WorldWideScience

Sample records for nonplanar ion acoustic

  1. Nonplanar Ion-Acoustic Solitons in Electron-Positron-Ion Quantum Plasmas

    Institute of Scientific and Technical Information of China (English)

    S. A. Khan; S. Mahmood; Arshad M. Mirza

    2009-01-01

    @@ The propagation of nonplanar quantum ion-acoustic solitary waves in a dense, unmagnetized electron-positron-ion (e-p-i) plasma are studied by using the Korteweg-de Vries (KdV) model The quantum hydrodynamic (QHD) equations are used taking into account the quantum diffraction and quantum statistics corrections. The analytical and numerical solutions of KdV equation reveal that the nonplanar ion-acoustic solitons are modified significantly with quantum corrections and positron concentration, and behave differently in different geometries.

  2. Nonplanar ion-acoustic shocks in electron–positron–ion plasmas: Effect of superthermal electrons

    Indian Academy of Sciences (India)

    Deb Kumar Ghosh; Prasantha Chatterjee; Pankaj Kumar Mandal; Biswajit Sahu

    2013-09-01

    Ion-acoustic shock waves (IASWs) in a homogeneous unmagnetized plasma, comprising superthermal electrons, positrons, and singly charged adiabatically hot positive ions are investigated via two-dimensional nonplanar Kadomstev–Petviashvili–Burgers (KPB) equation. It is found that the profiles of the nonlinear shock structures depend on the superthermality of electrons. The influence of other plasma parameters such as, ion kinematic viscosity and ion temperature, is discussed in the presence of superthermal electrons in nonplanar geometry. It is also seen that the IASWs propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on.

  3. Effect of nonplanar geometry on ion acoustic solitary waves in presence of ionization in collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Samiran [College of Textile Technology, Berhampore 742101, Murshidabad, West Bengal (India)]. E-mail: sran_g@yahoo.com

    2005-04-11

    It has been found that the dust ion acoustic solitary wave (DIASW) is governed by a modified form of Korteweg-de Vries (KdV) equation modified by the effects of ionization, particle collisions and bounded nonplanar geometry. Approximate analytical time evolution solution and also the numerical solution of modified form of KdV equation reveal that the wave amplitude grows exponentially with time due to ionization, whereas the bounded nonplanar geometry and collision reduce the instability growth rate.

  4. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Sciences- Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India)

    2015-12-15

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  5. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. J., E-mail: josim.phys2007@gmail.com; Alam, M. S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  6. Effect of nonthermal distributed electrons and temperature on phase shifts during the collision of inward and outward ion-acoustic solitary waves in nonplanar geometry

    Indian Academy of Sciences (India)

    Uday Narayan Ghosh; Prasantha Chatterjee; Deb Kumar Ghosh

    2013-10-01

    Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions is investigated using the extended version of Poincaré–Lighthill–Kuo (PLK) perturbation method. How the interactions are taking place in cylindrical and spherical geometries are shown numerically. Analytical phase shifts are derived for nonplanar geometry. The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different.

  7. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    Science.gov (United States)

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  8. Nonplanar ion-acoustic solitons collision in Xe+-F-- SF6- and Ar+-F-- SF6- plasmas

    Science.gov (United States)

    El-Tantawy, S. A.; Carbonaro, P.

    2016-04-01

    The solitons collision in nonplanar (cylindrical and spherical) plasmas consisting of positive ions, two different negative ions, and isothermal electrons is studied. For this purpose, the Poincaré-Lighthill-Kuo (PLK) method is used to obtain two-coupled nonplanar Korteweg-de Vries (nKdV) equations. Also, the nonplanar phase shifts are calculated. The physical parameters of two plasma experiments; namely Xe+-F-- SF6- and Ar+-F-- SF6- are used to examine the properties of the localized pulses and their phase shifts after collision. It is found that the present model gives rise to the propagation of positive and negative pulses. The effects of the total negative ions concentration, the density ratio of the second-negative ions, the temperature ratio, and the geometrical effects on the behavior of solitons collisions and their phase shifts are investigated. Furthermore, it is found that the phase shifts in the case of the Ar+-F-- SF6- plasma are much larger than those of the Xe+-F-- SF6- plasma. Also, for fixed plasma parameters, the solitons collision received the largest phase shift in spherical geometry, followed by the cylindrical and planar geometries.

  9. Effects of non-extensive electrons and positive/negative dust particles on modulational instability of dust-ion-acoustic solitary waves in non-planar geometry

    Indian Academy of Sciences (India)

    M EGHBALI; B FAROKHI; M ESLAMIFAR

    2017-01-01

    The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter $q$ on the MI are studied. The growth rate of the MI is also given for different values of $q$. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the netdust-charge number density and non-planar geometry.

  10. Effects of non-extensive electrons and positive /negative dust particles on modulational instability of dust-ion-acoustic solitary waves in non-planar geometry

    Science.gov (United States)

    Eghbali, M.; Farokhi, B.; Eslamifar, M.

    2017-01-01

    The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of q. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the net dust-charge number density and non-planar geometry.

  11. Effect of superthermal electrons on dust-acoustic Gardner solitons in nonplanar geometry

    Indian Academy of Sciences (India)

    Deb Kumar Ghosh; Yday Narayan Ghosh; Prasanta Chatterjee; C S Wong

    2013-04-01

    The properties of nonplanar (cylindrical and spherical) dust-acoustic solitary waves (DASWs) in an unmagnetized, collisionless three-component dusty plasma, whose constituents are negatively charged cold dust fluid, superthermal/non-Maxwellian electrons (represented by kappa distribution) and Boltzmann distributed ions, are investigated by deriving the modified Gardner (MG) equation. The well-known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar DA Gardner solitons (GSs) are discussed. It is seen that the properties of nonplanar DAGSs (positive and negative) significantly differ as the value of spectral index changes.

  12. Nonplanar electrostatic shock waves in an opposite polarity dust plasma with nonextensive electrons and ions

    Indian Academy of Sciences (India)

    M AMINA; S A EMA; A A MAMUN

    2017-06-01

    A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-acoustic shock waves (DASHWs) in a collisionless four-component unmagnetized dusty plasmasystem containing massive, micron-sized, positively and negatively charged inertial dust grains along with $q$ (nonextensive) distributed electrons and ions. The well-known reductive perturbation technique has been used to derive the modified Burgers equation (which describes the shock wave properties) and its numerical solution. It has been observed that the effects of charged dust grains of opposite polarity, nonextensivity of electrons and ions, and different dusty plasma parameters have significantly modified the fundamental properties (viz., polarity, amplitude, width, etc.) of the shock waves. The properties of DASHWs in nonplanar geometry are found tobe significantly different from those in one-dimensional planar geometry. The findings of our results from this theoretical investigation may be useful in understanding the nonlinear features of localized electrostatic disturbancesin both space and laboratory dusty plasmas.

  13. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  14. Properties of cylindrical and spherical heavy ion-acoustic solitary and shock structures in a multispecies plasma with superthermal electrons

    Science.gov (United States)

    Shah, M. G.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2016-02-01

    A theoretical investigation on heavy ion-acoustic (HIA) solitary and shock structures has been accomplished in an unmagnetized multispecies plasma consisting of inertialess kappa-distributed superthermal electrons, Boltzmann light ions, and adiabatic positively charged inertial heavy ions. Using the reductive perturbation technique, the nonplanar (cylindrical and spherical) Kortewg-de Vries (KdV) and Burgers equations have been derived. The solitary and shock wave solutions of the KdV and Burgers equations, respectively, have been numerically analyzed. The effects of superthermality of electrons, adiabaticity of heavy ions, and nonplanar geometry, which noticeably modify the basic features (viz. polarity, amplitude, phase speed, etc.) of small but finite amplitude HIA solitary and shock structures, have been carefully investigated. The HIA solitary and shock structures in nonplanar geometry have been found to distinctly differ from those in planar geometry. Novel features of our present attempt may contribute to the physics of nonlinear electrostatic perturbation in astrophysical and laboratory plasmas.

  15. Time-Dependent Cylindrical and Spherical Solitary Structures and Double Layers of Dust Ion-Acoustic Waves in Ultra-Relativistic Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    T.Akhter; M.M.Hossain; A.A.Mamun

    2013-01-01

    Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions,non-inertial degenerate electrons,and negatively charged static dust) are studied by employing the standard reductive perturbation method.The modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves is derived,and its nonplanar SWs and DLs solutions are numerically analyzed.The parametric regimes for the existence of SWs,which are associated with both positive and negative potential,and DLs which are associated with negative potential,are obtained.The basic features of nonplanar DIA SWs,and DLs,which are found to be different from planar ones,are also identified.

  16. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  17. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  18. Simulation study of planar and nonplanar super rogue waves in an electronegative plasma: Local discontinuous Galerkin method

    Science.gov (United States)

    El-Tantawy, S. A.; Aboelenen, Tarek

    2017-05-01

    Planar and nonplanar (cylindrical and spherical) ion-acoustic super rogue waves in an unmagnetized electronegative plasma are investigated, both analytically (for planar geometry) and numerically (for planar and nonplanar geometries). Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonplanar/modified nonlinear Schrödinger equation (NLSE), which describes a slow modulation of the nonlinear wave amplitude. The local modulational instability of the ion-acoustic structures governed by the planar and nonplanar NLSE is reported. Furthermore, the existence region of rogue waves is strictly defined. The parameters used in our calculations are from the lab observation data. The local discontinuous Galerkin (LDG) method is used to find rogue wave solutions of the planar and nonplanar NLSE and to prove L2 stability of this method. Also, it is found that the numerical simulations and the exact (analytical) solutions of the planar NLSE match remarkably well and numerical examples show that the convergence orders of the proposed LDG method are N + 1 when polynomials of degree N are used. Moreover, it is noted that the spherical rogue waves travel faster than their cylindrical counterpart. Also, the numerical solution showed that the spherical and cylindrical amplitudes of the localized pulses decrease with the increase in the time | τ |.

  19. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: Modulational instability and rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 (China); Sun, Anbang [Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands)

    2013-05-15

    The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.

  20. Cylindrical and spherical positron-acoustic shock waves in nonthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Alam, M.S.; Mamun, A.A., E-mail: shohelplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2015-06-15

    The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas. (author)

  1. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  2. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  3. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  4. Dust-ion-acoustic double layers in multi-ion dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, A. A. [Jahangirnagar University, Department of Physics (Bangladesh); Deeba, F., E-mail: farah.ju35@gmail.com [Dhaka University of Engineering and Technology, Department of Physics (Bangladesh)

    2015-08-15

    A theoretical investigation has been made on nonplanar (cylindrical and spherical) dust-ionacoustic (DIA) double layers (DLs) in a multi-ion dusty plasma system containing inertial positive and negative ions and arbitrarily charged stationary dust. The dust particles have been considered as arbitrarily (either positively or negatively) charged in order to observe the effects of the dust polarity on the DIA DLs. The ion species were considered to be at different temperatures to observe the effects of the temperatures on that waves. The modified Gardner equation, which has been derived by employing the reductive perturbation method, has been used to analyze time-dependent nonplanar and planar DIA DLs. It has been found that the time evolution of DIA DLs is significantly modified not only by the nonplanar geometry, but also by the polarity, temperature, and mass ratio of the constituent particles. It has been also found that the amplitude of cylindrical DIA DL structures is larger than that of 1D planar ones, but smaller than that of the spherical ones.

  5. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K., E-mail: smaharaj@sansa.org.za [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  6. Ion-acoustic cnoidal waves in a quantum plasma

    CERN Document Server

    Mahmood, Shahzad

    2016-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  7. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  8. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  9. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  10. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Akhtar, N. [Theoretical Physics Division, PINSTECH, NILORE, Islamabad 44000 (Pakistan); DPAM, PIEAS, NILORE, Islamabad 44000 (Pakistan); Hasnain, H. [Theoretical Physics Division, PINSTECH, NILORE, Islamabad 44000 (Pakistan)

    2014-12-15

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  11. Ion acoustic solitons/double layers in two-ion plasma revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lakhina, G. S., E-mail: gslakhina@gmail.com; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Kakad, A. P., E-mail: amar@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  12. Ion Acoustic Waves in the Presence of Langmuir Oscillations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    The dielectric function for long-wavelength, low-frequency ion acoustic waves in the presence of short-wavelength, high-frequency electron oscillations is presented, where the ions are described by the collision-free Vlasov equation. The effect of the electron oscillations can be appropriately...

  13. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  14. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)

    2012-05-15

    The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.

  15. Naturally enhanced ion-acoustic lines at high altitudes

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2006-12-01

    Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.

  16. The Kadomtsev-Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas

    Institute of Scientific and Technical Information of China (English)

    Hafeez Ur-Rehman

    2013-01-01

    Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion (p-i) plasmas.We have chosen the fluid model for the positive ions,the negative ions,and a fraction of static charged (both positively and negatively) dust particles.Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed.It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma.It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied.It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions,and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions.As the pair-ion plasma mimics the electron-positron plasma,thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.

  17. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  18. Kinetic study of ion-acoustic plasma vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Téchnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  19. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  20. Soliton Collisions in the Ion Acoustic Plasma Equations

    CERN Document Server

    Li, Y; Li, Yi

    1999-01-01

    Numerical experiments involving the interaction of two solitary waves of the ion acoustic plasma equations are described. An exact 2-soliton solution of the relevant KdV equation was fitted to the initial data, and good agreement was maintained throughout the entire interaction. The data demonstrates that the soliton interactions are virtually elastic

  1. Weakly dissipative dust-ion acoustic wave modulation

    Science.gov (United States)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  2. Investigation of Ion Acoustic Waves in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Christoffersen, G. B.; Jensen, Vagn Orla; Michelsen, Poul

    1974-01-01

    The Green's functions for the linearized ion Vlasov equation with a given boundary value are derived. The propagation properties of ion acoustic waves are calculated by performing convolution integrals over the Green's functions. For Te/Ti less than about 3 it is concluded that the collective...... interaction is very weak and that the propagation properties are determined almost completely by freely streaming ions. The wave damping, being due to phase mixing, is determined by the width of the perturbed distribution function rather than by the slope of the undisturbed distribution function at the phase...

  3. Modulational instability of ion-acoustic waves in a warm plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 段文山; 郎和

    2002-01-01

    Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.

  4. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  5. Anomalous absorption of laser light on ion acoustic fluctuations

    Science.gov (United States)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  6. Ion-acoustic solitons in multispecies spatially inhomogeneous plasmas

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur; Nareshpal Singh Saini

    2006-06-01

    Ion-acoustic solitons are investigated in the spatially inhomogeneous plasma having electrons-positrons and ions. The soliton characteristics are described by Korteweg-de Vries equation which has an additional term. The density and temperature of different species play an important role for the amplitude and width of the solitons. Numerical calculations show only the possibility of compressive solitons. Further, analytical results predict that the peak amplitude of soliton decreases with the decrease of density gradient. Soliton characteristics like peak amplitude and width are substantially different from those based on KdV theory for homogeneous plasmas.

  7. Evidence for a Nonplanar Amplituhedron

    CERN Document Server

    Bern, Zvi; Litsey, Sean; Stankowicz, James; Trnka, Jaroslav

    2015-01-01

    The scattering amplitudes of planar N = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and "zero conditions" carry over into the nonplanar sector. This suggests that the concept of the amplituhedron can be extended to the the nonplanar sector of N = 4 super-Yang-Mills theory.

  8. Evidence for a nonplanar amplituhedron

    Science.gov (United States)

    Bern, Zvi; Herrmann, Enrico; Litsey, Sean; Stankowicz, James; Trnka, Jaroslav

    2016-06-01

    The scattering amplitudes of planar mathcal{N} = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and "zero conditions" carry over into the nonplanar sector. This suggests that the concept of the amplituhedron can be extended to the nonplanar sector of mathcal{N} = 4 super-Yang-Mills theory.

  9. Scattering of electromagnetic waves from a plasma: Enhanced ion acoustic fluctuations due to ion-ion two-stream instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E.; Opgenoorth, H.J.; Persson, M.A.L. (Swedish Institute of Space Physics, Uppsala (Sweden)); Mishin, E.V.; Volokitin, A.S. (IZMIRAN, Troitsk, Moscow Region (Russian Federation)); Forme, F.R.E. (CNRS/CRPE (France))

    1992-10-02

    The authors propose an explanation for ion acoustic line spectra which have been observed by the EISCAT and Millstone Hill radars in the topside auroral ionosphere. They show that such lines can be generated in plasmas which are unstable to the ion-ion two-stream instability. This mechanism has the advantage of explaining the observed phenomena, and being consistent with typical conditions in the topside ionosphere.

  10. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  11. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Sakthivel, R.

    2016-05-01

    The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg-de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark-gluon plasma as well as for astrophysical plasmas.

  12. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  13. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  14. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan)

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  15. Effect of viscosity on dust–ion acoustic shock wave in dusty plasma with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Nirab C., E-mail: nirab_iasst@yahoo.co.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2012-03-26

    The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock. -- Highlights: ► Dust–ion acoustic shock wave propagation is studied in multi-component dusty plasma. ► KdV–Burgers equation is derived and its stationary solution is numerically analyzed. ► Viscosity in dusty plasma plays as a key role in dissipation of DIA shock wave.

  16. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    Science.gov (United States)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  17. Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma

    Indian Academy of Sciences (India)

    M G HAFEZ; M R TALUKDER; M HOSSAIN ALI

    2016-11-01

    This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.

  18. Ion-acoustic solitons in an inhomogeneous multicomponent plasma with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C.; Singh, S.S. (Dept. of Mathematics, Manipur Univ., Imphal 795 003 (IN))

    1992-02-01

    Ion-acoustic solitary waves are studied in an inhomogeneous multicomponent plasma by the augmentation of a K-dV equation wherein a simple form of ionization has been taken to show its interaction in changing the salient features of the soliton, as compared to those observed in a homogeneous plasma. As expected, the negative ions in the plasma bring here a drastic alteration on the ion-acoustic solitons, thereby establishing a new era by showing the solitary waves to be studied by a modified K-dV equation. This paper reports that the main emphasis has been as to how the ionization and density gradient in the imhomogeneous plasma affect the solitons.

  19. Effects of ion-fluid temperature on dust-ion-acoustic solitons

    Indian Academy of Sciences (India)

    Fatema Sayed; A A Mamun

    2008-03-01

    The properties of dust-ion-acoustic (DIA) solitons in an unmagnetized dusty plasma, whose constituents are adiabatic ion-fluid, Boltzmann electrons, and static dust particles, are investigated by employing the reductive perturbation method. The Korteweg-de Vries equation is derived and its stationary solution is numerically analyzed. The parametric regimes for the existence of positive and negative solitons are found. It has been shown that ion-fluid temperature not only significantly modifies the basic features (width and amplitude) of DIA solitons, but also introduces some new features of DIA solitons.

  20. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaladze, T. [Department of Physics, Government College University (GCU), Lahore 54000 (Pakistan); I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia (United States); Mahmood, S., E-mail: shahzadm100@gmail.com [Theoretical Physics Division (TPD), PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  1. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  2. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Science.gov (United States)

    Kaladze, T.; Mahmood, S.

    2014-03-01

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  3. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    Science.gov (United States)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  4. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  5. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...

  6. Linear and nonlinear obliquely propagating ion-acoustic waves in magnetized negative ion plasma with non-thermal electrons

    Science.gov (United States)

    Mishra, M. K.; Jain, S. K.; Jain

    2013-10-01

    Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.

  7. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@hotmail.com [Prince Sattam Bin Abdulaziz University, College of Science and Humanitarian Studies, Physics Department (Saudi Arabia); El-Shewy, E. K.; Mahmoud, A. A. [Faculty of Science, Mansoura University, Theoretical Physics Group, Physics Department (Egypt)

    2016-06-15

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal’s method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth’s ionosphere.

  8. Heavy-ion-acoustic solitary and shock waves in an adiabatic multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M.A.; Rahman, M.M.; Mamun, A.A., E-mail: armanplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Hossen, M.R. [Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka (Bangladesh)

    2015-08-15

    The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments. (author)

  9. Solar wind implication on dust ion acoustic rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghany, A. M., E-mail: asmaaallah20@yahoo.com; Abd El-Razek, H. N., E-mail: hosam.abdelrazek@yahoo.com; El-Labany, S. K., E-mail: skellabany@hotmail.com [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt)

    2016-06-15

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  10. Solar wind implication on dust ion acoustic rogue waves

    Science.gov (United States)

    Abdelghany, A. M.; Abd El-Razek, H. N.; Moslem, W. M.; El-Labany, S. K.

    2016-06-01

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  11. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    Science.gov (United States)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  12. Ion-acoustic shocks with self-regulated ion reflection and acceleration

    Science.gov (United States)

    Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.; Liseykina, T. V.; Diamond, P. H.; Papadopoulos, K.; Liu, C.-S.; Su, J. J.

    2016-04-01

    An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M ≈1.6 (no ion reflection) to M ≈1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M ≈3.1 to M ≈4.5 . The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically.

  13. Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, C. P., E-mail: colivier@sansa.org.za; Maharaj, S. K., E-mail: smaharaj@sansa.org.za [South African National Space Agency (SANSA) Space Science, P. O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2015-08-15

    The polarity of ion-acoustic solitons that arise in a plasma with two (same mass, different temperature) ion species and two (different temperature) electron species is investigated. Two different fluid models are compared. The first model treats all species as adiabatic fluids, while the second model treats the ion species as adiabatic, and the electron species as isothermal. Nonlinear structures are analysed via the reductive perturbation analysis and pseudo-potential analysis. Each model supports both slow and fast ion-acoustic solitons, associated with the two (slow and fast) ion-acoustic speeds. The models support both positive and negative polarity solitons associated with the slow ion-acoustic speed. Moreover, results are in good agreement, and both models support positive and negative polarity double layers. For the fast ion-acoustic speed, the first model supports only positive polarity solitons, while the second model supports solitons of both polarity, coexistence of positive and negative polarity solitons, double layers and supersolitons. A novel feature of our analysis is the evaluation of nonlinear structures at critical number densities where polarity changes occur. This analysis shows that solitons that occur at the acoustic speed are neither a necessary nor a sufficient condition for the phenomenon of coexistence. The relationship between the existence regions of supersolitons and soliton polarity is also discussed.

  14. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    CERN Document Server

    Andreev, Pavel A

    2014-01-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves. Kinetic theory allows to obtain spectrum of the spin-electron acoustic waves including effects of occupation of quantum states more accurately than quantum hydrodynamics. We apply quantum kinetic to calculate the Landau damping of the spin-electron acoustic waves. We have considered contribution of ions dynamics in the spin-electron acoustic wave spectrum. We obtain contribution of ions in the Landau damping in temperature regime of classic ions. Kinetic analysis for ion-acoustic, zero sound, and Langmuir waves at separated spin-up and spin-down electron dynamics is presented as well.

