous the monitoring of total phosphorus (TP) for better NPS-TP predictions. The results of this study serve as baseline information for hydrologic forecasting and for the further control of NPS pollutants.

  3. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  4. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  5. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    Science.gov (United States)

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  6. Clean Water Act Section 319 Nonpoint Source Pollution Control Projects Grants, US EPA Region 9, 2008, California Nonpoint Source Program

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  7. Coastal nonpoint pollution control program: Program development and approval guidance

    International Nuclear Information System (INIS)

    1993-01-01

    The document, developed by NOAA and EPA, contains guidance for states in developing and implementing their coastal nonpoint pollutant source programs. It describes the requirements that must be met, including: the geographic scope of the program; the pollutant sources to be addressed; the types of management measures used; the establishment of critical areas; technical assistance, public participation, and administrative coordination; and, the process for program submission and Federal approval. The document also contains the criteria by which NOAA and EPA will review the states' submissions

  8. Introducing nonpoint source transferable quotas in nitrogen trading: The effects of transaction costs and uncertainty.

    Science.gov (United States)

    Zhou, Xiuru; Ye, Weili; Zhang, Bing

    2016-03-01

    Transaction costs and uncertainty are considered to be significant obstacles in the emissions trading market, especially for including nonpoint source in water quality trading. This study develops a nonlinear programming model to simulate how uncertainty and transaction costs affect the performance of point/nonpoint source (PS/NPS) water quality trading in the Lake Tai watershed, China. The results demonstrate that PS/NPS water quality trading is a highly cost-effective instrument for emissions abatement in the Lake Tai watershed, which can save 89.33% on pollution abatement costs compared to trading only between nonpoint sources. However, uncertainty can significantly reduce the cost-effectiveness by reducing trading volume. In addition, transaction costs from bargaining and decision making raise total pollution abatement costs directly and cause the offset system to deviate from the optimal state. While proper investment in monitoring and measuring of nonpoint emissions can decrease uncertainty and save on the total abatement costs. Finally, we show that the dispersed ownership of China's farmland will bring high uncertainty and transaction costs into the PS/NPS offset system, even if the pollution abatement cost is lower than for point sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  11. Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture

    NARCIS (Netherlands)

    Kruseman, G.; Blokland, P.W.; Bouma, F.; Luesink, H.H.; Vrolijk, H.C.J.

    2008-01-01

    Non-point source pollution is notoriously difficult to asses. A relevant example is ammonia emissions in the Netherlands. Since the mid 1980s the Dutch government has sought to reduce emissions through a wide variety of measures, the effect of which in turn is monitored using modeling techniques.

  12. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    and its typically large spatial extend requires extensive networks at an individual site to accurately and fairly monitor individual compliance. In contrast, regional networks seemingly fail to hold individual landowners accountable. But regional networks can effectively monitor large-scale impacts and water quality trends; and thus inform regulatory programs that enforce management practices tied to nonpoint source pollution. Regional monitoring networks for compliance purposes can face significant challenges in the implementation due to a regulatory and legal landscape that is exclusively structured to address point sources and individual liability, and due to the non-intensive nature of a regional monitoring program (lack of control of hot spots; lack of accountability of individual landowners).

  13. Mining-related nonpoint-source pollution

    International Nuclear Information System (INIS)

    Cohen, R.H.; Gorman, J.

    1991-01-01

    This article describes the effects of increased mining activity on surface and groundwater. The topics covered include pollutant sources, contaminant transport and fate, trace element toxicity, pollution control and abatement, treating acid mine drainage, modern constructed wetlands and site reclamation including site stabilization, refuse burial and sludge application

  14. Nonpoint Source Pollution Control Projects Grants (Section 319) - 2008 active projects

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  15. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  16. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  17. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  18. Modelling nonpoint source pollution of MUDA river basin using GIS (Geographic Information System)

    International Nuclear Information System (INIS)

    Nyon Yong Chik; Taher Buyong

    2000-01-01

    The management of our rivers is under increasing pressure to conserve and sustain as it remains the focus of human civilization and subjected to increasing demand from man and its activities. Integrated river basin management represents comprehensive form of terrestrial water resources management while GIS is a promising tool to be used in the management strategy. In efforts to display the true capabilities of GIS in analysing nonpoint source pollution (NPS), an assessment of NPS was carried out at MUDA river basin using Arc View 3.0 Spatial Analyst. Expected Mean Concentration (EMC) which is associated with land use was used to predict the amount of pollutants constituents. A runoff grid was then processed to model the flow domain. Finally, the modelling of the pollutant loads downstreams towards the basin outlet is achieved by flow direction and accumulation analysis of the product of EMC and runoff grid. A user interface was programmed to display each application data theme via a pop-up window. In addition, users will be able to enter EMG values for the corresponding land use through an application dialog developed in Visual Basic. (Author)

  19. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  20. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  1. The Non-point Source Pollution Effects of Pesticides Based on the Survey of 340 Farmers in Chongqing City

    OpenAIRE

    YU, Lianchao; GU, Limeng; BI, Qian

    2015-01-01

    Using the survey data on 340 farmers in Chongqing City, this paper performs an empirical analysis of the factors influencing the non-point source pollution of pesticides. The results show that the older householders will apply more pesticides, which may be due to the weak physical strength and weak ability to accept the concept of advanced cultivation; the householders with high level of education will choose to use less pesticides; the pesticide application rate is negatively correlated with...

  2. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  3. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  4. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  5. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  6. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  7. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  8. The Treatment Train approach to reducing non-point source pollution from agriculture

    Science.gov (United States)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  9. Interpolating precipitation and its relation to runoff and non-point source pollution.

    Science.gov (United States)

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  10. Evaluation of nonpoint-source contamination, Wisconsin: water year 1999

    Science.gov (United States)

    Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.

    2001-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMPs) for controlling nonpoint-source pollution in rural and urban watersheds. This progress report provides a summary of the data collected by the U.S Geological Survey for the program and a discussion of the results from several different detailed analyses conducted within this program.

  11. Science, information, technology, and the changing character of public policy in non-point source pollution

    Science.gov (United States)

    King, John L.; Corwin, Dennis L.

    Information technologies are already delivering important new capabilities for scientists working on non-point source (NPS) pollution in the vadose zone, and more are expected. This paper focuses on the special contributions of modeling and network communications for enhancing the effectiveness of scientists in the realm of policy debates regarding NPS pollution mitigation and abatement. The discussion examines a fundamental shift from a strict regulatory strategy of pollution control characterized by a bureaucratic/technical alliance during the period through the 1970's and early 1980's, to a more recently evolving paradigm of pluralistic environmental management. The role of science and scientists in this shift is explored, with special attention to the challenges facing scientists working in NPS pollution in the vadose zone. These scientists labor under a special handicap in the evolving model because their scientific tools are often times incapable of linking NPS pollution with individuals responsible for causing it. Information can facilitate the effectiveness of these scientists in policy debates, but not under the usual assumptions in which scientific truth prevails. Instead, information technology's key role is in helping scientists shape the evolving discussion of trade-offs and in bringing citizens and policymakers closer to the routine work of scientists.

  12. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China.

    Science.gov (United States)

    Wang, Yandong; Yang, Jun; Liang, Jiping; Qiang, Yanfang; Fang, Shanqi; Gao, Minxue; Fan, Xiaoyu; Yang, Gaihe; Zhang, Baowen; Feng, Yongzhong

    2018-08-15

    The environmental behavior of farmers plays an important role in exploring the causes of non-point source pollution and taking scientific control and management measures. Based on the theory of planned behavior (TPB), the present study investigated the environmental behavior of farmers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China. Results showed that TPB could explain farmers' environmental behavior (SMC=0.26) and intention (SMC=0.36) well. Furthermore, the farmers' attitude towards behavior (AB), subjective norm (SN), and perceived behavioral control (PBC) positively and significantly influenced their environmental intention; their environmental intention further impacted their behavior. SN was proved to be the main key factor indirectly influencing the farmers' environmental behavior, while PBC had no significant and direct effect. Moreover, environmental knowledge following as a moderator, gender and age was used as control variables to conduct the environmental knowledge on TPB construct moderated mediation analysis. It demonstrated that gender had a significant controlling effect on environmental behavior; that is, males engage in more environmentally friendly behaviors. However, age showed a significant negative controlling effect on pro-environmental intention and an opposite effect on pro-environmental behavior. In addition, environmental knowledge could negatively moderate the relationship between PBC and environmental intention. PBC had a greater impact on the environmental intention of farmers with poor environmental knowledge, compared to those with plenty environmental knowledge. Altogether, the present study could provide a theoretical basis for non-point source pollution control and management. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    Science.gov (United States)

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  14. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  15. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  16. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    Science.gov (United States)

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  17. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  18. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  19. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  20. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    Directory of Open Access Journals (Sweden)

    Chunlan Mao

    2013-01-01

    Full Text Available This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  1. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution

  2. Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States

    Science.gov (United States)

    Puckett, Larry J.

    1994-01-01

    Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.

  3. State survey of silviculture nonpoint source programs: a comparison of the 2000 northeastern and national results

    Science.gov (United States)

    Pamela J. Edwards; Gordon W. Stuart

    2002-01-01

    The National Association of State Foresters conducts surveys of silviculture nonpoint source (NPS) pollution control programs to measure progress and identify needs. The 2000 survey results are summarized here for the nation and for the 20-state northeastern region. Current emphasis of NPS pollution programs is on education, training, and monitoring. Educational...

  4. Predicting nonpoint stormwater runoff quality from land use

    Science.gov (United States)

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  5. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    Science.gov (United States)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical

  6. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  7. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  8. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  9. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  10. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  11. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  12. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  13. Relationship Between Non-Point Source Pollution and Korean Green Factor

    Directory of Open Access Journals (Sweden)

    Seung Chul Lee

    2015-01-01

    Full Text Available In determining the relationship between the rational event mean concentration (REMC which is a volume-weighted mean of event mean concentrations (EMCs as a non-point source (NPS pollution indicator and the green factor (GF as a low impact development (LID land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated with storm factors whereas they showed significant differences according to the land use types. The calculated REMCs for BOD, COD, TSS, TN, and TP showed negative correlations with the GFs. However, even though the GFs of the agricultural area were concentrated in values of 80 like the green areas, the REMCs for TSS, TN, and TP were especially high. There were few differences in REMC runoff characteristics according to the GFs such as recreational facilities areas in suburbs and highways and trunk roads that connect to major roads between major cities. Except for those areas, the REMCs for BOD and COD were significantly related to the GFs. The REMCs for BOD and COD decreased when the rate of natural green area increased. On the other hand, some of the REMCs for TSS, TN, and TP were still high where the catchments encountered mixed land use patterns, especially public facility areas with bare ground and artificial grassland areas. The GF could therefore be used as a major planning indicator when establishing land use planning aimed at sustainable development with NPS management in urban areas if the weighted GF values will be improved.

  14. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  15. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  16. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  17. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  18. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  19. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    Science.gov (United States)

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  20. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  1. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  2. Urban Runoff: Getting to the Nonpoint

    OpenAIRE

    Pendall, Rolf

    1994-01-01

    Mandates for water-quality improvement have forced regulators and planners to confront the problem of urban runoff, still an important source of water pollution. This ar­ticle discusses those mandates and how to meet them, and provides examples of ongoing nonpoint water pollution control programs in the San Francisco Bay Area. These examples suggest that cleanup of urban runoff may require more comprehensive regional planning to encourage a de­velopment pattern conducive to pollution control.

  3. 靖江市农业面源污染现状及防治对策研究%Current Status and Countermeasures of Agriculture Non-point Source Pollution control in Xinhua City

    Institute of Scientific and Technical Information of China (English)

    张明; 曹学章

    2016-01-01

    农业面源污染治理情况是生态文明创建的重要指标之一。本文总结了江苏省靖江市在生态市创建过程中治理农业面源污染所采取的措施以及取得的成效,并提出了靖江市“十三五”期间创建生态文明示范市过程中推进农业面源污染治理工作的对策建议:一,推广种植业清洁生产,控制种植业化肥农药使用;第二,优化养殖业布局,加强畜禽粪污综合利用;第三,调整渔业产业结构,强化水产养殖业污染管控;第四,推进农村环境综合整治。%Agricultural non-point source pollution is one of the important indicators during the construction of ecological civilization. This paper summarizes the measures taken by the management of agricultural non-point source pollution in Jingjiang during the construction of National Eco-city, and the results obtained. Then, it puts forward countermeasures and suggestions for promoting the pollution control of agricultural non-point source in Jingjiang during the 13’ th Five Year. First, the promotion of planting industry clean production, control the farming fertilizer pesticide use; Second, optimize the breeding industry layout, strengthen the comprehensive utilization of livestock and poultry waste; Third, adjust the structure of fishery industry, strengthen the aquaculture pollution control; Fourth, to promote the comprehensive improvement of the rural environment.

  4. Studies of the contributions of nonpoint terrestrial sources to mineral water quality

    International Nuclear Information System (INIS)

    Huff, D.D.

    1977-05-01

    The contributions of nonpoint sources of water quality constituents represent a background loading rate that will not be reduced easily. Consequently, those contributions may have a dominant effect on aquatic ecosystems once point sources have been controlled. Modeling studies conducted at the Tennessee Valley Authority and Oak Ridge National Laboratory represent contrasting approaches that highlight some of the possibilities for predicting nonpoint source inputs to aquatic systems

  5. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review.

    Science.gov (United States)

    Liu, Feng; Zhang, Shunan; Luo, Pei; Zhuang, Xuliang; Chen, Xiang; Wu, Jinshui

    2018-01-01

    In this review, the applications of Myriophyllum-based integrative biotechnology to remove common non-point source (NPS) pollutants, such as nitrogen, phosphorus, heavy metals, and organic pollutants (e.g., pesticides and antibiotics) are summarized. The removal of these pollutants via various mechanisms, including uptake by plant and microbial communities in macrophyte-based treatment systems are discussed. This review highlights the potential use of Myriophyllum biomass to produce animal feed, fertilizer, and other valuable by-products, which can yield cost-effective returns and attract more attention to the regulation and recycling of NPS pollutants. In addition, it demonstrates that utilization of Myriophyllum species is a promising and reliable strategy for wastewater treatment. The future development of sustainable Myriophyllum-based treatment systems is discussed from various perspectives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  7. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    Science.gov (United States)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  8. Non-Point Source Nitrogen and Phosphorus Pollution Simulation and Irrigation Mode Optimization of the North Canal Basin%北运河流域非点源氮磷污染模拟分析及灌溉模式优化

    Institute of Scientific and Technical Information of China (English)

    刘银迪; 徐建新; 陆建红; 赵鹏

    2011-01-01

    In order to reduce the non-point source pollution caused by the farmland irrigation of the North Canal Basin and develop a sound farmland management model,the improved SWAT model is adopted to simulate the surface-runoff non-point source nitrogen and phosphorus pollution under different irrigation modes in the Wuqing area in the North Canal Basin.The simulation results indicate that under the same irrigation quota,with the increaseof the number of the sewage irrigation times,the total nitrogen and phosphorus load amount in the water body of the basin firstly reduces and then increases;in all the instituted irrigation modes,it could make the total non-point source pollution load minimum to irrigate sewage in the wintering period and the jointing stage of the winter wheat,and the tasseling stage of the summer maize.Besides,under water-saving irrigation,the irrigation quota change has little effect on the total nitrogen and phosphorus load amount in the water body.The results demonstrate that the characteristics of the non-point source nitrogen and phosphorus pollution under different irrigation modes are different,and it could control the transport of the non-point source nitrogen and phosphorus pollutants well to adopt small-quota rotation irrigation of clean and sewage water in growth periods of crops.%为了减轻北运河流域农田灌溉引起的非点源污染,探索良性农田管理模式,选取北运河流域武清区为研究对象,采用改进的SWAT模型模拟不同灌溉方案下武清区地表径流非点源氮磷污染。结果表明:同一灌溉定额下,随着污灌次数的增加,流域水体内氮磷负荷总量呈先降后升的趋势;在所制定的灌溉情景中,冬小麦越冬、拔节期和夏玉米抽雄期进行污灌,其余生育阶段进行清水灌溉时,非点源污

  9. Governing change: land-use change and the prevention of nonpoint source pollution in the north coastal basin of California.

    Science.gov (United States)

    Short, Anne G

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  10. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  11. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    Science.gov (United States)

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    Science.gov (United States)

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of

  13. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  14. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    Science.gov (United States)

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher

  15. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  16. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  17. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    Science.gov (United States)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  18. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  19. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    Science.gov (United States)

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  20. A Summary of Best Management Practices for Nonpoint Source Pollution

    Science.gov (United States)

    1992-08-01

    and concrete block material, and structures and systems for soil stabilization including erosion checks, revetments , retaining structures, and...industrial storage areas, and coal/ slag piles. Rural NPS pollution includes runoff from Some of the above sources plus runoff from agriculture...water quality. The effectiveness of detention ponds is reduced, however, when maintenance is neglected. Common problems include blocked outlets

  1. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania

    Science.gov (United States)

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods—dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was €6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  2. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  3. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  4. The Other Water Pollution

    Science.gov (United States)

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  5. EPA Office of Water (OW): Nonpoint Source Projects NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — GRTS locational data for nonpoint source projects. GRTS locations are coded onto NHDPlus v2.1 flowline features to create point and line events or coded onto NHDPlus...

  6. Estimation of pollutant source contribution to the Pampanga River Basin using carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Castaneda, Solidad S.; Sta Maria, Efren J.; Ramirez, Jennyvi D.; Collado, Mario B.; Samar, Edna D.

    2013-01-01

    This study assessed and estimated the percentage contribution of potential pollution sources in Pampanga River Basin using carbon and nitrogen isotopes as environmental tracers. The δ 13 C and δ 15 N values were determined in particulate organic matter, surface sediment, and plant tissue samples from point and non-point sources from several land use areas, namely domestic, croplands, livestock, fishery and forestry. Investigations were conducted in the wet and dry seasons (2012 and 2013). Some N sources do not have unique δ 15 N and there is overlapping among different N- sources type. δ 13 C data from the N sources provided an additional dimension which distinguished animal manure, human waste (septic and sewage), leaf litter, and synthetic fertilizer. Characterization of the non-point N-sources based on the isotopic fingerprints obtained from the point sources revealed that domestic, cropland, livestock, and fishery, influenced the isotopic composition of the materials but domestic and cropland land use provided the most significant influence. Livestock also contributed to a lesser extent. Isotope mixing model revealed that cropland sources generally contributed the most to pollutant loading during the wet season, from 22% to 98%, while domestic waste contributed higher in the dry season, from 55% to 65%. (author)

  7. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China.

    Science.gov (United States)

    Lu, Hua; Xie, Hualin

    2018-02-01

    This study systematically explores the likely mechanisms driving the effect of the transfer of agricultural land use rights (ALURs) on agricultural non-point source pollution (ANSP) in the context of changing agricultural labor resources. It quantitatively estimates the direction and degree of this influence from a microeconomic perspective using data from rural households. The results reveal that economies of scale caused by ALURs transfers contribute to reducing both the ANSP and marginal costs of inputs. Changes in agricultural labor resources lead to reductions in agricultural labor supply and negatively impact on ANSP. Encouraging farmers to participate in ALURs transfers, therefore, helps to reduce ANSP. The government and related departments should implement policies that support farmers who decide to rent an entire village's land or the adjacent land to achieve economies of scale. Accelerating the development of small farm machinery that is suitable for smaller farm plots and the elderly can serve to reduce the use of chemical fertilizer and promote green production and sustainable agricultural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    Science.gov (United States)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  9. Modeling non-point source pollutants in the vadose zone: Back to the basics

    Science.gov (United States)

    Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.

    More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models

  10. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    Science.gov (United States)

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  11. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor

  12. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3 (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pollutant Source Identification Project (MB-3) sought to provide a summary and analysis of pollutant loads to Mamala Bay from both point and nonpoint sources....

  13. 78 FR 69664 - Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint...

    Science.gov (United States)

    2013-11-20

    ... Collection Request; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs AGENCY... to submit an information collection request (ICR), ``Approval of State Coastal Nonpoint Pollution... Watershed Protection Division, Office of Wetlands Oceans and Watersheds, Mail Code 4503-T, Environmental...

  14. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  15. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  16. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    Science.gov (United States)

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  17. A multi-criteria approach to Great Barrier Reef catchment (Queensland, Australia) diffuse-source pollution problem.

    Science.gov (United States)

    Greiner, R; Herr, A; Brodie, J; Haynes, D

    2005-01-01

    This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.

  18. 水源保护地农业面源污染防治对策探讨——以昆明松花坝水源保护区为例%Discus on the Prevention and Control Countermeasures of Agricultural Non-point Pollution in Water Source Protected Areas

    Institute of Scientific and Technical Information of China (English)

    罗婷; 王崇云; 彭明春; 李其阳; 孔维琳; 杨莎; 董磊

    2012-01-01

    This paper analyzed the contamination sources,pollutants migration processes and causes,which related to water source protection. Best management practices system (BMPs) and ecologic and clean-type small watersheds approaches were two commonly used methods for abating the non-point source (NPS) pollution. We detailedly reviewed the countermeasures in two methods. Then,we took Kunming Songhuaba water protected area as an example to oudine the framework to fight against the NPS pollution,based on the functional zones of water conservation areas,BMPs and ecologic and clean-type small watersheds approaches were specifically elaborated for water protection implements and for agricultural non-point pollution prevention and control. Finally,the paper probed into the NPS pollution control of the water protected areas in future.%分析了水源保护地的污染物来源和迁移过程、形成原因,对最佳管理措施( BMPs)和生态清洁型小流域建设2种水源保护地常用的污染防治对策进行了详细概述;并以昆明松花坝为例,在其水源地保护功能区划的基础上,具体阐述了BMPs与生态清洁小流域建设在水源保护地农业面源污染防治中的应用.最后,探讨了我国水源保护地污染控制的研究方向.