  15. The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R L; Valeo, E J

    2004-07-15

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub lh} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub lh} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  16. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Berger; E.J. Valeo

    2004-08-18

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  17. Ion-acoustic double layers in magnetized positive-negative ion plasmas with nonthermal electrons

    Science.gov (United States)

    El-Labany, S. K.; Sabry, R.; El-Taibany, W. F.; Elghmaz, E. A.

    2012-07-01

    The nonlinear ion-acoustic double layers (IADLs) in a warm magnetoplasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive a modified Zakharov-Kuznetsov (MZK) equation, in the small amplitude regime. It is found that compressive and rarefactive IADLs strongly depend on the mass and density ratios of the negative-to-positive ions as well as the nonthermal electron parameter. Also, it is shown that there are one critical value for the density ratio of the negative-to-positive ions ( ν), the ratio between unperturbed electron-to-positive ion density ( μ), and the nonthermal electron parameter ( β), which decide the existence of positive and negative IADLs. The present study is applied to examine the small amplitude nonlinear IADL excitations for the (H+, O2-) and (H+,H-) plasmas, where they are found in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the nonlinear IADLs in either space or laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  18. Excitation of nonlinear ion acoustic waves in CH plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...

  19. A Schamel equation for ion acoustic waves in superthermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  20. Ion-acoustic shocks with reflected ions: modeling and PIC simulations

    CERN Document Server

    Liseykina, T; Vshivkov, V; Malkov, M

    2015-01-01

    Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles remains incomplete. We present here the results of numerical modeling of an ion-acoustic collisionless shock based on one-dimensional (1D) kinetic approximation both for electrons and ions with a real mass ratio. Special emphasis is made on the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  1. Ion acoustic solitons in a solar wind magnetoplasma with Kappa distributed electrons

    Science.gov (United States)

    Devanandhan, Selvaraj; Singh, Satyavir; Singh Lakhina, Gurbax; Sreeraj, T.

    2016-07-01

    In many space plasma environments, the velocity distribution of particles often deviates from Maxwellian and is well-modelled by a kappa distribution function. We have analyzed the ion acoustic soliton in a magnetized consisting of plasma Protons, Helium ions, an electron beam and superthermal hot electrons following kappa distribution function. Under the assumption of weak nonlinearity, the ion-acoustic solitons are described by the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation. The solution of KdV-ZK equation is used to model the characteristics of the ion acoustic solitary waves in a solar wind magnetoplasma observed at 1 AU. We have found both slow and fast ion acoustic solitons in our study. It is found that the superthermality of hot electrons greatly influence the existence regime of the solitary waves. The numerical results of this study to explain solar wind observations will be discussed in detail.

  2. Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions

    Indian Academy of Sciences (India)

    Zhi-Jian Zhou; Hong-Yan Wang; Kai-Biao Zhang

    2012-01-01

    By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.

  3. Ion-acoustic Shocks with Self-Regulated Ion Reflection and Acceleration

    CERN Document Server

    Malkov, M A; Dudnikova, G I; Liseykina, T V; Diamond, P H; Papadopoulos, K; Liu, C-S; Su, J-J

    2015-01-01

    An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M=1....

  4. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  5. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  6. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    Science.gov (United States)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-07-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg-deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  7. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  8. Propagation characteristics of ion-acoustic double layer in multicomponent inhomogeneous auroral zone plasma

    Indian Academy of Sciences (India)

    HARVINDER KAUR; TARSEM SINGH GILL; PARVEEN BALA

    2017-08-01

    In the present investigation, ion-acoustic double layers in an inhomogeneous plasma consisting of Maxwellian and non-thermal distributions of electrons are studied.We have derived a modified Korteweg–de Vries (mKdV) equation for ion-acoustic double layers propagating in a collisionless inhomogeneous plasma. It is observed that the non-thermal parameters affect the amplitude and width of the double layer which further depend on the density.

  9. Propagation of ion-acoustic solitary waves in a relativistic electron-positron-ion plasma

    CERN Document Server

    Saberian, E; Akbari-Moghanjoughi, M

    2011-01-01

    Propagation of large amplitude ion-acoustic solitary waves (IASWs) in a fully relativistic plasma consisting of cold ions and ultrarelativistic hot electrons and positrons is investigated using the Sagdeev's pseudopotential method in a relativistic hydrodynamics model. Effects of streaming speed of plasma fluid, thermal energy, positron density and positron temperature on large amplitude IASWs are studied by analysis of the pseudopotential structure. It is found that in regions that the streaming speed of plasma fluid is larger than that of solitary wave, by increasing the streaming speed of plasma fluid the depth and width of potential well increases and resulting in narrower solitons with larger amplitude. This behavior is opposite for the case where the streaming speed of plasma fluid is smaller than that of solitary wave. On the other hand, increase of the thermal energy results in wider solitons with smaller amplitude, because the depth and width of potential well decreases in that case. Additionally, th...

  10. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  11. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma

    Science.gov (United States)

    El-Shamy, E. F.

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  12. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions......Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...

  13. On the generation of double layers from ion- and electron-acoustic instabilities

    Science.gov (United States)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  14. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Jian

    2001-01-01

    [1]Braginskii,S.I.,Transport processes in a plasma,in Reviews of Plasma Physics,Vol.1,New York:Consultants Bureau,1965,205-311.[2]Ono,M.,Kulsrud,R.M.,Frequency and damping of ion acoustic waves,Phys.Fluids,1975,18(10):1287-1293.[3]Randall,C.J.,Effect of ion collisionality on ion-acoustic waves,Phys.Fluids,1982,25(12):2231-2233.[4]Tracy,M.D.,Williams,E.A.,Estabrook,K.G.et al.,Eigenvalue solution for the ion-collisional effects on ion-acoustic and entropy waves,Phys.Fluids,1993,B5(5):1430.[5]Bell,A.R.,Electron energy transport in ion waves and its relevance to laser produced plasmas,Phys.Fluids,1983,26(1):279-284.[6]Epperlein,E.M.,Short,R.W.,Simon,A.,Damping of ion-acoustic waves in the presence of electron-ion collisions,Phys.Rev.Lett.,1992,69(12):1765-1768.[7]Epperlein,E.M.,Effect of electron collisions on ion-acoustic waves and heat flow,Phys.Plasmas,1994,1(1):109-115.[8]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Quasihydrodynamic description of ion acoustic waves in a collisional plasmas,Phys.Plasmas,1994,1(8):2419-2429.[9]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Ion acoustic waves in plasmas with collisional electrons,Phys.Rev.E,1994,50(6):5134-5137.[10]Bychenkov,V.Y.,Rozmus,W.,Tikhonchuk,V.T.et al.,Nonlocal electron transport in a plasma,Phys.Rev.Lett.,1995,75(24):4405-4408.[11]Zhang,Y.Q.et al.,Density fluctuation spectra of a collision-dominated plasma measured by light scattering,Phys.Rev.Lett.,1989,62(16):1848-1851.[12]Hinton,F.L.,Collisional transport in plasma,in Handbook of Plasma Physics,Vol.1,Amsterdam:North-Holland,1983,147-199.[13]Zheng Jian,Yu Changxuan,A numerical approach to the frequencies and damping rates of ion-acoustic waves in ion-collisional plasmas,Chin.Phys.Lett.,1999,16(12):905-907.[14]Hammett,G.W.,Perkins,F.,Fluid moment models for Landau damping with application to the ion-temperature-gradient instability,Phys.Rev.Lett.,1990,64(25):3019-3022.

  15. Effect of non-maxwellians ions on dust acoustic dressed soliton

    Science.gov (United States)

    Amour, Rabia; Tribeche, Mouloud

    2016-07-01

    Dust is an ubiquitous component of space and astrophysical environments, occurring for example in planetary rings, comets and the Earth's ionosphere. Dusty plasmas are known to support a wide variety of ultra low-frequency wave modes. The most well studied of such modes are the so called dust-acoustic wave (DAW) and dust ion-acoustic wave (DIAW). The aim of this communication is to study a small-amplitude dust acoustic dressed solitons in a three component dusty plasma having electrons, suprathermal ions, and dust grains. We have then investigate the effect of ion suprathermality on small amplitude dust acoustic dressed wave and compared the result with the soliton's exact solution of the fourth order of pseudo-potential and K-dV soliton.

  16. Small amplitude ion-acoustic double layers with cold electron beam and q-nonextensive electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S., E-mail: shaukatshan@gmail.com [Theoretical Plasma Physics Division, PINSTECH, Nilore, 44000 Islamabad (Pakistan); National Centre for Physics (NCP), Shahdra Valley Road, 44000 Islamabad (Pakistan); Department of Mathematics and Applied Physics (DPAM), PIEAS, Islamabad (Pakistan); Saleem, H., E-mail: saleemhpk@hotmail.com [National Centre for Physics (NCP), Shahdra Valley Road, 44000 Islamabad (Pakistan); Department of Mathematics and Applied Physics (DPAM), PIEAS, Islamabad (Pakistan)

    2014-02-01

    Small amplitude ion-acoustic double layers in an unmagnetized and collisionless plasma consisting of cold positive ions, q-nonextensive electrons, and a cold electron beam are investigated. Small amplitude double layer solution is obtained by expanding the Sagdeev potential truncated method. The effects of entropic index q, speed and density of cold electron beam on double layer structures are discussed.

  17. Quantum ion-acoustic oscillations in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.A. [Kyoto Univ., Katsura (Japan). Graduate School of Engineering; Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Iqbal, Z. [University of Management and Technology, Sialkot (Pakistan); Wazir, Z. [Riphah International Univ., Islamabad (Pakistan). Dept. of Basic Sciences; Rehman, Aman ur [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan)

    2016-08-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  18. Enhanced ion acoustic lines due to strong ion cyclotron wave fields

    Directory of Open Access Journals (Sweden)

    H. Bahcivan

    2008-07-01

    Full Text Available The Fast Auroral Snapshot Explorer (FAST satellite detected intense and coherent 5–20 m electric field structures in the high-latitude topside auroral ionosphere between the altitudes of 350 km and 650 km. These electric fields appear to belong to electrostatic ion cyclotron (EIC waves in terms of their frequency and wavelengths. Numerical simulations of the response of an electron plasma to the parallel components of these fields show that the waves are likely to excite a wave-driven parallel ion acoustic (IA instability, through the creation of a highly non-Maxwellian electron distribution function, which when combined with the (assumed Maxwellian ion distribution function provides inverse Landau damping. Because the counter-streaming threshold for excitation of EIC waves is well below that for excitation of IA waves (assuming Maxwellian statistics our results suggest a possible two step mechanism for destabilization of IA waves. Combining this simulation result with the observational fact that these EIC waves share a common phenomenology with the naturally enhanced IA lines (NEIALS observed by incoherent scatter radars, especially that they both occur near field-aligned currents, leads to the proposition that this two-step mechanism is an alternative path to NEIALS.

  19. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  20. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  1. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ferdousi, M.; Sultana, S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  2. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature. The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.

  3. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  4. Bifurcations of ion acoustic solitary and periodic waves in an electron-positron-ion plasma through non-perturbative approach

    Science.gov (United States)

    Saha, Asit; Chatterjee, Prasanta; Chatterjee

    2014-08-01

    Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa-distributed) electrons and positrons are investigated through a non-perturbative approach. Model equations are transformed to a planar dynamical system. Then by using the bifurcations of phase portraits of this planar dynamical system, we have established that our model has solitary wave and periodic wave solutions. We have obtained two analytical solutions for these solitary and periodic waves depending on the parameters. From these solitary wave and periodic wave solutions, we have shown the combined effects of temperature ratio (σ) of electrons and positrons, spectral index (κ), speed of the traveling wave (v), and density ratio (p) of positrons and electrons on the characteristics of ion acoustic solitary and periodic waves. The spectral index, density ratio, speed of the traveling wave, and temperature ratio significantly affect the characteristics of ion acoustic solitary and periodic structures. The present study might be helpful to understand the salient features of nonlinear ion acoustic solitary and periodic structures in the interstellar medium.

  5. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  6. Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-04-01

    The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.

  7. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    Science.gov (United States)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  8. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  9. Nonlinear Waveforms for Ion-Acoustic Waves in Weakly Relativistic Plasma of Warm Ion-Fluid and Isothermal Electrons

    Directory of Open Access Journals (Sweden)

    S. A. El-Wakil

    2012-01-01

    Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.

  10. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  11. Interaction of ion-acoustic solitons with electron beam in warm plasmas with superthermal electrons

    CERN Document Server

    Esfandyari-Kalejahi, A R

    2012-01-01

    Propagation of ion-acoustic solitary waves (IASWs) is studied using the hydrodynamic equations coupled with the Poisson equation in a warm plasma consisting of adiabatic ions and superthermal (Kappa distributed) electrons in presence of an electron-beam component. In the linear limit, the dispersion relation for ion-acoustic (IA) waves is obtained by linearizing of basic equations. On the other hand, in the nonlinear analysis, an energy-balance like equation involving Sagdeev's pseudo-potential is derived in order to investigate arbitrary amplitude IA solitons. The Mach number range is determined in which, propagation and characteristics of IA solitons are analyzed both parametrically and numerically. The variation of amplitude and width of electrostatic (ES) excitations as a result of superthermality (via) and also the physical parameters (ion temperature, soliton speed, electron-beam density and electron-beam velocity) are examined. A typical interaction between IASWs and the electron-beam in plasma is conf...

  12. Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Observations and computations

    Science.gov (United States)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2017-03-01

    Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims: Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods: We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results: We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTi = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions: In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties. Computer code for the dispersion analysis is

  13. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The linearized electron Fokker-Planck and cold-ion fluid equations are solved as an eigenvalue problem in the quasineutral limit for ionization state,Z=1,8,and 64 for ion-acoustic and entropy waves.The perturbed electron distribution function is written as a moment expansion of eigenvectors,and is used to compute collisionality-dependence macroscopic quantities in the plasma such as the generalized specific heat ratio,and the electron thermal conductivity.

  14. On the Relation between Electrical and Acoustical Properties of ION Conductivite Glasses

    Directory of Open Access Journals (Sweden)

    Igor Jamnicky

    2003-01-01

    Full Text Available The technological interest in fast ionic conductivity in glassy materials is increased in last years for various solid state electrochemical devices such as solid-state batteries, electrochronic displays, and sensors. The ion conductive glasses have several advantages comparing with crystalline materials because of their easy preparation, their stability, the large available compositionranges and reasonable cost. It is known that the investigation of conductivity spectra of ionic glasses can reflect the basic features ofthe relaxation and transport mechanisms of the mobile ions and the high ion conductivity at room temperature is the most important criterion which should be meet the fast ion conductive glasses. However, the relaxation and transport mechanisms can be investigated also by acoustic methods, that can have some advantages comparing to electrical ones as the high sensitivity, absence of contact phenomena and so on.In the contribution we present some electrical and acoustical properties of glasses prepared in the system CuI-CuBr-Cu20-(P20j+Mo03. The main purpose of the contribution is to contribute to the investigation of ion transport mechanisms in these fast ion conductive glasses and to determine the relation between electrical and acoustical properties considering the various glass compositions.

  15. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  16. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  17. The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves

    Institute of Scientific and Technical Information of China (English)

    吕克璞; 豆福全; 孙建安; 段文山; 石玉仁

    2005-01-01

    By using the equivalent particle theory, the adiabatic approximation solutions of the Korteweg-de Vries type equation (including KdV equation, cylindrical KdV equation and spherical KdV equation) in dust ion-acoustic solitary waves were obtained. The method can be extended to other nonlinear evolution equations.

  18. Two-Dimensional Nonlinear Propagation of Ion Acoustic Waves through KPB and KP Equations in Weakly Relativistic Plasmas

    Directory of Open Access Journals (Sweden)

    M. G. Hafez

    2016-01-01

    Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.

  19. Possible ion-acoustic soliton formation in the ionospheric perturbations observed on DEMETER before the 2007 Pu'er earthquake

    Institute of Scientific and Technical Information of China (English)

    U.A.Mofiz; R.Battiston

    2009-01-01

    The data of ionospheric perturbations observed on DEMETER before the 2007 Pu'er earthquake are analyzed. The three-component plasma (ions, electrons and heavy ions) is studied in the fluid concept. The linear dispersion relation for ion-acoustic wave is found in the presence of heavy ions. The nonlinear dynamics is studied for arbitrary amplitude of the wave. The Sagdeev potential is calculated, which shows that solitary structure exists for Mach number within a range defined by the presence of heavy ions. The developed ion-acoustic solitons may be used as precursor for earthquake prediction.

  20. Naturally enhanced ion acoustic waves in the auroral ionosphere observed with the EISCAT 933-MHz radar

    Energy Technology Data Exchange (ETDEWEB)

    Rietveld, M.T. (EISCAT, Ramfjordbotn (Norway)); Collis, P.N. (EISCAT, Kiruna (Sweden)); St.Maurice, J.P. (Univ. of Western Ontario, London (Canada))

    1991-11-01

    Observations of strongly enhanced ion acoustic shoulders of the incoherent scatter spectrum at 933 MHz at altitudes from 138 to 587 km have been obtained with the European Incoherent Scatter UHF radar. The enhancements can be up to 1 or 2 orders of magnitude in total backscattered power and can occur at either one or both of the ion acoustic shoulders. They show a variation of frequency with height of about 2 to 1, the same as the normal ion line spectral width and the ion temperature. These unusual spectra appear in two preferred height regions having different characteristics, one below 200 km and one above about 300 km. The enhancements are associated with geomagnetic disturbance, high electron temperatures, auroral arcs, and red aurora in the F region. The observations, which are mainly along the magnetic field direction, indicate that field-aligned thermal electron drifts are destabilizing the ion acoustic waves. The confirm and extend the one other publication reporting on similar echoes. The authors suggest that field-aligned flows of soft electrons depositing their energy at horizontally poor conducting F region heights are the cause of parallel electric fields in the ionosphere. These fields then produce the thermal electron motions that they argue have to be the cause of the observations.

  1. Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves

    Science.gov (United States)

    Thomas, E.; Fisher, R.

    2008-11-01

    Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.

  2. Two different types of enhanced ion acoustic fluctuations observed in the upper ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Forme, F.R.E.; Fontaine, D.; Wahlund, J.E. [Centre d`etude des Environnements Terrestre et Planetaires, Velizy (France)

    1995-08-01

    UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.

  3. Non Planar Electrostatic Solitary Wave Structures in Negative Ion Degenerate Plasma

    Institute of Scientific and Technical Information of China (English)

    S.Hussain; N.Akhtar; Saeed-ur-Rehman

    2011-01-01

    @@ Theoretical and numerical studies are performed for quantum ion acoustic solitons in planar and non-planar geometries in an unmagnetized homogenous plasma consisting of warm positive and negative ions with nonthermal electrons.A deformed Korteweg de Vries(DKdV)equation is derived by using the reductive perturbation method.The numerical solution to the DKdV equation indicates that the quantum parameter, temperatures of positive ions, temperture of negative ions and electron density blatantly influence the propagation speed and the structure of quantum ion acoustic solitons.The geometrical effects on the structure of quantum ion acoustic wave are discussed.It is shown that the amplitude and propagation speed in spherical geometry is larger as compared to cylinderical and planar geometries for different values of the above-mentioned parameters.%Theoretical and numerical studies are performed for quantum ion acoustic solitons in planar and non-planar geometries in an unmagnetized homogenous plasma consisting of warm positive and negative ions with nonthermal electrons. A deformed Korteweg de Vries (DKdV) equation is derived by using the reductive perturbation method.The numerical solution to the DKdV equation indicates that the quantum parameter, temperatures of positive ions, temperture of negative ions and electron density blatantly influence the propagation speed and the structure of quantum ion acoustic solitons. The geometrical effects on the structure of quantum ion acoustic wave are discussed. It is shown that the amplitude and propagation speed in spherical geometry is larger as compared to cylinderical and planar geometries for different values of the above-mentioned parameters.

  4. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-04-15

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.

  5. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  6. Large-amplitude ion-acoustic double layers in multispecies plasma

    Science.gov (United States)

    Jain, S. L.; Tiwari, R. S.; Sharma, S. R.

    1990-06-01

    The effect of second-ion species on the characteristics of large-amplitude ion-acoustic double layers (IADL) in a collisionless, unmagnetized plasma (consisting of hot and cold Maxwellian populations of electrons and two cold-ion species with different masses, concentrations, and charge states) is investigated. After deriving the criteria for the existence of large-amplitude IADL, it is found that the presence of a positive-ion impurity does not considerably modify the characteristics of large-amplitude IADL. However, the presence of negative-ion impurity significantly changes the characteristics of a large-amplitude IADL. An analytic discussion of small-amplitude IADL using a reductive perturbation method is also presented.

  7. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Nahar, L.; Mamun, A. A. [Jahangirnagar University,Savar, Dhaka (Bangladesh)

    2014-12-15

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultrarelativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  8. Ion acoustic wave instabilities and nonlinear structures associated with field-aligned flows in the F-region ionosphere

    Science.gov (United States)

    Saleem, H.; Ali Shan, S.; Haque, Q.

    2016-11-01

    It is shown that the inhomogeneous field-aligned flow of heavier ions into the stationary plasma of the upper ionosphere produces very low frequency (of the order of a few Hz) electrostatic unstable ion acoustic waves (IAWs). This instability is an oscillatory instability unlike D'Angelo's purely growing mode. The growth rate of the ion acoustic wave (IAW) corresponding to heavier ions is due to shear flow and is larger than the ion Landau damping. However, the ion acoustic waves corresponding to non-flowing lighter ions are Landau damped. It is found that even if D'Angelo's instability condition is satisfied, the unstable mode develops its real frequency in this coupled system. Hence, the shear flow of one type of ions in a bi-ion plasma system produces ion acoustic wave activity. If the density non-uniformity is taken into account, then the drift wave becomes unstable. The coupled nonlinear equations for stationary ions "a," flowing ions "b," and inertialess electrons are also solved using the small amplitude limit. The solutions predict the existence of the order of a few kilometers electric field structures in the form of solitons and vortices, which is in agreement with the satellite observations.

  9. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  10. Modulation instability and dissipative ion-acoustic structures in collisional nonthermal electron-positron-ion plasma: solitary and shock waves

    Science.gov (United States)

    Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa

    2016-10-01

    The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).

  11. Eigenpolarization theory of monolithic nonplanar ring oscillators

    Science.gov (United States)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  12. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  13. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    CERN Document Server

    Misra, A P

    2013-01-01

    We study the linear and nonlinear properties of electrostatic waves in a magnetized pair-ion plasma with immobile positively charged dusts. For the obliquely propagating linear waves, a general dispersion relation is derived, from which it is shown that the low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength "slow" and a "fast" modes can propagate as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are analyzed with the effects of obliqueness of propagation $(\\theta)$, the negative to positive ion mass ratio $(m)$, the ratio of negative to positive ion temperatures $(T)$, the static magnetic field as well as the presence of charged dusts (characterized by the dust to negative-ion number density $\\delta$) in the plasma. In the nonlinear regime, a standard reductive perturbation technique is used to derive a Korteweg-de Vries (KdV) equation for the oblique DIA waves. We show that the KdV equation can admit either compressive or ra...

  14. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    Science.gov (United States)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  15. Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas

    Science.gov (United States)

    Kaur, Nimardeep; Saini, N. S.

    2016-10-01

    The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).

  16. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  17. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  18. Structural mechanisms of nonplanar hemes in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  19. Effect of dust ion collision on dust ion acoustic waves in the framework of damped Zakharov-Kuznetsov equation in presence of external periodic force

    Science.gov (United States)

    Kanti Das, Tushar; Ali, Rustam; Chatterjee, Prasanta

    2017-10-01

    The dynamics of dust ion acoustic waves (DIAWs) is investigated in a magnetized dusty plasma whose constituents are cold ions, superthermal electrons, and dust particles in the framework of a damped Zakharov-Kuznetsov (dZK) equation in the presence of externally applied periodic force. The dZK equation is derived employing the standard reductive perturbation technique. The effect of dust ion collision on the quasiperiodic and chaotic motion of dust ion acoustic waves is discussed. It is observed that the collision frequency νid 0 plays the role of a switching parameter from the quasiperiodic route to chaos for the DIAWs.

  20. Multi-dimensional instability of dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    Science.gov (United States)

    Haider, M. M.; Rahman, O.

    2016-12-01

    An attempt has been made to study the multi-dimensional instability of dust-ion-acoustic (DIA) solitary waves (SWs) in magnetized multi-ion plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons. First of all, we have derived Zakharov-Kuznetsov (ZK) equation to study the DIA SWs in this case using reductive perturbation method as well as its solution. Small- k perturbation technique was employed to find out the instability criterion and growth rate of such a wave which can give a guideline in understanding the space and laboratory plasmas, situated in the D-region of the Earth's ionosphere, mesosphere, and solar photosphere, as well as the microelectronics plasma processing reactors.

  1. Influence of superthermal electrons on propagation of arbitrary amplitude ion-acoustic solitons in a plasma with negative ions

    Directory of Open Access Journals (Sweden)

    Z Ebne Abbasi

    2013-03-01

    Full Text Available   Investigation of ion acoustic solitons in three component plasma including positive and negative ions and Maxwellian electrons shows that negative to positive relative ion density plays a critical role so that by changing ν over the range of 0<ν<1 compressive or rarefactive solitons will propagate. In this paper, it is shown that due to the superthermal electrons, there are three domains for ν so that in the first one only compressive solitons are allowed, in the second one compressive and rarefactive solitons coexist together and in the third one only rarefactive solitons are observed. The results from sagdeev potential in weak nonlinear region are in good agreement with analytic results obtained from KdV equation.

  2. Large amplitude ion-acoustic rarefactive and compressive solitons and double layers in a dusty plasma with finite ion temperature

    Science.gov (United States)

    Jain, S. L.; Tiwari, R. S.; Mishra, M. K.

    2015-05-01

    Large amplitude ion-acoustic solitons and double layers are studied using Sagdeev's pseudo potential technique in a collisionless unmagnetized plasma consisting of hot and cold Maxwellian electrons, warm adiabatic ions, and heavily charged massive dust grains. It is found that for the selected set of plasma parameters, the system can support both solitons and double layers in the presence of negative as well as positive dust in the plasma. Further we have also investigated the ranges of parameters for simultaneous existence of both rarefactive and compressive supersonic solitons. The effects of dust concentration and ion temperature on the amplitude and Mach number of the double layer have also been studied. Our findings may be helpful in understanding the formation of non-linear structures, specially the solitons and double layers in space plasma, such as: in interstellar clouds, circumstellar clouds, planetary rings, comets, cometary tails, asteroid zones, auroral plasma, magnetospheric plasma, pulsars, and other astronomical environments and laboratory plasmas.

  3. Comment on Weakly dissipative dust-ion acoustic wave modulation (J. Plasma Phys. 82, 905820104, 2016)

    Science.gov (United States)

    Kourakis, I.; Elkamash, I. S.

    2016-10-01

    In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.

  4. Ion-Acoustic Instability in the Presence of High Frequency Oscillations

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Sandu, D.; Schrittwieser, R.

    1977-01-01

    Measurements are presented of a standing ion-acoustic wave instability, which is excited by a positively biased grid inserted perpendicularly into the plasma column of a single-ended Q-machine, under the influence of a high frequency signal superimposed onto the positive voltage at the grid....... The experimental results show that in certain regions of the frequency and amplitude of the h.f. signal the ion wave instability is stabilized or destabilized. A possible explanation of these effects is presented....

  5. Dynamic motions of ion acoustic waves in plasmas with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)

    2015-12-15

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)

  6. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  7. Arbitrary amplitude ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution

    Science.gov (United States)

    Ghebache, Siham; Tribeche, Mouloud

    2017-10-01

    The problem of arbitrary amplitude ion-acoustic solitary waves (IASWs), which accompany electronegative plasmas having positive ions, negative ions, and nonextensive electrons is addressed. The energy integral equation with a new Sagdeev potential is analyzed to examine the existence regions of the IASWs. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. Our results show that in such plasmas IASWs, the amplitude and nature of which depend sensitively on the mass and density ratio of the positive and negative ions as well as the q-nonextensive parameter, can exist. Interestingly, one finds that our plasma model supports the coexistence of smooth rarefactive and spiky compressive IASWs. Our results complement and provide new insights on previously published findings on this problem.

  8. Ion-acoustic solitons do not exist in cylindrical and spherical geometries

    Science.gov (United States)

    Sheridan, T. E.

    2017-09-01

    We investigate the time evolution of one-dimensional, compressive, ion acoustic solitary waves for planar, cylindrical, and spherical geometries in a plasma of cold fluid ions and Boltzmann electrons. For cylindrical and spherical geometries, we show that inward (outward) going solitary waves cannot be localized (i.e., always have a tail) since the effect of a unipolar velocity perturbation is to shift ions inward (outward) to smaller (larger) radii, thereby increasing (decreasing) the local ion density. That is, there are no quasi-particle soliton states in the cylindrical and spherical cases. These results are confirmed and expanded using a plasma simulation for the cylindrical case. We initialize the system with an inward propagating planar soliton. We find supersonic solitary waves which increase in speed as they near the origin, while the wave amplitude increases as r-1/2. All solitary waves develop the predicted tail, but for larger amplitudes, the tail is unstable and evolves into an acoustic wave train.

  9. Effect of ion beam on the characteristics of ion acoustic Gardner solitons and double layers in a multicomponent superthermal plasma

    Science.gov (United States)

    Kaur, Nimardeep; Singh, Kuldeep; Saini, N. S.

    2017-09-01

    The nonlinear propagation of ion acoustic solitary waves (IASWs) is investigated in an unmagnetized plasma composed of a positive warm ion fluid, two temperature electrons obeying kappa type distribution and penetrated by a positive ion beam. The reductive perturbation method is used to derive the nonlinear equations, namely, Korteweg-de Vries (KdV), modified KdV (mKdV), and Gardner equations. The characteristic features of both compressive and rarefactive nonlinear excitations from the solution of these equations are studied and compared in the context with the observation of the He+ beam in the polar cap region near solar maximum by the Dynamics Explorer 1 satellite. It is observed that the superthermality and density of cold electrons, number density, and temperature of the positive ion beam crucially modify the basic properties of compressive and rarefactive IASWs in the KdV and mKdV regimes. It is further analyzed that the amplitude and width of Gardner solitons are appreciably affected by different plasma parameters. The characteristics of double layers are also studied in detail below the critical density of cold electrons. The theoretical results may be useful for the observation of nonlinear excitations in laboratory and ion beam driven plasmas in the polar cap region near solar maximum and polar ionosphere as well in Saturn's magnetosphere, solar wind, pulsar magnetosphere, etc., where the population of two temperature superthermal electrons is present.

  10. Dust-ion-acoustic Gardner double layers in a dusty plasma with two-temperature electrons

    Indian Academy of Sciences (India)

    M M Masud; I Tasnim; A A Mamun

    2015-01-01

    The properties of dust-ion-acoustic Gardner double layers (DIA GDLs) in an unmagnetized dusty plasma, whose constituents are negatively-charged stationary dust, inertial ions, and Boltzmann electrons of two distinct temperatures, are rigorously investigated by employing the reductive perturbation method: Gardner approach. The standard Gardner equation is derived, and its double layer (DL) solution is obtained. It has been shown that the properties of the DIA GDLs are significantly modified by some plasma parameters (viz. = e1/e2, e1 = e10/i0, and e2 = e20/i0, where e1 (e2) is the cold (hot) electron temperature, e10 (e20) is the cold (hot) electron number density at equilibrium, and i0 is the ion number density at equilibrium). The implications of our investigation in understanding the basic features of nonlinear electrostatic perturbations observed in many space plasma systems and laboratory devices are briefly discussed.

  11. Dust Acoustic Solitary Waves in Dusty Plasma with Trapped Electrons Having Different Temperature Nonthermal Ions

    Science.gov (United States)

    Deka, Manoj Kr.

    2016-12-01

    In this report, a detailed investigation on the study of dust acoustics solitary waves solution with negatively dust charge fluctuation in dusty plasma corresponding to lower and higher temperature nonthermal ions with trapped electrons is presented. We consider temporal variation of dust charge as a source of dissipation term to derive the lower order modified Kadomtsev-Petviashvili equation by using the reductive perturbation technique. Solitary wave solution is obtained with the help of sech method in presence of trapped electrons and low (and high) temperature nonthermal ions. Both nonthermality of ions and trapped state of the electrons are found to have an imperative control on the nonlinear coefficient, dissipative coefficient as well as height of the wave potential.

  12. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    Science.gov (United States)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan; Yang, Lei

    2016-08-01

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.

  13. Numerical study of ion acoustic shock waves in dense quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, M.; Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-e-Azam University, Islamabad 45320 (Pakistan); Ali, S.; Mukhtar, Q., E-mail: qaisarm@ncp.edu.pk [National Center for Physics, Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-03-15

    Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.

  14. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    Science.gov (United States)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-01

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  15. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan 731204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India)

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  16. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com; Barman, Arnab [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India)

    2014-07-15

    We investigate the propagation characteristics of electrostatic waves in a magnetized pair-ion plasma with immobile charged dusts. It is shown that obliquely propagating (OP) low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength “slow” and “fast” modes can propagate, respectively, as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are studied with the effects of obliqueness of propagation (θ), the static magnetic field, the ratios of the negative to positive ion masses (m), and temperatures (T) as well as the dust to negative-ion number density ratio (δ). Using the standard reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of small-amplitude OP DIA waves. It is found that the KdV equation admits only rarefactive solitons in plasmas with m well below its critical value m{sub c} (≫ 1) which typically depends on T and δ. It is shown that the nonlinear coefficient of the KdV equation vanishes at m = m{sub c}, i.e., for plasmas with much heavier negative ions, and the evolution of the DIA waves is then described by a modified KdV (mKdV) equation. The latter is shown to have only compressive soliton solution. The properties of both the KdV and mKdV solitons are studied with the system parameters as above, and possible applications of our results to laboratory and space plasmas are briefly discussed.

  17. Propagation of ion-acoustic waves in a dusty plasma with non-isothermal electrons

    Indian Academy of Sciences (India)

    K K Mondal

    2007-08-01

    For an unmagnetised collisionless plasma consisting of warm ions, non-isothermal electrons and cold, massive and charged dust grains, the Sagdeev potential equation, considering both ion dynamics and dust dynamics has been derived. It has been observed that the Sagdeev potential () exists only for > 0 up to an upper limit ( ≃ 1.2). This implies the possibility of existence of compressive solitary wave in the plasma. Exhaustive numerics done for both the large-amplitude and small-amplitude ion-acoustic waves have revealed that various parameters, namely, ion temperature, non-isothermality of electrons, Mach numbers etc. have considerable impact on the amplitude as well as the width of the solitary waves. Dependence of soliton profiles on the ion temperature and the Mach number has also been graphically displayed. Moreover, incorporating dust-charge fluctuation and non-isothermality of electrons, a non-linear equation relating the grain surface potential to the electrostatic potential has been derived. It has been solved numerically and interdependence of the two potentials for various ion temperatures and orders of non-isothermality has been shown graphically.

  18. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...

  19. Head-on collision of dust-ion-acoustic solitons in electron-dust-ion quantum plasmas

    Indian Academy of Sciences (India)

    Prasanta Chatterjee; Malay Kumar Ghorui; Rajkumar Roychoudhury

    2013-03-01

    In this paper, we study the head-on collision between two dust-ion-acoustic (DIA) solitons in quantum electron-dust-ion plasma. Using the extended Poincaré–Lighthill–Kuo (PLK) method, we obtain the Korteweg–de Vries (KdV) equations, the phase shifts and the trajectories after the head-on collision of the two DIA solitons. We investigate the effect of quantum diffraction parameters for electrons and ions $(H_{e}, H_{i})$, the Fermi temperature ratio () and the dust charged number density (d0) on the phase shifts. Different values of = d0(d0/i0) and d = d0(i/d) are taken to discuss the effects on phase shifts, where d0 denotes the dust charge number, j0 represents the equilibrium number density and is the mass of the jth species ( = , , for electrons, ions and dust particles, respectively). It is observed that the phase shifts are significantly affected by the plasma parameters.

  20. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in small wave number region

    CERN Document Server

    Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-01-01

    The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.

  1. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  2. Ion-Acoustic Vortices in Two-Electron-Temperature Magnetoplasma with Cairn's Distributed Electrons and in the Presence of Ion Shear Flow

    Science.gov (United States)

    Haque, Q.; Mirza, Arshad M.; Iqbal, Javed

    2016-04-01

    Linear and nonlinear characteristics of electrostatic waves in a multicomponent magnetoplasma comprising of Boltzmann distributed electrons, Cairn's distributed hot electrons, and cold dynamic ions are studied. It is found that the effect of superthermal electrons, ion-neutral collisions, and ion shear flow modifies the propagation of ion-acoustic and drift waves. The growth rate of the ion shear flow instability varies with the addition of Cairn's distributed hot electrons. It is also investigated that the behavior of different type of vortices changes with the inclusion of superthermal hot electrons. The relevance of this investigation in space plasmas such as in auroral region and geomagnetic tail is also pointed out.

  3. Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma

    Indian Academy of Sciences (India)

    M M Masud; A A Mamun

    2013-07-01

    Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.

  4. Applications of a simplified bilinear method to ion-acoustic solitary waves in plasma

    Science.gov (United States)

    Awawdeh, Fadi; Jaradat, H. M.; Al-Shara', S.

    2012-02-01

    In this paper, we propose a computational method for nonlinear partial differential equations modeling ion-acoustic waves as well as dusty plasmas in laboratory and space sciences. Many types of solitary waves including soliton solutions, N-soliton solutions and singular N-soliton solutions are derived. The characteristic line method and graphical analysis are applied to discuss the solitonic propagation and collision, including the bidirectional solitons and elastic interactions. Furthermore, the effects of inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed.

  5. Ion-acoustic double layers in the presence of plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, H.; Ashour-Abdalla, M.

    1981-11-01

    Steady-state plasma turbulence and formation of negative potential spikes and double layers in the presence of ion acoustic instabilities have been studied by means of one-dimensional particle simulations in which velocities of a small fraction of electrons are replaced by the initial drifting Maxwellian at a constant rate. A steady state is found where negative potential spikes appear randomly in space and time giving rise to an anomalous resistivity much greater than previously found. Comparisons of the simulation results with laboratory and space plasmas are discussed.

  6. Ion-acoustic solitary waves in ion-beam plasma with multiple-electron-temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, B.; Das, G.C.; Singh, Kh.I.

    1988-08-01

    The solitary wave solution has been studied in an ion-beam plasma with multiple-electron-temperatures stemmed through the derivation of a modified Korteweg-de Vries (KdV) equation. The evolution of solitons shows that the existence and the behaviour depend effectively on the ion-beam as well as on the multiple-electron-temperatures. It has been shown that the solitons might be large amplitude waves with the addition of a small percentage of ion-beam concentration or by the increase of electron-temperatures. The present investigators believe and conclude that the solitons should also show experimentally these fascinating properties but one has to be careful about the range of the physical parameters in ion-beam plasma.

  7. Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Arnab; Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)

    2014-07-15

    The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids 12, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio (μ{sub pd}) as well as the ratios of positive to negative ion temperatures (σ) and masses (m)

  8. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Mehran Shahmansouri

    2013-02-01

    Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and collisionless quantum dusty plasma comprising cold dust particles, kappa ()-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA waves is investigated. Then, the effect of -distributed ions and degenerate electrons on the existence domain of solitons is discussed in the space of (, ). The comparison of the existence domain for higher and lower values of shows that suprathermality results in propagation of solitons with lower values of Mach number, and the quantum effects, lead to a higher values of Mach number. The existence domain of solitons for nondegenerate -distributed electrons is considered for comparison with effect of degenerate electrons. Also, we found that the Sagdeev potential well becomes deeper and wider as $_{F-i}$ decreases, as for lower values, the influence of quantum effects on the Sagdeev pseudopotential profile is smaller.

  9. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  10. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Mushtaq, A. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan)

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  11. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. A., E-mail: armanplasma@gmail.com; Mamun, A. A., E-mail: mamun-phys@yahoo.co.uk [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-10-15

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  12. Ion-Acoustic Wave Scattering description using Case-Van Kampen modes

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2016-10-01

    We present an experimental characterization of the ion acoustic wave scattering using Case-Van Kampen modes. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 7 eV and B 1 kG. A 5 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different frequencies is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Analysis of the scattering of the waves and its dependence on wave frequency is done utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under Grant No. DOE DE-FG02-99ER54543.

  13. Role of nonthermal electrons on dust ion acoustic double layer with variable dust charge

    Science.gov (United States)

    Borah, Prathana; Gogoi, Deepshikha; Das, Nilakshi

    2016-01-01

    The presence of nonthermal electron may play an important role in the formation of nonlinear structures in plasma. On the other hand, fluctuation of dust charge is an important and unique feature of complex plasma and it gives rise to a dissipative effect in the system leading to the formation of nonlinear structures due to the balance between nonlinearity and dissipation. In this paper, the propagation of nonlinear dust ion acoustic (DIA) wave in unmagnetized collisionless dusty plasma consisting of ions, nonthermal electrons and dust grains with variable negative charge has been investigated using the Sagdeev potential method. The existence domain of rarefactive double layer (DL) in the DIA wave has been investigated for the range of plasma parameters. The real potential has been obtained by numerically solving the Poisson equation and dust charging equation. It is observed that the presence of nonthermal electrons strengthens the DIA DL.

  14. Ion acoustic solitary structures in a collisionless unmagnetized plasma consisting of nonthermal electrons and isothermal positrons

    CERN Document Server

    Paul, Ashesh

    2016-01-01

    Employing the Sagdeev pseudo-potential technique the ion acoustic solitary structures have been investigated in an unmagnetized collisionless plasma consisting of adiabatic warm ions, nonthermal electrons and isothermal positrons. The qualitatively different compositional parameter spaces clearly indicate the existence domains of solitons and double layers with respect to any parameter of the present plasma system. The present system supports the negative potential double layer which always restricts the occurrence of negative potential solitons. The system also supports positive potential double layers when the ratio of the average thermal velocity of positrons to that of electrons is less than a critical value. However, there exists a parameter regime for which the positive potential double layer is unable to restrict the occurrence of positive potential solitary waves and in this region of the parameter space, there exist positive potential solitary waves after the formation of a positive potential double ...

  15. Dust ion acoustic solitary structures in presence of nonthermally distributed electrons and positrons

    CERN Document Server

    Paul, Ashesh; Das, K P

    2016-01-01

    The purpose of this paper is to extend the recent work of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)] on the existence of different dust ion acoustic solitary structures in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons and isothermal positrons in a more generalized form by considering nonthermal positrons instead of isothermal positrons. The present system supports both positive and negative potential double layers, coexistence of solitary waves of both polarities and positive potential supersolitons. The qualitative and the quantitative changes in existence domains of different solitary structures which occur for the presence of nonthermal positrons have been presented in comparison with the results of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)]. The formation of supersoliton structures and their limitations have been analyzed with the help of phase portraits of the dynamical sy...

  16. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    Science.gov (United States)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  17. Non-planar microfabricated gas chromatography column

    Science.gov (United States)

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  18. Higher Loop Nonplanar Anomalous Dimensions from Symmetry

    CERN Document Server

    Koch, Robert de Mello; Messamah, Ilies

    2013-01-01

    In this article we study the action of the one loop dilatation operator on operators with a classical dimension of order N. These operators belong to the su(2) sector and are constructed using two complex fields Y and Z. For these operators non-planar diagrams contribute already at the leading order in N and the planar and large N limits are distinct. The action of the one loop and the two loop dilatation operator reduces to a set of decoupled oscillators and factorizes into an action on the Z fields and an action on the Y fields. Direct computation has shown that the action on the Y fields is the same at one and two loops. In this article, using the su(2) symmetry algebra as well as structural features of field theory, we give compelling evidence that the factor in the dilatation operator that acts on the Ys is given by the one loop expression, at any loop order.

  19. The effect of q-distributed electrons on the head-on collision of ion acoustic solitary waves

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Uday Narayan; Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana Visva Bharati University, Santiniketan 731235 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics, ISI, Kolkata 700009 (India)

    2012-01-15

    The head-on collision of ion acoustic solitary waves (IASWs) in two component plasma comprising nonextensive distributed electrons is investigated. Two opposite directional Kortewg-de-vries (KdV) equations are derived and the phase shift due to collision is obtained using the extended version of Poincare-Lighthill-Kuo method. Different ranges of nonextensive parameter q are considered and their effects on phase shifts are observed. It is found that the presence of nonextensive distributed electrons plays a significant role on the nature of collision of ion acoustic solitary waves.