  19. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  20. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    Science.gov (United States)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  1. An application of Landsat and computer technology to potential water pollution from soil erosion

    Science.gov (United States)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  2. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    Science.gov (United States)

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  3. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  4. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  5. Sample intake position and loading rates from nonpoint source pollution

    Science.gov (United States)

    McGuire, P. E.; Daniel, T. C.; Stoffel, D.; Andraski, B.

    1980-01-01

    Paired water samples were simultaneously activated from two different vertical positions within the approach section of a flow-control structure to determine the effect of sample intake position on nonpoint runoff parameter concentrations and subsequent event loads. Suspended solids (SS), total phosphorus (TP) and organic plus exchangeable nitrogen [(Or+Ex)-N] were consistently higher throughout each runoff event when sampled from the floor of the approach section as opposed to those samples taken at midstage. Dissolved molybdate reactive phosphorus (DMRP) and ammonium (NH4-N) concentrations did not appear to be significantly affected by the vertical difference in intake position. However, the nitrate plus nitrite nitrogen [(NO3+NO2)-N] concentrations were much higher when sampled from the midstage position. Although the concentration differences between the two methods were not appreciable, when evaluated in terms of event loads, discrepancies were evident for all parameters. Midstage sampling produced event loads for SS, TP, (Or + Ex)-N, DMRP, NH4-N, and (NO3+NO2)-N that were 44,39,35,80,71, and 181%, respectively, of floor sampling loads. Differences in loads between the two methods are attributed to the midstage position, sampling less of the bed load. The correct position will depend on the objective; however, such differences should be recognized during the design phase of the monitoring program.

  6. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model%基于SWAT模型的浑太河流域农业面源污染物产生量估算

    Institute of Scientific and Technical Information of China (English)

    付意成; 臧文斌; 董飞; 付敏; 张剑

    2016-01-01

    The establishment of non-point source pollutants output load model under the mode of rainfall-runoff and land use, the analog calculation of agricultural non-point source pollutants in the process of migration and transformation, and the systematic analysis of non-point source pollutants discharge quantity, distribution and composition characteristics are based on actual monitoring data, calibration and validation model, in consideration of underlying surface, hydrology and meteorology, and physical features of Huntai River basin. The areas 1 km away from each side of master stream Huntai River, Taizihe River and Daliaohe River and 5 km away from reservoir were defined as buffer zone, where the mode of land use was transformed so as to restore the natural ecosystem. The process of pollutant migration and conversion was simulated based on the calibration of key hydrological parameters, and the causes as well as the migratory features of non-point source pollution were investigated. The primary area of water environment pollution was mainly distributed along both sides of the water channel of the mainstreams of Huntai River. The point-source pollutant was mainly related to the distribution of industry and the amount of discharged wastewater. The risk of non-point pollution was mainly related to the pattern of agricultural plantation and farmland utilization. The secondary area of water environment pollution was mainly distributed along both sides of the water channel of tributaries. Therefore, the situation of pollutant production corresponding to the intra-regional regulation of industrial structure, land utilization pattern surrounding the water channel should be highlighted. The non-point pollution in Huntai watershed was dominated by farmland pollution, and the main indices of pollutants were total nitrogen (N) and total phosphorus (P). The contribution rate of pollutants was farmland runoff > livestock and poultry breeding > urban runoff > water and soil erosion

  7. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  8. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    Science.gov (United States)

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  9. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  10. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  11. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  12. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Wei, E-mail: wei@itc.nl; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: Black-Right-Pointing-Pointer Spatial dynamics of NPS phosphorus

  13. Pollution loads in urban runoff and sanitary wastewater.

    Science.gov (United States)

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  14. Pollution loads in urban runoff and sanitary wastewater

    International Nuclear Information System (INIS)

    Taebi, Amir; Droste, Ronald L.

    2004-01-01

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha·year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control

  15. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  16. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    Science.gov (United States)

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  17. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour

    Directory of Open Access Journals (Sweden)

    Ombretta Paladino

    2017-01-01

    Full Text Available A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA, and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy. 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.

  18. The History of Petroleum Pollution in Malaysia; Urgent Need for Integrated Prevention Approach

    OpenAIRE

    Mahyar Sakari

    2010-01-01

    Petroleum pollution is known as point and non-point source of contaminations in the environment. A major class of petroleum contaminant is groups of compounds consist of two or more fused benzene rings called polycyclic aromatic hydrocarbons (PAHs) that are carcinogenic, mutagenic and toxic. Source identification of petroleum pollution is necessary to prevent pollution entry into the environment. Eight sedimentary cores were obtained from developed and developing areas around Peninsular Malay...

  19. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  20. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  2. A chemometric approach to the evaluation of atmospheric and fluvial pollutant inputs in aquatic systems: The Guadalquivir River estuary as a case study

    International Nuclear Information System (INIS)

    Lopez-Lopez, Jose A.; Garcia-Vargas, Manuel; Moreno, Carlos

    2011-01-01

    To establish the quality of waters it is necessary to identify both point and non-point pollution sources. In this work, we propose the combination of clean analytical methodologies and chemometric tools to study discrete and diffuse pollution caused in a river by tributaries and precipitations, respectively. During a two-year period, water samples were taken in the Guadalquivir river (selected as a case study) and its main tributaries before and after precipitations. Samples were characterized by analysing nutrients, pH, dissolved oxygen, total and volatile suspended solids, carbon species, and heavy metals. Results were used to estimate fluvial and atmospheric inputs and as tracers for anthropic activities. Multivariate analysis was used to estimate the background pollution, and to identify pollution inputs. Principal Component Analysis and Cluster Analysis were used as data exploratory tools, while box-whiskers plots and Linear Discriminant Analysis were used to analyse and distinguish the different types of water samples. - Highlights: → Atmospheric and fluvial inputs of pollutants in Guadalquivir River were identified. → Point (tributary rivers) and non-point sources (rains) were studied. → Nature and extension of anthropogenic pollution in the river were established. - By combining trace environmental analysis and selected chemometric tools atmospheric and fluvial inputs of pollutants in rivers may be identified. The extension of the pollution originated by each anthropic activity developed along the River may be established, as well as the identification of the pollution introduced into the river by the tributary rivers (point sources) and by rains (non-point sources).

  3. DISCRIMINATION OF NATURAL AND NON-POINT SOURCE EFFECTS FROM ANTHROGENIC EFFECTS AS REFLECTED IN BENTHIC STATE IN THREE ESTUARIES IN NEW ENGLAND

    Science.gov (United States)

    In order to protect estuarine resources, managers must be able to discern the effects of natural conditions and non-point source effects, and separate them from multiple anthropogenic point source effects. Our approach was to evaluate benthic community assemblages, riverine nitro...

  4. Setting priorities for research on pollution reduction functions of agricultural buffers

    Science.gov (United States)

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  5. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    Science.gov (United States)

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  6. Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995

    Science.gov (United States)

    Owens, D.W.; Corsi, Steven R.; Rappold, K.F.

    1997-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss

  7. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  8. Environmental pollution and control, second edition

    International Nuclear Information System (INIS)

    Vesilind, P.A.; Peirce, J.J.

    1983-01-01

    Most of the problems, principles, and solutions are presented here in a non-biased, easy-to-read format. The language used is non-technical for the most part, and the inclusion of a complete glossary aids when some technical terms must be used. The text itself is supported by photographs, drawings, tables, and examples. Major Sections: Environmental Pollution, Water Pollution; Measurement of Water Quality; Water Supply; Water Treatment; Collection of Wastewater; Wastewater Treatment; Sludge Treatment and Disposal; Nonpoint Source Water Pollution; Water Pollution Law; Solid Waste; Solid Waste Disposal; Resource Recovery; Hazardous Waste; Radioactive Waste; Solid and Hazardous Waste Law; Air Pollution; Meteorology and Air Quality; Measurement of Air Quality; Air Pollution Control; Air Pollution Law; Noise Pollution; Noise Measurement and Control; Environmental Impact; The Environmental Ethic; Appendix: Conversion Factors; Glossary and Abbreviations; Index

  9. Reduction of non-point source contaminants associated with road-deposited sediments by sweeping.

    Science.gov (United States)

    Kim, Do-Gun; Kang, Hee-Man; Ko, Seok-Oh

    2017-09-19

    Road-deposited sediments (RDS) on an expressway, residual RDS collected after sweeping, and RDS removed by means of sweeping were analyzed to evaluate the degree to which sweeping removed various non-point source contaminants. The total RDS load was 393.1 ± 80.3 kg/km and the RDS, residual RDS, and swept RDS were all highly polluted with organics, nutrients, and metals. Among the metals studied, Cu, Zn, Pb, Ni, Ca, and Fe were significantly enriched, and most of the contaminants were associated with particles within the size range from 63 μm to 2 mm. Sweeping reduced RDS and its associated contaminants by 33.3-49.1% on average. We also measured the biological oxygen demand (BOD) of RDS in the present work, representing to our knowledge the first time that this has been done; we found that RDS contains a significant amount of biodegradable organics and that the reduction of BOD by sweeping was higher than that of other contaminants. Significant correlations were found between the contaminants measured, indicating that the organics and the metals originated from both exhaust and non-exhaust particles. Meanwhile, the concentrations of Cu and Ni were higher in 63 μm-2 mm particles than in smaller particles, suggesting that some metals in RDS likely exist intrinsically in particles, rather than only as adsorbates on particle surfaces. Overall, the results in this study showed that sweeping to collect RDS can be a good alternative for reduction of contaminants in runoff.

  10. Nonpoint Source: Urban Areas

    Science.gov (United States)

    Urbanization increases the variety and amount of pollutants carried into our nation's waters. Pavement and compacted landscapes do not allow rain and snow melt to soak into the ground. List of typical pollutants from Urban runoff.

  11. Stochastic Management of Non-Point Source Contamination: Joint Impact of Aquifer Heterogeneity and Well Characteristics

    Science.gov (United States)

    Henri, C. V.; Harter, T.

    2017-12-01

    Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and

  12. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2015-08-01

    Full Text Available Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  13. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  14. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  15. Stream nitrogen sources apportionment and pollution control scheme development in an agricultural watershed in eastern China.

    Science.gov (United States)

    Chen, Dingjiang; Lu, Jun; Huang, Hong; Liu, Mei; Gong, Dongqin; Chen, Jiabo

    2013-08-01

    A modeling system that couples a land-usebased export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major landuse categories as stream nitrogen sources in each subcatchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TNretention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L-1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.

  16. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  17. Regulación Óptima de Problemas de Contaminación Difusa

    OpenAIRE

    Guillermo Donoso

    1994-01-01

    Nonpoint sources of pollution have been receiving increasing attention in policy discussions. As progress is made in reducing emissions, from point sources of pollution, nonpoint sources account for growing shares of total pollution, so that further reduc

  18. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.

    Science.gov (United States)

    Ji, Xiaoliang; Xie, Runting; Hao, Yun; Lu, Jun

    2017-10-01

    Quantitative identification of nitrate (NO 3 - -N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H 2 O, δ 18 O-H 2 O, δ 15 N-NO 3 - , and δ 18 O-NO 3 - ) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO 3 - -N inputs from four potential NO 3 - -N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO 3 - -N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO 3 - -N pollution. The variations of the isotopic composition in NO 3 - -N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO 3 - -N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI 90 , to quantitatively characterize the uncertainties inherent in NO 3 - -N source apportionment and discussed the reasons behind the uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217

    Science.gov (United States)

    The Coastal Nonpoint Pollution Control Program (Section 6217) addresses nonpoint pollution problems in coastal waters.In its program, a state or territory describes how it will implement nonpoint source pollution controls, known as management measures.

  20. Total Nitrogen Sources of the Three Gorges Reservoir--A Spatio-Temporal Approach.

    Directory of Open Access Journals (Sweden)

    Chunping Ren

    Full Text Available Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world's third longest river, and impounded the famous Three Gorges Reservoir (TGR. In this study, we analyzed total nitrogen (TN concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR's total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River. Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence. TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.

  1. Emerging technologies to remove nonpoint phosphorus sources from surface water and groundwater

    NARCIS (Netherlands)

    Buda, A.R.; Koopmans, G.F.; Bryant, R.B.; Chardon, W.J.

    2012-01-01

    Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be

  2. 18O isotopic characterisation of non-point source contributed heavy metals (Zn and Cu) contamination of groundwater

    International Nuclear Information System (INIS)

    Datta, P.S.; Manjaiah, K.M.; Tyagi, S.K.

    1999-01-01

    In many urbanised areas, fast depletion and severe degradation of the of groundwater resource with contaminants such as nitrate, fluoride, and heavy metals is a common phenomenon, resulting in zonal disparity in fresh water availability. Therefore, for protection of groundwater from pollution and depletion, it is a matter of concern for the planners and decision makers to clearly characterise the sources of contamination and to search for an alternative approach for groundwater development and management. In this context, a new approach is presented here, based on monitoring of 18 O stable isotopic and heavy metals composition of groundwater, to clearly characterise non-point source contributed heavy metals pollution of groundwater in northern parts of Delhi area. In the investigated area, the Cu content in the groundwater ranges from 3-41 μg/l and Zn content ranges from 5-182 μg/l, showing considerable variation from location to location as well as within the small parts of a location. Wide variation in the 18 O stable isotope content of groundwater (δ value of -5.7 per mille to -8.5 per mille) is due to significant variation in the δ 18 O-contents of rainfall with space and time, as well as intensity and distribution of rainfall. Enrichment in 18 O composition with increasing Cu and Zn levels in groundwater suggest that infiltration of rain water, irrigation water and surface run-off water from the surrounding farm lands, along with agrochemicals and other salts present in the soil, to be the main processes causing groundwater contamination. The concentration of Cu and Zn in groundwater vary spatially, due to different degrees of evaporation/recharge, amounts of fertiliser applied and wastes disposed, adsorption/dispersion of species in the soils and lateral mixing of groundwater. Two opposite mechanisms adsorption and redistribution of infiltrating water along with Zn and Cu species in the soil zone are likely to affect the movement of the Zn and Cu species

  3. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Gårn Hansen, Lars

    2014-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...

  4. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  5. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    Science.gov (United States)

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High

  6. Toward quantifying water pollution abatement in response to installing buffers on crop land

    Science.gov (United States)

    Michael G. Dosskey

    2001-01-01

    The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to...

  7. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    Science.gov (United States)

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An economic optimal-control evaluation of achieving/maintaining ground-water quality contaminated from nonpoint agricultural sources

    International Nuclear Information System (INIS)

    Cole, G.V.

    1991-01-01

    This study developed a methodology that may be used to dynamically examine the producer/consumer conflict related to nonpoint agricultural chemical contamination of a regional ground-water resource. Available means of obtaining acceptable ground-water quality included pollution-prevention techniques (restricting agricultural-chemical inputs or changing crop-production practices) and end-of-pipe abatement methods. Objectives were to select an agricultural chemical contaminant, estimate the regional agricultural costs associated with restricting the use of the selected chemical, estimate the economic costs associated with point-of-use ground-water contaminant removal and determine the least-cost method for obtaining water quality. The nitrate chemical derived from nitrogen fertilizer was selected as the contaminate. A three-county study area was identified in the Northwest part of Tennessee. Results indicated that agriculture was financially responsible for obtaining clean point-of-use water only when the cost of filtering increased substantially or the population in the region was much larger than currently existed

  9. Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.

  10. Point Pollution Sources Dimensioning

    Directory of Open Access Journals (Sweden)

    Georgeta CUCULEANU

    2011-06-01

    Full Text Available In this paper a method for determining the main physical characteristics of the point pollution sources is presented. It can be used to find the main physical characteristics of them. The main physical characteristics of these sources are top inside source diameter and physical height. The top inside source diameter is calculated from gas flow-rate. For reckoning the physical height of the source one takes into account the relation given by the proportionality factor, defined as ratio between the plume rise and physical height of the source. The plume rise depends on the gas exit velocity and gas temperature. That relation is necessary for diminishing the environmental pollution when the production capacity of the plant varies, in comparison with the nominal one.

  11. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    Science.gov (United States)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  12. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    Science.gov (United States)

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  13. Environmental Education: Non-point Source Pollution

    Science.gov (United States)

    This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.

  14. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing.

    Science.gov (United States)

    Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian

    2013-03-01

    To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.

  16. Identification of petroleum pollution sources

    International Nuclear Information System (INIS)

    Begak, O.Yu.; Syroezhko, A.M.

    2001-01-01

    A possibility of preliminary identification of petroleum pollution sources was investigated on specimens of the Khanty-Mansi autonomous district six deposits and specimens of soil and water polluted by these petroleums. Investigations were conducted using IR Fourier spectroscopy and gamma spectrometry, as well as methods of chromato-mass spectrometry and capillary gas liquid chromatography. Every of studied samples of petroleum from different deposits have an individual radiation impression. Insignificant total content of radionuclides in samples is specific to the Khanty-Mansi petroleum region. Gamma spectrometry admits to identify potential source of petroleum pollution using radionuclides of uranium and thorium series [ru

  17. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China.

    Science.gov (United States)

    Liu, Shuguang; Lou, Sha; Kuang, Cuiping; Huang, Wenrui; Chen, Wujun; Zhang, Jianle; Zhong, Guihui

    2011-10-01

    Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    Science.gov (United States)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  19. Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database

    Directory of Open Access Journals (Sweden)

    Nancy de Castro Stoppe

    2014-12-01

    Full Text Available Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B2(3 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.

  20. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sources of pollution

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Sources of pollution. Domestic wastewater (Sewage). Organic matter; Nitrogen & phosphorus; Pathogens, viruses, …. Agricultural runoff. Nitrogen & phosphorus; Pesticides; Industrial effluents; Organics (oil &grease, pigments, phenols, organic matter ….) Heavy ...

  2. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  3. The air pollution: sources, effects, prevention

    International Nuclear Information System (INIS)

    Elichegaray, C.

    2008-01-01

    The author offers a detailed and illustrated panorama of the air pollution sources and effects. The study is realized at the individual scale with the indoor pollution and at a global scale with the consequences of the greenhouse effect gases. Added to classical pollutants, the book takes into account new pollutants (organic, nano particulates, biological) and the epidemiology. (A.L.B.)

  4. INTEGRATION OF RS/GIS FOR SURFACE WATER POLLUTION RISK MODELING. CASE STUDY: AL-ABRASH SYRIAN COASTAL BASIN

    Directory of Open Access Journals (Sweden)

    Y. Yaghi

    2017-09-01

    Full Text Available Recently the topic of the quality of surface water (rivers – lakes and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP and non-point Source pollution (NPSP. Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  5. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    Science.gov (United States)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  6. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    Science.gov (United States)

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES FOR WATER RESOURCE PROTECTION IN URBAN ENVIRONMENTS: PROCEEDINGS, CHICAGO, IL, FEBRUARY 9-12, 1998

    Science.gov (United States)

    Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previo...

  8. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  9. The History of Petroleum Pollution in Malaysia; Urgent Need for Integrated Prevention Approach

    Directory of Open Access Journals (Sweden)

    Mahyar Sakari

    2010-01-01

    Full Text Available Petroleum pollution is known as point and non-point source of contaminations in the environment. A major class of petroleum contaminant is groups of compounds consist of two or more fused benzene rings called polycyclic aromatic hydrocarbons (PAHs that are carcinogenic, mutagenic and toxic. Source identification of petroleum pollution is necessary to prevent pollution entry into the environment. Eight sedimentary cores were obtained from developed and developing areas around Peninsular Malaysia to investigate the historical profile of PAHs, their characteristics and its possible origins. The results showed that the PAHs concentrations varied from very minimum to 2400 ng/g d. w. in average quarter century intervals. Most of the studied locations showed high contribution of PAHs from combusted fuel, coal, biomasses and wood materials except for the southern part of Peninsular Malaysia in which revealed dominance of petroleum products. The findings indicate that PAHs are delivered from different intermediate materials such as asphalt, street dust, vehicular emission and crankcase oil. However, there has been a decline of PAHs input into the marine environment in recent years; petroleum is shown to be a significant cause of marine pollution since the second quarter of 20th century. An overview on sourced materials of petroleum pollution indicates multi-approach necessity toward pollution control, regardless of concentration and possible degradation processes. Various sectors both governmental and non-governmental are needed for prevention and control of petroleum pollution where different sources apparently contribute to the pollution generation process.

  10. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  11. Methodology for agricultural and rural NPS pollution in a typical county of the North China Plain

    International Nuclear Information System (INIS)

    Yang Yong; Chen Ying; Zhang Xiaolan; Ongley, Edwin; Zhao Lei

    2012-01-01

    Agricultural non-point source (NPS) pollution has been recently identified by the Chinese government as a major source of aquatic pollution. Methodologies commonly used to make basin-wide or area-wide assessments are problematic and regional distinctions have not been made relative to rainfall and runoff. Using a typical agricultural county in the Hai River basin of the North China Plan we developed methodology to estimate potential load and delivered load for crops (field crops + rice), animal production, rural living and from atmospheric N input. We use scenarios to allow for uncertainty in delivery to estimate the relative roles of different rural forms of pollution. Livestock raising is the major source of NPS pollution. Despite a 75% rural population, rural living contributes almost nothing to surface water pollution. While over-fertilization is typical, nutrient runoff from crops is low. Our results have implications for policies now under development for NPS control in China. - Highlights: ► Provides specific methods guidance for agricultural NPS assessment in China. ► Crops do not contribute significant N and P to watercourses in North China Plain. ► Rural living contributes almost no N and P to watercourses. ► Livestock is the only significant agricultural source of COD, N and P. - We address the methodology for agricultural NPS pollution assessment. We show that livestock, not rural living or crops, is the significant pollutant source.

  12. A simple laboratory project for introducing nonpoint source pollution concept to students of environmental and agricultural related courses Uma experiência laboratorial simples para introduzir o conceito de poluição disseminada a estudantes das áreas do ambiente e agricultura

    Directory of Open Access Journals (Sweden)

    M.M. Vidal

    2009-01-01

    Full Text Available This paper reports a simple laboratory project to introduce students to the nonpoint source pollution, which may be an issue of great interest to both undergraduate and graduate students of environmental or agricultural chemistry courses. The aim of this work is introduce to the students the concepts and techniques such as the polymericbased controlled release system of an agrochemical, theory of diffusion (first Fick law and spectrophotometric analysis. Thus, this laboratory project includes three experimental modules to be conducted during three weeks. Programmatic contents are described in this proceeding. Students must be aware that dissemination of nutrients and pesticides is prone to occur by both surface runoff and groundwater leaching, causing damages on all neighboring land. To demonstrate dissemination of such pollutants, we have chosen inorganic phosphorus as example of a common agrochemical. Students are invited to follow the eventual movement of the inorganic P into the groundwater. With this purpose, gelatin gels containing inorganic P were prepared to obtain a continuous release of inorganic P at a controlled rate. The slow release of P allows fewer applications and less active ingredient needed, helping to prevent leaching, with consequent reduction of groundwater contamination. At this point, students are able to compare the advantages of slow release inorganic P vs. its application by conventional methods.Este trabalho descreve uma experiência laboratorial simples para introduzir o conceito de poluição disseminada (nonpoint source pollution a estudantes do Ensino Secundário e Universitário das áreas de Ambiente e de Agricultura. O objectivo deste trabalho é introduzir aos estudantes conceitos e técnicas, tais como os sistemas de libertação controlada, a teoria da difusão (1ª lei de Fick e a análise espectrofotomética. Este projecto laboratorial inclui três módulos experimentais a serem efectuados durante 3

  13. Land use and water pollution in Puerto Rico

    International Nuclear Information System (INIS)

    Arbona, S.I.

    1991-01-01

    In Puerto Rico, previous water-quality analyses have indicated that most surface-water bodies, as well as ground water, are polluted with both organic and inorganic substances. Contributions to water-quality deterioration come from point and nonpoint sources. These pose a threat on a densely populated island. Urban and industrial development occurred rapidly with a lag in the required infrastructure for expansion. Water pollution has been a by-product of this process and is regarded as the most serious environmental problem on the island. This study examines water-quality parameters in three hydrological basins. It attempts to determine how extensive a problem it is and how the concentration of pollutants compare in different land-use situations. A total of 33 sampling sites distributed among the three watersheds was chosen. Fifteen water-quality parameters were examined. All of the water bodies in spatial association with the land use considered presented detectable concentrations of the selected water-quality parameters

  14. New source review for stationary sources of air pollution

    National Research Council Canada - National Science Library

    Committee on Changes in New Source Review Programs for Stationary Sources of Air Pollution, National Research Council

    2006-01-01

    The Clean Air Act established a pair of programsâ€"known as New Source Review (NSR)â€"that regulate large stationary sources of air pollution, such as factories and electricity-generating facilities...

  15. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    Science.gov (United States)

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of

  16. Economic total maximum daily load for watershed-based pollutant trading.

    Science.gov (United States)

    Zaidi, A Z; deMonsabert, S M

    2015-04-01

    Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.

  17. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    Science.gov (United States)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  19. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  20. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  1. Water Quality Trading when Nonpoint Pollution Loads are Stochastic

    OpenAIRE

    Ghosh, Gaurav; Shortle, James

    2009-01-01

    We compare two tradable permit markets in their ability to meet a stated environmental target at least cost when some polluters have stochastic and non-measurable emissions. The environmental target is of the safety-first type, which requires probabilistic emissions control. One market is built around the trading ratio, which defines the substitution rate between stochastic and deterministic pollution, and is modeled on existing markets for water quality trading. The other market is built aro...

  2. Identifiability and Identification of Trace Continuous Pollutant Source

    Directory of Open Access Journals (Sweden)

    Hongquan Qu

    2014-01-01

    Full Text Available Accidental pollution events often threaten people’s health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.

  3. Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment.

    Science.gov (United States)

    Morrison, Katherine D; Kolden, Crystal A

    2015-03-15

    Wildfire is a common disturbance that can significantly alter vegetation in watersheds and affect the rate of sediment and nutrient transport to adjacent nearshore oceanic environments. Changes in runoff resulting from heterogeneous wildfire effects are not well-understood due to both limitations in the field measurement of runoff and temporally-limited spatial data available to parameterize runoff models. We apply replicable, scalable methods for modeling wildfire impacts on sediment and nonpoint source pollutant export into the nearshore environment, and assess relationships between wildfire severity and runoff. Nonpoint source pollutants were modeled using a GIS-based empirical deterministic model parameterized with multi-year land cover data to quantify fire-induced increases in transport to the nearshore environment. Results indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 percent and total suspended solids (TSS) by 53 percent above pre-fire years. Higher wildfire severity was associated with the greater increase in exports of pollutants and sediment to the nearshore environment, primarily resulting from the conversion of forest and shrubland to grassland. This suggests that increasing wildfire severity with climate change will increase potential negative impacts to adjacent marine ecosystems. The approach used is replicable and can be utilized to assess the effects of other types of land cover change at landscape scales. It also provides a planning and prioritization framework for management activities associated with wildfire, including suppression, thinning, and post-fire rehabilitation, allowing for quantification of potential negative impacts to the nearshore environment in coastal basins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  5. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    Science.gov (United States)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  6. Annotated Bibliography of Law-Related Pollution Prevention Sources.

    Science.gov (United States)

    Lynch, Holly; Murphy, Elaine

    This annotated bibliography of law-related pollution prevention sources was prepared by the National Pollution Prevention Center for Higher Education. Some topics of the items include waste reduction, hazardous wastes, risk reduction, environmental policy, pollution prevention, environmental protection, environmental leadership, environmental…

  7. A source classification framework supporting pollutant source mapping, pollutant release prediction, transport and load forecasting, and source control planning for urban environments

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Donner, Erica; Wickman, Tonie

    2012-01-01

    for this purpose. Methods Existing source classification systems were examined by a multidisciplinary research team, and an optimised SCF was developed. The performance and usability of the SCF were tested using a selection of 25 chemicals listed as priority pollutants in Europe. Results The SCF is structured...... in the form of a relational database and incorporates both qualitative and quantitative source classification and release data. The system supports a wide range of pollution monitoring and management applications. The SCF functioned well in the performance test, which also revealed important gaps in priority...

  8. The Sources of Air Pollution and Their Control.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  9. Integrated Watershed Pollution Control at Wujingang Canal, China

    Science.gov (United States)

    Zheng, Z.; Yang, X.; Luo, X.

    2012-04-01

    With a drainage area of 400 square kilometers, Wujingang Canal is located at the economically developed Yangtz Delta of eastern China. As a major tributary, the canal contributes a significant amount of pollutant load to the Lake Tai. Over the past many years, water quality of the canal and its tributaries could not meet the lowest Category V of Chinese surface water quality standard, indicating that its water is not suitable for the purposes of irrigation or scenic views. Major pollution sources in the watershed include industries, residential households, agriculture, fishery, and animal feedlot operations. A comprehensive plan with a budget of 2 billion RMB for the Wujingang watershed pollution control was developed in 2008 and has been implemented progressively ever since. Major components of the plan include: (1) advanced treatment of wastewater from industries and municipal sewage plants for further removal of nitrogen and phosphorous; (2) industrial wastewater reuse; (3) contiguous treatment of sewage from rural residential households with cost-effective technologies such as tower ecofilter system; (4) recycling of rural wastes to generate high-value added products using technologies such as multi-phase anaerobic co-digestion; and (5) making full use of the local landscape and configuring physical, chemical, and biological pollutant treatment structures to build the "clean river network" for treatment of mildly polluted agricultural discharge and surface runoff. Through the implementation of the above measures, water quality of the Wujingang Canal and its tributaries is expected to improve to meet Category IV of Chinese surface water quality standard by 2012, and Category III standard by 2020. Keywords watershed pollution control, non-point source pollution, rural sewage, rural waste, Lake Tai

  10. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  11. Chemometric Analysis for Pollution Source Assessment of Harbour Sediments in Arctic Locations

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2015-01-01

    Pollution levels, pollutant distribution and potential source assessments based on multivariate analysis (chemometrics) were made for harbour sediments from two Arctic locations; Hammerfest in Norway and Sisimiut in Greenland. High levels of heavy metals were detected in addition to organic...... pollutants. Preliminary assessments based on principal component analysis (PCA) revealed different sources and pollutant distribution in the sediments of the two harbours. Tributyltin (TBT) was, however, found to originate from point source(s), and the highest concentrations of TBT in both harbours were...... indicated relation primarily to German, Russian and American mixtures in Hammerfest; and American, Russian and Japanese mixtures in Sisimiut. PCA was shown to be an important tool for identifying pollutant sources and differences in pollutant composition in relation to sediment characteristics....

  12. Environmental Radioactive Pollution Sources and Effects on Man

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1999-01-01

    The sources of environmental radioactivity are essentially the naturally occurring radionuclides in the earth,s crust and the cosmogenic radionuclides reaching the environmental ecosystems. The other sources of environmental radioactivity are the man made sources which result from the radioactive materials in human life. The naturally occurring environmental radioactivity is an integral component of the terrestrial and extraterrestrial creation, and therefore it is not considered a source of radioactive pollution to the environment. The radioactive waste from human activities is released into the environment, and its radionuclide content becomes incorporated into the different ecosystems. This results in a situation of environmental radioactive pollution. This review presents the main features of environmental radioactive pollution, the radionuclide behaviour in the ecosystems, pathway models of radionuclides in the body and the probability of associated health hazards. The dose effect relationship of internal radiation exposure and its quantitative aspects are considered because of their relevance to this subject

  13. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  14. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  15. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    Science.gov (United States)

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  16. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  17. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  18. Pollution Sources in the nile and their environmental impacts

    International Nuclear Information System (INIS)

    Abd El- Bary, M.R.

    1999-01-01

    Over the past decades , the natural quality of water sources has been altered by the impact of various human activities and water uses. In Egypt, the Nile River which is considered as the main water source is still a recipient of most of the wastewater discharged by industrial effluents and several agriculture drains contains mixed wastes (sewage and industrial). These wastes includes a variety of pollutants which have considerable potential effect on both water ecosystem and human health. Monitoring of these pollutant is the first step for the improvement and protection of the Nile River .The Nile Research Institute designed a monitoring program includes collection and analysis of samples from 35 stations along the Nile River from Aswan to the Mediterranean Sea and from all points sources of pollution discharge their wastes into the Nile. The most important pollutant in these wastes are heavy metals, organic matters, inorganic compounds and micro organism causing disease

  19. Light sources and light pollution

    International Nuclear Information System (INIS)

    Pichler, G.

    2005-01-01

    From the dawn of mankind fire and light sources in general played an essential role in everyday life and protection over night. The development of new light sources went through many stages and is now an immense technological achievement, but also a threat for the wildlife at night, mainly because of the so-called light pollution. This paper discusses several very successful light sources connected with low pressure mercury and sodium vapour electric discharges. The luminous efficacy, colour rendering index and other lighting features cannot be always satisfactory, but at least some of the features can be much better than those met by the standard tungsten filament bulbs. High-pressure metal-vapour discharge lamps definitely have a good colour rendering index and a relatively high luminosity. Different light sources with burners at high pressure are discussed, paying special attention to their spectrum. The paper investigates new trends in development through a number of examples with non-toxic elements and pulsed electric discharge, which may be good news in terms of clean environment and energy savings. Light emitting diodes have recently appeared as worthy competitors to conventional light sources. White LEDs have approached 100 lumen/Watt efficacy in laboratories. This suggests that in some not very distant future they could completely replace high-pressure lamps, at least in indoor lighting. The article speculates on new developments which combine trends in nano technology and material science. The paper concludes with light pollution in view of several recent observations of plant and animal life at night in the vicinity of strong light sources. Photo-induced changes at the cell level may completely alter the normal life of plants and animals.(author)

  20. Air pollution sources, impact and monitoring

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1999-01-01

    Improper management of socio-economic developmental activities has put a great stress on natural resources and eco-systems and has caused environmental degradation. Indiscriminate release of toxic substances into the atmosphere from power generation, industrial operations, transportation, incineration of waste and other operations has affected the quality of ambient air. Combustion of fossil fuel results in the emission of oxides of carbon, sulfur and nitrogen, particulate and organic compounds which affect the local, regional and global environment. Industrial operations release a wide variety of pollutants which directly affect the local environment. Operation of automobiles releases oxides of carbon, sulfur and nitrogen, hydrocarbons, traces of heavy metals and toxic polycyclic aromatic compounds whereas incineration of municipal waste releases particulate, acid fumes and photochemically reactive and odorous compounds. These air pollutants have varying impacts on health and environment. The intake of polluted air may produce various physiological disorders ranging from respiratory diseases to changes in blood chemistry. Therefore, the emission of pollutants should be controlled at the source and monitoring the levels of pollution should assess the quality of air. (author)

  1. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  2. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China.

    Science.gov (United States)

    Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei; Tian, Di

    2010-11-15

    Pollutant washoff from road-deposited sediment (RDS) is an increasing problem associated with the rapid urbanization of China that results in urban non-point source pollution. Here, we analyzed the RDS grain size distribution and its potential impact on heavy metal pollution in urban runoff from impervious surfaces of urban villages, colleges and residences, and main traffic roads in the Haidian District, Beijing, China. RDS with smaller grain size had a higher metal concentration. Specifically, particles with the smallest grain size (runoff water accounted for greater than 70% of the metal mass in the total suspended solids (TSS). The heavy metal content in the TSS was 2.21-6.52% of that in the RDS. These findings will facilitate our understanding of the importance of RDS grain size distribution in heavy metal pollution caused by urban storm runoff. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    International Nuclear Information System (INIS)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-01-01

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  4. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Japenga, Jan; Deng, Meihua [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xeyang@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2015-12-15

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  5. Preliminary preview for a geographic and monitoring program project; a review of point source-nonpoint source effluent trading/offset systems in watersheds

    Science.gov (United States)

    Wood, Alexander Warren; Bernknopf, Richard L.

    2003-01-01

    Watershed-based trading and offset systems are being developed to improve policy-maker?s and regulator?s ability to assess nonpoint source impacts in watersheds and to evaluate the efficacy of using market-incentive programs for preserving environmental quality. An overview of the history of successful and failed trading programs throughout the United States suggests that certain political, economic, and scientific conditions within a temporal and spatial setting help meet water quality standards. The current lack of spontaneous trading among dischargers does not mean that a marketable permit trading system is an inherently inefficient regulatory approach. Rather, its infrequent use is the result of institutional and informational barriers. Improving and refining the earth science information and technologies may help determine whether trading is a suitable policy for improving water quality. However, it is debatable whether or not environmental information is the limiting factor. This paper reviews additional factors affecting the potential for instituting a trading policy. The motivation for investigating and reviewing the history of offsets and trading was inspired by a project in the preliminary stages being developed by U.S. Geological Survey Western Geographic Science Center and the Environmental Protection Agency Region IX. An offset feasibility study will be an integrated, map-based approach that incorporates environmental, economic, and statistical information to investigate the potential for using offsets to meet mercury Total Maximum Daily Loads in the Sacramento River watershed. A regional water-quality offset program is being studied that may help known point sources reduce mercury loading more cost effectively by the remediation of abandoned mines or other diffuse sources as opposed to more costly treatment at their own sites. An efficient offset program requires both a scientific basis and methods to translate that science into a regulatory decision

  6. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies.

    Science.gov (United States)

    Krall, Jenna R; Ladva, Chandresh N; Russell, Armistead G; Golan, Rachel; Peng, Xing; Shi, Guoliang; Greenwald, Roby; Raysoni, Amit U; Waller, Lance A; Sarnat, Jeremy A

    2018-01-03

    Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.

  7. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    Science.gov (United States)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  8. Land-based sources of pollution and environmental quality of Weija ...

    African Journals Online (AJOL)

    A survey of land-based sources of pollution was undertaken in the catchment area of Weija Lake. Activities that may influence the quality of the environment, and the sources, amounts and effects of the pollution of the water body were assessed. Water and precipitation chemistry showed that Na:Ca (0.48) and Na:K (2.0) ...

  9. Air pollution in Australia: review of costs, sources and potential solutions.

    Science.gov (United States)

    Robinson, Dorothy L

    2005-12-01

    Estimated health costs and principal sources of air pollution are reviewed, together with estimated costs of reducing pollution from major sources in Australia. Emissions data from the Australian National Pollutant Inventory were compared with published estimates of pollution costs and converted to the cost per kilogram of emissions. Costs per kg of emissions (and, for the two main sources of pollution, diesel vehicles and wood heaters, costs per heater and per vehicle) are relatively easy to understand, making it easier to compare health costs with costs of pollution-control strategies. Estimated annual costs of morbidity/mortality exceed $1,100 per diesel vehicle and $2,000 per wood heater. Costs of avoiding emissions (about $2.1/kg PM2.5 for phasing out wood heaters and upwards of $70/kg for reducing diesel emissions) are considerably less than the estimated health costs ($166/kg) of those emissions. In other countries, smokeless zones (for domestic heating), heavy vehicle low-emission zones, and lower registration charges for low-emission vehicles reduce pollution and improve health. Similar 'polluter-pays' taxes in Australia to encourage retrofitting of existing diesels and incentives to choose new ones with lowest emissions would provide substantial benefits. Adopting Christchurch's policy of phasing out wood heaters and 'polluter-pays' levies to discourage their use would be extremely cost-effective.

  10. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  11. Variations of pollution sources of Cu in Jiaozhou Bay 1982-1986

    Science.gov (United States)

    Yang, Dongfang; Li, Haixia; Wang, Qi; Ding, Jun; Zhang, Longlei

    2017-12-01

    Cu pollution in marine bays has been one of the critical environmental issues in the whole world, and understanding the variations of the pollution sources is essential to environmental protection. This paper identified the sources of Cu in Jiaozhou Bay during 1982-1986, and revealed the variations of the sources. Results showed that there were five Cu sources during study years including marine current, stream flow, island top, overland runoff and marine traffic, respectively, whose source strengths were varying from 0.39-20.60 μg L-1, 0.37-10.57 μg L-1, 0.77-4.86 μg L-1, 2.28-3.56 μg L-1, 9.48 μg L-1, respectively. These findings were helpful information in decision-making of pollution control and environmental remediation practice.

  12. On the use of coprostanol to identify source of nitrate pollution in groundwater

    Science.gov (United States)

    Nakagawa, Kei; Amano, Hiroki; Takao, Yuji; Hosono, Takahiro; Berndtsson, Ronny

    2017-07-01

    Investigation of contaminant sources is indispensable for developing effective countermeasures against nitrate (NO3-) pollution in groundwater. Known major nitrogen (N) sources are chemical fertilizers, livestock waste, and domestic wastewater. In general, scatter diagrams of δ18O and δ15N from NO3- can be used to identify these pollution sources. However, this method can be difficult to use for chemical fertilizers and livestock waste sources due to the overlap of δ18O and δ15N ranges. In this study, we propose to use coprostanol as an indicator for the source of pollution. Coprostanol can be used as a fecal contamination indicator because it is a major fecal sterol formed by the conversion of cholesterol by intestinal bacteria in the gut of higher animals. The proposed method was applied to investigate NO3- pollution sources for groundwater in Shimabara, Nagasaki, Japan. Groundwater samples were collected at 33 locations from March 2013 to November 2015. These data were used to quantify relationships between NO3-N, δ15N-NO3-, δ18O-NO3-, and coprostanol. The results show that coprostanol has a potential for source identification of nitrate pollution. For lower coprostanol concentrations (conventional diagrams of isotopic ratios cannot distinguish pollution sources, coprostanol may be a useful tool.

  13. Identification of Pollution Patterns and Sources in a Semi-Arid Urban Stream

    Directory of Open Access Journals (Sweden)

    Vassiliki Markogianni

    2018-03-01

    Full Text Available The impact and occurrence of human-induced pollution sources have been investigated in one of the few remaining urban streams located in Attica, Greece. Baseline information is provided on the presence and concentration of physicochemical parameters, nutrients, total coliforms, hydrocarbons and phenols in 12 key points along the Pikrodafni stream. The aim was to evaluate the relative importance of key water quality variables and their sources. Indicator substances (i.e. concentrations of nitrate, ammonium, phosphate and total coliforms in certain stations indicating wastewater exposure; PAHs indicating petroleum sources successfully related the water quality variables to pollution sources. Furthermore, a pollution pressure map has been developed with the activities identified from in-situ visits and Google Earth surveys, while the statistical analysis (CA and PCA has contributed to the further exploration of the relative magnitude of pollution sources effects. Our results underline initially the importance of diffuse pollution management accompanied by the necessity for continuous environmental monitoring and the application of legal and environmental restoration actions if water quality is to be improved according to WFD 2000/60/EC.

  14. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.

    Science.gov (United States)

    Lin, C E; Kao, C M; Lai, Y C; Shan, W L; Wu, C Y

    2009-11-01

    In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the

  15. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    Science.gov (United States)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  16. Assessing the Hydrologic Performance of the EPA's Nonpoint Source Water Quality Assessment Decision Support Tool Using North American Land Data Assimilation System (Products)

    Science.gov (United States)

    Lee, S.; Ni-Meister, W.; Toll, D.; Nigro, J.; Guiterrez-Magness, A.; Engman, T.