  20. Modulational instability of dust ion-acoustic waves in a magnetized dusty superthermal plasma

    CERN Document Server

    Shalini, A P Misra

    2016-01-01

    The amplitude modulation of three dimensional (3D) dust ion-acoustic wave (DIAW) packets is studied in a collisionless magnetized plasma with inertial positive ions, superthermal electrons and negatively charged immobile dust grains. By using the reductive perturbation technique, a 3D-nonlinear Schr{\\"o}dinger (NLS) equation is derived, which governs the slow modulation of DIAW packets. The latter are found to be stable in the low-frequency $(\\omega\\omega_c$, and the modulational instability (MI) is related to the modulational obliqueness $(\\theta)$. Here, $\\omega~(\\omega_c)$ is the nondimensional wave (ion-cyclotron) frequency. It is shown that the superthermal parameter $\\kappa$, the frequency $\\omega_c$ as well as the charged dust impurity $(0<\\mu<1)$ shift the MI domains around the $\\omega-\\theta$ plane, where $\\mu$ is the ratio of electron to ion number densities. Furthermore, it is found that the decay rate of instability is quenched by the superthermal parameter $\\kappa$ with cut-offs at lower wa...

  1. Dust ion-acoustic shock waves due to dust charge fluctuation in a superthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H., E-mail: alinejad@nit.ac.ir [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of); Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Tribeche, M. [Plasma Physics Group, Faculty of Sciences – Physics, University of Bab-Ezzouar (Algeria); Mohammadi, M.A. [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-11-14

    The nonlinear propagation of dust ion-acoustic (DIA) shock waves is studied in a charge varying dusty plasma with electrons having kappa velocity distribution. We use hot ions with equilibrium streaming speed and a fast superthermal electron charging current derived from orbit limited motion (OLM) theory. It is found that the presence of superthermal electrons does not only significantly modify the basic properties of shock waves, but also causes the existence of shock profile with only positive potential in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. -- Highlights: ► The presence of superthermal electrons causes the existence of shock waves with only positive potential. ► The strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. ► As the electrons evolve toward their thermodynamic equilibrium, the shock structures are found with smaller amplitude.

  2. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S. A., E-mail: ema.plasma@gmail.com; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh); Hossen, M. R. [Deparment of Natural Sciences, Daffodil International University, Sukrabad, Dhaka-1207 (Bangladesh)

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  3. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, A., E-mail: anurajrajput@gmail.com; Ryu, C. M., E-mail: ryu201@postech.ac.kr [POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang 790-784 (Korea, Republic of); Bains, A. S., E-mail: bainsphysics@yahoo.co.in [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, 264209 Weihai (China)

    2014-12-15

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ{sub c},κ{sub h}, cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω{sub ci} have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.

  4. Large amplitude ion-acoustic double layers in warm dusty plasma

    Science.gov (United States)

    Jain, S. L.; Tiwari, R. S.; Mishra, M. K.

    2015-01-01

    Large amplitude ion-acoustic double layer (IADL) is studied using Sagdeev's pseudo-potential technique in collisionless unmagnetized plasma comprising hot and cold Maxwellian population of electrons, warm adiabatic ions, and dust grains. Variation of both Mach number (M) and amplitude |φ m | of large amplitude IADL with charge, concentration, and mass of heavily charged massive dust grains is investigated for both positive and negative dust in plasma. Our numerical analysis shows that system supports only rarefactive large amplitude IADL for the selected set of plasma parameters. Our investigations for both negative and positive dust grains reveal that ion temperature increases the mobility of ions, resulting in increase in the Mach number of IADL. The larger mobility of ions causes leakage of ions from localized region, resulting into decrease in the amplitude of IADL. Other parameters, e.g. temperature ratio of hot to cold electrons, charge, concentration, mass of heavily charged massive dust grains also play significant role in the properties and existence of double layers. Since it is well established that both positive and negative dust are found in space as well as laboratory plasma, and double layers have a tremendous role to play in astrophysics, we have included both positive and negative dust in our numerical analysis for the study of large amplitude IADL. Further data used for negative dust are close to experimentally observed data. Hence, it is anticipated that our parametric studies for heavily charged (both positive and negative) dust may be useful in understanding laboratory plasma experiments, identifying nonlinear structures in upper part of ionosphere and lower part of magnetosphere structures, and in theoretical research for the study of properties of nonlinear structures.

  5. Manifestations of non-planar adsorption geometries of lead pyrenocyanine at the liquid-solid interface.

    Science.gov (United States)

    Mali, Kunal S; Zöphel, Lukas; Ivasenko, Oleksandr; Müllen, Klaus; De Feyter, Steven

    2013-10-01

    In this work, we provide evidence for multiple non-planar adsorption geometries of a novel pyrenocyanine derivative at the liquid-solid interface under ambient conditions. When adsorbed at the organic liquid-solid interface, lead pyrenocyanine forms well-ordered monolayers that exhibit peculiar non-periodic contrast variation. The different contrast of the adsorbed molecules is attributed to dissimilar adsorption geometries which arise from the non-planar conformation of the molecules. The non-planarity of the molecular backbone in turn arises due to a combination of the angularly extended pyrene subunits and the presence of the large lead ion, which is too big to fit inside the central cavity and thus is located out of the aromatic plane. The two possible locations of the lead atom, namely below and above the aromatic plane, could be identified as depression and protrusion in the central cavity, respectively. The manifestation of such multiple adsorption geometries on the structure of the resultant monolayer is discussed in detail. The packing density of these 2D arrays of molecules could be tuned by heating of the sample wherein the molecular packing changes from a low-density, pseudo six-fold symmetric to a high-density, two-fold symmetric arrangement. Finally, a well-ordered two-component system could be constructed by incorporating C60 molecules in the adlayer of lead pyrenocyanine at the liquid-solid interface.

  6. Note on rarefactive and compressive ion-acoustic solitons in a plasma containing two ion species

    Science.gov (United States)

    McKenzie, J. F.; Verheest, F.; Doyle, T. B.; Hellberg, M. A.

    2005-10-01

    In a recent article the conditions for the existence of solitons in a plasma containing two ion species were analyzed within the framework of a fully nonlinear treatment. In particular, an upper limit for the critical collective Mach number (above which rarefactive solitons cease to exist) was obtained from the requirement that a charge neutral point in the rarefactive regime must be formed before the electron density, ne, experiences its "lid," i.e., where ne→0. Although this is a necessary condition it is not sufficient. In the present work a sufficient condition is derived by requiring that a rarefactive equilibrium point be reached before the limit is imposed by either the electron lid or the infinite compression of the second ion species. This requirement, along with the usual necessary condition for soliton formation, provides the parameter space window for the existence of rarefactive solitons. The analysis has also been generalized to include ions of finite mass of various charge for both the rarefactive and compressive cases.

  7. Nonlinear propagation of ion-acoustic waves in self-gravitating dusty plasma consisting of non-isothermal two-temperature electrons

    Science.gov (United States)

    Paul, S. N.; Chatterjee, A.; Paul, Indrani

    2017-01-01

    Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.

  8. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    OpenAIRE

    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.

    2013-01-01

    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  9. Ion-acoustic Gardner Solitons in electron-positron-ion plasma with two-electron temperature distributions

    Science.gov (United States)

    Rehman, Momin A.; Mishra, M. K.

    2016-01-01

    The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.

  10. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity

    Science.gov (United States)

    M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali

    2017-01-01

    A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.

  11. Nonlinear ion-acoustic solitary waves in ion-beam plasma

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C.; Karmakar, B. (Manipur Univ., Imphal (India). Dept. of Mathematics); Singh, K.I. (Modern Coll., Imphal, Manipur (India))

    1989-01-01

    The dynamics of solitary waves in an ion-beam plasma having multiple electron temperatures are investigated. The investigation is based on the derivation of the Korteweg-de Vries (Kd V) equation by applying the reductive perturbation technique to the basic equations governing the plasma dynamics. Fascinating results are derived first for a plasma with a small percentage of non-isothermality, then the soliton's behaviour is obtained for an isothermal as well as for a non-isothermal plasma, and finally a general comparison is made and conclusions given. (author).

  12. Ion-Acoustic Envelope Modes in a Degenerate Relativistic Electron-Ion Plasma

    CERN Document Server

    McKerr, M; Kourakis, I

    2016-01-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schr\\"odinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  13. High time resolution PFISR and optical observations of naturally enhanced ion acoustic lines

    Directory of Open Access Journals (Sweden)

    R. G. Michell

    2009-04-01

    Full Text Available Observations of naturally enhanced ion acoustic lines (NEIALs taken with the Poker Flat Incoherent Scatter Radar (PFISR using a mode with very high time resolution are presented. The auroral event took place over Poker Flat, Alaska on 8 February 2007 at 09:35 UT (~22:00 MLT, and the radar data are complemented by common-volume high-resolution auroral imaging. The NEIALs occurred during only one of the standard 15-s integration periods. The raw data of this time show very intermittent NEIALs which occur only during a few very short time intervals (≤1 s within the 15-s period. The time sampling of the raw data, ~19 ms on average, allows study of the time development of the NEIALs, though there are indications that even finer time resolution would be of interest. The analysis is based on the assumption that the NEIAL returns are the result of Bragg scattering from ion-acoustic waves that have been enhanced significantly above thermal levels. The spectra of the raw data indicate that although the up- and down-shifted shoulders can both become enhanced at the same time, (within 19 ms, they are most often enhanced individually. The overall power in the up-and down-shifted shoulders is approximately equal throughout the event, with the exception of one time, when very large up-shifted power was observed with no corresponding down-shifted power. This indicates that during the 480 μs pulse, the strongly enhanced ion-acoustic waves were only traveling downward and not upward. The exact time that the NEIALs occurred was when the radar beam was on the boundary of a fast-moving (~10 km/s, bright auroral structure, as seen in the high resolution auroral imaging of the magnetic zenith. When viewed with high time resolution, the occurrence of NEIALs is associated with rapid changes in auroral luminosity within the radar field of view due to fast-moving auroral fine structures.

  14. Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma

    CERN Document Server

    Barman, A

    2014-01-01

    The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg de-Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids {\\bf 12}, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive io...

  15. Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas

    Science.gov (United States)

    Abdikian, A.; Ismaeel, S.

    2017-08-01

    In this paper, we employ a weakly relativistic fluid model to study the nonlinear amplitude modulation of electrostatic waves in an unmagnetized electron-positron-ion plasma. It is assumed that the degeneracy pressure law for electrons and positrons follows the Chandrasekhar limit of state whereas ions are warm and classical. The hydrodynamic approach along with the perturbation method have been applied to obtain the corresponding nonlinear Schrödinger equation (NLSE) in which nonlinearity is in balance with the dispersive terms. Using the NLSE, we could evaluate the modulational instability to show that various types of localized ion acoustic excitations exist in the form of either bright-type envelope solitons or dark-type envelope solitons. The regions of the stable and unstable envelope wave have been confined punctually for various regimes. Furthermore, it is proposed that the exact solutions of the NLSE for breather waves are the rogue waves (RWs), Akhmediev breather (AB), and Kuznetsov-Ma breather (KM) soliton. In order to show that the characteristics of breather structures is influenced by the plasma parameters (namely, relativistic parameter, positron concentration, and ionic temperature), the relevant numerical analysis of the NLSE is examined. In particular, it is observed that by increasing the values of the mentioned plasma parameters, the amplitude of the RWs will be decreased. Our results help researchers to explain the formation and dynamics of nonlinear electrostatic excitations in super dense astrophysical regimes.

  16. New Exact Solutions of Ion-Acoustic Wave Equations by (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Wafaa M. Taha

    2013-01-01

    Full Text Available The (G′/G-expansion method is used to study ion-acoustic waves equations in plasma physic for the first time. Many new exact traveling wave solutions of the Schamel equation, Schamel-KdV (S-KdV, and the two-dimensional modified KP (Kadomtsev-Petviashvili equation with square root nonlinearity are constructed. The traveling wave solutions obtained via this method are expressed by hyperbolic functions, the trigonometric functions, and the rational functions. In addition to solitary waves solutions, a variety of special solutions like kink shaped, antikink shaped, and bell type solitary solutions are obtained when the choice of parameters is taken at special values. Two- and three-dimensional plots are drawn to illustrate the nature of solutions. Moreover, the solution obtained via this method is in good agreement with previously obtained solutions of other researchers.

  17. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    Science.gov (United States)

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

  18. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  19. Effects of external magnetic field on oblique propagation of ion acoustic cnoidal wave in nonextensive plasma

    Science.gov (United States)

    Farhad Kiyaei, Forough; Dorranian, Davoud

    2017-01-01

    Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.

  20. Non-resonant interacting ion acoustic waves in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Technical Institute ' G Cardano' , Monterotondo, Rome (Italy)

    1999-01-29

    We perform an analytical and numerical investigation of the interaction among non-resonant ion acoustic waves in a magnetized plasma. Waves are supposed to be non-resonant, i.e. with different group velocities that are not close to each other. We use an asymptotic perturbation method, based on Fourier expansion and spatio-temporal rescaling. We show that the amplitude slow modulation of Fourier modes cannot be described by the usual nonlinear Schroedinger equation but by a new model system of nonlinear evolution equations. This system is C-integrable, i.e. it can be linearized through an appropriate transformation of the dependent and independent variables. We demonstrate that a subclass of solutions gives rise to envelope solitons. Each envelope soliton propagates with its own group velocity. During a collision solitons maintain their shape, the only change being a phase shift. Numerical results are used to check the validity of the asymptotic perturbation method. (author)

  1. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Science.gov (United States)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  2. On the study of ion-acoustic solitary waves and double-layers in a drift multicomponent plasma with electron-inertia

    Indian Academy of Sciences (India)

    S N Paul; S Chattopadhyaya; S K Bhattacharya; B Bera

    2003-06-01

    Using the pseudopotential method, theoretical investigation has been made on the first-order Korteweg-deVries ion-acoustic solitons in a multicomponent plasma consisting of warm positive ions, negative ions and isothermal electrons. The effects of electron-inertia and drift motion of the ions on the amplitudes and widths of the solitons have been studied in a plasma having (H+, Cl-), (H+, O-), (He+, H-) and (He+, O-) ions. Ion-acoustic double-layers have also been investigated for such plasmas. It has been found that drift velocity and electron-inertia have significant contribution on the formation of double-layers in multicomponent plasma.

  3. Discrete differential geometry: the nonplanar quadrilateral mesh.

    Science.gov (United States)

    Twining, Carole J; Marsland, Stephen

    2012-06-01

    We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.

  4. Laser-induced acoustic desorption coupled with a linear quadrupole ion trap mass spectrometer.

    Science.gov (United States)

    Habicht, Steven C; Amundson, Lucas M; Duan, Penggao; Vinueza, Nelson R; Kenttämaa, Hilkka I

    2010-01-15

    In recent years, laser-induced acoustic desorption (LIAD) coupled with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been demonstrated to provide a valuable technique for the analysis of a wide variety of nonvolatile, thermally labile compounds, including analytes that could not previously be analyzed by mass spectrometry. Although FT-ICR instruments are very powerful, they are also large and expensive and, hence, mainly used as research instruments. In contrast, linear quadrupole ion trap (LQIT) mass spectrometers are common due to several qualities that make these instruments attractive for both academic and industrial settings, such as high sensitivity, large dynamic range, and experimental versatility. Further, the relatively small size of the instruments, comparatively low cost, and the lack of a magnetic field provide some distinct advantages over FT-ICR instruments. Hence, we have coupled the LIAD technique with a commercial LQIT, the Thermo Fischer Scientific LTQ mass spectrometer. The LQIT was modified for a LIAD probe by outfitting the removable back plate of the instrument with a 6 in. ConFlat flange (CFF) port, gate valve, and sample lock. Reagent ions were created using the LQIT's atmospheric pressure ionization source and trapped in the mass analyzer for up to 10 s to allow chemical ionization reactions with the neutral molecules desorbed via LIAD. These initial experiments focused on demonstrating the feasibility of performing LIAD in the LQIT. Hence, the results are compared to those obtained using an FT-ICR mass spectrometer. Despite the lower efficiency in the transfer of desorbed neutral molecules into the ion trap, and the smaller maximum number of available laser pulses, the intrinsically higher sensitivity of the LQIT resulted in a higher sensitivity relative to the FT-ICR.

  5. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons

    Science.gov (United States)

    Lotekar, Ajay; Kakad, Amar; Kakad, Bharati

    2016-10-01

    One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.

  6. Universal instability of dust ion-sound waves and dust-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V.N. [General Physics Institute, Russian Academy of Science Moscow, Moscow (Russian Federation); Watanabe, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  7. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    Energy Technology Data Exchange (ETDEWEB)

    Kakad, Amar [Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011 (Japan); Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410-218 (India); Omura, Yoshiharu [Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kakad, Bharati [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410-218 (India)

    2013-06-15

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  8. Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas

    Science.gov (United States)

    Hasan, M. M.; Hossen, M. A.; Rafat, A.; Mamun, A. A.

    2016-10-01

    A theoretical investigation has been carried out on the propagation of the ion-acoustic (IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed mK-dV (mmK-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features (phase speed, amplitude, width, etc.) of the IA solitary waves (SWs), the SWs solutions of the K-dV, mK-dV, and mmK-dV are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects (arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser-solid matter interaction experiments, etc., are mentioned.

  9. Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions

    Institute of Scientific and Technical Information of China (English)

    刘铁路; 王云良; 路彦珍

    2015-01-01

    The nonlinear propagation of quantum ion acoustic wave (QIAW) is investigated in a four-component plasma com-posed of warm classical positive ions and negative ions, as well as inertialess relativistically degenerate electrons and positrons. A nonlinear Schr ¨odinger equation is derived by using the reductive perturbation method, which governs the dynamics of QIAW packets. The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf. The results exhibit that both in weakly relativistic limit and in ultrarelativistic limit, the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively, and on relativistically degenerate effect as well.

  10. Ion acoustic instability of HPT particles, FAC density, anomalous resistivity and parallel electric field in the auroral region

    Indian Academy of Sciences (India)

    C S Jayasree; G Renuka; C Venugopal

    2003-12-01

    During the magnetic storm of 21st March 1990, the DE-1 spacecraft encountered the auroral region at high invariant latitude at altitudes ranging from a few thousand kilometers in the ionosphere to many earth radii in the magnetosphere. The magnetic field perturbations interpretable as field aligned current (FAC) layers and the electrostatic turbulence possibly due to electrostatic ion acoustic instability driven by these currents are shown. The critical drift velocity of Hot Plasma Torus (HPT) electrons and the growth rate of ion acoustic wave as a function of electron to ion temperature ratio (/) for low and high current densities and energy of HPT electrons are found out. The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivity , potential differnece along the auroral field lines ∥, intensity of electric field turbulence ∥ and power produced per unit volume are computed. It is found that the change in westward magnetic perturbation increases ∥; ; ∥ ;∥ and . Hence HPT electrons are heated and accelerated due to power dissipation during magnetically active periods in the auroral region. Concerning, applications, such HPT electrons can be used in particle accelerators like electron ring accelerator, smokatron etc.

  11. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  12. Hybrid (particle in cell-fluid) simulation of ion-acoustic soliton generation including super-thermal and trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nopoush, M.; Abbasi, H. [Faculty of Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-08-15

    The present paper is devoted to the simulation of the nonlinear disintegration of a localized perturbation into an ion-acoustic soliton in a plasma. Recently, this problem was studied by a simple model [H. Abbasi et al., Plasma Phys. Controlled Fusion 50, 095007 (2008)]. The main assumptions were (i) in the electron velocity distribution function (DF), the ion-acoustic soliton velocity was neglected in comparison to the electron thermal velocity, (ii) on the ion-acoustic evolution time-scale, the electron velocity DF was assumed to be stationary, and (iii) the calculation was restricted to the small amplitude case. In order to generalize the model, one has to consider the evolution of the electron velocity DF for finite amplitudes. For this purpose, a one dimensional electrostatic hybrid code, particle in cell (PIC)-fluid, was designed. It simulates the electrons dynamics by the PIC method and the cold ions dynamics by the fluid equations. The plasma contains a population of super-thermal electrons and, therefore, a Lorentzian (kappa) velocity DF is used to model the high energy tail in the electron velocity DF. Electron trapping is included in the simulation in view of their nonlinear resonant interaction with the localized perturbation. A Gaussian initial perturbation is used to model the localized perturbation. The influence of both the trapped and the super-thermal electrons on this process is studied and compared with the previous model.

  13. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  14. Cylindrical and spherical soliton collision of electron-acoustic waves in non-Maxwellian plasma

    Science.gov (United States)

    El-Labany, S. K.; Sabry, R.; Moslem, W. M.; Elghmaz, E. A.

    2014-02-01

    Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth's auroral zone is highlighted.

  15. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  16. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  17. Effect of dust size distribution and dust charge fluctuation on dust ion-acoustic shock waves in a multi-ion dusty plasma

    Indian Academy of Sciences (India)

    WANG HONGYAN; ZHANG KAIBIAO

    2016-07-01

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dustgrains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.

  18. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  19. Dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal electrons and trapped ions

    Science.gov (United States)

    Misra, A. P.; Wang, Yunliang

    2015-05-01

    The nonlinear propagation of electrostatic dust-acoustic (DA) waves in a magnetized dusty plasma consisting of negatively charged mobile dusts, nonthermal fast electrons and trapped ions with vortex-like distribution is studied. Using the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation is derived which governs the dynamics of the small-amplitude solitary waves in a magnetized dusty nonthermal plasma. It is found that due to the dust thermal pressure, there exists a critical value (βc) of the nonthermal parameter β (>1), denoting the percentage of energetic electrons, below which the DA solitary waves cease to propagate. The soliton solution (traveling wave) of the KdV-like equation is obtained, and is shown to be only of the rarefactive type. The properties of the solitons are analyzed numerically with the system parameters. It is also seen that the effect of the static magnetic field (which only modifies the soliton width) becomes significant when the dust gyrofrequency is smaller than one-tenth of the dust plasma frequency. Furthermore, the amplitude of the soliton is found to increase (decrease) when the ratio of the free to trapped ion temperatures (σ) is positive (negative). The effects of the system parameters including the obliqueness of propagation (lz) and σ on the dynamics of the DA solitons are also discussed numerically, and it is found that the soliton structures can withstand perturbations and turbulence during a considerable time. The results should be useful for understanding the nonlinear propagation of DA solitary waves in laboratory and space plasmas (e.g., Earth's magnetosphere, auroral region, heliospheric environments, etc.).

  20. Relativistic degeneracy effect on propagation of arbitrary amplitude ion-acoustic solitons in Thomas-Fermi plasmas

    CERN Document Server

    Esfandyari-Kalejahi, Abdolrasoul; Saberian, Ehsan; 10.1585/pfr.5.045

    2011-01-01

    Arbitrary amplitude ion-acoustic solitary waves (IASWs) are studied using Sagdeev-Potential approach in electron-positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons and the matching criteria of existence of such solitary waves are numerically investigated. It has been shown that the relativistic degeneracy of electrons and positrons has significant effects on the amplitude and the Mach-number range of IASWs. Also it is remarked that only compressive IASWs can propagate in both non-relativistic and ultra-relativistic degenerate plasmas.