    2010-01-01

    The accuracy of streamflow predictions in the EPA's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) decision support tool is affected by the sparse meteorological data contained in BASINS. The North American Land Data Assimilation System (NLDAS) data with high spatial and temporal resolutions provide an alternative to the NOAA National Climatic Data Center (NCDC)'s station data. This study assessed the improvement of streamflow prediction of the Hydrological Simulation Program-FORTRAN (HSPF) model contained within BASINS using the NLDAS 118 degree hourly precipitation and evapotranspiration estimates in seven watersheds of the Chesapeake Bay region. Our results demonstrated consistent improvements of daily streamflow predictions in five of the seven watersheds when NLDAS precipitation and evapotranspiration data was incorporated into BASINS. The improvement of using the NLDAS data is significant when watershed's meteorological station is either far away or not in a similar climatic region. When the station is nearby, using the NLDAS data produces similar results. The correlation coefficients of the analyses using the NLDAS data were greater than 0.8, the Nash-Sutcliffe (NS) model fit efficiency greater than 0.6, and the error in the water balance was less than 5%. Our analyses also showed that the streamflow improvements were mainly contributed by the NLDAS's precipitation data and that the improvement from using NLDAS's evapotranspiration data was not significant; partially due to the constraints of current BASINS-HSPF settings. However, NLDAS's evapotranspiration data did improve the baseflow prediction. This study demonstrates the NLDAS data has the potential to improve stream flow predictions, thus aid the water quality assessment in the EPA nonpoint water quality assessment decision tool.

  17. Establishing strategies for a transportation MS4 : [technology transfer summary].

    Science.gov (United States)

    2015-05-01

    The National Pollutant Discharge Elimination System (NPDES) was established by the U.S. : Environmental Protection Agency as a means of addressing surface pollution from both known : (point) and non-specific (non-point) sources. The program impacts i...

  18. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China

    International Nuclear Information System (INIS)

    Tang, Rongli; Ma, Keming; Zhang, Yuxin; Mao, Qizheng

    2013-01-01

    . Locations identified as clusters with high values indicated non-point source pollution, while locations identified as outliers with high values indicated point source pollution. Traffic, construction, and other human activities influenced these high values. In addition, the locations identified as outliers with low values in urban areas might benefit from less transportation and better management

  19. Livestock Production and its Impact on Nutrient Pollution and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Sakadevan, K.; Nguyen, M.L.

    2016-01-01

    The livestock sector provides more than one third of human protein needs and is a major provider of livelihood in almost all developing countries. While providing such immense benefits to the population, poor livestock management can potentially provide harmful environmental impacts at local, regional and national levels which have not been adequately addressed in many countries with emerging economies. Twenty six percent of global land area is used for livestock production and forest lands are continuously being lost to such production. The intensification of livestock production led to large surpluses of nitrogen and phosphorus at the farm in many parts of the world with non-point source pollution of water resources that became a national concern. The sector is one of the largest sources of greenhouse gases (GHG) contributing around 14.5% of all human induced GHG emissions, a major driver of use and pollution of freshwater (accounting 10% anthropogenic water use) and contributed to the loss of biodiversity. About 60% of global biomass harvested annually to support all human activity is consumed by livestock industry, undermining the sustainability of allocating such large resource to the industry.

  20. Health effects and sources of indoor air pollution. Part I

    International Nuclear Information System (INIS)

    Samet, J.M.; Marbury, M.C.; Spengler, J.D.

    1987-01-01

    Since the early 1970s, the health effects of indoor air pollution have been investigated with increasing intensity. Consequently, a large body of literature is now available on diverse aspects of indoor air pollution: sources, concentrations, health effects, engineering, and policy. This review begins with a review of the principal pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered, with an emphasis on those indoor air quality problems of greatest concern at present: passive exposure to tobacco smoke, nitrogen dioxide from gas-fueled cooking stoves, formaldehyde exposure, radon daughter exposure, and the diverse health problems encountered by workers in newer sealed office buildings. The review concludes by briefly addressing assessment of indoor air quality, control technology, research needs, and clinical implications. 243 references

  1. Assessment of the impact of point source pollution from the ...

    African Journals Online (AJOL)

    Assessment of the impact of point source pollution from the Keiskammahoek Sewage ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... Also, significant pollution of the receiving Keiskamma River was indicated for ...

  2. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda

    2013-01-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m 3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m 3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  3. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  4. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    International Nuclear Information System (INIS)

    Gaudio, P; Gelfusa, M; Malizia, A; Parracino, S; Richetta, M; De Leo, L; Perrimezzi, C; Bellecci, C

    2015-01-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas.The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules.The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign. (paper)

  5. Characterization and indentification of air pollution sources in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Racho, Joseph Michael D.; Morco, Ryan P.; Bautista VII, Angel T.; Bucal, Camille Grace D.

    2010-01-01

    Air particulates matter (PM 1 0 and PM 2 .5) is a mixture of different pollutant sources which can be of anthropogenic and/or natural origin. Identification and apportionment of pollutant sources is important to be able to have better understanding of prevailing conditions in the area and thus better air quality management can be applied. Results have shown that in all the sampling sites, a major fraction of pollutant sources come from vehicular or traffic-oriented sources, comprising more than 30% of PM 2 .5. Of particular great concern especially in the residents of the area are the high Pb levels in Valenzuela City. In 2005, the annual mean level of PM 1 0 Pb in Valenzuela was 0.267 μg/m 3 while the other PNRI sampling sites registered annual mean levels between 0033 to 0.085 μ/m 3 . The high Pb condition is reflected in the source apportionment studies with Pb sources showing up in both the coarse (PM 1 0-2.5) and the fine fractions (PM 2 .5). The CPF analysis plots of 2008 Pb levels in both the coarse and the fine fractions show patterns for probable sources in 2008. Further study of the location of battery recycling facilities and other possible sources of lead is needed to validate the results of the CPF determination. (author)

  6. Laser Gas-Analyser for Monitoring a Source of Gas Pollution

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available Currently, the problem of growing air pollution of the Earth is of relevance. Many countries have taken measures to protect the environment in order to limit the negative anthropogenic impacts.In such a situation an objective information on the actual content of pollutants in the atmosphere is of importance. For operational inspection of the pollutant concentrations and for monitoring pollution sources, it is necessary to create high-speed high-sensitivity gas analysers.Laser meters are the most effective to provide operational remote and local inspection of gas pollution of the Earth atmosphere.Laser meter for routine gas analysis should conduct operational analysis of the gas mixture (air. For this a development of appropriate information support is required.Such information support should include a database with absorption coefficients of pollutants (specific to potential sources of pollution at possible measuring wavelengths (holding data for a particular emitter of the laser meter and an efficient algorithms to search the measuring wavelengths and conduct a quantitative analysis of gas mixtures.Currently, the issues, important for practice and related to the development of information support for the laser gas analyzer to conduct important for practice routine measurements remain unclear.In this paper we develop an algorithm to provide an operational search of the measuring wavelengths of laser gas analyser and an algorithm to recover quantitively the gaseous component concentrations of controlled gas mixture from the laser multi-spectral measurements that take into account a priori information about the source-controlled gas pollution and do not require a large amount of computation. The method of mathematical simulation shows the effectiveness of the algorithms described both for seach of measuring wavelengths and for quantitative analysis of gas releases.

  7. Landsat change detection can aid in water quality monitoring

    Science.gov (United States)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  8. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  9. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  10. Applications of lead isotope rations for identification and apportionment on pollution sources in food

    International Nuclear Information System (INIS)

    Zhao Duoyong; Wei Yimin; Guo Boli; Wei Shuai

    2011-01-01

    Lead is one of the toxic heavy metals which can accumulate to an adverse effect level in human bodies through ingestion, inhalation or other pathways. Because of the persistent lead contamination in farmland environment, large risk exists in the primary stage of 'from farm to table' chain. Environmental media such as soils, atmospheric aerosols were the possible lead sources of agro-food. To pinpoint the pollution sources exactly, cut off the contamination pathways in time, and reduce the risk of hazard, pollution sources tracing was very important. Lead isotope ratio combined with certain models is an effective method to discriminate correctly pollution sources and calculate the individual source contributions. In this review, to provide theoretical and technical reference for controlling lead pollution in environment and food, lead pollution sources in food, tracing principle and methods of lead isotope ratios, and its applications on vegetable, tea, wine, cereal and other food products were concerned. (authors)

  11. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  12. Mobile source pollution control in the United States and China

    International Nuclear Information System (INIS)

    Menz, Fredric C

    2002-01-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  13. Mobile source pollution control in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Menz, Fredric C

    2002-07-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  14. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    Science.gov (United States)

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  15. An Analysis of Air Pollution in Makkah - a View Point of Source Identification

    Directory of Open Access Journals (Sweden)

    Turki M. Habeebullah

    2013-07-01

    Full Text Available Makkah is one of the busiest cities in Saudi Arabia and remains busy all year around, especially during the season of Hajj and the month of Ramadan when millions of people visit this city. This emphasizes the importance of clean air and of understanding the sources of various air pollutants, which is vital for the management and advanced modeling of air pollution. This study intends to identify the major sources of air pollutants in Makkah, near the Holy Mosque (Al-Haram using a graphical approach. Air pollutants considered in this study are nitrogen oxides (NOx, nitrogen dioxide (NO2, nitric oxide (NO, carbon monoxide (CO, sulphur dioxide (SO2, ozone (O3 and particulate matter with aero-dynamic diameter of 10 um or less (PM10. Polar plots, time variation plots and correlation analysis are used to analyse the data and identify the major sources of emissions. Most of the pollutants demonstrate high concentrations during the morning traffic peak hours, suggesting road traffic as the main source of emission. The main sources of pollutant emissions identified in Makkahwere road traffic, re-suspended and windblown dust and sand particles. Further investigation on detailedsource apportionment is required, which is part of the ongoing project.

  16. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model

    Science.gov (United States)

    Due to intensive farm practices, nonpoint-source (NPS) pollution has become one of the most challenging environmental problems in agricultural and mixed land use watersheds. Usually, various conservation practices are implemented in the watershed to control the NPS pollution problem. However, land u...

  17. 40 CFR 122.44 - Establishing limitations, standards, and other permit conditions (applicable to State NPDES...

    Science.gov (United States)

    2010-07-01

    ... procedures which account for existing controls on point and nonpoint sources of pollution, the variability of... ocean discharges; (8) Incorporate alternative effluent limitations or standards where warranted by... identified in a storm water pollution prevention plan are adequate and properly implemented in accordance...

  18. Assessment of air, water and land-based sources of pollution in the ...

    African Journals Online (AJOL)

    A quantitative assessment of air, water and land-based sources of pollution to the coastal zone of the Accra-Tema Metropolitan Area of Ghana was conducted by making an emission inventory from information on industrial, commercial and domestic activities. Three sources of air pollution were analysed, viz, emission from ...

  19. Land use change detection with LANDSAT-2 data for monitoring and predicting regional water quality degradation. [Arkansas

    Science.gov (United States)

    Macdonald, H.; Steele, K. (Principal Investigator); Waite, W.; Rice, R.; Shinn, M.; Dillard, T.; Petersen, C.

    1977-01-01

    The author has identified the following significant results. Comparison between LANDSAT 1 and 2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing LANDSAT change detection analyses.

  20. A Study on Water Pollution Source Localization in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-01-01

    Full Text Available The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments finally. The results show that the detection method using hypotheses testing is more stable. The performance of the coarse localization algorithm depends on the nodes density. The localization based on the diffusion model can yield precise localization results; however, the results are not stable. The localization method based on the contour is better than the other two localization methods when the concentration contours are axisymmetric. Thus, in the water pollution source localization, the detection using hypotheses testing is more preferable in the source detection step. If concentration contours are axisymmetric, the localization method based on the contour is the first option. And, in case the nodes are dense and there is no explicit diffusion model, the coarse localization algorithm can be used, or else the localization based on diffusion models is a good choice.

  1. Lead isotopes as an environmental indicator of pollution sources

    International Nuclear Information System (INIS)

    Aaberg, G.; Pacyna, J.; Stray, H.

    1997-02-01

    An interesting question when determining and quantifying pollution is the characterisation of the sources. Also, is the pollution locally derived or is it longtransported? Analyses of Pb isotope ratios and Pb concentrations on airfilter from Oslo, Norway, together with analyses of coal of different origin and wood, show that the decrease in total Pb in the first half of the 1990's is not due only to the reduction of leaded petrol but that there are other important sources for the pollution which have been cut down. The reduction in emissions from coal burning in Europe can be seen on airfilter from Oslo and also the following reduction in leaded petrol. An isotopic study of lead on airfilter from the countryside outside Oslo implies that the finer particles have been atmospherically long transported while the coarser particles are of a more local origin, e.g. from domestic burning of wood. The above results show that the use of a natural isotopic system like Pb is a powerful tool for e.g. the determination of pollution, routes of its transportation, for the monitoring of processes of the present, and for provenance determinations. 7 refs., 8 figs., 2 tabs

  2. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  3. Identifying the contribution of different urban highway air pollution sources

    International Nuclear Information System (INIS)

    Peace, H.; Owen, B.; Raper, D.W.

    2004-01-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km 2 area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations

  4. Identifying the contribution of different urban highway air pollution sources.

    Science.gov (United States)

    Peace, H; Owen, B; Raper, D W

    2004-12-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km(2) area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations.

  5. Correlation between co-exposures to noise and air pollution from traffic sources.

    NARCIS (Netherlands)

    Davies, H.W.; Vlaanderen, J.J.; Henderson, S.E.; Brauer, M.

    2009-01-01

    BACKGROUND: Both air and noise pollution associated with motor vehicle traffic have been associated with cardiovascular disease. Similarities in pollution source and health outcome mean that there is potential for noise to confound studies of air pollution and cardiovascular disease, and vice versa,

  6. 78 FR 59345 - Proposed Information Collection Request; Comment Request; Modification of Secondary Treatment...

    Science.gov (United States)

    2013-09-26

    ... Secondary Treatment Requirements for Discharges into Marine Waters (Renewal)'' (EPA ICR No. 0138.09, OMB... additional treatment, pollution control, or any other requirement for any other point or nonpoint sources... determine if the applicant's discharge will result in additional treatment, pollution control, or any other...

  7. Revealing transboundary and local air pollutant sources affecting Metro Manila through receptor modeling studies

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Bautista VII, Angel T.; Santos, Flora L.; Racho, Joseph Michael D.

    2011-01-01

    Ambient fine particulate matter (PM 2 .5) levels at the Metro Manila air sampling stations of the Philippine Nuclear Research Research Institute were found to be above the WHO guideline value of 10 μg m 3 indicating, in general, very poor air quality in the area. The elemental components of the fine particulate matter were obtained using the energy-dispersive x-ray fluorescence spectrometry. Positive matrix factorization, a receptor modelling tool, was used to identify and apportion air pollution sources. Location of probable transboundary air pollutants were evaluated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) while location of probable local air pollutant sources were determined using the conditional probability function (CPF). Air pollutant sources can either be natural or anthropogenic. This study has shown natural air pollutant sources such as volcanic eruptions from Bulusan volcano in 2006 and from Anatahan volcano in 2005 to have impacted on the region. Fine soils was shown to have originated from China's Mu US Desert some time in 2004. Smoke in the fine fraction in 2006 show indications of coming from forest fires in Sumatra and Borneo. Fine particulate Pb in Valenzuela was shown to be coming from the surrounding area. Many more significant air pollution impacts can be evaluated with the identification of probable air pollutant sources with the use of elemental fingerprints and locating these sources with the use of HYSPLIT and CPF. (author)

  8. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  9. Export Mechanisms of Persistent Toxic Substances (PTSs) in Urban Land Uses during Rainfall-Runoff Events: Experimental and Modeling Studies

    Science.gov (United States)

    Zheng, Y.; Luo, X.; Lin, Z.

    2016-12-01

    The urban environment has a variety of Persistent Toxic Substances (PTS), such as Polycyclic Aromatic Hydrocarbons (PAHs) and mercury. Soil in pervious lands and dust deposited on impervious surfaces are two major sinks of PTSs in urbanized areas, which could contribute significant nonpoint source loadings of PTSs to adjacent waterbodies during rainfall-runoff events and therefore jeopardize aquatic ecosystems. However, PTSs have been much less understood regarding their export mechanisms in urban land uses, and efforts to model nonpoint source pollution processes of PTSs have been rare. We designed and performed in-lab rainfall-runoff simulation experiments to investigate transport of PAHs and mercury by runoff from urban soils. Organic petrology analysis (OPA) techniques were introduced to analyze the soil and sediment compositions. Our study revealed the limitation of the classic enrichment theory which attributes enrichment of pollutants in eroded sediment solely to the sediment's particle size distribution and adopts simple relationships between enrichment ratio and sediment flux. We found that carbonaceous materials (CMs) in soil are the direct and major sorbents for PAHs and mercury, and highly different in content, mobility and adsorption capacity for the PTSs. Anthropogenic CMs like black carbon components largely control the transport of soil PAHs, while humic substances have a dominant influence on the transport of soil mercury. A model was further developed to estimate the enrichment ratio of PAHs, which innovatively applies the fugacity concept.We also conducted field studies on export of PAHs by runoff from urban roads. A variable time-step model was developed to simulate the continuous cycles of PAH buildup and washoff on urban roads. The dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. The applicability of this approach and its value to environmental management was demonstrated by a case

  10. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.

    Science.gov (United States)

    Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif

    2012-06-30

    In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    Science.gov (United States)

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  12. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  13. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  14. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  15. Summary of pollutant emissions from individual sources in the Republic of Macedonia (air pollution)

    International Nuclear Information System (INIS)

    Davkova, Katica; Simeva, Radmila

    1995-01-01

    The air pollution is one of the heaviest and one of the most actual problems in the industrial developed countries. The sudden development of the cities, industry and automobile traffic brings to the atmosphere natural composition disturbance, which means that the environment, material goods and the whole ecosystem are endangered. This paper presents the results from the measurements taken in the territory of the Macedonia, from 1989-1993. 95 measuring objects, more exactly 156 individual measuring pollutants emission sources are encompassed. The main air pollutants, as a result of the solid as well as liquid fuels combustion, are SO 2 , Co 2 , No x as well as ashes. The measuring results are given tabular. 3 tabs., 6 figs., 1 ill

  16. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    Science.gov (United States)

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine

  17. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Directory of Open Access Journals (Sweden)

    Liting Sheng

    2017-06-01

    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  18. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  19. Chromatographic fingerprint similarity analysis for pollutant source identification

    International Nuclear Information System (INIS)

    Xie, Juan-Ping; Ni, Hong-Gang

    2015-01-01

    In the present study, a similarity analysis method was proposed to evaluate the source-sink relationships among environmental media for polybrominated diphenyl ethers (PBDEs), which were taken as the representative contaminants. Chromatographic fingerprint analysis has been widely used in the fields of natural products chemistry and forensic chemistry, but its application to environmental science has been limited. We established a library of various sources of media containing contaminants (e.g., plastics), recognizing that the establishment of a more comprehensive library allows for a better understanding of the sources of contamination. We then compared an environmental complex mixture (e.g., sediment, soil) with the profiles in the library. These comparisons could be used as the first step in source tracking. The cosine similarities between plastic and soil or sediment ranged from 0.53 to 0.68, suggesting that plastic in electronic waste is an important source of PBDEs in the environment, but it is not the only source. A similarity analysis between soil and sediment indicated that they have a source-sink relationship. Generally, the similarity analysis method can encompass more relevant information of complex mixtures in the environment than a profile-based approach that only focuses on target pollutants. There is an inherent advantage to creating a data matrix containing all peaks and their relative levels after matching the peaks based on retention times and peak areas. This data matrix can be used for source identification via a similarity analysis without quantitative or qualitative analysis of all chemicals in a sample. - Highlights: • Chromatographic fingerprint analysis can be used as the first step in source tracking. • Similarity analysis method can encompass more relevant information of pollution. • The fingerprints strongly depend on the chromatographic conditions. • A more effective and robust method for identifying similarities is required

  20. Behavior of pollutants from the instantaneous sources in mine airways

    Energy Technology Data Exchange (ETDEWEB)

    Abuel-Kassem, M. [Assiut Univ. (Egypt)

    1993-12-31

    The air quality management of roadway tunnels is an important task; that is the roadway tunnels either natural or mechanical ventilation is required to keep air quality within the acceptable levels for pollutants. The main objective of this paper is to study the behavior of pollutants from the blasting operation during tunneling as an instantaneous source in mines based on the diffusion modeling. Diffusion models are modified and applied to estimate the concentration of pollutants using a computer program. (Author). 9 refs., 3 figs., 2 tabs.

  1. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  2. Development of a Web-Based L-THIA 2012 Direct Runoff and Pollutant Auto-Calibration Module Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhwa Jang

    2013-11-01

    Full Text Available The Long-Term Hydrology Impact Assessment (L-THIA model has been used as a screening evaluation tool in assessing not only urbanization, but also land-use changes on hydrology in many countries. However, L-THIA has limitations due to the number of available land-use data that can represent a watershed and the land surface complexity causing uncertainties in manually calibrating various input parameters of L-THIA. Thus, we modified the L-THIA model so that could use various (twenty three land-use categories by considering various hydrologic responses and nonpoint source (NPS pollutant loads. Then, we developed a web-based auto-calibration module by integrating a Genetic-Algorithm (GA into the L-THIA 2012 that can automatically calibrate Curve Numbers (CNs for direct runoff estimations. Based on the optimized CNs and Even Mean Concentrations (EMCs, our approach calibrated surface runoff and nonpoint source (NPS pollution loads by minimizing the differences between the observed and simulated data. Here, we used default EMCs of biochemical oxygen demand (BOD, total nitrogen (TN, and total phosphorus-TP (as the default values to L-THIA collected at various local regions in South Korea corresponding to the classifications of different rainfall intensities and land use for improving predicted NPS pollutions. For assessing the model performance, the Yeoju-Gun and Icheon-Si sites in South Korea were selected. The calibrated runoff and NPS (BOD, TN, and TP pollutions matched the observations with the correlation (R2: 0.908 for runoff and R2: 0.882–0.981 for NPS and Nash-Sutcliffe Efficiency (NSE: 0.794 for runoff and NSE: 0.882–0.981 for NPS for the sites. We also compared the NPS pollution differences between the calibrated and averaged (default EMCs. The calibrated TN and TP (only for Yeoju-Gun EMCs-based pollution loads identified well with the measured data at the study sites, but the BOD loads with the averaged EMCs were slightly better than

  3. Car indoor air pollution - analysis of potential sources

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-12-01

    Full Text Available Abstract The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  4. Ship-source oil pollution fund : annual report 1997-1998

    International Nuclear Information System (INIS)

    1998-01-01

    The Ship-source Oil Pollution Fund (SOPF) receives reports of oil pollution caused by ships in Canadian waters. The reports come from a variety of sources, including individuals who wish to be advised whether they are entitled for consideration under the Canada Shipping Act as potential claimants as a result of oil pollution damage and expenses they have suffered. The SOPF fully investigates all such reports and inquiries. A summary of each investigation that fall within the SOPF purview is provided in this report. This recitation includes a number of references to incidents dating as far back as the 1970s, providing for each incident the name of the ship, a summary of the incident, the damage caused, and the claims received and paid out by the fund. The balance of the SOPF on March 31, 1998 was just over $268 million. As of April 1, 1998 the maximum liability of the SOPF is about $128 million for all claims in respect of any one oil spill. The amount of liability is indexed annually to the consumer price index. 1 fig., 1 tab

  5. Activity patterns of Californians: Use of and proximity to indoor pollutant sources

    Science.gov (United States)

    Jenkins, Peggy L.; Phillips, Thomas J.; Mulberg, Elliot J.; Hui, Steve P.