  1. Dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal electrons and trapped ions

    CERN Document Server

    Misra, A P

    2014-01-01

    The nonlinear theory of electrostatic dust-acoustic (DA) waves in a magnetized dusty plasma consisting of negatively charged mobile dusts, nonthermal fast electrons and trapped ions with vortex-like distribution is revisited. Previous theory in the literature [Phys. Plasmas {\\bf 20}, 104505 (2013)] is rectified and put forward to include the effects of the external magnetic field, the adiabatic pressure of charged dusts as well as the obliqueness of propagation to the magnetic field. Using the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation is derived which governs the dynamics of the small-amplitude solitary waves in a magnetized dusty nonthermal plasma. It is found that due to the dust thermal pressure, there exists a critical value $(\\beta_c)$ of the nothermal parameter $\\beta (>1)$, denoting the percentage of energetic electrons, below which the DA solitary waves cease to propagate. The soliton solution (travelling wave) of the KdV-like equation is obtained, and is shown to be on...

  2. Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma

    Science.gov (United States)

    Saini, N. S.; Singh, Kuldeep

    2016-10-01

    A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.

  3. Nonplanar loops leave the Veneziano model photon massless

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    The absence of a pole at p2=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  4. Nonplanar loops leave the Veneziano model photon massless

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    The absence of a pole at p2=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  5. Nonplanar loops leave the Veneziano model photon massless

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-04-16

    The absence of a pole at p/sup 2/=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  6. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  7. Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model

    Science.gov (United States)

    Aminmansoor, F.; Abbasi, H.

    2015-08-01

    The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.

  8. Naturally Enhanced Ion Acoustic Lines with the Poker Flat AMISR radar.

    Science.gov (United States)

    Stromme, A.; Semeter, J.; Zettergren, M.

    2007-12-01

    The study of Naturally Enhanced Ion Acoustic Lines (NEIALs) have become one of the key studies for EISCAT both in the polar cusp using the EISCAT Svalbard Radar (ESR), and in the auroral zone, using the EISCAT UHF and VHF systems. Still many questions regarding the temporal and spatial extent of the NEIAL events remain unanswered. The new Advanced Modular Incoherent Scatter Radar (AMISR) in Poker Flat, Alaska is the first phased array Incoherent Scatter Radar at high latitudes, and by taking advantage of its possibility of (almost) simultaneous looking directions, we can resolve some of the space time ambiguity associated with NEIALs. During the night of the 23. March 2007, a period of NEIALs occurred. The radar ran in a 10 position mode with 9 beams in a narrow quadratic grid spaced by 3 degrees, plus a 10th position up B - slightly offset from the grid. Raw voltage data were sampled to allow for very high time resolution ACFs and spectra. Combining high time resolution data from multiple positions, we have the opportunity for the first time to look at the space-time ambiguity in the development of NEIALs. During the campaign a narrow field of view imager from university of Boston were operational at the Davis science center close by the AMISR array. The night of the 23. March, the imager was pointed field aligned, and at around 11:20 UT - at the time of the radar NEIALs - a field of dynamic rays occurred at and near the zenith. High time resolution multi position data from AMISR will be shown to follow the space and time development of the NEIAL event. This will also be correlated with high time resolution data from the imager.

  9. Generation of coherent ion acoustic solitary waves in inhomogeneous plasmas by an odd eigenmode of electron holes

    Science.gov (United States)

    Dokgo, Kyunghwan; Woo, Minho; Choi, Cheong-Rim; Min, Kyoung-Wook; Hwang, Junga

    2016-09-01

    Generation of coherent ion acoustic solitary waves (IASWs) in inhomogeneous plasmas by an odd eigenmode (OEM) of electron holes (EHs) is investigated using 1D electrostatic particle-in-cell (PIC) simulations. The OEM oscillates at a frequency comparable to the trapped electron bouncing frequency, as also demonstrated by Lewis' theoretical formalism about the linear eigenmode in Bernstein-Greene-Kruskal (BGK) equilibrium. The density gradient in the inhomogeneous plasmas causes asymmetry in the EH potential structure associated with the OEM, whose amplitude grows rapidly as it propagates through the density gradient region. As the ions interact with this asymmetric potential, which oscillates slowly enough for the ions to respond, they are ejected to the lower density side with a larger potential amplitude, forming a chain of IASWs coherently with the oscillation of the OEM.

  10. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  11. Study of nonplanarity of peptide bond using theoretical calculations.

    Science.gov (United States)

    Selvarengan, P; Kolandaivel, P

    2005-08-01

    The conformational dependence of nonplanarity of the peptide bond of formylglycinamide has been studied using ab initio and density functional theory methods. Hartree-Fock self-consistent field theory (HF), Møller-Plesset perturbation theory (MP2) of ab initio and B3LYP level of theory of dft method have been used employing 6-31++G** basis set. The MP2 method predicts better results than HF and B3LYP levels of theory for conformational stability dependence of nonplanarity. Systematic dependence of planarity deviation has been observed in MP2 theory. The chemical hardness values successfully predict the conformational region, but fail to obey maximum hardness principle. It is concluded that the most reliable dft method could not successfully predict the planarity of peptide bond in comparison with electron correlated method of ab initio method.

  12. Application of Random Ferns for non-planar object detection

    Science.gov (United States)

    Mastov, Alexey; Konovalenko, Ivan; Grigoryev, Anton

    2015-12-01

    The real time object detection task is considered as a part of a project devoted to development of autonomous ground robot. This problem has been successfully solved with Random Ferns algorithm, which belongs to keypoint-based method and uses fast machine learning algorithms for keypoint matching step. As objects in the real world are not always planar, in this article we describe experiments of applying this algorithm for non-planar objects. Also we introduce a method for fast detection of a special class of non-planar objects | those which can be decomposed into planar parts (e.g. faces of a box). This decomposition needs one detector for each side, which may significantly affect speed of detection. Proposed approach copes with it by omitting repeated steps for each detector and organizing special queue of detectors. It makes the algorithm three times faster than naive one.

  13. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  14. Dynamics of rotationally fissioned asteroids: non-planar case

    Science.gov (United States)

    Boldrin, L. A. G.; Scheeres, D. J.; Winter, O. C.

    2016-10-01

    The rotational fission of asteroids has been studied previously with simplified models restricted to planar motion. However, the observed physical configuration of contact binaries leads one to conclude that most of them are not in a planar configuration and hence would not be restricted to planar motion once they undergo rotational fission. This motivated a study of the evolution of initially non-planar binaries created by fission. Using a two-ellipsoid model, we performed simulations taking only gravitational interactions between components into account. We simulate 91 different initial inclinations of the equator of the secondary body for 19 different mass ratios. After disruption, the binary system dynamics are chaotic, as predicted from theory. Starting the system in a non-planar configuration leads to a larger energy and enhanced coupling between the rotation state of the smaller fissioned body and the evolving orbital system, and enables re-impact to occur. This leads to differences with previous planar studies, with collisions and secondary spin fission occurring for all mass ratios with inclinations θ0 ≥ 40o, and mimics a Lidov-Kozai mechanism. Out of 1729 studied cases, we found that ˜14 per cent result in secondary fission, ˜25 per cent result in collisions and ˜6 per cent have lifetimes longer than 200 yr. In Jacobson & Scheeres stable binaries only formed in cases with mass ratios q system should start in a non-planar configuration.

  15. Longitudinal mode structure in a non-planar ring resonator

    Directory of Open Access Journals (Sweden)

    M Jaberi

    2013-09-01

    Full Text Available  The structure of longitudinal modes of a passively Q-switched, non-planar unidirectional ring-resonator,with Nd:YAG active medium is described in this article. Two different techniques are used to study the longitudinal mode structure of the laser resonator. At first, the fast-fourier transform technique is applied for analyzing the mode beating of the optical fields by intensity frequency structure of the laser pulses to determine the number of longitudinal modes. Then, an analyzer etalon is used to observe Fabry-Perot fringes to compute the numbers of the resonator longitudinal modes. The results of two techniques are in good agreement with each other. Under the proper conditions, a reliable single longitudinal mode of the non-planar ring-resonator can be achieved with a good spatial mode profile that originates from the unidirectional travelling optical field propagation in the resonator having a very low sensitivity of the non-planar ring resonator to the optical elements misalignment.

  16. A generalized Beraha conjecture for non-planar graphs

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Jesper Lykke, E-mail: jesper.jacobsen@ens.fr [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75231 Paris (France); Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Salas, Jesús, E-mail: jsalas@math.uc3m.es [Grupo de Modelización, Simulación Numérica y Matemática Industrial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés (Spain); Grupo de Teorías de Campos y Física Estadística, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al IEM–CSIC, Madrid (Spain)

    2013-10-21

    We study the partition function Z{sub G(nk,k)}(Q,v) of the Q-state Potts model on the family of (non-planar) generalized Petersen graphs G(nk,k). We study its zeros in the plane (Q,v) for 1⩽k⩽7. We also consider two specializations of Z{sub G(nk,k)}, namely the chromatic polynomial P{sub G(nk,k)}(Q) (corresponding to v=−1), and the flow polynomial Φ{sub G(nk,k)}(Q) (corresponding to v=−Q). In these two cases, we study their zeros in the complex Q-plane for 1⩽k⩽7. We pay special attention to the accumulation loci of the corresponding zeros when n→∞. We observe that the Berker–Kadanoff phase that is present in two-dimensional Potts models, also exists for non-planar recursive graphs. Their qualitative features are the same; but the main difference is that the role played by the Beraha numbers for planar graphs is now played by the non-negative integers for non-planar graphs. At these integer values of Q, there are massive eigenvalue cancellations, in the same way as the eigenvalue cancellations that happen at the Beraha numbers for planar graphs.

  17. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bouzit, Omar, E-mail: omar.bouzit@yahoo.fr; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Bains, A. S., E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2 (Canada)

    2015-08-15

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.

  18. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. J., E-mail: josim.phys2007@gmail.com; Alam, M. S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  19. New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain

    2016-01-01

    The theoretical and numerical studies have been investigated on the nonlinear propagation of electrostatic ion-acoustic waves (IAWs) in an un-magnetized Thomas-Fermi plasma system consisting of electron, positrons, and positive ions for both of ultra-relativistic and non-relativistic degenerate electrons. Korteweg-de Vries (K-dV) equation is derived from the model equations by using the well-known reductive perturbation method. This equation is solved by employing the generalized Riccati equation mapping method. The hyperbolic functions type solutions to the K-dV equation are only considered for describing the effect of plasma parameters on the propagation of electrostatic IAWs for both of ultra-relativistic and non-relativistic degenerate electrons. The obtained results may be helpful in proper understanding the features of small but finite amplitude localized IAWs in degenerate plasmas and provide the mathematical foundation in plasma physics.

  20. Interaction of electronic excitations of Tm3+ ions with acoustic vibrations in KTm(MoO4)2

    Science.gov (United States)

    Kamenskyi, D.; Poperezhai, S.; Gogoi, P.; Engelkamp, H.; Maan, J. C.; Wosnitza, J.; Kut'ko, V.

    2014-01-01

    Electron paramagnetic resonance spectra of KTm(MoO4)2 were measured as a function of magnetic field between 3 and 11.5 cm-1 at T =2 K. We found that in addition to the absorption line caused by the electronic excitation of Tm3+ ions, the spectra contain sidebands. Far-infrared transmission measured with polarized light from 10 to 75 cm-1 revealed vibration modes at 16.7 and 25.7 cm-1 for polarizations Eω∥a and Eω∥c, respectively. We show that sidebands in the spectra of paramagnetic resonance result from a parametric resonance between the electronic excitations of the Tm3+ ions and the acoustic vibrations of the crystal lattice.

  1. Study of trapping effect on ion-acoustic solitary waves based on a fully kinetic simulation approach

    CERN Document Server

    Jenab, S M

    2016-01-01

    A fully kinetic simulation approach, treating each plasma component based on the Vlasov equation, is adopted to study the disintegration of an initial density perturbation (IDP) into a number of ion-acoustic solitary waves (IASWs) in the presence of the trapping effect of electrons. The non-linear fluid theory developed by Schamel has identified three separate regimes of ion-acoustic solitary waves based on the trapping parameter. Here, the disintegration process and the resulting self-consistent IASWs are studied in a wide range of trapping parameters covering all the three regimes continuously. The dependency of features such as the time of disintegration, the number, speed and size of IASWs on the trapping parameter are focused upon. It is shown that an increase in this parameter slows down the propagation of IASWs while decreases their sizes in the phase space. These features of IASWs tend to saturate for large value of trapping parameters. The disintegration time shows a more complicated behavior than wh...

  2. Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes

    Science.gov (United States)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-07-01

    A comparative study of the interactions between nonlinear ion acoustic solitary waves (IASWs) propagating toward each other, and the electrostatic nonlinear propagation of IASWs, both for the weakly and relativistic regimes consisting of relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided Korteweg-de Vries (KdV) equations are derived using the extended Poincaré-Lighthill-Kuo (PLK) method to reveal the physical issues concerned. The effects of positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, relativistic streaming factor, the population of electron, and positron nonthermality on the electrostatic resonances and their phase shifts are investigated for both regimes. It is found that the plasma parameters significantly modify the phase shifts, electrostatic resonances, hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear propagation characteristics of IASWs. The results obtained may be useful for clarifications of interaction between IASWs in astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, inertial confinement plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal electrons, positrons, and relativistic ions.

  3. Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    XUEJu-Kui

    2003-01-01

    The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.

  4. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg [Mansoura University, Physics Department, Faculty of Science (Egypt); El-Shewy, E. K. [Taibah University Al-Madinah Al-Munawarah, Department of Physics (Saudi Arabia); Darweesh, H. F. [Mansoura University, Physics Department, Faculty of Science (Egypt)

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  5. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    Energy Technology Data Exchange (ETDEWEB)

    Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  6. Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Mamun, A. A. [Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2014-12-15

    The modeling of a theoretical and numerical study on the nonlinear propagation of modified electron-acoustic (mEA) solitary waves has been carried out in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non-relativistic degenerate inertial cold electrons, both non-relativistic and ultra-relativistic degenerate hot electron and inertial positron fluids, and positively-charged static ions). A reductive perturbation technique is used to derive the planar and the nonplanar Korteweg-de Vries (K-dV) equations, which admit a localized wave solution for the solitary profile. The solitary wave's characteristics are found to have been influenced significantly for the non-relativistic and the ultra-relativistic limits. The mEA solitary waves are also found to have been significantly modified due to the effects of the degenerate pressure and the number densities of this dense plasma's constituents. The properties of the planar K-dV solitary wave are quite different from those of the nonplanar K-dV solitary wave. The relevance of our results to astrophysical objects (like white dwarfs and neutron stars), which are of scientific interest, is briefly mentioned.

  7. Generation of coherent ion acoustic solitary waves in inhomogeneous plasma by odd-symmetric trapped mode in an electron hole

    Science.gov (United States)

    Dokgo, K.; Woo, M.; Choi, C.; Min, K. W.; Hwang, J.

    2015-12-01

    The generation of coherent ion acoustic solitary waves (IASWs) due to interactions between an electron hole (EH) and density gradient of plasma is investigated by both 1D particle-in-cell (PIC) simulation and theory. In our simulation, an EH is generated by plasma blob injection at the beginning. When the EH passes density gradient region, two features are observed: one is oscillations of EH bipolar field and another is IASWs generation. We found that these E field oscillations correspond to odd-symmetric trapped mode in the EH (OSTM). Using theoretical formalism introduced by Lewis, we theoretically derived the structure and the dispersion relation of OSTM. The OSTM structures calculated from simulation and theory are in good agreement. In the presence of density gradient, OSTM structure is distorted and become spatially asymmetric; its potential is weak in the higher density side and strong in the lower density side. Ions are pulled and pushed by the OSTM potential. As a results of potential difference, ions are accelerated to the lower density side then they formed IASWs. These process are repeated in the density gradient region when EH are passing, so IASWs are generated coherently.

  8. Integrable system on phase space with nonplanar metrics

    CERN Document Server

    Bogdanov, E I

    2001-01-01

    The problem on the integrability of the evolution system on the phase spaces with the nonplanar metrics is studied. It is shown that in the case, when the phase space is a sphere, the system Hamiltonians are generated under the action of the Poisson operators on the variations of the phase space geodesic lines and the problem on the evolution system integrability is reduced to the task on the integrability of the repers motion equations on the phase space. The bihamiltonian representation of the evaluation systems is connected with the differential-geometric properties of the phase space

  9. Influence of electron-electron collisions on the propagation of ion-acoustic space-charge waves in a warm plasma waveguide

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The influence of electron–electron collisions on the propagation of the ion-acoustic space-charge wave is investigated in a cylindrical waveguide filled with warm collisional plasma by employing the normal mode analysis and the method of separation of variables. It is shown that the frequency of the ion-acoustic space-charge wave with higher-harmonic modes is always smaller than that with lower-harmonic modes, especially in intermediate wave number domains. It is also shown that the collisional damping rate of the ion-acoustic space-charge wave due to the electron–electron collision effect with higher-harmonic modes is smaller than that with lower-harmonic modes. In addition, it is found that the maximum position of the collisional damping rate shifts to large wave numbers with an increase of the harmonic mode. The variation of the wave frequency and the collisional damping rate of the ion-acoustic space-charge wave is also discussed.

  10. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    Science.gov (United States)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  11. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...

  12. The collision effect between dust grains and ions to the dust ion acoustic waves in a dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xue; Wang Canglong; Liu Congbo; Zhang Jianrong; Shi Yuren; Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2012-10-15

    Damping solitary wave in dusty plasma is studied by considering the collision effect between dust grains and ions. It can be described by a KdV type equation in which a damping term of {phi}{sup 2} exist. It is found that both the amplitude and propagation velocity of the solitary wave decrease with time exponentially. Our results are compared with another KdV type equation with the damping term of {phi}. It is noted that the damping rate of the KdV type equation with the damping term of {phi}{sup 2} is larger than that with the term of {phi}. It is found that the damping rate is proportional to the collision frequency between dust grains and ions.

  13. Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

    Indian Academy of Sciences (India)

    Hamid Reza Pakzad; Kurosh Javidan

    2009-11-01

    The Korteweg–de Vries–Burgers (KdV–Burgers) equation and modified Korteweg–de Vries–Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.

  14. Highlights from Heavy Ion Collisions at RHIC and the Acoustics of the Little Bangs

    CERN Document Server

    Sorensen, Paul

    2012-01-01

    At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, heavy nuclei are collided at high energies to create matter that is hot enough and dense enough to dissolve hadrons into a quark-gluon-plasma (QGP). In this lecture, dedicated to the memory of Aditya Sambamurti, I present an introduction to heavy-ion collisions and highlights from the first decade of RHIC results.

  15. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  16. Stability analysis and investigation of higher order Schroedinger equation for strongly dispersive ion-acoustic wave in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, R; Kalita, L; Devi, N, E-mail: runmoni_gogoi@rediffmail.co, E-mail: latikakalita@rediffmail.co, E-mail: nirupama_cotton@rediffmail.co [Department of Mathematics, Cotton College, Guwahati-781001, Assam (India)

    2010-02-01

    Much interest was shown towards the studies on nonlinear stability in the late sixties. Plasma instabilities play an important role in plasma dynamics. More attention has been given towards stability analysis after recognizing that they are one of the principal obstacles in the way of a successful resolution of the problem of controlled thermonuclear fusion. Nonlinearity and dispersion are the two important characteristics of plasma instabilities. Instabilities and nonlinearity are the two important and interrelated terms. In our present work, the continuity and momentum equations for both ions and electrons together with the Poisson equation are considered as cold plasma model. Then we have adopted the modified reductive perturbation technique (MRPT) from Demiray [1] to derive the higher order equation of the Nonlinear Schroedinger equation (NLSE). In this work, detailed mathematical expressions and calculations are done to investigate the changing character of the modulation of ion acoustic plasma wave through our derived equation. Thus we have extended the application of MRPT to derive the higher order equation. Both progressive wave solutions as well as steady state solutions are derived and they are plotted for different plasma parameters to observe dark/bright solitons. Interesting structures are found to exist for different plasma parameters.

  17. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  18. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    Science.gov (United States)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  19. Stability Dust-Ion-Acoustic Wave in Dusty Plasmas With Stream -Influence of Charge Fluctuation of Dust Grains

    CERN Document Server

    Atamaniuk, B; Atamaniuk, Barbara; Zuchowski, Krzysztof

    2007-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the...

  20. Impact of Ion Acoustic Wave Instabilities in the Flow Field of a Hypersonic Vehicle on EM Signals

    Science.gov (United States)

    Mudaliar, Saba; Sotnikov, Vladimir

    2016-10-01

    Flow associated with a high speed air vehicle (HSAV) can get partially ionized. In the absence of external magnetic field the flow field turbulence is due to ion acoustic wave (IAW) instabilities. Our interest is in studying the impact of this turbulence on the radiation characteristics of EM signals from the HSAV. We decompose the radiated signal into coherent and diffuse parts. We find that the coherent part has the same spectrum as that of the source signal, but it is distorted because of dispersive coherent attenuation. The diffuse part is expressed as a convolution (in wavenumber and frequency) of the source signal with the spectrum of electron density fluctuations. This is a constrained convolution in the sense that the spectrum has to satisfy the IAW dispersion relation. A quantity that characterizes the flow is the mean free path (MFP). When the MFP is large compared to the thickness of the flow the coherent part is significant. If the MFP is larger than the thickness of the flow the diffuse part is the dominant part of the received signal. In the special case when the source signal frequency is close the electron plasma frequency, there can exist in the flow region Langmuir modes in addition to the EM modes. The radiation characteristics of EM source signals from the HSAV in this case are quite different.

  1. Complex Korteweg-de Vries equation and Nonlinear dust-acoustic waves in a magnetoplasma with a pair of trapped ions

    CERN Document Server

    Misra, A P

    2015-01-01

    The nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma with a pair of trapped ions is investigated. Starting from a set of hydrodynamic equations for massive dust fluids as well as kinetic Vlasov equations for ions, and applying the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation with a complex coefficient of nonlinearity is derived, which governs the evolution of small-amplitude DA waves in plasmas. The complex coefficient arises due to vortex-like distributions of both positive and negative ions. An analytical as well as numerical solution of the KdV equation are obtained and analyzed with the effects of external magnetic field, the dust pressure as well as different mass and temperatures of positive and negative ions.