    The California Air Resources Board funded a statewide survey of activity patterns of Californians over 11 years of age in order to improve the accuracy of exposure assessments for air pollutants. Telephone interviews were conducted with 1762 respondents over the four seasons from fall 1987 through summer 1988. In addition to completing a 24-h recall diary of activities and locations, participants also responded to questions about their use of and proximity to potential pollutant sources. Results are presented regarding time spent by Californians in different activities and locations relevant to pollutant exposure, and their frequency of use of or proximity to pollutant sources including cigarettes, consumer products such as paints and deodorizers, combustion appliances and motor vehicles. The results show that Californians spend, on average, 87% of their time indoors, 7% in enclosed transit and 6% outdoors. At least 62% of the population over 11 years of age and 46% of nonsmokers are near others' tobacco smoke at some time during the day. Potential exposure to different pollutant sources appears to vary among different gender and age groups. For example, women are more likely to use or be near personal care products and household cleaning agents, while men are more likely to be exposed to environmental tobacco smoke, solvents and paints. Data from this study can be used to reduce significantly the uncertainty associated with risk assessments for many pollutants.

  6. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    International Nuclear Information System (INIS)

    Leonarte, V.F.; Ballester, F.; Leonarte, V.F.; Ballester, F.; Tenias, J.M.; Tenias, J.M.

    2010-01-01

    We carried out bibliographic searches in Pub Med and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DY work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  7. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    Directory of Open Access Journals (Sweden)

    Virginia Fuentes-Leonarte

    2009-01-01

    Full Text Available We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  8. EVALUATION OF THE QUALITY AND SELF PURIFICATION POTENTIAL OF TAJAN RIVER USING QUAL2E MODEL

    Directory of Open Access Journals (Sweden)

    N. Mehrdadi, M. Ghobadi, T. Nasrabadi, H. Hoveidi

    2006-07-01

    Full Text Available Tajan River is among significant rivers of Caspian Sea water basin. Pollution sources that threaten the quality of water in Tajan River may be classified in to two categories namely point and non-point sources. Major pollutants of latter category are Mazandaran wood and pulp, Paksar dairy products and Sari Antibiotic production factories, as well as 600-dastgah residential area. On the other hand, non-point sources whose waste is considered as a distributed load consist of Sari municipal wastewater and agriculture-related pollutants that are drained towards the river. In order to model the quality of river flow, Qual2E model is taken in to consideration. Considering TDS, the river quality is completely acceptable in cold seasons. However, in spring and summer the value of this parameter is increased and this causes some restrictions in the use of this water for irrigation of specific sensitive crops. Agricultural activities and consequent irrigated waters are the major causes of higher reported TDS values in warm seasons. Current status of DO is completely acceptable and this is highly related to the relative high value of width on depth ratio along the river. BOD and COD locate in a fairly poor condition. Quality deterioration is more noticeable in cold seasons. Higher rate of precipitation and consequent greater runoff generation towards the river basin justify the relative increase of mentioned parameters in fall and winter. Generally, non-point pollution sources are more contributed in deterioration of Tajan River water quality.

  9. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... will allow the federal government to lead the way in protecting the Bay and its watershed with the most effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...

  10. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has been found to migrate via seepage and groundwater into adjacent streams. The extent of the associated non-point pollution depends on the concentration of U in the groundwater as well as the volume and rate of groundwater ...

  11. Grants Reporting and Tracking System (GRTS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Grants Reporting and Tracking System (GRTS) is the primary tool for management and oversight of EPA's Nonpoint Source (NPS) Pollution Control Program. GRTS pulls...

  12. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  13. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    Science.gov (United States)

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  14. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji.

    Science.gov (United States)

    Isley, C F; Nelson, P F; Taylor, M P; Stelcer, E; Atanacio, A J; Cohen, D D; Mani, F S; Maata, M

    2018-01-15

    Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM 2.5 : effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM 2.5 samples from Suva, spanning one year. Sources of PM 2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM 2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM 2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning. Copyright © 2017. Published by Elsevier B.V.

  15. Environmental Compliance Guide. Guidance manual for Department of Energy compliance with the Clean Water Act: National Pollutant Discharge Elimination System (NPDES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    This manual provides general guidance for Department of Energy (DOE) officials for complying with Sect. 402 of the Clean Water Act (CWA) of 1977 and amendments. Section 402 authorizes the US Environmental Protection Agency (EPA) or states with EPA approved programs to issue National Pollutant Discharge Elimination System (NPDES) permits for the direct discharge of waste from a point source into waters of the United States. Although the nature of a project dictates the exact information requirements, every project has similar information requirements on the environmental setting, type of discharge(s), characterization of effluent, and description of operations and wastewater treatment. Additional information requirements for projects with ocean discharges, thermal discharges, and cooling water intakes are discussed. Guidance is provided in this manual on general methods for collecting, analyzing, and presenting information for an NPDES permit application. The NPDES program interacts with many sections of the CWA; therefore, background material on pertinent areas such as effluent limitations, water quality standards, toxic substances, and nonpoint source pollutants is included in this manual. Modifications, variances, and extensions applicable to NPDES permits are also discussed.

  16. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  17. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    OpenAIRE

    Jiunian Guan; Baixing Yan; Hui Zhu; Yingying Xu

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting season...

  18. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  19. Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters

    Science.gov (United States)

    Datta, Bithin; Chakrabarty, Dibakar; Dhar, Anirban

    2009-09-01

    Pollution source identification is a common problem encountered frequently. In absence of prior information about flow and transport parameters, the performance of source identification models depends on the accuracy in estimation of these parameters. A methodology is developed for simultaneous pollution source identification and parameter estimation in groundwater systems. The groundwater flow and transport simulator is linked to the nonlinear optimization model as an external module. The simulator defines the flow and transport processes, and serves as a binding equality constraint. The Jacobian matrix which determines the search direction in the nonlinear optimization model links the groundwater flow-transport simulator and the optimization method. Performance of the proposed methodology using spatiotemporal hydraulic head values and pollutant concentration measurements is evaluated by solving illustrative problems. Two different decision model formulations are developed. The computational efficiency of these models is compared using two nonlinear optimization algorithms. The proposed methodology addresses some of the computational limitations of using the embedded optimization technique which embeds the discretized flow and transport equations as equality constraints for optimization. Solution results obtained are also found to be better than those obtained using the embedded optimization technique. The performance evaluations reported here demonstrate the potential applicability of the developed methodology for a fairly large aquifer study area with multiple unknown pollution sources.

  20. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  1. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats.

    Science.gov (United States)

    Nakata, Hokuto; Nakayama, Shouta M M; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-10

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown ( Rattus norvegicus , n = 43) and black ( R. rattus , n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.

  2. Lead pollution sources and Impacts

    International Nuclear Information System (INIS)

    El-Haggar, S.M.; Saad, S.G.; Saleh, S.K.; El-Kady, M.A.

    1996-01-01

    Despite the medical awareness of lead toxicity, and despite legislation designed to reduce environmental contamination, lead is one of the most widely used heavy metals. Significant human exposure occurs from automobile exhaust fumes, cigarette smoking, lead-based paints and plumbing systems lead spread in the environment can take place in several ways, the most important of which is through the lead compounds released in automobile exhaust as a direct result of the addition of tetraethyl or tetraethyl lead to gasoline as octane boosting agents. Of special is the effect of lead pollution on children, which affects their behavioral and educational attributes considerably. The major channel through through which lead is absorbed is through inhalation of lead compounds in the atmosphere. Lead is a heavy metal characterized its malleability, ductility and poor conduction of electricity. So, it has a wide range of applications ranging from battery manufacturing to glazing ceramics. It is rarely found free in nature but is present in several minerals and compounds. The aim of this paper is to discuss natural and anthropogenic sources of lead together with its distribution and trends with emphasis on egypt. The effects of lead pollution on human health, vegetation and welfare are also presented. It could be concluded that, the excessive release of lead into the environment, especially through the atmosphere, can produce many detrimental and sometimes fatal effects on human, agriculture and zoological life. Besides, it is very plain that there is a serious problem of pollution lead in egypt and specially in cairo. 7 figs

  3. SOPHIE, a European data base on indoor air pollution sources: Marketing and organisational matters

    NARCIS (Netherlands)

    Bluyssen, P.M.; Oliveira Fernandes, E. de; Molina, J.L.

    1999-01-01

    As an outcome of a former project of the JOULE programme of the European Commission, the Database SOPHIE (Sources of Pollution for a Healthy and Comfortable Indoor Environment) represents an attempt to contribute to an objective, permanent and dynamic documentation of indoor air pollution sources.

  4. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  5. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  6. Persistent organic pollutants (POPs in fish collected from the urban tract of the river Tiber in Rome (Italy

    Directory of Open Access Journals (Sweden)

    Roberto Miniero

    2011-01-01

    Full Text Available European eel and chub samples were analyzed to determine the levels of non-dioxin-like polychlorobiphenyls (NDL-PCBs, polychlorodibenzodioxins (PCDDs and polychlorodibenzofurans (PCDFs, dioxin-like PCBs (DL-PCBs, and brominated polybromodiphenyl ethers (PBDEs in order to evaluate the extent of contamination of the river Tiber along the urban tract through the city of Rome (Italy. All samples presented detectable levels of the chemicals analyzed, and exhibited species-specific differences in terms of congener composition and total concentrations. On average the European eel presented the highest values. In this species the dioxin-like compound sums (WHO-TEQs exceeded the pertinent maximum levels (MLs. Non-ortho PCBs constituted approximately 80% of WHO-TEQ toxicological potential whereas NDL-PCB and PBDE concentrations appeared to match values determined in other polluted aquatic ecosystems where non-point contamination sources were present. The contamination patterns determined in fish tissues seemed to reflect the impact of generic contamination source(s.

  7. Isotope ratios of lead as pollutant source indicators

    International Nuclear Information System (INIS)

    Chow, T.J.; Snyder, C.B.; Earal, J.L.

    1975-01-01

    Each lead ore deposit has its characteristic isotope ratios which are fixed during mineral ore genesis, and this unique property can be used to indicate the source of lead pollutants in the environment. The wolld production of primary lead is tabulated, and the geochemical significances of lead isotope ratios are discussed. The manufacture of lead alkyl additives for gasoline, which is the major source of lead pollutants, utilizes about 10% of the world annual consumption of lead. The isotope ratios of lead in gasoline, aerosols, soils and plants are correlated. Lead additives in various brands of gasoline sold in one region do not have the same isotope ratios. Regional variations in isotope ratios of lead additives were observed. This reflects the fact that petroleum refineries obtained the additives from various lead alkyl manufacturers which utilized lead from different mining districts. A definite changing trend of isotope ratios of lead pollutants in the San Diego, California (USA), area was detected. The lead shows a gradual increase in its radiogenic components during the past decade. This trend can be explained by the change of lead sources used by the additive manufacturers: Lead isotope ratios of the mid-1960's gasoline additives in the United States of America reflected those of less radiogenic leads imported from Canada, Australia, Peru and Mexico. Since then, the U.S. lead production has doubled-mainly from the Missouri district of highly radiogenic lead. Meanwhile, there has been a decrease in total lead imports. These combined effects result in changes in isotope ratios, from the less to more radiogenic, of the pooled lead. (aothor)

  8. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Science.gov (United States)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  9. Reduction of the environmental concentration of air pollutants by proper geometrical orientation of industrial line sources

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    An account is given of an Israeli study of two line sources, one composed of 10 and the other of 20 individual sources. The height of release ranged from 15.7 to 39.6 m, with a uniform rate of release of a gaseous pollutant of 1 Ci/s for each source. Average pollutant concentration was plotted as a function of the rotation angle of the line sources. Reduction of pollutant concentration by a particular rotation of the line sources attained values of up to 50%. At certain rotation angles of the line sources, the environmental concentration was lower even as compared with a single high source. Results also depended on atmospheric conditions. It is suggested that considering the increase in cost of augmenting the height of release as a means of reducing the air pollutant concentration, determination of the optimum geometric orientation of the line sources should be considered as an economical means of improving environmental air quality. (U.K.)

  10. Sources of fluoride pollution in Kasur district, Pakistan

    International Nuclear Information System (INIS)

    Khan, I.H.; Haq, M.M.I.

    2005-01-01

    Serious bone problems were reported in certain localities in Pakistan due to contamination of drinking water by fluoride pollution. Against WHO recommended threshold limit of 0.7 mg/L, about 40 mg/L of fluoride is determined by ion chromatographic technique of HPLC. The compositions of pollutants were investigated in the present study by examination the chemical and mineralogical studies of water and soil samples. It is found that main problem in Manga Mandi area of District Kasur, was caused due to the decomposition of phosphorus containing minerals in soil under acidic conditions. The other sources of fluoride contamination in different areas of Pakistan is being investigated. (author)

  11. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2002

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2003-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2002 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases.

  12. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2004

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2005-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2004 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  13. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2003

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2004-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2003 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  14. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  15. The application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D., E-mail: dcz@ansto.gov.au; Stelcer, E.; Atanacio, A.; Crawford, J.

    2014-01-01

    IBA techniques have been used to measure elemental concentrations of more than 20 different elements found in fine particle (PM2.5) air pollution. These data together with their errors and minimum detectable limits were used in Positive Matrix Factorisation (PMF) analyses to quantitatively determine source fingerprints and their contributions to the total measured fine mass. Wind speed and direction back trajectory data from the global HYSPLIT codes were then linked to these PMF fingerprints to quantitatively identify the location of the sources.

  16. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2001

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Mareckova, K.; Pukancikova, K.

    2002-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2001 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases. Emission limits are included

  17. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  18. Best Management Practices Monitoring Guide for Stream Systems

    OpenAIRE

    Mesner, Nancy

    2011-01-01

    Best Management Practices Monitoring Guide for Stream Systems provides guidance on establishing a water quality monitoring program that will demonstrate the effectiveness of Best Management Practices (BMPs) to reduce nonpoint source pollution in stream systems.

  19. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  20. Application of genetic algorithm for the simultaneous identification of atmospheric pollution sources

    Science.gov (United States)

    Cantelli, A.; D'Orta, F.; Cattini, A.; Sebastianelli, F.; Cedola, L.

    2015-08-01

    A computational model is developed for retrieving the positions and the emission rates of unknown pollution sources, under steady state conditions, starting from the measurements of the concentration of the pollutants. The approach is based on the minimization of a fitness function employing a genetic algorithm paradigm. The model is tested considering both pollutant concentrations generated through a Gaussian model in 25 points in a 3-D test case domain (1000m × 1000m × 50 m) and experimental data such as the Prairie Grass field experiments data in which about 600 receptors were located along five concentric semicircle arcs and the Fusion Field Trials 2007. The results show that the computational model is capable to efficiently retrieve up to three different unknown sources.

  1. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  2. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    Science.gov (United States)

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  3. Towards multi-level biomonitoring of nematodes to assess risk of nitrogen and phosphorus pollution in Jinchuan Wetland of Northeast China.

    Science.gov (United States)

    Wang, Yunbiao; Qiao, Jie; He, Chunguang; Wang, Zhongqiang; Luo, Wenbo; Sheng, Lianxi

    2015-12-01

    Cultivation for agricultural production often poses threats to nearby wetlands ecosystems in fertile landscapes. In this study, nematode ecological indexes were assessed through the main soil properties of the wetlands, farmlands, and edges of wetlands and farmlands in Jinchuan Wetland by the random sampling. Behavior and reproduction in Caenorhabditis elegans (C. elegans) exposed to the sampled waters were also examined. Stress proteins Hsp70 and Hsp90 were measured both in the living field samples of C. elegans and the lab-tested C. elegans. Our results suggested that disturbance to wetland ecosystems by nitrogen and phosphorus reduced nematode richness and proportions of bacterivore nematodes. Bacterivore nematode diversity and plant-parasitic ecological index were proven to be sensitive indicators of the ecological health of wetlands. Nematode Hsp70 were useful biosensors to monitor and assess the levels of nitrogen and phosphorus pollutions in wetlands. Furthermore, multi-level soil faunal assessments by canonical correspondence analysis showed that Jinchuan Wetland is threatened with non-point source pollution from nearby farmlands.

  4. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  5. Urban Runoff: National Management Measures

    Science.gov (United States)

    This helps citizens and municipalities in urban areas protect bodies of water from polluted runoff . These scientifically sound techniques are the best practices known today. The guidance helps states to implement their nonpoint source control program.

  6. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  7. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    Science.gov (United States)

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ship-Source Oil Pollution Fund annual report, 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Ship-Source Oil Pollution Fund (SOPC) are reviewed for the fiscal year commencing 1 April 1991 and ending 31 March 1992. Topics covered include the Canadian compensation regime, activities of the International Oil Pollution Compensation Fund (to which the SOPC contributes), amendments to the Canada Shipping Act, United States legislation, the Haven incident, and the status of the fund. Twenty-three oil spill incidents are described along with actions taken, if any, by the SOPC and details of any claims paid by the SOPC or the international fund. 4 figs., 1 tab

  9. Source attribution and mitigation strategies for air pollution in Delhi

    Science.gov (United States)

    Kiesewetter, Gregor; Purohit, Pallav; Schoepp, Wolfgang; Liu, Jun; Amann, Markus; Bhanarkar, Anil

    2017-04-01

    Indian cities, and the megacity of Delhi in particular, have suffered from high air pollution for years. Recent observations show that ambient concentrations of fine particulate matter (PM2.5) in Delhi strongly exceed the Indian national ambient air quality standards as well as the World Health Organization's interim target levels. At the same time, India is experiencing strong urbanization, and both Delhi's emissions as well as the exposed population are growing. Therefore the question arises how PM2.5 concentrations will evolve in the future, and how they can be improved efficiently. In the past, typical responses of the Delhi government to high pollution episodes have been restrictions on motorized road traffic, on power plant operations and on construction activities. However, to design sustainable and efficient pollution mitigation measures, the contribution of different source sectors and spatial scales needs to be quantified. Here we combine the established emission calculation scheme of the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model with regional chemistry-transport model simulations (0.5° resolution) as well as local particle dispersion (2 × 2 km resolution) to arrive at a source attribution of ambient PM2.5 in Delhi. Calculated concentrations compare well to observations. We find that roughly 60% of total population-weighted PM2.5 originates from sources outside the national capital territory of Delhi itself. Consequently, mitigation strategies need to involve neighboring states and address the typical sources there. We discuss the likely evolution of ambient concentrations under different scenarios which assume either current emission control legislation, or application of a Clean Air Scenario foreseeing additional regulations in non-industrial sectors which are often overlooked, such as phase-out of solid fuel cookstoves, and road paving. Only in the case where the Clean Air Scenario is applied both in Delhi as well as in

  10. The electric power stations viewed as a source of local and transfrontier pollution

    International Nuclear Information System (INIS)

    Motiu, C.; Sandu, I.

    1994-01-01

    The pollutant emission of the thermal power stations may have an important contribution to the local pollution as well as to regional (transfrontier) and global pollution. Due to the impossibility at present of making continuous monitoring of the emission of pollutants it is necessary to use computational models for obtaining inventories of the pollutant sources and for studying their dispersion into atmosphere. The computational code used to simulate the pollutant diffusion in the atmosphere is a climatologic model giving the annual average concentration and the evaluation of the maximum SO 2 concentration. The paper presents the analyses for the case of 14 thermal power stations of Romania

  11. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    Science.gov (United States)

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  12. Investigating the Lateral Mixing Coefficient in a Compound Channel with Emergent Vegetation over the Floodplain

    OpenAIRE

    Hossein hamidifar; Mohammad hossein Ommid; Mehdi Bahrami; Mohammad javad Amiri

    2017-01-01

    Introduction: Water quality control is very important for people, animals and plants. Predicting the spread of contaminants is important for managing and protecting rivers and streams to the balance of the ecosystem. Pollutants are introduced into waterways, though a variety of sources such as point and non-point sources. Under steady state conditions, where longitudinal mixing is not significant, studying the lateral mixing is essential in evaluating the influence of pollutants on water qual...

  13. Sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    Butu, A.W.

    2013-06-01

    Full Text Available The paper looked at the sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria. The main sources of data for the study were sediment from four different sections of the long profile of the dam. The samples were prepared in the laboratory according to standard methods and the instrumental Neutron Activation Analysis (INAA technique was adopted in the analysis using Nigeria Research Reactor – 1 (NIRR – 1. The results of the analysis showed that 29 metal pollutants; Mg, Al, Ca, Ti, V, Mn, Dy, Na, K, As, La, Sm, Yb, U, Br, Sc, Cr, Fe, Co, Rb, Zn,Cs, Ba, Eu, Lu, Hf, Ta, Sb and Th currently exist in Kubanni dam in various levels of concentrations. The results showed that most of the metal pollutants in the dam are routed to anthropogenic activities within the dam catchment area while few are routed to geologic formation. The results further revealed that metal pollutants that their sources are traceable to refuse dumps, farmlands, public drains and effluents showed higher levels of concentration in the dam than the ones that are gradually released from the soil regolith system.

  14. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  15. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  16. Study of short time effect on health of a local air pollution source. Epidemiological approach; Etude des effets a court terme sur la sante d'une source locale de pollution atmospherique. Approche epidemiologique

    Energy Technology Data Exchange (ETDEWEB)

    Guzzo, J.Ch. [Institut National de Veille Sanitaire, Reseau National de Sante Publique, 94 - Saint-Maurice (France)

    2000-07-01

    This document applies to health professionals who are facing with a problem of risks evaluation relative to a local source of air pollution and envisage to realize an epidemiological study. In this document, only the short term effects are considered and the situations of accidental pollution are not treated. Without being a methodological treatise it can be a tool to better understand the constraints and the limits of epidemiology to answer the difficult question of the impact evaluation on health of populations living near a local source of air pollution. (N.C.)

  17. Comparison of enterococci and cow-specific qPAR markers in streams impacted by farms under different management practices

    Science.gov (United States)

    Nonpoint Sources (NPS) of pollution (e.g., agriculture, wildlife, urban runoff) are major contributors of microbial contaminants to surface waters. However, little is known about the behavior and the effect of environmental determinants on molecular markers of fecal contamination...

  18. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  19. Source apportionment of Pb pollution in saltmarsh sediments from southwest England

    Science.gov (United States)

    Iurian, Andra-Rada; Millward, Geoffrey; Taylor, Alex; Marshall, William; Rodríguez, Javier; Gil Ibarguchi, José Ignacio; Blake, William H.

    2017-04-01

    The local availability of metal resources played a crucial role in Britain's development during the industrial revolution, but centuries of mining within Cornwall and Devon (UK) have left a legacy of contamination in river basin and estuary sediments. Improved knowledge of historical heavy metal sources, emissions and pathways will result in a better understanding of the contemporary pollution conditions and a better protection of the environment from legacy contaminants. Our study aims to trace historical sources of Pb pollution in the area of east Cornwall and west Devon, UK, using a multi proxy approach for contaminants stored in saltmarsh sediment columns from 3 systems characterized by different contamination patterns. Source apportionment investigations included the determination of Pb concentration and Pb isotopic composition (204Pb, 206Pb, 207Pb, and 208Pb) for selected down-core sediment samples, and for local ore and parent rock materials. General trends in pollutant loading (e.g. Pb) could be identified, with maximum inputs occurring in the middle of the 19th century and decreasing towards the present day, while an increase in the catchment disturbance was apparent for the last decades. The isotopic ratios of Pb further indicate that sediments with higher Pb content have a less radiogenic signature, these particular inputs being derived from Pb mining and smelting sources in the catchment area. Acknowledgements: Andra-Rada Iurian acknowledges the support of a Marie Curie Fellowship (H2020-MSCA-IF-2014, Grant Agreement number: 658863) within the Horizon 2020.

  20. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  1. Water quality and non-point sources of risk: the Jiulong River Watershed, P. R. of China.

    Science.gov (United States)

    Zhang, Jingjing; Zhang, Luoping; Ricci, Paolo F

    2012-01-01

    Retrospective water quality assessment plays an essential role in identifying trends and causal associations between exposures and risks, thus it can be a guide for water resources management. We have developed empirical relationships between several time-varying social and economic factors of economic development, water quality variables such as nitrate-nitrogen, COD(Mn), BOD(5), and DO, in the Jiulong River Watershed and its main tributary, the West River. Our analyses used alternative statistical methods to reduce the dimensionality of the analysis first and then strengthen the study's causal associations. The statistical methods included: factor analysis (FA), trend analysis, Monte Carlo/bootstrap simulations, robust regressions and a coupled equations model, integrated into a framework that allows an investigation and resolution of the issues that may affect the estimated results. After resolving these, we found that the concentrations of nitrogen compounds increased over time in the West River region, and that fertilizer used in agricultural fruit crops was the main risk with regard to nitrogen pollution. The relationships we developed can identify hazards and explain the impact of sources of different types of pollution, such as urbanization, and agriculture.

  2. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    Science.gov (United States)

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  3. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Grundtvig, Aase; Winther, Pia

    1998-01-01

    Investigations into the pollution of groundwater from old landfill have, in most cases, focused on delineating the pollution plume rather than on the landfill as a source of groundwater pollution. Landfills often cover large areas and spatial variations in leachate composition within the landfill...... may have great impact on the location of the main pollution plume in the downstream aquifer. The history of the Grindsted Landfill in Denmark was investigated using aerial photographs and interviews. On the basis of the aerial photographs, waste volume and age of the different areas of the landfill...

  4. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    Science.gov (United States)

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  5. LOUISIANA ENVIRONMENTAL MODELING SYSTEM FOR HYPOXIA RELATED ISSUES

    Science.gov (United States)

    An environmental assessment tool to evaluate the impacts of nonpoint source (NPS) pollutants discharged from Mississippi River basins into the Gulf of Mexico and to assess their effects on receiving water quality will be described. This system (Louisiana Environmental Modeling S...

  6. Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis

    Science.gov (United States)

    Best management practices (BMPs) for reducing agricultural non-point source pollution are widely available. However, agriculture remains a major global contributor to degradation of waters because farmers often do not adopt BMPs. To improve water quality, it is necessary to under...

  7. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  8. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    Science.gov (United States)

    Brown, R.G.

    1984-01-01

    Atmospheric deposition and subsequent runoff concentrations of total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, total phosphorus, total sulfate (only for atmospheric deposition), total chloride, and total lead were studied from April 1 to October 31, 1980, in one rural and three urban watersheds in the Twin Cities Metropolitan Area, Minnesota. Seasonal patterns of wetfall and dryfall generally were similar for all constituents except chloride in both rural and urban watersheds. Similarity between constituents and between rural and urban watersheds suggested that regional air masses transported from the Gulf of Mexico by frontal storm movements influence seasonal patterns of atmospheric deposition in the metropolitan area. Local influences such as industrial, agricultural, and vehicular air pollutants were found to influence the magnitude or rate of atmospheric deposition rather than the seasonal pattern. Chloride was primarily influenced by northwest frontal storms laden with coastal chloride. Local influences such as dust from road deicing salt dust are thought to have caused an increase in atmospheric chloride during June.

  9. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  10. Sources of endocrine-disrupting compounds in North Carolina waterways: a geographic information systems approach

    Science.gov (United States)

    Sackett, Dana K.; Pow, Crystal Lee; Rubino, Matthew J.; Aday, D.D.; Cope, W. Gregory; Kullman, Seth W.; Rice, J.A.; Kwak, Thomas J.; Law, L.M.

    2015-01-01

    The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships.

  11. Source-Flux-Fate Modelling of Priority Pollutants in Stormwater Systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca

    quality management. The thesis provides a framework for the trustworthy application of models to estimate PP fluxes from their sources, and through stormwater drainage systems, and to the sink. This fills a knowledge gap regarding stormwater PP and it supplies urban water managers with modelling tools......The increasing focus on management of stormwater Priority Pollutants (PP) enhances the role of mathematical models as support for the assessment of stormwater quality control strategies. This thesis investigates and presents modelling approaches that are suitable to simulate PP fluxes across...... stormwater systems, supporting the development of pollution control strategies. This is obtained by analyzing four study areas: (i) catchment characterization, (ii) pollutant release and transport models, (iii) stormwater treatment models, and (iv) combination of the above into an integrated model. Given...

  12. Atmospheric dispersion and inverse modelling for the reconstruction of accidental sources of pollutants

    International Nuclear Information System (INIS)

    Winiarek, Victor

    2014-01-01

    Uncontrolled releases of pollutant in the atmosphere may be the consequence of various situations: accidents, for instance leaks or explosions in an industrial plant, or terrorist attacks such as biological bombs, especially in urban areas. In the event of such situations, authorities' objectives are various: predict the contaminated zones to apply first countermeasures such as evacuation of concerned population; determine the source location; assess the long-term polluted areas, for instance by deposition of persistent pollutants in the soil. To achieve these objectives, numerical models can be used to model the atmospheric dispersion of pollutants. We will first present the different processes that govern the transport of pollutants in the atmosphere, then the different numerical models that are commonly used in this context. The choice between these models mainly depends of the scale and the details one seeks to take into account. We will then present several inverse modeling methods to estimate the emission as well as statistical methods to estimate prior errors, to which the inversion is very sensitive. Several case studies are presented, using synthetic data as well as real data such as the estimation of source terms from the Fukushima accident in March 2011. From our results, we estimate the Cesium-137 emission to be between 12 and 19 PBq with a standard deviation between 15 and 65% and the Iodine-131 emission to be between 190 and 380 PBq with a standard deviation between 5 and 10%. Concerning the localization of an unknown source of pollutant, two strategies can be considered. On one hand parametric methods use a limited number of parameters to characterize the source term to be reconstructed. To do so, strong assumptions are made on the nature of the source. The inverse problem is hence to estimate these parameters. On the other hand nonparametric methods attempt to reconstruct a full emission field. Several parametric and nonparametric methods are

  13. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  14. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  15. Research on the water environment capacity of Qingyi River (Xuchang Section with GIS technology

    Directory of Open Access Journals (Sweden)

    Wang Li

    2017-01-01

    Full Text Available Water environment capacity calculation is the foundation of basin environment management. Due to lack of basic materials and data, the water environment capacity in small basin was not massively researched with appropriate calculating method. This paper mentioned a water capacity calculating method suitable for environment management. The method was based on the study of Xuchang Section of Qingyi River and described with details as follows: Xuchang Section was divided into four control units with GIS technology. The river pollution loads of non-point source pollutants from farmland runoff, rural life, livestock and poultry were calculated with the in-site and statistical data of pollution resource. Meanwhile the calculated river pollution loads of non-point / point source pollutants were statistically analyzed on the basis of control units. Then a water quality module was tested and verified, in which the predicted value tallied with the measured value. The parameter of this water quality module corresponds to the in-site data within relative error ±14%. This module was used to estimate and calculate water environment capacity. With this module the available water environment capacity of each control unit and pollutant reduction amount can be earned through deducting the river pollutant load of point pollutant. The results showed that the utilized method in this paper can satisfy the requirement for the calculating accuracy of small basin water environment capacity.

  16. Ship-Source Oil Pollution Fund annual report, 1992-1993

    International Nuclear Information System (INIS)

    1993-01-01

    The activities of the Ship-Source Oil Pollution Fund (SOPC) are reviewed for the fiscal year commencing 1 April 1992 and ending 31 March 1993. Topics covered include the Canadian compensation regime, activities of the International Oil Pollution Compensation Fund (to which the SOPC contributes), amendments to the Canada Shipping Act, major international incidents, the International Conference on the Revision of the 1969 Civil Liability Convention and the 1971 Fund Convention, the 1993 Oil Spill Conference, and the status of the fund. Twenty-nine oil spill incidents are described along with actions taken, if any, by the SOPC and details of any claims paid by the SOPC or the international fund. 3 figs

  17. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  18. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  19. [Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].

    Science.gov (United States)

    Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun

    2012-01-01

    By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.

  20. 76 FR 40338 - National Estuarine Research Reserve System

    Science.gov (United States)

    2011-07-08

    ... coastal issues of the reserve related to water quality (non-point source pollution), invasive species... Reserve System AGENCY: Estuarine Reserves Division, Office of Ocean and Coastal Resource Management.... ACTION: Notice of Approval and Availability for Revised Management Plans for ACE Basin, SC National...

  1. --No Title--

    Science.gov (United States)

    Locations Recycling Sludge/Biosolids Solid Waste Watershed Protection Nonpoint Source Pollution Total Watershed Protection Wellhead Protection Funding Water and Waste Funding Drinking Water Funding Sanitary and Permit Oil and Gas Waste Management Water Rights All Permits/Forms (Alphabetical) All Permits/Forms (by

  2. swimming

    Science.gov (United States)

    Locations Recycling Sludge/Biosolids Solid Waste Watershed Protection Nonpoint Source Pollution Total Watershed Protection Wellhead Protection Funding Water and Waste Funding Drinking Water Funding Sanitary and Permit Oil and Gas Waste Management Water Rights All Permits/Forms (Alphabetical) All Permits/Forms (by

  3. Farm structure or farm management: effective ways to reduce nutrient surpluses on dairy farms and their financial impacts

    NARCIS (Netherlands)

    Ondersteijn, C.J.M.; Beldman, A.C.G.; Daatselaar, C.H.G.; Giesen, G.W.J.; Huirne, R.B.M.

    2003-01-01

    .To control and prevent nutrient pollution from agricultural non-point sources, the Dutch government introduced the Mineral Accounting System (MINAS), a nutrient bookkeeping system which taxes farms with nutrient surpluses exceeding safe threshold values. Since the levies can be severe it is

  4. 7 CFR 1466.4 - National priorities.

    Science.gov (United States)

    2010-01-01

    ..., will be used in EQIP implementation: (1) Reductions of nonpoint source pollution, such as nutrients... quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and... Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT...

  5. Agricultural nonpoint source pollution: prevention and estimate methods; L'inquinamento di origine agricola: quali strumenti di prevenzione e stima?

    Energy Technology Data Exchange (ETDEWEB)

    Caffarelli, V.; Rapagnani, M.R.; Triolo, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Non point source pollutants, such as pesticides and fertilizers derived from agricultural activities, are recognized as an important threat to environment and human health. To prevent the adverse effects of these agrochemicals it is necessary to provide growers and decision makers with easy-to-use information. Attempts have been made to put information on pesticides environmental and health effects into a formula that could summarize, in a single number, these effects. However a single number could be misleading because of the lack of information on chemical-physical parameters and the difficulty to evaluate the relative importance of various environmental and health effects. As an alternative it is here proposed an approach based on schedule containing information, for each pesticides, such as short and long term effects on human health, environmental fate and degradation time, capacity to bio accumulate, toxicity of degradation products. Using information in the schedule, decision makers could make more circumstantiate choices and could program the best agricultural actions under particular environmental circumstances with less impact on man and environment. [Italian] L'inquinamento diffuso derivante dall'uso dei fertilizzanti e dei pesticidi in agricoltura, rappresenta un rischio rilevante per l'ambiente e la salute umana. Al fine di prevenire tale rischio e' necessario fornire a coloro che gestiscono e pianificano le attivita' agricole informazioni facilmente comprensibili, mirate a ridurre o eliminare gli effetti indesiderati derivanti dai prodotti agrochimici. Tentativi sono stati fatti per sviluppare metodologie che sintetizzino queste informazioni in un indice numerico in modo da stilare una graduatoria di pericolosita' dei singoli prodotti. Si propone, in questo lavoro, un approccio basato sulla elaborazione di schede, per ogni principio attivo, che contengono una serie di informazioni quali gli effetti a breve e lungo termine

  6. Modeling environmental policy

    International Nuclear Information System (INIS)

    Martin, W.E.; McDonald, L.A.

    1997-01-01

    The eight book chapters demonstrate the link between the physical models of the environment and the policy analysis in support of policy making. Each chapter addresses an environmental policy issue using a quantitative modeling approach. The volume addresses three general areas of environmental policy - non-point source pollution in the agricultural sector, pollution generated in the extractive industries, and transboundary pollutants from burning fossil fuels. The book concludes by discussing the modeling efforts and the use of mathematical models in general. Chapters are entitled: modeling environmental policy: an introduction; modeling nonpoint source pollution in an integrated system (agri-ecological); modeling environmental and trade policy linkages: the case of EU and US agriculture; modeling ecosystem constraints in the Clean Water Act: a case study in Clearwater National Forest (subject to discharge from metal mining waste); costs and benefits of coke oven emission controls; modeling equilibria and risk under global environmental constraints (discussing energy and environmental interrelations); relative contribution of the enhanced greenhouse effect on the coastal changes in Louisiana; and the use of mathematical models in policy evaluations: comments. The paper on coke area emission controls has been abstracted separately for the IEA Coal Research CD-ROM

  7. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    Science.gov (United States)

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  8. Combined multivariate statistical techniques, Water Pollution Index (WPI and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    Full Text Available Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI, Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season. Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites and 2 clusters for the dry season (highly polluted and less polluted sites based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  9. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products

    Directory of Open Access Journals (Sweden)

    Claudia Juliano

    2018-02-01

    Full Text Available Air pollution is a rising problem in many metropolitan areas around the world. Airborne contaminants are predominantly derived from anthropogenic activities, and include carbon monoxide, sulfur dioxide, nitrogen oxides, volatile organic compounds, ozone and particulate matter (PM; a mixture of solid and liquid particles of variable size and composition, able to absorb and delivery a large number of pollutants. The exposure to these air pollutants is associated to detrimental effects on human skin, such as premature aging, pigment spot formation, skin rashes and eczema, and can worsen some skin conditions, such as atopic dermatitis. A cosmetic approach to this problem involves the topical application of skincare products containing functional ingredients able to counteract pollution-induced skin damage. Considering that the demand for natural actives is growing in all segments of global cosmetic market, the aim of this review is to describe some commercial cosmetic ingredients obtained from botanical sources able to reduce the impact of air pollutants on human skin with different mechanisms, providing a scientific rationale for their use.

  10. On the calculation of atmospheric thermal pollution resulted from a flat area source

    International Nuclear Information System (INIS)

    Perkauskas, D.Ch.; Senuta, K.A.

    1984-01-01

    A spatial distribution of thermal atmospheric pollution from a flat area source - a great city or a lake-cooler of NPP was investigated. The numerical solution obtained lets to evaluate the horizontal and vertical spreading of the thermal atmospheric pollution by the different wind velocities in dependence of the inhomogeneities in humidity of the earth's surface

  11. Distribution and origin sources of Polycyclic Aromatic Hydrocarbons (PAHs) pollution in sediment of Sarawak coastal area

    International Nuclear Information System (INIS)

    Mohd Shuhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim

    2010-01-01

    Alkyl and parent Polycyclic Aromatic Hydrocarbons (PAHs) compounds in marine sediment sample collected from ten locations along Sarawak coastal areas were extracted and analyzed by using gas chromatography-mass spectrometry. The source identification of PAH pollution in marine sediment of Sarawak coastal areas were identify by ratios technique of An/ An+phen, Fl/ Fl +Py, B[a]A/ (B[a]A+Chry) and total Methyl Phen/ Phen. The total alkyl and parent PAHs concentration varies from 36.5 - 277.4 ng/ g dry weight (d.w.) with a mean concentration of 138.2 ng/ g d.w. The ratio values of PAHs pollution in marine sediment of Sarawak coastal areas are clearly indicating the PAHs pollutions are originated from petroleum (petrogenic) and petroleum combustion (pyrolytic). However, the origin sources of PAHs pollution in a few stations were uncertain due to mixing sources of PAHs. (author)

  12. Source-receptor metrology and modeling of trace amounts of atmospheric pollutants

    International Nuclear Information System (INIS)

    Coddeville, P.

    2005-12-01

    This work deals with acid pollution and with its long distance transport using the metrology of trace amounts of pollutants in rural environment and the identification of the emission sources at the origin of acid atmospheric fallouts. Several French and foreign precipitation collectors have been evaluated and tested on the field. The measurement efficiency and limitations of four sampling systems for gas and particulate sulfur, ammonia and nitrous compounds have been evaluated. The limits of methods and the measurement uncertainties have been determined and calculated. A second aspect concerns the development of oriented receptor-type statistical models with the aim of improving the research of emission sources in smaller size areas defined by the cells of a geographical mesh. The construction of these models combines the pollution data of the sites with the informations about the trajectories of air masses. Results are given as probability or concentration fields revealing the areas potentially at the origin of pollutant emissions. Areas with strong pollutant emissions have been detected at the Polish, Czech and German borders and have been identified as responsible of pollution events encountered in Morvan region. Quantitative source-receptor relations have been also established. The different atmospheric transport profiles, their related frequency and concentration have been also evaluated using a dynamical clouds classification of air mass retro-trajectories. Finally, the first medium-term exploitation results (14 years) of precipitation data from measurement stations allow to perfectly identify the different meteorological regimes of the French territory by establishing a relation with the chemical composition of rainfalls. A west-east oriented increase of rainfall acidity is observed over the French territory. The pluviometry of the north-east area being among the highest of France, it generates more important deposits of acidifying compounds. The analysis

  13. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  14. Characterization and source identification of pollutants in runoff from a mixed land use watershed using ordination analyses.

    Science.gov (United States)

    Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang Hee; Kang, Joo-Hyon

    2016-05-01

    While identification of critical pollutant sources is the key initial step for cost-effective runoff management, it is challenging due to the highly uncertain nature of runoff pollution, especially during a storm event. To identify critical sources and their quantitative contributions to runoff pollution (especially focusing on phosphorous), two ordination methods were used in this study: principal component analysis (PCA) and positive matrix factorization (PMF). For the ordination analyses, we used runoff quality data for 14 storm events, including data for phosphorus, 11 heavy metal species, and eight ionic species measured at the outlets of subcatchments with different land use compositions in a mixed land use watershed. Five factors as sources of runoff pollutants were identified by PCA: agrochemicals, groundwater, native soils, domestic sewage, and urban sources (building materials and automotive activities). PMF identified similar factors to those identified by PCA, with more detailed source mechanisms for groundwater (i.e., nitrate leaching and cation exchange) and urban sources (vehicle components/motor oils/building materials and vehicle exhausts), confirming the sources identified by PCA. PMF was further used to quantify contributions of the identified sources to the water quality. Based on the results, agrochemicals and automotive activities were the two dominant and ubiquitous phosphorus sources (39-61 and 16-47 %, respectively) in the study area, regardless of land use types.