  2. New: Variational principle-exact solutions and conservation laws for modified ion-acoustic shock waves and double layers with electron degenerate in plasma

    Science.gov (United States)

    EL-Kalaawy, O. H.

    2017-03-01

    The nonlinear propagation of modified ion acoustic shock waves and double layers in a relativistic degenerate plasma is considered. This plasma system is proposed for containing inertial viscous positive and negative ion fluids, relativistic electron fluids, and negatively charged immobile heavy ions. The basic set of fluid equations is reduced to modified Burgers (MB) and further modified Burgers (FMB) or (Gardner) or Mamun and Zobaer (M-Z) equations by using the reductive perturbation method. The basic features of these shocks obtained from this analysis are observed to be significantly different from those obtained from the standard Burgers equation. By introducing two special functions and He's semi-inverse method, a variational principle and conservation laws for the Gardner (FmB) equation are obtained. A set of new exact solutions for the Gardner (FmB) equation are obtained by the auto-Bäcklund transformations. Finally, we will study the physical meanings of solutions.

  3. Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, A.A. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eliasson, B. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)]. E-mail: bengt@tp4.rub.de; Shukla, P.K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2004-11-22

    It is shown that the nonlinear propagation of dust-acoustic waves in a strongly coupled dusty plasma is governed by a modified Korteweg-de-Vries-Burgers (KdV-Burgers) equation. The latter is derived from a set of generalized hydrodynamic equations for strongly correlated dust grains in a liquid-like state, a Boltzmann electron distribution, and a non-isothermal vortex-like ion distribution. The numerical solutions of the modified KdV-Burgers equation are presented in order to provide some salient features of dust-acoustic solitary and shock structures that may exist in laboratory dusty plasmas where the dust grains are in a strongly coupled liquid phase.

  4. Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas with κ deformed Kaniadakis distributed electrons and hot positrons

    Science.gov (United States)

    Saha, Asit; Tamang, Jharna

    2017-08-01

    Qualitative analysis of the positron acoustic (PA) waves in a four-component plasma system consisting of static positive ions, mobile cold positron, and Kaniadakis distributed hot positrons and electrons is investigated. Using the reductive perturbation technique, the Korteweg-de Vries (K-dV) equation and the modified KdV equation are derived for the PA waves. Variations of the total energy of the conservative systems corresponding to the KdV and mKdV equations are presented. Applying numerical computations, effect of parameter (κ), number density ratio (μ1) of electrons to ions and number density (μ2) of hot positrons to ions, and speed (U) of the traveling wave are discussed on the positron acoustic solitary wave solutions of the KdV and mKdV equations. Furthermore, it is found that the parameter κ has no effect on the solitary wave solution of the KdV equation, whereas it has significant effect on the solitary wave solution of the modified KdV equation. Considering an external periodic perturbation, the perturbed dynamical systems corresponding to the KdV and mKdV equations are analyzed by employing three dimensional phase portrait analysis, time series analysis, and Poincare section. Chaotic motions of the perturbed PA waves occur through the quasiperiodic route to chaos.

  5. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  6. Ion Acoustic Travelling Waves

    CERN Document Server

    Webb, G M; Ao, X; Zank, G P

    2013-01-01

    Models for travelling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the travelling waves can be reduced to a single first order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron pr...

  7. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  8. Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [College of Mechanical Engineering, Beijing University of Technology, Beijing 100022 (China)] e-mail: sandyzhang0@yahoo.com

    2005-11-01

    This paper presents an analysis of the chaotic motion and its control for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. A new method of controlling chaotic motion for the nonlinear nonplanar oscillations of the cantilever beam, refereed as to the force control approach, is proposed for the first time. The governing nonlinear equations of nonplanar motion under combined parametric and external excitations are obtained. The Galerkin procedure is applied to the governing equation to obtain a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations for the in-plane and out-of-plane modes. The work is focused on the case of 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance-primary resonance for the out-of-plane mode. The method of multiple scales is used to transform the parametrically and externally excited system to the averaged equations which have a constant perturbation force. Based on the averaged equations obtained here, numerical simulation is utilized to discover the periodic and chaotic motions for the nonlinear nonplanar oscillations of the cantilever beam. The numerical results indicate that the transverse excitation in the z direction at the free end can control the chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam. The methodology of controlling chaotic motion by using the transverse excitation is proposed. The transverse excitation in the z direction at the free end may be thought about to be an open-loop control. For the problem investigated in this paper, this approach is an effective methodology of controlling chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam.

  9. Fabrication method for small-scale structures with non-planar features

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Ten Eyck, Gregory A.

    2016-09-20

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  10. Numerical Investigation of Pulsatile Blood Flow in a Bifurcation Model with a Non-Planar Branch: The Effect of Different Bifurcation Angles and Non-Planar Branch

    Directory of Open Access Journals (Sweden)

    Omid Arjmandi-Tash

    2012-12-01

    Full Text Available Introduction: Atherosclerosis is a focal disease that susceptibly forms near bifurcations, anastomotic joints, side branches, and curved vessels along the arterial tree. In this study, pulsatile blood flow in a bifurcation model with a non-planar branch is investigated. Methods: Wall shear stress (WSS distributions along generating lines on vessels for different bifurcation angles are calculated during the pulse cycle. Results: The WSS at the outer side of the bifurcation plane vanishes especially for higher bifurcation angles but by increasing the bifurcation angle low WSS region squeezes. At the systolic phase there is a high possibility of formation of a separation region at the outer side of bifurcation plane for all the cases. WSS peaks exist on the inner side of bifurcation plane near the entry section of daughter vessels and these peaks drop as bifurcation angle is increased. Conclusion: It was found that non-planarity of the daughter vessel lowers the minimum WSS at the outer side of the bifurcation and increases the maximum WSS at the inner side. So it seems that the formation of atherosclerotic plaques at bifurcation region in direction of non-planar daughter vessel is more risky.

  11. Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method

    Institute of Scientific and Technical Information of China (English)

    Xie Changchuan; Wang Libo; Yang Chao; Liu Yi

    2013-01-01

    A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper.A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation.The finite element method is introduced for structural nonlinear statics analysis.The surface spline method is used for structure/aerodynamics coupling.The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented,and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test.The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic.However,the nonlinear methodology,which involves combining the structure finite element method with the non-planar vortex lattice method,could be used to solve the aeroelastic deformation with considerable accuracy,which is in fair agreement with the test results.Moreover,the nonlinear finite element method could consider complex structures.The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency.Consequently,the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice.It could be used in the preliminary stage and also in the detailed stage of aircraft design.

  12. Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Dubovyk, Ievgen [Institute of Electrophysics and Radiation Technologies, Kharkiv (Ukraine); Gluza, Janusz [Univ. of Silesia, Katowice (Poland). Inst. of Physics; Riemann, Tord

    2016-04-15

    We introduce the Mellin-Barnes representation of general Feynman integrals and discuss their evaluation. The Mathematica package AMBRE has been recently extended in order to cover consistently non-planar Feynman integrals with two loops. Prospects for the near future are outlined. This write-up is an introduction to new results which have also been presented elsewhere.

  13. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T S

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  14. Temporal analysis of the coherent properties of optical images of rough nonplanar objects

    NARCIS (Netherlands)

    Mandrosov, V. I.

    2009-01-01

    The possibility of using temporal analysis to find the relation between chromatic properties of probe radiation and coherent properties of the optical images of rough non-planar objects is substantiated. The analysis is based on the use of the time correlation function and on the study of the speckl

  15. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  16. Determination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopy

    Science.gov (United States)

    Steigerwald, A.; Hmelo, A. B.; Varga, K.; Feldman, L. C.; Tolk, N.

    2012-07-01

    We report the results of coherent acoustic phonon spectroscopy analysis of band-edge optical modification of GaAs irradiated with 400 keV Ne++ for doses between 1011-1013 cm-2. We relate this optical modification to the structural damage density as predicted by simulation and verified by ion channeling analysis. Crystal damage is observed to cause optical modification that reduces the amplitude of the optoacoustic signal. The depth-dependent nature of the optoacoustic measurement allows us to determine optical damage cross-sections along the ion track, which are found to vary as a function of position along the track. Unexpectedly, we find that this optical modification is primarily dependent on the structural damage density and insensitive to the specific defect configuration along the ion track, suggesting that a simple model of defect density along the track is sufficient to characterize the observed optical changes. The extent of optical modification is strongly probe frequency-dependent as the frequency is detuned from the GaAs band edge. As determined from the experimental measurements, the spatial extent of optical modification exceeds the spatial extent of the structural disorder by an order of magnitude.

  17. Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures.

    Science.gov (United States)

    Nyadong, Leonard; McKenna, Amy M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2011-03-01

    We present a novel nonresonant laser-based matrix-free atmospheric pressure ionization technique, atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI). The technique decouples analyte desorption from subsequent ionization by reagent ions generated from a corona discharge initiated in ambient air or in the presence of vaporized toluene as a CI dopant at room temperature. Analyte desorption is initiated by a shock wave induced in a titanium foil coated with electrosprayed sample, irradiated from the rear side by high-energy laser pulses. The technique enables facile and independent optimization of the analyte desorption, ionization, and sampling events, for coupling to any mass analyzer with an AP interface. Moreover, the generated analyte ions are efficiently thermalized by collisions with atmospheric gases, thereby reducing fragmentation. We have coupled AP/LIAD-CI to ultrahigh-resolution FT-ICR MS to generate predominantly [M + H](+) or M(+•) ions to resolve and identify thousands of elemental compositions from organic mixtures as complex as petroleum crude oil distillates. Finally, we have optimized the AP/LIAD CI process and investigated ionization mechanisms by systematic variation of placement of the sample, placement of the corona discharge needle, discharge current, gas flow rate, and inclusion of toluene as a dopant.

  18. Effects of distinct ion temperatures on the head-on collision and phase shifts of dust acoustic one and multi-solitons in dusty plasmas

    CERN Document Server

    Alam, M S; Talukder, M R; Ali, M Hossain

    2016-01-01

    The propagation characteristics and interactions between the dust acoustic (DA) one and multi solitons in an unmagnetized dusty plasmas composing negatively charged mobile dust, Boltzmann distributed electrons, nonextensive distributed cold and nonthermal distributed hot ions are studied. The well known extended Poincar Lighthill Kuo (PLK) method is employed to derive the two sided Korteweg de Vries (KdV) equations. The solutions of KdV equations are constructed using the Hirota method both for one and multi solitons. The phase shifts are determined for the interaction of one, two and three DA solitons. The effects of plasma parameters on the head on collision of DA one as well as multi solitons and their corresponding phase shifts are investigated.

  19. Optical Mixing Controlled Stimulated Scattering instabilities: Suppression of SRS by the Controlled Introduction of Ion Acoustic and Electron Plasma Wave Turbulence

    CERN Document Server

    Afeyan, Bedros; Won, K; Montgomery, D S; Hammer, J; Kirkwood, R K; Schmitt, A J

    2012-01-01

    In a series of experiments on the Omega laser facility at LLE, we have demonstrated the suppression of SRS in prescribed spectral windows due to the presence of externally controlled levels of ion acoustic waves (IAW, by crossing two blue beams at the Mach -1 surface) and electron plasma waves (EPW, by crossing a blue and a green beam around a tenth critical density plasma) generated via optical mixing. We have further observed SRS backscattering of a green beam when crossed with a blue pump beam, in whose absence, that (green beam) backscattering signature was five times smaller. This is direct evidence for green beam amplification when crossed with the blue. Additional proof comes from transmitted green beam measurements. A combination of these techniques may allow the suppression of unacceptable levels of SRS near the light entrance hole of large-scale hohlraums on the NIF or LMJ.

  20. Non-planar vibrations of a string in the presence of a boundary obstacle

    Science.gov (United States)

    Singh, Harkirat; Wahi, Pankaj

    2017-02-01

    We analyze planar and non-planar motions of a string vibrating against a unilateral curved obstacle. Our model incorporates the change in tension due to stretching of the string, which introduces nonlinear coupling between motions in mutually perpendicular directions, as well as the wrapping nonlinearity due to the presence of the obstacle. The system of equations has been discretized by assuming functional form of the displacements which satisfies all the geometrical boundary conditions. This discretized system is then used to investigate the various motions possible both in the absence as well as the presence of the obstacle. In the absence of the obstacle, there are infinitely many planar and two non-planar motions viz. a circular trajectory and a precessing elliptical trajectory for a fixed magnitude of the disturbance. In contrast, the string has only one planar motion when the obstacle is present and two non-planar motions, either an oscillating orbit or a whirling orbit depending on the magnitude of the initial disturbance. To obtain the transition from oscillating to whirling orbits, we perform a stability analysis of the planar motion using Floquet theory. This analysis reveals that there exists a critical amplitude below which the planar motion is neutrally stable and the typical trajectories are ellipses with major and minor radii changing both in magnitude and direction. Beyond the critical amplitude, the planar motion is unstable and we get whirling trajectories which are precessing ellipses again with varying major and minor radii. We further study the effect of changing obstacle parameters on the critical amplitude, and obtain the stability boundaries in the space spanned by the obstacle parameters and the amplitude of the planar vibration. We obtain some interesting values of the obstacle parameters for which small and large amplitude planar motions are stable resulting in oscillating ellipses while motions with intermediate amplitudes are unstable

  1. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  2. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  3. Spontaneously-acoustic hypersound long-range stimulation of silicon nitride synthesis in silicon at argon ion irradiation

    CERN Document Server

    Demidov, E S; Markov, K A; Sdobnyakov, V V

    2001-01-01

    The work is dedicated to the nature of the average energy ions implantation process effect on the crystal defective system at the distances, exceeding by three-four orders the averagely projected ions run value. It is established that irradiation by the argon ions stimulated the Si sub 3 N sub 4 phase formation in the preliminarily nitrogen-saturated layers at the distances of approximately 600 mu m from the ions deceleration zone. It is supposed that there appear sufficiently effective pulse sources of the hypersonic shock waves in the area of the Ar sup + deceleration zone. These waves are the result of the jump-like origination and grid evolution of the loop-shaped dislocations and argon blisters as well as of the blisters explosion, The evaluations show that the peak pressure in wave due to the synchronized explosion of blisters in the nitrogen-saturated area on the reverse side of the silicon plate 600 mu m thick may exceed 10 sup 8 Pa and cause experimentally observed changes

  4. Virtual Acoustics

    Science.gov (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  5. Analysis of thick, non-planar boundaries using the discontinuity analyser

    Directory of Open Access Journals (Sweden)

    M. W. Dunlop

    Full Text Available The advent of missions comprised of phased arrays of spacecraft, with separation distances ranging down to at least mesoscales, provides the scientific community with an opportunity to accurately analyse the spatial and temporal dependencies of structures in space plasmas. Exploitation of the multi-point data sets, giving vastly more information than in previous missions, thereby allows unique study of their small-scale physics. It remains an outstanding problem, however, to understand in what way comparative information across spacecraft is best built into any analysis of the combined data. Different investigations appear to demand different methods of data co-ordination. Of the various multi-spacecraft data analysis techniques developed to affect this exploitation, the discontinuity analyser has been designed to investigate the macroscopic properties (topology and motion of boundaries, revealed by multi-spacecraft magnetometer data, where the possibility of at least mesoscale structure is considered. It has been found that the analysis of planar structures is more straightforward than the analysis of non-planar boundaries, where the effects of topology and motion become interwoven in the data, and we argue here that it becomes necessary to customise the analysis for non-planar events to the type of structure at hand. One issue central to the discontinuity analyser, for instance, is the calculation of normal vectors to the structure. In the case of planar and `thin' non-planar structures, the method of normal determination is well-defined, although subject to uncertainties arising from unwanted signatures. In the case of `thick', non-planar structures, however, the method of determination becomes particularly sensitive to the type of physical sampling that is present. It is the purpose of this article to firstly review the discontinuity analyser technique and secondly, to discuss the analysis of the normals to thick non-planar

  6. Method and device for ion mobility separations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-07-11

    Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.

  7. Dispersion relation for ion-acoustic waves in plasma%等离子体中离子声波的色散关系

    Institute of Scientific and Technical Information of China (English)

    张开彪; 王红艳

    2013-01-01

    以含有满足玻耳兹曼分布的低温电子、远离平衡态的高温电子和离子组成的等离子体为研究对象,推导得到在该等离子体中传播的离子声波的色散关系.利用数值模拟方法讨论系统参数如快电子数、两种电子温度之比和数密度比值对离子声波的色散关系的影响.结果表明:系统参数的变化均会影响和改变着系统的色散关系,其中ω2随快电子数α的增大而增大.%A plasma which consisted of lower temperature Boltzmann distributed electrons,higher temperature non-thermal distributed electrons and ions was studied and the dispersion relation of ionacoustic waves was obtained in this paper.The effects and influences of system parameters,such as the fast electrons number,the ratio of the two electrons temperatures,and the ratio of the two electrons densities on the dispersion relation of the ion-acoustic waves were analyzed carefully by using numerical simulation method.The results showed that variation of the plasma parameters has an important influence on the dispersion relation of this system.In addition,ω2 increase with the increase of the fast electrons number α.

  8. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  9. Nanoscale dielectric microscopy of non-planar samples by lift-mode electrostatic force microscopy.

    Science.gov (United States)

    Van Der Hofstadt, M; Fabregas, R; Biagi, M C; Fumagalli, L; Gomila, G

    2016-10-01

    Lift-mode electrostatic force microscopy (EFM) is one of the most convenient imaging modes to study the local dielectric properties of non-planar samples. Here we present the quantitative analysis of this imaging mode. We introduce a method to quantify and subtract the topographic crosstalk from the lift-mode EFM images, and a 3D numerical approach that allows for extracting the local dielectric constant with nanoscale spatial resolution free from topographic artifacts. We demonstrate this procedure by measuring the dielectric properties of micropatterned SiO2 pillars and of single bacteria cells, thus illustrating the wide applicability of our approach from materials science to biology.

  10. Nanopatterning planar and non-planar mold surfaces for a polymer replication

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi;

    2013-01-01

    , freestanding nickel foil with a reversed pattern. This foil is then used either as a direct master for polymer replication or as a master for an extremely high pressure embossing of such master onto a metallic injection mold cavity surface coated with special coating, which, when cured, forms robust and hard......, glass-like material. We have demonstrated nanopattern transfer on both planar and non-planar geometries and our nanopatterned mold coating can sustain more than 10.000 injection molding cycles. We can coat our nanopatterned mold surfaces with a monolayer of perfluorosilane to further reduce surface...

  11. Transverse modes of a diode-laser pumped monolithic unidirectional non-planar ring laser

    Institute of Scientific and Technical Information of China (English)

    Keying Wu(吴克瑛); Suhui Yang(杨苏辉); Guanghui Wei(魏光辉)

    2003-01-01

    Diode-laser pumped monolithic single-frequency non-planar ring laser has the advantages of compactness,reliability and high efficiency. But when the pump power is high enough, the thermal effect will be seriousand the high-order transverse modes will appear. Therefore the single-mode output power is limited. Inthis paper, the mechanism of generating the high-order transverse modes in the monolithic unidirectionalnon-planar ring cavity is analyzed using ray tracing method. The calculated results are in agreement withthe experiments.

  12. Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Qing Wang(王青); Chunqing Gao(高春清); Yan Zhao(赵严); Suhui Yang(杨苏辉); Guanghui Wei(魏光辉); Dongmei Hong(洪冬梅)

    2003-01-01

    Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystalwith a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-μm fiber coupledlaser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiencywas 16%. With a 100-μm fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser wasobtained with a slope efficiency of 29%.

  13. Nanoscale dielectric microscopy of non-planar samples by lift-mode electrostatic force microscopy

    Science.gov (United States)

    Van Der Hofstadt, M.; Fabregas, R.; Biagi, M. C.; Fumagalli, L.; Gomila, G.

    2016-10-01

    Lift-mode electrostatic force microscopy (EFM) is one of the most convenient imaging modes to study the local dielectric properties of non-planar samples. Here we present the quantitative analysis of this imaging mode. We introduce a method to quantify and subtract the topographic crosstalk from the lift-mode EFM images, and a 3D numerical approach that allows for extracting the local dielectric constant with nanoscale spatial resolution free from topographic artifacts. We demonstrate this procedure by measuring the dielectric properties of micropatterned SiO2 pillars and of single bacteria cells, thus illustrating the wide applicability of our approach from materials science to biology.

  14. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  15. Molecular Engineering of Nonplanar Porphyrin and Carbon Nanotube Assemblies: A Linear and Nonlinear Spectroscopic and Modeling Study

    Directory of Open Access Journals (Sweden)

    Éimhín M. Ní Mhuircheartaigh

    2011-01-01

    Full Text Available The importance of molecular conformation to the nature and strength of noncovalent interactions existing between a series of increasingly nonplanar tetraphenylporphyrin (TPP derivatives and carbon nanotubes was systematically investigated experimentally in solution using a range of linear and nonlinear optical techniques. Additional complementary molecular dynamics studies were found to support the experimental observations. Convincing evidence of binding between single walled nanotubes (SWNTs and some of these porphyrins was discovered, and a nonplanar macrocycle conformation was found to increase the likelihood of noncovalent binding onto nanotubes. Nonlinear optical studies showed that the optical limiting behavior of the TPP derivatives deteriorated with increasing porphyrin nonplanarity, but that formation of nanotube composites dramatically improved the optical limiting properties of all molecules studied. It was also found that the significant photoluminescence quenching behavior reported in the literature for such porphyrin/SWNT composites is at least partly caused by photoluminescence and excitation self-absorption and is, therefore, an artifact of the system.

  16. NUMERICAL ANALYSIS OF THE NON-NEWTONIAN BLOOD FLOW IN THE NON-PLANAR ARTERY WITH BIFURCATION

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; LU Xi-yun; ZHUANG Li-xian; WANG Wen

    2004-01-01

    A numerical analysis of non-Newtonian fluid flow in non-planar artery with bifurcation was performed by using a finite element method to solve the three-dimensional Navier-Stokes equations coupled with the non-Newtonian constitutive models, including Carreau,Cross and Bingham models. The objective of this study is to investigate the effects of the non-Newtonian properties of blood as well as curvature and out-of-plane geometry in the non-planar daughter vessels on the velocity distribution and wall shear stress. The results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are of important in hemodynamics and play a significant role in vascular biology and pathophysiology.

  17. Preparation of a Corannulene-functionalized Hexahelicene by Copper(I)-catalyzed Alkyne-azide Cycloaddition of Nonplanar Polyaromatic Units.