  15. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    Science.gov (United States)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river

  16. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-01-01

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads. PMID:24135820

  17. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Levy Jonathan I

    2007-05-01

    Full Text Available Abstract Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass. From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies, focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient, and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles. Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates

  18. Analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

    International Nuclear Information System (INIS)

    Kutnik, P.

    2004-01-01

    In this presentation author deals with the analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

  19. Exposure to Mobile Source Air Pollution in Early-life and Childhood Asthma Incidence: The Kaiser Air Pollution and Pediatric Asthma Study.

    Science.gov (United States)

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Bates, Josephine T; Drews-Botsch, Carolyn; Hansen, Craig; Russell, Armistead G; Tolbert, Paige E; Darrow, Lyndsey A

    2018-01-01

    Early-life exposure to traffic-related air pollution exacerbates childhood asthma, but it is unclear what role it plays in asthma development. The association between exposure to primary mobile source pollutants during pregnancy and during infancy and asthma incidence by ages 2 through 6 was examined in the Kaiser Air Pollution and Pediatric Asthma Study, a racially diverse birth cohort of 24,608 children born between 2000 and 2010 and insured by Kaiser Permanente Georgia. We estimated concentrations of mobile source fine particulate matter (PM2.5, µg/m), nitrogen oxides (NOX, ppb), and carbon monoxide (CO, ppm) at the maternal and child residence using a Research LINE source dispersion model for near-surface releases. Asthma was defined using diagnoses and medication dispensings from medical records. We used binomial generalized linear regression to model the impact of exposure continuously and by quintiles on asthma risk. Controlling for covariates and modeling log-transformed exposure, a 2.7-fold increase in first year of life PM2.5 was associated with an absolute 4.1% (95% confidence interval, 1.6%, 6.6%) increase in risk of asthma by age 5. Quintile analysis showed an increase in risk from the first to second quintile, but similar risk across quintiles 2-5. Risk differences increased with follow-up age. Results were similar for NOX and CO and for exposure during pregnancy and the first year of life owing to high correlation. Results provide limited evidence for an association of early-life mobile source air pollution with childhood asthma incidence with a steeper concentration-response relationship observed at lower levels of exposure.

  20. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model

    Science.gov (United States)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin

    2018-02-01

    In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.

  1. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  2. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  3. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  4. Renewable energy for rural development to protect environmental pollution from energy sources

    International Nuclear Information System (INIS)

    Mathur, A.N.

    2001-01-01

    Energy is the key input for technological industrial, social and economical development of a nation. The present energy scenario is heavily biased towards the conventional energy sources, such as petroleum products, coal, atomic energy, etc., which are finite in nature and causes environmental pollution. The energy utilization pattern is also meant for the energy requirement in urban areas. To meet the growing energy requirement of rural areas through the conventional energy sources will cause serious harmful effect on the environmental pollution. The man's thurst to use more energy after about 150 thousand years ago, invention of wheel, use of petroleum products for power generation and invention of steam and coal has brought him to use the energy sources for his comfort irrespective of the environmental consideration. The extensive use of energy operated devices in domestic, industrial, transport and for agriculture sectors in urban and rural areas have resulted in economical development of the society

  5. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK

    International Nuclear Information System (INIS)

    Muir, David; Longhurst, J.W.S.; Tubb, A.

    2006-01-01

    Data for concentrations of PM 10 and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM 10 . The ratios of concentrations of PM 10 to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM 10 were divided by those of the other pollutants, the ratio should decrease when PM 10 and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM 10 to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM 10 during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM 10 and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM 10 when an appropriate factor, F, related to the contribution of road traffic emissions to PM 10 at different site types was applied. The values used were 0.2 (Suburban

  6. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Science.gov (United States)

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....

  7. Hydrologic processes of forested headwater watersheds across a physiographaic gradient in the southeastern United States

    Science.gov (United States)

    Ge Sun; Johnny Boggs; Steven G. McNulty; Devendra M. Amatya; Carl C. Trettin; Zhaohua Dai; James M. Vose; Ileana B. La Torre Torres; Timothy Callahan

    2008-01-01

    Understanding the hydrologic processes is the first step in making sound watershed management decisions including designing Best Management Practices for nonpoint source pollution control. Over the past fifty years, various forest experimental watersheds have been instrumented across the Carolinas through collaborative studies among federal, state, and private...

  8. Identifying sources of groundwater pollution using trace element signatures

    International Nuclear Information System (INIS)

    Olmez, I.; Hayes, M.J.

    1990-01-01

    A simple receptor modeling approach has been applied to groundwater pollution studies and has shown that marker trace elements can be used effectively in source identification and apportionment. Groundwater and source materials from one coal-fired and five oil-fired power plants, and one coal-tar deposit site have been analyzed by instrumental neutron activation analysis for more than 20 minor and trace elements. In one of the oil-fired power plants, trace element patterns indicated a leak from the hazardous waste surface impoundments owing to the failure of a hypolon liner. Also, the extent and spatial distribution of groundwater contamination have been determined in a coal-tar deposit site

  9. A Study on Afforestation on the Waterside and Its Management

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.Y.; Lee, J.H. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The important task of preserving and protecting water quality in water supply areas is best facilitated through environmental-friendly management. systems in adjacent waterzones, particularly through the formation of riparian buffers. Urban areas are of particular interest because their high contributions of pollution loading conflict with their low covering percentage in the watershed. This feature of the urban landscape requires that certain areas to be converted into riparian buffers in order to restrict pollution sources and purify non-point sources. The various functions of the riparian buffer in water supply areas include reducing non-point sources, assuaging the public's peace of mind, and improving the environment's esthetics. To be effective, any damaged riparian buffers in urban areas should be recovered and the existing ones maintained. The following policies are recommended in order to achieve such ends: l. To form operative riparian buffers, designated areas in fixed distances from bodies of water or areas that affect water quality, or absolute protection zones, need to be established. The absolute protecting zone is to be determined by factors of slope, soil, vegetation, pollutant source, and proximity. However, if taking account of flood water levels, surrounding areas within 30m of important water supply areas and urban areas, which are exclusive riparian buffer areas, should also be included. 2. Priority in terms of water quality should be established for each land segment in order to promote efficient land acquisition within the riparian buffer and for nation of vegetation. High priority areas should be dealt with preferentially and environment-friendly land management should be considered. 3. To establish legal bases for waterside zone management, independent laws and amendments to existing laws, such as 'Urban Planning Act' or 'River Act', that are related to the formation of riparian buffers should be introduced

  10. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  11. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  12. 75 FR 2535 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Science.gov (United States)

    2010-01-15

    ...; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs (Renewal) AGENCY..., Assessment and Watershed Protection Division, Office of Wetlands Oceans and Watersheds, Mail Code 4503-T... docket, go to http://www.regulations.gov . Title: Approval of State Coastal Nonpoint Pollution Control...

  13. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  14. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    International Nuclear Information System (INIS)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-01-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl − concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM (ZS) is used as sampling algorithm. Then, the predictive distribution of Cl - concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl - concentration. The results of model calibration and verification demonstrate that the DREAM (ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl − concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl − concentration

  15. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn; Zhu, Xiaobin

    2016-07-15

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.

  16. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    Science.gov (United States)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  17. Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach

    Science.gov (United States)

    Alonso, Álvaro; Figueroa, Ricardo; Castro-Díez, Pilar

    2017-05-01

    The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds—especially in sediments—that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.

  18. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  19. Suspended sediment impact on chlorophyll a, nitrogen and phosphorus relationships in Moon Lake, MS

    Science.gov (United States)

    Moon Lake, MS is a 947 ha. oxbow lake of the Mississippi River Alluvial Plain also known as the Mississippi Delta. Water was sampled from five sites, bi-weekly from 1982 to 1985. Analysis of surface water quality reviled loading of nutrients from nonpoint source pollution associated with agricultu...

  20. ArcAPEX modeling of optimum widths and placement of grass and agroforestry buffers to reduce runoff and sediment transport in claypan watersheds

    Science.gov (United States)

    Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts vertical water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, st...

  1. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    Science.gov (United States)

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  2. Use of modified pine bark for removal of pesticides from stormwater runoff

    Science.gov (United States)

    Mandla A. Tshabalala

    2003-01-01

    Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....

  3. Calibration and validation of the SWAT model for predicting daily ET for irrigated crops in the Texas High Plains using lysimetric data

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model has been used to assess the impacts of alternative agricultural management practices on non-point source pollution in watersheds of various topography and scale throughout the world. Water balance is the driving force behind all processes of SWAT, as i...

  4. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    Science.gov (United States)

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  5. 75 FR 2517 - Notice of Solicitation for Estuary Habitat Restoration Program

    Science.gov (United States)

    2010-01-15

    ..., wastewater treatment plant upgrades, combined sewer outfalls, and non-point source pollution projects such as... Estuary Restoration Act of 2000, Title I of the Estuaries and Clean Waters Act of 2000 (Pub. L. 106-457... with fresh water from land drainage.'' Estuary also includes the ``* * * near coastal waters and...

  6. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Source-term release formulations

    International Nuclear Information System (INIS)

    Streile, G.P.; Shields, K.D.; Stroh, J.L.; Bagaasen, L.M.; Whelan, G.; McDonald, J.P.; Droppo, J.G.; Buck, J.W.

    1996-11-01

    This report is one of a series of reports that document the mathematical models in the Multimedia Environmental Pollutant Assessment System (MEPAS). Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is an integrated impact assessment software implementation of physics-based fate and transport models in air, soil, and water media. Outputs are estimates of exposures and health risk assessments for radioactive and hazardous pollutants. Each of the MEPAS formulation documents covers a major MEPAS component such as source-term, atmospheric, vadose zone/groundwater, surface water, and health exposure/health impact assessment. Other MEPAS documentation reports cover the sensitivity/uncertainty formulations and the database parameter constituent property estimation methods. The pollutant source-term release component is documented in this report. MEPAS simulates the release of contaminants from a source, transport through the air, groundwater, surface water, or overland pathways, and transfer through food chains and exposure pathways to the exposed individual or population. For human health impacts, risks are computed for carcinogens and hazard quotients for noncarcinogens. MEPAS is implemented on a desktop computer with a user-friendly interface that allows the user to define the problem, input the required data, and execute the appropriate models for both deterministic and probabilistic analyses

  7. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    Science.gov (United States)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. PAH diagnostic ratios for the identification of pollution emission sources

    International Nuclear Information System (INIS)

    Tobiszewski, Marek; Namieśnik, Jacek

    2012-01-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. - Highlights: ► PAH diagnostic ratios may identify pollution coming from petroleum spills, fuel combustion and coal or biomass burning. ► They are sensitive to changes during PAHs environmental fate processes. ► Some diagnostic ratios are of limited value due to fast photodegradation of one of the compounds. - The paper reviews PAH diagnostic ratios that are applied to identify pollution emission originating from petroleum products, fuel combustion or coal and biomass burning.

  9. [Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City].

    Science.gov (United States)

    Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin

    2010-11-01

    Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.

  10. Trade-off between water pollution prevention, agriculture profit, and farmer practice--an optimization methodology for discussion on land-use adjustment in China.

    Science.gov (United States)

    Liu, Jianchang; Zhang, Luoping; Zhang, Yuzhen; Deng, Hongbing

    2015-01-01

    Agricultural decision-making to control nonpoint source (NPS) water pollution may not be efficiently implemented, if there is no appropriate cost-benefit analysis on agricultural management practices. This paper presents an interval-fuzzy linear programming (IFLP) model to deal with the trade-off between agricultural revenue, NPS pollution control, and alternative practices through land adjustment for Wuchuan catchment, a typical agricultural area in Jiulong River watershed, Fujian Province of China. From the results, the lower combination of practice 1, practice 2, practice 3, and practice 7 with the land area of 12.6, 5.2, 145.2, and 85.3 hm(2), respectively, could reduce NPS pollution load by 10%. The combination yields an income of 98,580 Chinese Yuan/a. If the pollution reduction is 15%, the higher combination need practice 1, practice 2, practice 3, practice 5, and practice 7 with the land area of 54.4, 23.6, 18.0, 6.3, and 85.3 hm(2), respectively. The income of this combination is 915,170 Chinese Yuan/a. The sensitivity analysis of IFLP indicates that the cost-effective practices are ranked as follows: practice 7 > practice 2 > practice 1 > practice 5 > practice 3 > practice 6 > practice 4. In addition, the uncertainties in the agriculture NPS pollution control system could be effectively quantified by the IFLP model. Furthermore, to accomplish a reasonable and applicable project of land-use adjustment, decision-makers could also integrate above solutions with their own experience and other information.

  11. Epidemiology, public health, and health surveillance around point sources of pollution

    International Nuclear Information System (INIS)

    Stebbings, J.H. Jr.

    1981-01-01

    In industrial society a large number of point sources of pollution exist, such as chemical plants, smelters, and nuclear power plants. Public concern has forced the practising epidemiologist to undertake health surveillance of the usually small populations living around point sources. Although not justifiable as research, such epidemiologic surveillance activities are becoming a routine part of public health practice, and this trend will continue. This introduction reviews concepts of epidemiologic surveillance, and institutional problems relating to the quality of such applied research

  12. Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Bako-Biro, Zsolt; Clausen, Geo

    2002-01-01

    Air quality was studied in an office space classified as low-polluting and ventilated with outdoor air at a rate of 1 h-1. The pollution load in the space was changed by introducing or removing common building-related indoor pollution sources (linoleum, sealant and wooden shelves with books and p...

  13. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    OpenAIRE

    Mohammad Reza Vesali Naseh; Roohollah Noori; Ronny Berndtsson; Jan Adamowski; Elaheh Sadatipour

    2018-01-01

    Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a ...

  15. Evaluating spatial interaction of soil property with non‐point source pollution at watershed scale: The phosphorus indicator in Northeast China

    International Nuclear Information System (INIS)

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-01-01

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20–40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: ► Spatial dynamics of NPS phosphorus pollution with soil

  16. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth

    Science.gov (United States)

    Randy K. Kolka; Mathew F. Smidt

    2004-01-01

    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  17. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Science.gov (United States)

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  18. Water quality and shellfish sanitation. [Patuxent and Choptank River watersheds

    Science.gov (United States)

    Eisenberg, M.

    1978-01-01

    The use of remote sensing techniques for collecting bacteriological, physical, and chemical water quality data, locating point and nonpoint sources of pollution, and developing hydrological data was found to be valuable to the Maryland program if it could be produced effectively and rapidly with a minimum amount of ground corroboration.

  19. Potential water yield reduction due to forestation across China

    Science.gov (United States)

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose

    2006-01-01

    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  20. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    Science.gov (United States)

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  1. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Science.gov (United States)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  2. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  3. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China

    Science.gov (United States)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui

    2006-10-01

    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  4. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    Science.gov (United States)

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  6. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2016-01-01

    Full Text Available Multivariate statistical methods including cluster analysis (CA, discriminant analysis (DA and component analysis/factor analysis (PCA/FA, were applied to explore the surface water quality datasets including 14 parameters at 28 sites of the Eastern Poyang Lake Basin, Jiangxi Province of China, from January 2012 to April 2015, characterize spatiotemporal variation in pollution and identify potential pollution sources. The 28 sampling stations were divided into two periods (wet season and dry season and two regions (low pollution and high pollution, respectively, using hierarchical CA method. Four parameters (temperature, pH, ammonia-nitrogen (NH4-N, and total nitrogen (TN were identified using DA to distinguish temporal groups with close to 97.86% correct assignations. Again using DA, five parameters (pH, chemical oxygen demand (COD, TN, Fluoride (F, and Sulphide (S led to 93.75% correct assignations for distinguishing spatial groups. Five potential pollution sources including nutrients pollution, oxygen consuming organic pollution, fluorine chemical pollution, heavy metals pollution and natural pollution, were identified using PCA/FA techniques for both the low pollution region and the high pollution region. Heavy metals (Cuprum (Cu, chromium (Cr and Zinc (Zn, fluoride and sulfide are of particular concern in the study region because of many open-pit copper mines such as Dexing Copper Mine. Results obtained from this study offer a reasonable classification scheme for low-cost monitoring networks. The results also inform understanding of spatio-temporal variation in water quality as these topics relate to water resources management.

  7. The demand for environmental quality in driving transitions to low-polluting energy sources

    International Nuclear Information System (INIS)

    Fouquet, Roger

    2012-01-01

    The purpose of this paper is to understand the long run demand for energy-related environmental quality, its influence on legislation and on transitions to low polluting energy sources. It presents a series of episodes in British history where a demand for improvements in energy-related environmental quality existed. These episodes helped to identify a few cases where markets partially drove transitions to low polluting energy sources, in specific economic conditions. More generally, they showed that, when pushed, governments will introduce environmental legislation, although it tends to be weak and poorly enforced. In the case of air pollution, strong and binding legislation occurred roughly one hundred years later than was socially optimal. Based on this evidence, for a transition to a low carbon economy, governments will probably need to introduce focussed and binding legislation, and this cannot be expected without strong and sustained demand for climate stability. This demand will need to be spearheaded by pressure groups to introduce legislation, to enforce it and to avoid it being over-turned by future governments. - Highlights: ► Reviews demand for improvements in environmental quality in British history. ► In special cases, demand may drive transitions through markets. ► Demand will probably have to drive transitions to low polluting energy through legislation. ► Need for strong and sustained demand spearheaded through pressure groups.

  8. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  9. Biological and chemical diagnosis of damage to crops caused by air pollution and tracing the source of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Van Raay, A

    1975-01-01

    This paper deals with the biological and chemical diagnosis of damage of crops caused by air pollution. Field observations were made as well as trials in fumigation chambers. The field work showed a great deal of fluoride contamination near industrial plants. A network of monitoring points was set up around the fluoride-emitting sources. The HF pollution was determined by the limed paper method, the fluoride content of plants, leaf necrosis in some plants, and an impinger and tubes filled with coated silver pellets, directed by a weather-vane. These investigations were carried out in two areas of New Zealand as well as near Delfzijl in Groningen. Fluoride was emitted by factories producing aluminum, superphosphate or sodium triphosphate.

  10. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  11. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  12. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  13. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Science.gov (United States)

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  14. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Science.gov (United States)

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  15. Spatio-temporal characteristics of livestock and their effects on pollution in China based on geographic information system.

    Science.gov (United States)

    Liu, Ruimin; Xu, Fei; Liu, Yongyan; Wang, Jiawei; Yu, Wenwen

    2016-07-01

    Livestock pollution, caused by rural household's scatter breeding mainly, is one of the major non-point sources. Different animal manures are abundant with different nutrients. Adopting the policies, management practices, and technologies related to livestock production based on livestock structure analysis can improve the efficiency on preventing pollution. Based on statistical data, the component structure of livestock was analyzed and corresponding effect on pollution was evaluated during the period of 1992-2012 in China. The results showed that the average annual growth rate (AAGR) of total China was 1.58 % during the 20 years. Larger amounts of livestock were concentrated in Southwest China and East China. In the view of component structure, each type of livestock had different distribution characteristics and constant increasing amounts were presented during the 20 years. Cattle took the largest proportion in almost every province, and the number of heads was over 40 % of all the livestock quantity for most provinces. Pollution of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) caused by livestock excretion in East and Southeast China was much more serious than that in other regions. However, the load of COD was far less than that of TN and TP. Cattle accounted most for the livestock pollution, and swine was the second one. The intensity characteristics of TN, TP, and COD were different from that of total pollution loads. The spatio-temporal characteristics of amounts and component structure of livestock were influenced by three kinds of factors (natural, economic, and social), such as climate, topography, modes of production, feed grain sector, related policies, and area of the study regions. Different livestock excrements had different impacts on environment. According to various livestock structures and economy conditions, different disposal methods should be adopted.

  16. Storm water runoff for the Y-12 Plant and selected parking lots

    International Nuclear Information System (INIS)

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals with establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern

  17. A GIS-based atmospheric dispersion model for pollutants emitted by complex source areas.

    Science.gov (United States)

    Teggi, Sergio; Costanzini, Sofia; Ghermandi, Grazia; Malagoli, Carlotta; Vinceti, Marco

    2018-01-01

    Gaussian dispersion models are widely used to simulate the concentrations and deposition fluxes of pollutants emitted by source areas. Very often, the calculation time limits the number of sources and receptors and the geometry of the sources must be simple and without holes. This paper presents CAREA, a new GIS-based Gaussian model for complex source areas. CAREA was coded in the Python language, and is largely based on a simplified formulation of the very popular and recognized AERMOD model. The model allows users to define in a GIS environment thousands of gridded or scattered receptors and thousands of complex sources with hundreds of vertices and holes. CAREA computes ground level, or near ground level, concentrations and dry deposition fluxes of pollutants. The input/output and the runs of the model can be completely managed in GIS environment (e.g. inside a GIS project). The paper presents the CAREA formulation and its applications to very complex test cases. The tests shows that the processing time are satisfactory and that the definition of sources and receptors and the output retrieval are quite easy in a GIS environment. CAREA and AERMOD are compared using simple and reproducible test cases. The comparison shows that CAREA satisfactorily reproduces AERMOD simulations and is considerably faster than AERMOD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sources of contamination and modelled pollutant trajectories in a Mediterranean harbour (Tarragona, Spain).

    Science.gov (United States)

    Mestres, M; Sierra, J P; Mösso, C; Sánchez-Arcilla, A

    2010-06-01

    The proximity of commercial harbours to residential areas and the growing environmental awareness of society have led most port authorities to include environmental management within their administration plan. Regarding water quality, it is necessary to have the capacity and tools to deal with contamination episodes that may damage marine ecosystems and human health, but also affect the normal functioning of harbours. This paper presents a description of the main pollutant sources in Tarragona Harbour (Spain), and a numerical analysis of several pollution episodes based on the Port Authority's actual environmental concerns. The results show that pollution generated inside the harbour tends to remain confined within the port, whereas it is very likely that oil spills from a nearby monobuoy may affect the neighbouring beaches. The present combination of numerical models proves itself a useful tool to assess the environmental risk associated to harbour activities and potential pollution spills.

  19. Characterisation and quantification of the sources of PM{sub 10} during air pollution episodes in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Muir, David [Environmental Quality Unit, Department of Planning, Transport and Sustainable Development, Bristol City Council, The CREATE Centre, Smeaton Road, Bristol BS1 6XN (United Kingdom); Longhurst, J.W.S.; Tubb, A. [Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY (United Kingdom)

    2006-04-01

    Data for concentrations of PM{sub 10} and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM{sub 10}. The ratios of concentrations of PM{sub 10} to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM{sub 10} were divided by those of the other pollutants, the ratio should decrease when PM{sub 10} and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM{sub 10} to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM{sub 10} during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM{sub 10} and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM{sub 10} when an appropriate factor, F, related to the contribution of road traffic emissions to PM{sub 10} at different site types

  20. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    Verma, M.P.

    1996-01-01

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO 3 , Cl, SO 4 , NO 3 and p H. So it was analyzed the cations Na + , K + , Ca 2+ and Mg 2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO 3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO 3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  2. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  3. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    S. A. Abou Rafee

    2017-06-01

    Full Text Available This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs. Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  4. Identification of pollutant sources in a rapidly developing urban river catchment in China

    Science.gov (United States)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  5. Comparing Multipollutant Emissions-Based Mobile Source Indicators to Other Single Pollutant and Multipollutant Indicators in Different Urban Areas

    Directory of Open Access Journals (Sweden)

    Michelle M. Oakes

    2014-11-01

    Full Text Available A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants and have similar or stronger associations with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total (gasoline + diesel vehicles to two other cities (Denver, Colorado and Houston, Texas with different emissions profiles as well as to a different dataset from Atlanta. We compare spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide (CO, nitrogen oxides (NOx and elemental carbon (EC and multipollutant source apportionment factors produced by Positive Matrix Factorization (PMF. Across cities, PMF-derived and IMSI gasoline metrics were most strongly correlated with CO (r = 0.31–0.98, while multipollutant diesel metrics were most strongly correlated with EC (r = 0.80–0.98. NOx correlations with PMF factors varied across cities (r = 0.29–0.67, while correlations with IMSIs were relatively consistent (r = 0.61–0.94. In general, single-pollutant metrics were more correlated with IMSIs (r = 0.58–0.98 than with PMF-derived factors (r = 0.07–0.99. A spatial analysis indicated that IMSIs were more strongly correlated (r > 0.7 between two sites in each city than single pollutant and PMF factors. These findings provide confidence that IMSIs provide a transferable, simple approach to estimate mobile source air pollution in cities with differing topography and source profiles using readily available data.

  6. Characterization of the atmospheric pollution level in Sfax (Tunisia): influence of sources and meteorological factors; Caracterisation du niveau de pollution atmospherique dans la ville de Sfax (Tunisie): influence des sources et des facteurs meteorologiques

    Energy Technology Data Exchange (ETDEWEB)

    Azri, Ch.; Maalej, A.; Medhioub, K. [Ecole Nationale d' ingenieurs de Sfax, Unite de Recherche Etude et Gestion des Environnements Cotiers et Urbains (Tunisia); Tlili, A. [Faculte des Sciences de Sfax, Dept. de Geologie (Tunisia)

    2002-01-01

    This study held in Sfax City (Tunisia), showed that the atmospheric pollution level is strongly influenced by industrial sources, obstacles and meteorological factors. The factory of phosphate treatment 'SIAPE' displayed the main polluting source in the City. It is the principal issuing of SO{sub x} and toxic metals. The phosphogypsum deposit displayed an obstacle to the atmospheric diffusion of pollutants. Their stagnation is accentuated under smoky conditions. Several episodes of SO{sub 2} and dust are attributed to the effect of marked thermal inversions and the sirocco wind. The limited influence of traffic was proved by the registration of NO{sub x}, which showed low concentrations. It is conditioned by the change of fashion life of people and their customs of work (Ramadan month, agricultural activities). As a result, the adequate treatment of atmospheric industrial emanations (notably those of SIAPE) and the evacuation of artificial obstacles have to be considered. (authors)

  7. European database on indoor air pollution sources in buildings: Current status of database structure and software

    NARCIS (Netherlands)

    Molina, J.L.; Clausen, G.H.; Saarela, K.; Plokker, W.; Bluyssen, P.M.; Bishop, W.; Oliveira Fernandes, E. de

    1996-01-01

    the European Joule II Project European Data Base for Indoor Air Pollution Sources in Buildings. The aim of the project is to produce a tool which would be used by designers to take into account the actual pollution of the air from the building elements and ventilation and air conditioning system

  8. Novel human-associated Lachnospiraceae genetic markers improve detection of fecal pollution sources in urban waters.

    Science.gov (United States)

    Feng, Shuchen; Bootsma, Melinda; McLellan, Sandra L

    2018-05-04

    The human microbiome contains many organisms that could potentially be used as indicators of human fecal pollution. Here we report the development of two novel human-associated genetic marker assays that target organisms within the family Lachnospiraceae Next-generation sequencing of the V6 region of the 16S rRNA gene from sewage and animal stool samples identified 40 human-associated marker candidates with a robust signal in sewage and low or no occurrence in nonhuman hosts. Two were chosen for quantitative PCR (qPCR) assay development using longer sequences (V2 to V9 regions) generated from clone libraries. Validation of these assays, designated Lachno3 and Lachno12, was performed using fecal samples (n=55) from cat, dog, pig, cow, deer, and gull sources, and compared with established host-associated assays (Lachno2, and two Human Bacteroides assays; HB and HF183/BacR287). Each of the established assays cross-reacted with at least one other animal, including animals common in urban areas. Lachno3 and Lachno12 were primarily human-associated; however, Lachno12 demonstrated low levels of cross-reactivity with select cows, and non-specific amplification in pigs. This limitation may not be problematic when testing urban waters. These novel markers resolved ambiguous results from previous investigations in stormwater-impacted waters, demonstrating their utility. The complexity of the microbiome in humans and animals suggests no single organism is strictly specific to humans, and multiple complementary markers used in combination will provide the highest resolution and specificity for assessing fecal pollution sources. IMPORTANCE Traditional fecal indicator bacteria do not distinguish animal from human fecal pollution, which is necessary to evaluate health risks and mitigate pollution sources. Assessing urban areas is challenging since water can be impacted by sewage, which has a high likelihood of carrying human pathogens, as well as pet waste and urban wildlife. We

  9. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  10. Isotope ratios as pollutant source and behaviour indicators

    International Nuclear Information System (INIS)

    1975-01-01

    Recent years have witnessed significant advances in isotope techniques for identifying origins and for studying the behaviour of trace contaminants and pollutants of the environment under actual existing environmental conditions. Improvements in the supply of stable isotopes and their labelled compounds, instrumental analysis and information on stable or radioactive isotopic ratios of existing environmental contaminants as a function of origin or behaviour have provided relatively new tools for the environmental scientist. While variations in natural or existing environmental stable and radioactive nuclides could be regarded as 'background noise' in conventional tracer experiments they promised unique information about sources and behaviour to those who listened carefully. (author)

  11. Mathematical Modeling for Water Quality Management under Interval and Fuzzy Uncertainties

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-01-01

    Full Text Available In this study, an interval fuzzy credibility-constrained programming (IFCP method is developed for river water quality management. IFCP is derived from incorporating techniques of fuzzy credibility-constrained programming (FCP and interval-parameter programming (IPP within a general optimization framework. IFCP is capable of tackling uncertainties presented as interval numbers and possibility distributions as well as analyzing the reliability of satisfying (or the risk of violating system’s constraints. A real-world case for water quality management planning of the Xiangxi River in the Three Gorges Reservoir Region (which faces severe water quality problems due to pollution from point and nonpoint sources is then conducted for demonstrating the applicability of the developed method. The results demonstrate that high biological oxygen demand (BOD discharge is observed at the Baishahe chemical plant and Gufu wastewater treatment plant. For nonpoint sources, crop farming generates large amounts of total phosphorus (TP and total nitrogen (TN. The results are helpful for managers in not only making decisions of effluent discharges from point and nonpoint sources but also gaining insight into the tradeoff between system benefit and environmental requirement.

  12. A regional protocol for evaluating the effectiveness of forestry best management practices at controlling erosion and sedimentation

    Science.gov (United States)

    Roger Ryder; Pamela Edwards; Pamela Edwards

    2006-01-01

    Forestry operations do not have permitting requirements under the Clean Water Act because there is a ccsilvicultural exemption" given in that law, as long as best management practices (BMPs) are used to help control non-point source pollution. However, states' monitoring of BMP effectiveness often has been sporadic and anecdotal, and the procedures used have...

  13. Riparian Forest Buffers - Function for Protection and Enhancement of Water Resources

    Science.gov (United States)

    David J. Welsch

    1991-01-01

    Streamside forests are crucial to the protection and enhancement of the water resources of the Eastern United States. They are extremely complex ecosystems that help provide optimum food and habitat for stream communities as well as being useful in mitigating or controlling nonpoint source pollution (NPS). Used as a component of an integrated management system...

  14. a long, long time ago...

    Science.gov (United States)

    Elliot West; Greg Ruark

    2004-01-01

    Riparian areas - lang adjacent to a streambank or other water body - filtering nonpoint source pollution. Unfortunately the riparian areas of today, include only narrow bands of forests, or no woody vegetation. This greatly minimizes their ecological function. In deciding how to manage these areas, knowing the natural riparian makeup before humans settled in the area...

  15. Prescribed burning effects on the hydrologic behavior of gullies in the South Carolina Piedmont

    Science.gov (United States)

    M.A. Galang; L.A. Morris; D. Markewitz; C.R. Jackson; E.A Carter

    2010-01-01

    Gullies found in the Piedmont of South Carolina are legacies of past land use and erosion. Although the majority of these gullies are now under forest vegetation and perceived as geomorphologically stable, the question of gully contribution to nonpoint source pollution remains undetermined, especially when these gullies are subjected to prescribed burning or other...

  16. Risk Assessment of Pollution Emergencies in Water Source Areas of the Hanjiang-to-Weihe River Diversion Project

    Science.gov (United States)

    Liu, Luyao; Feng, Minquan

    2018-03-01

    [Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.

  17. Environmental health: an opportunity for health promotion and disease prevention.

    Science.gov (United States)

    Chalupka, Stephanie

    2005-01-01

    Variance in personal susceptibility to environmental hazards may be attributable to age, gender, previous or concomitant exposure, economic status, race, or genetic endowment. Water pollution sources can be either point sources (a well-defined source, e.g., factory waste water discharge) or non-point sources (more diffuse sources including agricultural, industrial, and urban runoff, domestic lawn care, and air pollution). Pollutants can migrate from disposal sites, underground injection wells, or underground storage systems and contaminate ground and surface drinking water sources. The annual cost of human exposure to outdoor air pollutants from all sources is estimated to be between $40 to $50 billion. The death toll from exposure to particulate air pollution generated by motor vehicles, burning coal, fuel oil, and wood is estimated to be responsible for as many as 100,000 fatalities annually in the United States. Through the identification of individuals and groups at greater risk, occupational and environmental health nurses can use primary and secondary prevention activities to protect susceptible individuals and communities from adverse exposures and environmentally related disease.

  18. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  19. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  20. VESSEL-SOURCED POLLUTION: A SECURITY THREAT IN ...

    African Journals Online (AJOL)

    and some other conventions make provisions concerning protection of ma- ... the pollution of the marine in Malaysia, it appears that pollution by vessels .... pollution from ships and maritime safety; providing effective legal, technical and scientific ..... of the offence after the service of the notice on the offending ship through.

  1. Rate Proposal for Remuneration of Air Pollutants Emissions From Stationary Sources Located in Bogota D.C.

    Directory of Open Access Journals (Sweden)

    Gabriel Herrera Torres

    2011-04-01

    Full Text Available The objective of this project is to develop a methodological proposal for the establishment of the retributive rate for the direct use of the atmosphere as the receptor of pollutant emissions that come from stationary resources on Bogotá D.C. By means of the emissions from stationary sources inventory and the air quality analysis, the pollutant that are emitted by the industries and the ones that are regulated by the network observations of the were identified selecting the particulated matter (PM10, sulfur oxides (SOx, and nitrogen oxides (NOx as the atmospheric pollutants that should be the object of payment in the retributive rate. Besides the selection of the pollutants that should be in the payment, the analysis of the retributive rate structure was made witch was based on the description or four key elements the generated fact, the tax base, the passive subject, and the fee of the rate. taking into account the social costs which are related to the investment being made by the district for the treatment of patients that present acute respiratory diseases ERA´s, associated and the costs of program control and monitoring of the air quality in Bogotá, the tariffs of the payment of the retributive rate were redefined in 281 $/Kg for the PM10, 2816 $/kg for the SOX and 2866 $/kg for NOX. Finally a new model of the payment was established, which is the result of the multiplication of the respective tariff for each of the pollutants that were selected as object of payment, expressed in ($/kg times, the charge of the pollutants emitted by the source expressed in (kg/ day.times the total number of days of the operation of the source emissions in a year.

  2. Water Pollution, Causes and Cures.

    Science.gov (United States)

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…

  3. Sources and characteristics of lead pollution in the urban environment of Guangzhou

    International Nuclear Information System (INIS)

    Duzgoren-Aydin, Nurdan S.

    2007-01-01

    Guangzhou, the capital of the southeastern province of Guangdong, is one of the largest and most rapidly developing industrial cities in China. In recent years its rapid economic development has brought great prosperity to the Pearl River Delta (PRD) region, but has also given rise to a wide variety of environmental problems. The current level of lead (Pb) contamination (75-926 mg/kg) in the surface environment of Guangzhou remains a major concern, even though the use of leaded petrol in the city was banned in 1997. The Pb isotope ratios ( 206 Pb/ 207 Pb min-max : 1.1612-1.1961 and 208 Pb/ 207 Pb min-max : 2.4495-2.4838) of the urban dusts from unconfined (road dusts and gully sediments) and relatively confined (vehicular tunnel) settings in Guangzhou remains in a relatively narrow range, comparable with those of the regional natural and anthropogenic sources. This study highlights the inherent shortcomings of the Pb isotope fingerprinting technique for provenancing Pb sources, as both the target media (urban dusts) and potential sources have similar and highly radiogenic Pb isotope values. This could not only lead to an overestimation of the effectiveness of phasing-out of leaded petrol, but also an underestimation of the ever-increasing relative contributions from other potential sources of pollution, including coal combustion, industrial emissions of local Pb-ores and non-additive Pb contents of crude oils. Re-suspended Pb-bearing particulates deposited from early vehicular exhaust emission of leaded petrol with distinctly low Pb isotope compositions are still an important source of Pb pollution in the region

  4. The Onset of a Novel Environmental Offset: A case study for diverse pollutant scheme in Australia.

    Science.gov (United States)

    Sengupta, A.; Arora, M.; Delbridge, N.; Pettigrove, V.; Feldman, D.

    2014-12-01

    Environmental offset schemes employ a crediting system to mitigate the impacts of pollutants. In this talk, we present a novel trade-off concept comparing diverse groups of pollutants: environmental flows, micropollutants (heavy metals, pesticides, estrogen compounds) and nutrients in a test watershed (Jacksons Creek), in the vicinity of Melbourne. A reservoir in the upper watershed, and a wastewater treatment plant (WTP) are the main sources of flow into Jacksons Creek. The current land use is a mix of agriculture, and rural, though rapid urbanization is anticipated with a 40% increase in the population by 2040. The creek is impacted by: 1) low flow, especially during dry periods (contribution from the reservoir drops dramatically), 2) nutrient enrichment (WTP and agricultural runoff), and 3) micropollutants-heavy metals (urban runoff), estrogenic compounds (WTP), and pesticides (agricultural runoff). In this offset framework, we evaluated current and future scenarios to identify the main stressor in Jacksons Creek. We collected monitoring data at 15 sites for separate 3 events. Then we developed a watershed model to assess sources of pollutant loads to the creek, using two different tools, Model for Urban Stormwater Improvement Conceptualisation (MUSIC) for the preliminary flow and water quality modeling, and eWater Source for integrated water resource management (IWRM), and a decision support system for stakeholders. Scenario analysis includes urbanization and population growth, and anticipated discharges from WTP and the reservoir. Measured nutrient concentrations were high for all sampling events. Micropollutants were detected at a concentration higher than the trigger value at several locations. Preliminary analysis shows that low flow is one of the major stressors in the creek causing elevated micropollutant and nutrient concentrations (non-point), and that discharge from the WTP is essential to maintain the minimum environmental flows, though nutrient

  5. Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India

    Science.gov (United States)

    Rao, Nagireddi Srinivasa

    2006-12-01

    The complex depositional pattern of clay and sand in most of the areas controlled the vertical and lateral movement of nitrate in groundwater. The variation of nitrate concentration at different groundwater levels and the lateral distribution of nitrate in the groundwater at two sites indicated the filtration of nitrate by clayey formations. A rural agricultural district located in the Vamsadhara river basin, India was selected for studying the lateral and vertical distribution of nitrate in the groundwater and the association of nitrate with other chemical constituents. The nitrate concentrations in the groundwater are observed to vary between below detectable limit and 450 mg NO3/L. The sources for nitrate are mainly point sources (poultry farms, cattleshed and leakages from septic tanks) and non-point sources (nitrogenous fertilisers). The nitrate concentrations are increased after fertiliser applications. However, very high concentrations of nitrate are derived from animal wastes. Relatively better correlations between nitrate and potassium are observed ( R = 0.74 to 0.82). The better relationship between these two chemical constituents in the groundwater may be due to the release of potassium and nitrate from both point and non-point sources. The nitrate and potassium concentrations are high in the groundwater from clayey formations.

  6. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  7. Analysis of Nonlinear Dispersion of a Pollutant Ejected by an External Source into a Channel Flow

    Directory of Open Access Journals (Sweden)

    T. Chinyoka

    2010-01-01

    Full Text Available This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.

  8. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  9. Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.

    Science.gov (United States)

    Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena

    2002-05-01

    This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.

  10. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    Science.gov (United States)

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  11. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    Science.gov (United States)

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  13. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Science.gov (United States)

    2010-06-03

    ... & Coating Manufacturing.. 325510 Area source facilities engaged in mixing pigments, solvents, and binders... repellant coatings for concrete and masonry. Adhesive Manufacturing......... 325520 Area source facilities... various areas of air pollution control. IV. Why are we amending the rule? Our intention in this area...

  14. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  15. Fiscal Year 1990 program report: New York State Water Resources Institute

    International Nuclear Information System (INIS)

    Porter, K.S.

    1991-08-01

    New York has made major strides in reducing or eliminating point sources of water pollutants. Nonpoint sources have become the primary focus of many State water pollution control programs. Among the most critical remaining water pollutant sources in New York are toxics-contaminated sediments in surface water bodies and leaks and spills of toxic and hazardous materials. Contaminated sediments are implicated as a major origin of certain persistent synthetic organics accumulated by higher aquatic organisms, as well as representing an uncertain but large reservoir of contaminants which may be re-released during high flows. Spills and leaks represent threats to both surface and ground water. The State now responds to over 10,000 of these cases each year. A growing number of cases are leaking underground petroleum storage tanks, requiring long and expensive cleanup activities

  16. Pollution Sources and Mortality Rates across Rural-Urban Areas in the United States

    Science.gov (United States)

    Hendryx, Michael; Fedorko, Evan; Halverson, Joel

    2010-01-01

    Purpose: To conduct an assessment of rural environmental pollution sources and associated population mortality rates. Methods: The design is a secondary analysis of county-level data from the Environmental Protection Agency (EPA), Department of Agriculture, National Land Cover Dataset, Energy Information Administration, Centers for Disease Control…

  17. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The phosphorus fertilizer production as a source of rare-earth elements pollution of the environment

    International Nuclear Information System (INIS)

    Volokh, A.A.; Gorbunov, A.V.; Revich, B.A.; Gundorina, S.F.; Frontas'eva, M.V.; Chen Sen Pal.

    1989-01-01

    This paper considers some peculiarities of the production of phosphorus fertilizers from the point of view of the pollution of the environment with rare-earth elements. The principal possibility is demonstrated of the determination of the influence of a given type of production on the environment by measuring the change in the rare-arth elements interrelationship in the show. The main source of industrial dust is identified. The distribution of pollutants in dependence on the size of aerosol particles is given. The data on the concentrations of the pollutants in agricultural plants, employees hair and hair of local residents are also reported. 8 refs.; 4 figs.; 4 tabs

  19. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012.

    Science.gov (United States)

    Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong

    2016-03-01

    Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.

  20. [Weight parameters of water quality impact and risk grade determination of water environmental sensitive spots in Jiashan].

    Science.gov (United States)

    Xie, Rong-Rong; Pang, Yong; Zhang, Qian; Chen, Ke; Sun, Ming-Yuan

    2012-07-01

    For the safety of the water environment in Jiashan county in Zhejiang Province, one-dimensional hydrodynamic and water quality models are established based on three large-scale monitoring of hydrology and water quality in Jiashan county, three water environmental sensitive spots including Hongqitang dam Chijia hydrological station and Luxie pond are selected to investigate weight parameters of water quality impact and risk grade determination. Results indicate as follows (1) Internal pollution impact in Jiashan areas was greater than the external, the average weight parameters of internal chemical oxygen demand (COD) pollution is 55.3%, internal ammonia nitrogen (NH(4+)-N) is 67.4%, internal total phosphor (TP) is 63.1%. Non-point pollution impact in Jiashan areas was greater than point pollution impact, the average weight parameters of non-point COD pollutions is 53.7%, non-point NH(4+)-N is 65.9%, non-point TP is 57.8%. (2) The risk of Hongqitang dam and Chijia hydrological station are in the middle risk. The risk of Luxie pond is also in the middle risk in August, and in April and December the risk of Luxie pond is low. The strategic decision will be suggested to guarantee water environment security and social and economic security in the study.