    Science.gov (United States)

    Álvarez, Celedonio M; Barbero, Héctor; Ferrero, Sergio

    2016-09-18

    The main purpose of this video is to show 6 reaction steps of a convergent synthesis and prepare a complex molecule containing up to three nonplanar polyaromatic units, which are two corannulene moieties and a racemic hexahelicene linking them. The compound described in this work is a good host for fullerenes. Several common organic reactions, such as free-radical reactions, C-C coupling or click chemistry, are employed demonstrating the versatility of functionalization that this compound can accept. All of these reactions work for planar aromatic molecules. With subtle modifications, it is possible to achieve similar results for nonplanar polyaromatic compounds.

  18. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    Science.gov (United States)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  19. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Wang, Qing

    2014-02-01

    Anodic titania nanotube array features highly ordered alignment as well as porous nature, and exhibits intriguing properties when employed in a variety of applications. All these profit from the continuous efforts on controlling the nanotube configurations. Recently, nonplanar electrodes have also been used to grow the nanotubes besides the conventional planar counterparts. As such, it is of great interest and significance to complete a picture to link the nanotubes grown on planar and various nonplanar electrodes for a comprehensive understanding of nanotube growing manners, in an attempt to boost their future applications. In the first part of this review, planar electrodes are focused with regard to nanotube growth and application in dye-sensitized solar cells. In this part, the nanotubes grown on patterned or curved surfaces are discussed first with reference to a similar structure of alumina nanopores, which are subsequently used to mirror the growth of nanotubes on cylindrical electrodes (i.e., titanium wires or meshes). The last section focuses on titanium tubular electrodes which are attractive for thermal fluids in view of the drastically reduced thermal conductivity in the presence of anodic nanotubes. As a recent hot topic, wire-shaped dye-sensitized solar cells are deliberated in terms of cell structure, efficiency calculation, merits, challenges and outlook.

  20. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, A. A., E-mail: apatters@mit.edu; Akinwande, A. I. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  1. Nonplanar integrability

    Science.gov (United States)

    Carlson, Warren; de Mello Koch, Robert; Lin, Hai

    2011-03-01

    In this article we study operators with a dimension Δ ˜ O( N) and show that simple analytic expressions for the action of the dilatation operator can be found. The operators we consider are restricted Schur polynomials. There are two distinct classes of operators that we consider: operators labeled by Young diagrams with two long columns or two long rows. The main complication in working with restricted Schur polynomials is in building a projector from a given S n+ m irreducible representation to an S n × S m irreducible representation (both specified by the labels of the restricted Schur polynomial). We give an explicit construction of these projectors by reducing it to the simple problem of addition of angular momentum in ordinary non-relativistic quantum mechanics. The diagonalization of the dilatation operator reduces to solving three term recursion relations. The fact that the recursion relations have only three terms is a direct consequence of the weak mixing at one loop of the restricted Schur polynomials. The recursion relations can be solved exactly in terms of symmetric Kravchuk polynomials or in terms of Clebsch-Gordan coefficients. This proves that the dilatation operator reduces to a decoupled set of harmonic oscillators and therefore it is integrable.

  2. Nonplanar Integrability

    CERN Document Server

    Carlson, Warren; Lin, Hai

    2011-01-01

    In this article we study operators with a dimension $\\Delta\\sim O(N)$ and show that simple analytic expressions for the action of the dilatation operator can be found. The operators we consider are restricted Schur polynomials. There are two distinct classes of operators that we consider: operators labeled by Young diagrams with two long columns or two long rows. The main complication in working with restricted Schur polynomials is in building a projector from a given $S_{n+m}$ irreducible representation to an $S_n\\times S_m$ irreducible representation (both specified by the labels of the restricted Schur polynomial). We give an explicit construction of these projectors by reducing it to the simple problem of addition of angular momentum in ordinary non-relativistic quantum mechanics. The diagonalizationof the dilatation operator reduces to solving three term recursion relations. The fact that the recursion relations have only three terms is a direct consequence of the weak mixing at one loop of the restricte...

  3. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  4. Application of Young-Michelson and Brown-Twiss interferometers for determining geometric parameters of nonplanar rough objects

    NARCIS (Netherlands)

    Mandrosov, V. I.

    2008-01-01

    The possibility of using Young-Michelson and Brown-Twiss interferometers for measuring the angular dimensions and parameters of the surface shape of remote passively scattering and self-luminous nonplanar rough objects by optical radiation propagating from them is substantiated. The analysis is base

  5. Non-planar Rearview Mirrors: The Influence of Experience and Driver Age on Gap Acceptance and Vehicle Detection

    NARCIS (Netherlands)

    Vos, A.P. de; Horst, A.R.A. van der; Perel, M.

    2001-01-01

    Non-planar driver's side rear-view mirrors provide a wider field-of-view than planar mirrors, but produce a minified image. A field experiment was conducted to measure the performance of drivers when making lane change decisions based on mirror information. Four mirror types were included: a planar

  6. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  7. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  8. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  9. Nonplanar nanoselective area growth of InGaAs/InP

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda; Colman, Pierre; Semenova, Elizaveta

    2014-01-01

    In this study, we have investigated metal-organic vapor phase epitaxial nano-patterned selective area growth of InGaAs/InP on non-planar (001) InP surfaces. Due to high etching resistance and the small molecular size of negative tone electron beam HSQ resist, the protection mask formed in HSQ has...... of the active material, the cross-sectional geometry was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The optical properties were carried out at room temperature using micro-photoluminescence setup. The results showed different deposition rates...... for openings oriented along [0-11] and [0-1-1] directions with higher rate along [0-1-1]. The fabricated active material was incorporated into photonic crystal waveguides....

  10. Non-planar and Non-linear Second Sound Waves in He Ⅱ

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; KIMURA Seiji; MURAKAMI Masahide; WANG Ru-zhu

    2000-01-01

    Non-planar and non-linear second sound wave are experimentally investigated in an open He Ⅱ bath. It is found that second sound wave characterized by a negative tail part in an open He Ⅱ bath is different from that propagating through a channel, and the shape of the negative tail part of second sound wave varies at different location in an open He Ⅱ bath. Theoretical consideration is also carried out based on two-fluid model and vortex evolution equation. It is found that experimental and theoretical results agree rather well with each other. Second sound wave may develop into the thermal shock wave provided that the heat flux is large.

  11. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimental data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.

  12. Change of manufacturing technique for the W7-X nonplanar coil cases

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, M. E-mail: michael_gehring@bb-power.de; Schaefer, P.; Herrmann, K.D.; Scheller, H

    2001-11-01

    The geometry of the coil cases of the nonplanar coil system for the Wendelstein 7-X (W7-X) experiment (Sapper, The superconducting magnet system for the W7-X stellarator. Proceedings 12th Topical Meeting on the Fusion Technology) was changed to a more complex shape compared to the DEMO Coil case (Kronhardt et al., 1998. Proceedings of the 20th SOFT (1998) 731-734). Therefore the manufacturing technique developed for the DEMO Coil case cannot be used for the series production of 50 coils. For the final design of the coil cases, investigations were performed to find a technique suitable for manufacturing the cases within the required geometrical tolerances and mechanical characteristics. In order to qualify the manufacturing technique a complete half case was cast and machined afterwards. The casting procedure was optimised with respect to the geometrical accuracy and the mechanical characteristics at 4.2 K. Measurements of the yield strength, the tensile strength, the elongation, and the Young's modulus were performed at room- and cryo-temperature (4 and 7 K). The influence of the heat treatment, the annealing temperature and the size of the casting on the mechanical values is shown. The requirements on the stainless steel are a yield strength of 800 MPa at 4 K and an elongation at fracture of >25%. The magnetic permeability has to be <1.01. Furthermore the welding properties of the case material were investigated. The development program showed that casting of complete case half shells is a feasible manufacturing technique for the series production of the Wendelstein 7-X nonplanar coil cases.

  13. Subsonic ion-acoustic solitons

    OpenAIRE

    H ABBASI; Pajouh, H. Hakimi; Shah, H. A.

    2005-01-01

    In this paper, the nonlinear theory of plasma waves is extended to the plasmas that their equilibrium state are specified by the non-Maxwellian (here kappa) distribution. We believe that the extension is very important since most of the space and some of laboratory plasmas are not in the Maxwellian equilibrium. Although the linear theory of this issue has been known for the decades but, to our knowledge, this is the first attempt in opening the gate to the nonlinear world of plasma waves with...

  14. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make...

  15. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  16. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  17. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  18. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  19. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. High-Fidelity Aerostructural Optimization of Nonplanar Wings for Commercial Transport Aircraft

    Science.gov (United States)

    Khosravi, Shahriar

    Although the aerospace sector is currently responsible for a relatively small portion of global anthropogenic greenhouse gas emissions, the growth of the airline industry raises serious concerns about the future of commercial aviation. As a result, the development of new aircraft design concepts with the potential to improve fuel efficiency remains an important priority. Numerical optimization based on high-fidelity physics has become an increasingly attractive tool over the past fifteen years in the search for environmentally friendly aircraft designs that reduce fuel consumption. This approach is able to discover novel design concepts and features that may never be considered without optimization. This can help reduce the economic costs and risks associated with developing new aircraft concepts by providing a more realistic assessment early in the design process. This thesis provides an assessment of the potential efficiency improvements obtained from nonplanar wings through the application of fully coupled high-fidelity aerostructural optimization. In this work, we conduct aerostructural optimization using the Euler equations to model the flow along with a viscous drag estimate based on the surface area. A major focus of the thesis is on finding the optimal shape and performance benefits of nonplanar wingtip devices. Two winglet configurations are considered: winglet-up and winglet-down. These are compared to optimized planar wings of the same projected span in order to quantify the possible drag reductions offered by winglets. In addition, the drooped wing is studied in the context of exploratory optimization. The main results show that the winglet-down configuration is the most efficient winglet shape, reducing the drag by approximately 2% at the same weight in comparison to a planar wing. There are two reasons for the superior performance of this design. First, this configuration moves the tip vortex further away from the wing. Second, the winglet

  1. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  2. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  3. High-Reliability Pump Module for Non-Planar Ring Oscillator Laser

    Science.gov (United States)

    Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak

    2007-01-01

    We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.

  4. Coherent, non-planar illumination of a defocused specimen: consequences for transmission electron microscopy

    Science.gov (United States)

    Patwardhan, Ardan

    The objective of this study has been to examine the imaging properties of transmission electron microscopes when coherent non-planar illumination is used in conjunction with defocused specimens. This situation is reminiscent of what is commonly the case in electron microscopic phase-contrast studies of biologically relevant macromolecules, using a field emission gun as a coherent electron source. For the sake of simplicity, the imaging system has been idealized as a thin lens with properties that can be described by the Fresnel approximation of the Huygens-Fresnel principle. The resulting expressions show that the system magnification has a defocus dependent factor, as do the contrast transfer functions. These factors are normally not taken into account in conventional derivations. The defocus dependent factor can be minimized by using planar illumination. The factor approaches infinity as the crossover moves closer to the specimen, and it is in the region close to the specimen that this factor is most significant. These results can have serious implications for high-resolution single-particle cryo electron microscopy as this technique often relies on combining data taken at a range of defocus values.

  5. Exact solution of planar and nonplanar weak shock wave problem in gasdynamics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L.P. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Ram, S.D., E-mail: sram.rs.apm@itbhu.ac.in [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Singh, D.B. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India)

    2011-11-15

    Highlights: > An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. > The density ahead of the shock is taken as a power of the position from the origin of the shock wave. > For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. > The solution obtained for the planer, and cylindrically symmetric flow is new one. > The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.

  6. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    Science.gov (United States)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  7. Elastic wave field computation in multilayered nonplanar solid structures: a mesh-free semianalytical approach.

    Science.gov (United States)

    Banerjee, Sourav; Kundu, Tribikram

    2008-03-01

    Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.

  8. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  9. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  10. Numerical investigation of blood flow in a deformable coronary bifurcation and non-planar branch

    Science.gov (United States)

    Razavi, Seyed Esmail; Omidi, Amir Ali; Saghafi Zanjani, Massoud

    2014-01-01

    Introduction: Among cardiovascular diseases, arterials stenosis is recognized more commonly than the others. Hemodynamic characteristics of blood play a key role in the incidence of stenosis. This paper numerically investigates the pulsatile blood flow in a coronary bifurcation with a non-planar branch. To create a more realistic analysis, the wall is assumed to be compliant. Furthermore, the flow is considered to be three-dimensional, incompressible, and laminar. Methods: The effects of non-Newtonian blood, compliant walls and different angles of bifurcation on hemodynamic characteristics of flow were evaluated. Shear thinning of blood was simulated with the Carreau-Yasuda model. The current research was mainly focused on the flow characteristics in bifurcations since atherosclerosis occurs mostly in bifurcations. Moreover, as the areas with low shear stresses are prone to stenosis, these areas were identified. Results: Our findings indicated that the compliant model of the wall, bifurcation’s angle, and other physical properties of flow have an impact on hemodynamics of blood flow. Lower wall shear stress was observed in the compliant wall than that in the rigid wall. The outer wall of bifurcation in all models had lower wall shear stress. In bifurcations with larger angles, wall shear stress was higher in outer walls, and lower in inner walls. Conclusion: The non-Newtonian blood vessels and different angles of bifurcation on hemodynamic characteristics of flow evaluation confirmed a lower wall shear stress in the compliant wall than that in the rigid wall, while the wall shear stress was higher in outer walls but lower in inner walls in the bifurcation regions with larger angles. PMID:25671176

  11. Episodic slow slip events in a non-planar subduction fault model for northern Cascadia

    Science.gov (United States)

    Li, D.; Liu, Y.; Matsuzawa, T.; Shibazaki, B.

    2014-12-01

    Episodic tremor and slow slip (ETS) events have been detected along the Cascadia margin, as well as many other subduction zones, by increasingly dense seismic and geodetic networks over the past decade. In northern Cascadia, ETS events arise on the thrust fault interface of 30~50 km depth, coincident with metamorphic dehydration of the subducting oceanic slab around temperatures of 350. Previous numerical simulations (e.g., Liu and Rice 2007) suggested that near-lithostatic pore pressure in the rate-state friction stability transition zone could give rise to slow slip events (SSE) down-dip of the seismogenic zone, which provides a plausible physical mechanism for these phenomena. Here we present a 3-D numerical simulation of inter-seismic SSEs based on the rate- and state- friction law, incorporating a non-planar, realistic northern Cascadia slab geometry compiled by McCrory et al. (2012) using triangular dislocation elements. Preliminary results show that the width and pore pressure level of the transition zone can remarkably affect the recurrence of SSEs. With effective normal stress of ~1-2 MPa and characteristic slip distance of ~1.4 mm, inter-seismic SSEs can arise about every year. The duration of each event is about 2~3 weeks, with the propagating speed along strike in the range of km/day. Furthermore, the slab bending beneath southern Vancouver Island and northern Washington State appears to accelerate the along-strike propagation of SSEs. Our next step is to constrain the rate-state frictional properties using geodetic inversion of SSE slip and inter-SSE plate coupling from the Plate Boundary Observatory (PBO) GPS measurements. Incorporating the realistic fault geometry into a physics model constrained by geodetic data will enable us to transition from a conceptual towards a quantitative and predictive understanding of SSEs mechanism.

  12. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  13. Acoustic transducer for acoustic microscopy

    Science.gov (United States)

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  14. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  15. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [University of Utah; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deo, Milind [University of Utah; Jiang, Shu [Energy & Geoscience Institute

    2015-10-01

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of

  16. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  17. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions ... kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To ...

  19. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  20. Acoustic investigations on PbO–Al2O3–B2O3 glasses doped with certain rare earth ions

    Indian Academy of Sciences (India)

    M Rami Reddy; S Bangaru Raju; N Veeraiah

    2001-02-01

    Elastic moduli (, ), Poisson’s ratio (), microhardness () and some thermodynamical parameters such as Debye temperature (), diffusion constant (), latent heat of melting ( ) etc of PbO–Al2O3–B2O3 glasses doped with rare earth ions viz. Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+ and Yb3+, are studied as functions of temperatures (in the temperature range 30–200°C) by ultrasonic techniques. All these parameters are found to increase with increasing atomic number of the rare earth ions and found to decrease with increasing temperature of measurement. From these results (together with IR spectra of these glasses), an attempt is made to throw some light on the mechanical strength of these glasses.

  1. Resolving a Long-Standing Ambiguity: the Non-Planarity of gauche-1,3-BUTADIENE Revealed by Microwave Spectroscopy

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Patterson, David; Eibenberger, Sandra; Buckingham, Grant; Baraban, Joshua H.; Ellison, Barney; Stanton, John F.

    2016-06-01

    The preferred conformation of cis-1,3-butadiene (CH_2=CH-CH=CH_2) has been of long-standing importance in organic chemistry because of its role in Diels-Alder transition states. The molecule could adopt a planar s-cis conformation, in favor of conjugations in the carbon chain, or a non-planar gauche conformation, as a result of steric interactions between the terminal H atoms. To resolve this ambiguity, we have now measured the pure rotational spectrum of this isomer in the microwave region, unambiguously establishing a significant inertial defect, and therefore a gauche conformation. Experimental measurements of gauche-1,3-butadiene and several of its isotopologues using cavity Fourier-transform microwave (FTMW) spectroscopy in a supersonic expansion and chirped-pulse FTMW spectroscopy in a 4 K buffer gas cell will be summarized, as will new quantum chemical calculations.

  2. Comment on a spurious prediction of a non-planar geometry for benzene at the MP2 level of theory

    Science.gov (United States)

    Samala, Nagaprasad Reddy; Jordan, Kenneth D.

    2017-02-01

    MP2 calculations with the full aug-cc-pVTZ basis set give a non-planar structure for benzene. Although this non-physical result can be avoided by using the smaller aug-cc-pVDZ basis set or by scaling or deleting selected functions from the aug-cc-pVTZ basis set, such changes to the basis set can result in calculated values of the frequencies of the b2g out-of-plane vibrations that are considerably underestimated. The origin of this behavior is traced to linear dependency problems with the aug-cc-pVDZ and aug-cc-pVTZ basis sets when used for benzene.

  3. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  4. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  5. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  6. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  7. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  8. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  9. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  10. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  11. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  12. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  13. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  14. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... acoustic neuroma resource Click to learn more... LOGIN EVENTS DONATE Home Learn Back Learn about acoustic neuroma ... support group for me? Find a Group Upcoming Events Video Library Photo Gallery One-on-One Support ...

  16. Synthesis and processing strategies to tune the film structure and optoelectronic properties of non-planar molecular semiconductors

    Science.gov (United States)

    Hiszpanski, Anna Maria

    Molecular semiconductors have generated significant interest for their potential use in lightweight and mechanically flexible electronic devices. Yet, predicting how new molecular semiconductors will perform in devices remains a challenge because devices are comprised of polycrystalline thin films of molecular semiconductors, and charge transport in these films depends greatly on the details of their microstructure whose heterogeneities can span multiple length scales. The microstructure typically evolves during deposition, and thus developing organic electronics not only hinges on the success of materials discovery, but also on the ability to fine-tune deposition and processing parameters to access the thin-film structure most conducive for charge transport. This thesis explores chemical modification of a non-planar organic semiconductor, contorted hexabenzocoronene, cHBC, to tune its optoelectronic properties and processing strategies to induce structural changes in thin films. We primarily explore fluorine- and chlorine-substitution at the peripheral aromatic rings of cHBC to lower its energy levels and optical bandgap, and we demonstrate such halogenated derivatives as electron acceptors in organic solar cells. Substitution with these larger atoms also increases cHBC's intramolecular steric hindrance, providing access to an alternative molecular conformation with an order of magnitude higher solubility and systematic shifts in absorption and emission characteristics. cHBC's non-planarity provides an added dimension of tunability as it frustrates crystallization during deposition, producing amorphous films that can be subsequently crystallized with post-deposition processing. Decoupling structural development from deposition allows us to fabricate transistors from differently treated cHBC films and elucidate the effects of changes in film structure on charge transport, as measured by the field-effect mobility. With different processing, the extent of c

  17. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will pr...

  18. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  19. Application of inertia-induced excitation theory for nonlinear acoustic modes in colloidal plasma equilibrium flow

    Indian Academy of Sciences (India)

    P K Karmakar

    2007-04-01

    Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale- and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.

  20. High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates

    CERN Document Server

    Zou, Yi; Lin, Hongtao; Li, Lan; Moreel, Loise; Zhou, Jie; Du, Qingyang; Ogbuu, Okechukwu; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Dobson, Kevin D; Birkmire, Robert; Hu, Juejun

    2013-01-01

    This paper reports a versatile, roll-to-roll and backend compatible technique for the fabrication of high-index-contrast photonic structures on both silicon and plastic substrates. The fabrication technique combines low-temperature chalcogenide glass film deposition and resist-free single-step thermal nanoimprint to process low-loss (1.6 dB/cm), sub-micron single-mode waveguides with a smooth surface finish using simple contact photolithography. Using this approach, the first chalcogenide glass micro-ring resonators are fabricated by thermal nanoimprint. The devices exhibit an ultra-high quality-factor of 400,000 near 1550 nm wavelength, which represents the highest value reported in chalcogenide glass micro-ring resonators. Furthermore, sub-micron nanoimprint of chalcogenide glass films on non-planar plastic substrates is demonstrated, which establishes the method as a facile route for monolithic fabrication of high-index-contrast devices on a wide array of unconventional substrates.

  1. Structural stability, C--N internal rotations and vibrational spectral analysis of non-planar phenylurea and phenylthiourea.

    Science.gov (United States)

    Badawi, Hassan M

    2009-04-01

    The structural stability and C-N internal rotations of phenylurea and phenylthiourea were investigated by DFT-B3LYP and ab initio MP2 and MP4//MP2 calculations with 6-311G** and/or 6-311+G** basis sets. The complex multirotor internal rotations in phenylurea and phenylthiourea were investigated at the B3LYP/6-311+G** level of theory from which several clear minima were predicted in the calculated potential energy scans of both molecules. For phenylurea two minima that correspond to non-planar- (CNCC dihedral angle of about 45 degrees ) cis (CNCO dihedral angle is near 0 degrees ) and trans (CNCO dihedral angle is near 180 degrees ) structures were predicted to have real frequency. For phenylthiourea only the non-planar-trans structure was predicted to be the low energy minimum for the molecule. The vibrational frequencies of the lowest energy non-planar-trans conformer of each of the two molecules were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  2. Structural stability, C-N internal rotations and vibrational spectral analysis of non-planar phenylurea and phenylthiourea

    Science.gov (United States)

    Badawi, Hassan M.

    2009-04-01

    The structural stability and C-N internal rotations of phenylurea and phenylthiourea were investigated by DFT-B3LYP and ab initio MP2 and MP4//MP2 calculations with 6-311G** and/or 6-311+G** basis sets. The complex multirotor internal rotations in phenylurea and phenylthiourea were investigated at the B3LYP/6-311+G** level of theory from which several clear minima were predicted in the calculated potential energy scans of both molecules. For phenylurea two minima that correspond to non-planar- (CNCC dihedral angle of about 45°) cis (CNCO dihedral angle is near 0°) and trans (CNCO dihedral angle is near 180°) structures were predicted to have real frequency. For phenylthiourea only the non- planar- trans structure was predicted to be the low energy minimum for the molecule. The vibrational frequencies of the lowest energy non-planar-trans conformer of each of the two molecules were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  3. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  4. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  5. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  6. Streaming instability in negative ion plasma

    Science.gov (United States)

    Kumar, Ajith; Mathew, Vincent

    2017-09-01

    The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.

  7. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  8. Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule.

    Science.gov (United States)

    Shank, Nathaniel I; Pham, Ha H; Waggoner, Alan S; Armitage, Bruce A

    2013-01-09

    The cyanine dye thiazole orange (TO) is a well-known fluorogenic stain for DNA and RNA, but this property precludes its use as an intracellular fluorescent probe for non-nucleic acid biomolecules. Further, as is the case with many cyanines, the dye suffers from low photostability. Here, we report the synthesis of a bridge-substituted version of TO named α-CN-TO, where the central methine hydrogen of TO is replaced by an electron withdrawing cyano group, which was expected to decrease the susceptibility of the dye toward singlet oxygen-mediated degradation. An X-ray crystal structure shows that α-CN-TO is twisted drastically out of plane, in contrast to TO, which crystallizes in the planar conformation. α-CN-TO retains the fluorogenic behavior of the parent dye TO in viscous glycerol/water solvent, but direct irradiation and indirect bleaching studies showed that α-CN-TO is essentially inert to visible light and singlet oxygen. In addition, the twisted conformation of α-CN-TO mitigates nonspecific binding and fluorescence activation by DNA and a previously selected TO-binding protein and exhibits low background fluorescence in HeLa cell culture. α-CN-TO was then used to select a new protein that binds and activates fluorescence from the dye. The new α-CN-TO/protein fluoromodule exhibits superior photostability to an analogous TO/protein fluoromodule. These properties indicate that α-CN-TO will be a useful fluorogenic dye in combination with specific RNA and protein binding partners for both in vitro and cell-based applications. More broadly, structural features that promote nonplanar conformations can provide an effective method for reducing nonspecific binding of cationic dyes to nucleic acids and other biomolecules.

  9. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non-planar

  10. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  11. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  12. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  13. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-10-07

    Res., 114, C07021. Evers, L. G. & Snellen , M., 2015. Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from...ridge earthquakes, J. Acoust. Soc. Am., 137, 2124–2136. Evers, L. G., Green, D. N., Young, N. W., & Snellen , M., 2013. Remote hydroacoustic sensing...Heaney, K. D., Assink, J. D., Smets, P. S. M., & Snellen , M., 2014. Evanescent wave coupling in a geophysical system: Airborne acoustic signals from

  14. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  15. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  16. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  17. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  18. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  19. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  20. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  1. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation

    KAUST Repository

    Sevilla, Galo T.

    2014-02-22

    An industry standard 8′′ silicon-on-insulator wafer based ultra-thin (1 μm), ultra-light-weight, fully flexible and remarkably transparent state-of-the-art non-planar three dimensional (3D) FinFET is shown. Introduced by Intel Corporation in 2011 as the most advanced transistor architecture, it reveals sub-20 nm features and the highest performance ever reported for a flexible transistor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SL(2,C) Chern–Simons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry

    OpenAIRE

    Haggard, Hal M.; Muxin Han; Wojciech Kamiński; Aldo Riello

    2015-01-01

    We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on $S^3$. In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat co...

  3. Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity

    CERN Document Server

    Akagi, T; Bonis, J; Chaikovska, I; Chiche, R; Cizeron, R; Cohen, M; Cormier, E; Cornebise, P; Delerue, N; Flaminio, R; Funahashi, S; Jehanno, D; Honda, Y; Labaye, F; Lacroix, M; Marie, R; Miyoshi, S; Nagata, S; Omori, T; Peinaud, Y; Pinard, L; Shimizu, H; Soskov, V; Takahashi, T; Tanaka, R; Terunuma, T; Urakawa, J; Variola, A; Zomer, F

    2011-01-01

    As part of the positron source R&D for future $e^+-e^-$ colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements of the gamma ray flux produced with a such cavity using a pulsed laser is presented here. We demonstrate the production of a flux of 2.7 $\\pm$ 0.2 gamma rays per bunch crossing ($\\sim3\\times10^6$ gammas per second) during the commissioning.

  4. DESIGN AND FEM STATIC ANALYSIS OF AN INSTRUMENT FOR SURFACE PLASTIC DEFORMATION OF NON-PLANAR FUNCTIONAL SURFACES OF MACHINE PARTS

    Directory of Open Access Journals (Sweden)

    STOYAN SLAVOV

    2015-12-01

    Full Text Available The paper presents the design of a specialized instrument for formation different types of regular microshape roughness on functional surfaces of parts with non-planar macroshape by using the process, called “surface plastic deformation”. The elements of which it is constructed are explained and the results from carried out strength and deformation analysis, obtained by Finite Element Method, conducted using the Simulation module of the SolidWorks are also represented. On this basis some advantages and limitations of some of the surface plastic deformation process technological parameters are identified and recommendations for its implementation are given.

  5. Acoustic fluidization for earthquakes?

    OpenAIRE

    Sornette, D.; Sornette, A.

    2000-01-01

    Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.

  6. Acoustic diffusers III

    Science.gov (United States)

    Bidondo, Alejandro

    2002-11-01

    This acoustic diffusion research presents a pragmatic view, based more on effects than causes and 15 very useful in the project advance control process, where the sound field's diffusion coefficient, sound field diffusivity (SFD), for its evaluation. Further research suggestions are presented to obtain an octave frequency resolution of the SFD for precise design or acoustical corrections.

  7. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed and ...

  8. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  9. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  10. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  11. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  12. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  13. Attractive interaction between ions inside a quantum plasma structure

    CERN Document Server

    Dvornikov, Maxim

    2013-01-01

    We construct the model of a quantum spherically symmetric plasma structure based on radial oscillations of ions. We suppose that ions are involved in ion-acoustic waves. We find the exact solution of the Schrodinger equation for an ion moving in the self-consistent oscillatory potential of an ion-acoustic wave. The system of ions is secondly quantized and its ground state is constructed. Then we consider the interaction between ions by the exchange of an acoustic wave. It is shown that this interaction can be attractive. We describe the formation of pairs of ions inside a plasma structure and demonstrate that such a plasmoid can exist in dense astrophysical medium. The application of our results for terrestrial plasmas is also discussed.

  14. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  15. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  16. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  17. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...

  18. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side ... Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient ...

  20. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... resource Click to learn more... LOGIN EVENTS DONATE Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video OrangeTheory AN Warriors Laurie of ...

  2. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  3. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  4. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  5. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  7. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  8. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  9. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  10. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  11. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  12. Symptoms of Acoustic Neuroma

    Science.gov (United States)

    ... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  14. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms ... effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a ...

  16. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  17. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  18. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  19. Acoustic Communications (ACOMMS) ATD

    Science.gov (United States)

    2016-06-14

    Communications , Computers , Intelligence, Surveillance, and Reconnaissance (C4ISR) systems that "capture, synthesize and distribute near-real time information to...Acoustic Communications (ACOMMS) ATD Tam Nguyen 2531 Jefferson Davis Hwy Arlington, VA 22242 phone: (703) 604-6013 ext 520 fax: (703) 604-6056...email: NguyenTL@navsea.navy.mil Award # N0001499PD30007 LONG-TERM GOALS The goal of the recently completed Acoustic Communications Advanced

  20. Contribution of planar (0-1 Ortho) and nonplanar (2-4 Ortho) fractions of aroclor 1260 to the induction of altered hepatic foci in female sprague-dawley rats

    NARCIS (Netherlands)

    Plas, van der S.A.; Sundberg, H.; Berg, van den H.; Scheu, G.; Wester, P.; Jensen, S.; Bergman, A.; Boer, de J.; Koeman, J.H.; Brouwer, A.

    2000-01-01

    The hepatic tumor promoting activity of the planar 0–1 ortho (~9.7 /w) and the nonplanar 2–4 ortho (~90.3 /w) fraction of the commercial PCB mixture Aroclor 1260 was studied using a medium-term two-stage initiation/promotion bioassay in female Sprague–Dawley rats. Fractionation was carried out on an

  1. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  2. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  3. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  4. Alterations in geometry, biomechanics, and mineral composition of juvenile rat femur induced by nonplanar PCB-155 and/or planar PCB-169.

    Science.gov (United States)

    Brankovič, Jana; Jovanovski, Sašo; Jevnikar, Peter; Hofmeister, Alexander; Reininger-Gutmann, Birgit; Jan, Janja; Grošelj, Maja; Osredkar, Joško; Uršič, Matjaž; Fazarinc, Gregor; Pogačnik, Azra; Vrecl, Milka

    2017-04-01

    Exposure to widespread lipophilic and bioaccumulative polychlorinated biphenyls (PCBs) induces diverse biochemical and toxicological responses in various organs, including the bone. The aim of this study was to evaluate the changes in growth rate, geometry, serum, and bone biochemical parameters and biomechanics of juvenile rat femur induced by lactational exposure to nonplanar PCB-155 and planar PCB-169 individually and in combination. Fifteen lactating Wistar rats were divided into four groups (PCB-169, PCB-155, PCB-155+169, and control), and PCBs were administered intraperitoneally at different time points after delivery. Femurs from 22-day-old offspring were analyzed by microCT, three-point bending test and inductively coupled plasma-mass spectrometry (ICP-MS) to obtain data on bone geometry, biomechanics and mineral composition. The serum levels of calcium, phosphate and alkaline phosphatase were also determined. Lactational exposure to planar PCB-169 resulted in shorter and thinner femurs, reduced endosteal and periosteal perimeters, smaller total cross-sectional and medullary areas, and lowered serum bone marker levels and calcium levels in the bone, while femur mechanical properties were not significantly altered. The changes observed in the combination exposure (PCB-155+169) group were similar to those observed in the PCB-169 group but were less pronounced. In summary, our results demonstrate that alterations in lactationally exposed offspring were primarily induced by planar PCB-169. The milder outcome in the combined group suggested that the PCB-169-mediated toxic effects on the bone might be reduced by a nonplanar PCB-155 congener. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1135-1146, 2017.

  5. Effect of dust charge variation on dust—acoustic solitary waves in a magnetized two—ion—temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    XueJu-Kui; LangHe

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  6. High-frequency seafloor acoustics

    National Research Council Canada - National Science Library

    Jackson, D. R; Richardson, M. D

    2007-01-01

    This title provides access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics...

  7. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  8. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  9. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  10. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  11. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  12. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  13. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2008-01-01

    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  14. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  15. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  16. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  17. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  18. Broadband asymmetric acoustic transmission through an acoustic prism

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Xi, Yanhui

    2017-08-01

    Narrow bandwidth and complex structure are the main shortcomings of the existing asymmetric acoustic transmission devices. In this letter, a simple broadband asymmetric acoustic transmission device is proposed by using an acoustic prism filled with xenon gas. The sound pressure field distributions, the transmission spectra, and the prism angle effect are numerically investigated by using finite element method. The proposed device can always realize asymmetric acoustic transmission for the wave frequency larger than 480 Hz because the wave paths are not influenced by the wave frequencies. The asymmetric acoustic transmission is attributed to normal refraction and total reflection occur at different interfaces. Besides, relatively high transmission efficiency is realized due to the similar impedance between the acoustic prism and background. And the transmitted wave direction can be controlled freely by changing the prism angle. Our design provides a simple method to obtain broadband asymmetric acoustic transmission device and has potentials in many applications, such as noise control and medical ultrasound.

  19. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  20. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  1. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-08-03

    Award No.: N00014-14-C-0172 Report No. QSR-14C0172-Ocean Acoustics-063016 Prepared for: Office of Naval Research For the period: April 1...The source level in this overlay is a free parameter (but is estimated to be ~215 dB) re 1uPa2/m2). This agreement is exceptional. It shows the dip

  2. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  3. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  4. Deep Water Ocean Acoustics

    Science.gov (United States)

    2015-04-15

    sound speed profile is range-independent; since there is little expectation there will be significant mesoscale phenomenon given the lack of solar ...34 Journal of the Acoustical Society of America 93 (4), 1736-1742 (1993). 2 Chris H. Harrison and Martin Siderius, "Effective Parameters for Matched

  5. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  6. Current-less solar wind driven dust acoustic instability in cometary plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Belgian Institute for Space Aeronomy, Ringlaan 3, 1180 Brussels (Belgium)

    2011-08-15

    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons, and ions.

  7. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Kashif [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad and University of Wah, Wah Cantt 47040 (Pakistan); Ehsan, Zahida, E-mail: Ehsan.zahida@gmail.com [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Universita degli Studi del Molise, 86090 Pesche - IS (Italy); INFN Sezione di Napoli, 80126 Napoli (Italy); Department of Physics, COMSATS Institute of Information Technology (CIIT), Defence Road, Off Raiwind Road, Lahore 86090 (Pakistan); Khan, S. A. [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTEC, PO Box Nilore, Islamabad 44000 (Pakistan)

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  8. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  9. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  10. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  11. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  12. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Science.gov (United States)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  13. North Pacific Acoustic Laboratory and Deep Water Acoustics

    Science.gov (United States)

    2016-10-27

    Acoustic Lab and Deep Water Acoustics” Encl: (1) Final Technical Report for Subject Grant (2) SF298 for Enclosure Enclosure (1) is the Final...North Pacific Acoustic Laboratory and Deep Water Acoustics Final Report PI James A. Mercer Applied Physics Laboratory...During FY16 the primary effort has been working on manuscripts as summarized below: 1) A test of deep water Rytov theory at 284 Hz and 107 km in

  14. Shocks and Solitons in Ultradense Degenerate Electron-Positron-Ion Plasmas*

    Institute of Scientific and Technical Information of China (English)

    S.A. Khan; Arshad M.Mirza

    2011-01-01

    The formation and propagation of shocks and solitons are investigated in an unmagnetized, ultradense plasma containing degenerate Fermi gas of electrons and positrons, and classical ion gas by employing Thomas-Fermi model. For this purpose, a deformed Korteweg-de Vries-Berger (dKdVB) equation is derived using the reductive perturbative technique for cold, adiabatic, and isothermal ions. Localized analytical solutions of dKdVB equation in planar geometry are obtained for dispersion as well as dissipation dominant cases. For nonplanar (cylindrical and spherical) geometry, time varying numerical shock wave solution of dKdVB equation is found. Its dispersion dominant case leading to the soliton solution is also discussed. The effect of ion temperature, positron concentration and dissipation is found significant on these nonlinear structures. The relevance of the results to the systems of scientific interest is pointed out.

  15. ACOUSTIC EMISSION ANALYZER

    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  16. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  17. A Martian acoustic anemometer.

    Science.gov (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  18. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  19. Radiosurgery of acoustic neurinomas

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  20. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    deflection”, by Heaney and Campbell , was published in JASA in February of 2016. This paper introduces the Peregrine model to the community and...diffraction of basin-scale hydroacoustic signals”, by Heaney, Campbell and Mark Prior (TNO/CTBTO) describing observations and modeling of seismic events...signals” by Kevin D. Heaney, Richard L. Campbell and Mark Prior, and it was re- submitted to Journal of the Acoustical Society of America on August 30

  1. Acoustic Characterization of Soil

    Science.gov (United States)

    2007-11-02

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a

  2. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  3. Acoustic Communications for UUVs

    Science.gov (United States)

    2016-06-07

    through use of high-gain, error-control coding coupled with a modified decision feedback equalizer (DFE) which allows the gain to be exploited prior to...finished it wait for feedback from the receiver. At the host each packet is decoded and displayed if it is correct, or added to a list of bad packets if it...Systems Laboratory, Florida Alantic University, July 1998. L. Freitag el al: ‘A Bidriectional Coherent Acoustic Communications Systems for Underwater

  4. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  5. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  6. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  7. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  8. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  9. Time-dependent density functional study of the electronic excited states of polycyclic aromatic hydrocarbon radical ions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, So; Head-Gordon, Martin P; Szczepanski, Jan; Vala, Martin

    2003-06-19

    A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAHs) with the aid of (Tamm–Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (π* ← π, π* ← σ, or σ* ← π transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings).

  10. SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry

    CERN Document Server

    Haggard, Hal M; Kamiński, Wojciech; Riello, Aldo

    2014-01-01

    We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on $S^3$. In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains at the leading order an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged ...

  11. Wireless Acoustic Measurement System

    Science.gov (United States)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  12. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  13. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  14. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  15. Modified {pi}-states in ion-irradiated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, G. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: gkovach@chemres.hu; Karacs, A.; Radnoczi, G.; Csorbai, H. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Guczi, L. [Institute of Isotope, Department of Surface Chemistry and Catalysis, P.O. Box 77, H-1525 Budapest (Hungary); Veres, M.; Koos, M. [Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Solid State Physics Section, 54124 Thessaloniki (Greece); Solyom, A. [Budapest University of Technology and Economics, Department of Atomic Physics, Budafoki ut 8, H-1111 Budapest (Hungary); Peto, G. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-02-28

    CVD polycrystalline diamond film, pulse laser-deposited (PLD) carbon film and highly oriented pirolitical graphite (HOPG) as reference, were modified by means of Ar{sup +} ion bombardment and characterized by means of Raman scattering, transmission electron microscopy, electron-diffraction (TEM), reflected electron energy loss specroscopy (REELS) and X-ray photoelectron spectroscopy (XPS) techniques. It was found that the diamond was transferred to a carbon with halo-like morphology and disordered stack of graphene segments. Instead of the well-known electron energy loss peak of graphite at 6.5 eV, a new REELS peak appeared at 4-5 eV energies. The observed effect was explained by the modification of {pi}-system in carbon films as a consequence of the formation of non-planar, nanometer-sized graphitic planes.

  16. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  17. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  18. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  19. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... coefficients that are used in order to describe surface scattering (roughness of material) as well as scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due to surface dimensions, angle of incidence and incident path length...

  20. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  1. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  2. Non-planar electron motion during direct laser acceleration by a linearly/circularly polarized laser pulse

    Science.gov (United States)

    Khudik, Vladimir; Arefiev, Alexey; Zhang, Xi; Shvets, Gennady

    2016-10-01

    Direct Laser Acceleration (DLA) of electrons in plasma bubbles or ion channels is investigated in the general case of arbitrary polarization of laser pulse. When the laser pulse is linearly polarized, the laser electromagnetic field drives electron oscillations in the polarization plane, intuitively suggesting that the electron trajectory lies in the same plane. We show that strong modulations of the relativistic gamma-factor cause the free oscillations perpendicular to the plane of the driven motion to become unstable. As a consequence, out of plane displacements grow and the electron trajectory becomes strongly three-dimensional, even if it starts out planar during the early stage of the acceleration. For a circularly polarized laser pulse, electron end up moving along a helical trajectory with slowly changing helix radius. By deriving a set of dimensionless equations for paraxial ultra-relativistic electron motion, we have found an estimate for the maximum attainable electron energy for arbitrary laser and plasma parameters. This work was supported by DOE Grants DESC0007889 and DE-SC0010622, and by an AFOSR Grant FA9550-14-1-0045.

  3. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  4. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  5. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  6. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  7. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  8. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  9. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  10. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  11. Acoustic Absorption in Porous Materials

    Science.gov (United States)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  12. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  13. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  14. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  15. [Acoustical parameters of toys].

    Science.gov (United States)

    Harazin, Barbara

    2010-01-01

    Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.

  16. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...... reveals presence of a true emission from all ears tested. It is concluded that the cochlear echo can be recorded in normal-hearing newborns with an extremely low rate of type I errors.......Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar...

  17. SL (2, C) Chern-Simons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry

    Science.gov (United States)

    Haggard, Hal M.; Han, Muxin; Kamiński, Wojciech; Riello, Aldo

    2015-11-01

    We study the expectation value of a nonplanar Wilson graph operator in SL (2, C) Chern-Simons theory on S3. In particular we analyze its asymptotic behavior in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains, at the leading order, an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern-Simons action. This can be understood as arising from the relation between Chern-Simons theory on the boundary of a region, and a theory defined by an F2 action in the bulk. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a cosmological constant and SL (2, C) Chern-Simons theory in 3 dimensions with knotted graph defects.

  18. SL(2,C Chern–Simons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry

    Directory of Open Access Journals (Sweden)

    Hal M. Haggard

    2015-11-01

    Full Text Available We study the expectation value of a nonplanar Wilson graph operator in SL(2,C Chern–Simons theory on S3. In particular we analyze its asymptotic behavior in the double-scaling limit in which both the representation labels and the Chern–Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains, at the leading order, an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern–Simons action. This can be understood as arising from the relation between Chern–Simons theory on the boundary of a region, and a theory defined by an F2 action in the bulk. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a cosmological constant and SL(2,C Chern–Simons theory in 3 dimensions with knotted graph defects.

  19. Fast Domain Partitioning Method for dynamic boundary integral equations applicable to non-planar faults dipping in 3-D elastic half-space

    Science.gov (United States)

    Ando, Ryosuke

    2016-11-01

    The elastodynamic boundary integral equation method (BIEM) in real space and in the temporal domain is an accurate semi-analytical tool to investigate the earthquake rupture dynamics on non-planar faults. However, its heavy computational demand for a historic integral generally increases with a time complexity of O(MN3)for the number of time steps N and elements M due to volume integration in the causality cone. In this study, we introduce an efficient BIEM, termed the `Fast Domain Partitioning Method' (FDPM), which enables us to reduce the computation time to the order of the surface integral, O(MN2), without degrading the accuracy. The memory requirement is also reduced to O(M2) from O(M2N). FDPM uses the physical nature of Green's function for stress to partition the causality cone into the domains of the P and S wave fronts, the domain in-between the P and S wave fronts, and the domain of the static equilibrium, where the latter two domains exhibit simpler dependences on time and/or space. The scalability of this method is demonstrated on the large-scale parallel computing environments of distributed memory systems. It is also shown that FDPM enables an efficient use of memory storage, which makes it possible to reduce computation times to a previously unprecedented level. We thus present FDPM as a powerful tool to break through the current fundamental difficulties in running dynamic simulations of coseismic ruptures and earthquake cycles under realistic conditions of fault geometries.

  20. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...