WorldWideScience

Sample records for nonpigmented cells pigmented

  1. Buffering Capacity of Pigmented and Nonpigmented Strains of Serratia marcescens

    Science.gov (United States)

    Rius, Núria; Solé, Montserrat; Francia, Alicia; Lorén, José G.

    1994-01-01

    The pigmented strain Serratia marcescens ATCC 274 had a higher buffering capacity and a higher membrane H+ conductance than S. marcescens GP, a spontaneous nonpigmented mutant of ATCC 274. The data suggest that mutations which apparently affect only the synthesis of a secondary metabolite can modify buffering capacity and passive H+ conductance. PMID:16349300

  2. Non-pigmented fixed drug eruption induced by eprazinone hydrochloride.

    Science.gov (United States)

    Tanabe, Kenichi; Tsuboi, Hiromi; Maejima, Hideki; Arai, Satoru; Katsuoka, Kensei

    2005-12-01

    A 68-year-old woman developed an upper respiratory tract infection in November 2002 and was treated with eprazinone hydrochloride, serrapeptase, carbocysteine and clarithromycin. Three days after the start of treatment, the patient noted erythema on her axilla, buttock and inguinal regions. The erythema subsided in 7 days although slight pigmentation remained. However, 7 days later the pigmentation completely disappeared. Oral eprazinone hydrochloride was given as a challenge, and 1 day later the erythema re-appeared in the same areas as on initial presentation (axilla, buttock, and inguinal regions). A fixed erythema without lasting pigmentation is attributed to eprazinone hydrochloride. Therefore, the patient was diagnosed as having a nonpigmented fixed drug eruption associated with eprazinone hydrochloride.

  3. [Macroadenoma of the non-pigmented ciliary epithelium].

    Science.gov (United States)

    Lara-Medina, J; Ispa Callén, C; González del Valle, F; Mate Valdezate, A

    2014-06-01

    We report the clinical features and surgery of a patient with an adenoma of the non-pigmented ciliary epithelium. The adenoma measured 5 × 7 mm. The patient underwent radical ocular surgery consisting of partial iridocyclectomy associated to lamellar sclerouvectomy. Adenomas of ciliary body can mimic clinically amelanotic melanomas. We present details of the patient's medical records and review the literature. Clinically, adenoma in ciliary body can mimic amelanotic melanomas. Conservative surgery of the eye allows diagnosis and treatment, maintaining visual function. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  4. Functional pharmacological evidence for EP2 and EP4 prostanoid receptors in immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells.

    Science.gov (United States)

    Crider, J Y; Sharif, N A

    2001-02-01

    The aim of these studies was to characterize the molecular pharmacology of the prostanoid receptors positively coupled to stimulation of adenylyl cyclase activity in immortalized human trabecular meshwork (TM-3) cells and to compare these results with that of the receptors in immortalized human nonpigmented epithelial (NPE) cells. In general, the TM-3 and NPE cells showed a similar profile with respect to their responses to various prostaglandin (PG) receptor agonists. The rank order of potency (EC50; means +/- SEM) for these compounds in the TM-3 cells was: PGE2 (124 +/- 21 nM) > 13,14-dihydro-PGE1 (430 +/- 110 nM) = PGE1 (522 +/- 345 nM) > 11-deoxy-PGE1 (1063 +/- 118 nM) = 16,16-dimethyl-PGE2 (1776 +/- 460 nM) = butaprost (1920 +/- 527 nM) > PGD2 = PGI2 = PGF2alpha (n = 3 - 12). While the agonist profile indicated the presence of EP2 receptors, the effects of the EP4 receptor antagonists suggested the additional expression of EP4 receptors in both of these cells. Thus, the EP4 receptor antagonist, AH23848B, at a concentration of 30 microM, caused a dextral shift in the PGE2 concentration-response curves in both TM-3 and NPE cells coupled with a 20-28% decrease in the maximal response of PGE2, indicating apparent noncompetitive antagonism profiles. The antagonist potency of AH23848B in these cells was: Kb = 38.4 +/- 14.8 microM and 23.5 +/- 4.5 microM; -log Kb = 4.7. The other EP4 receptor antagonist, AH22921 (-log Kb = 4.1 - 4.7), was weaker than AH23848B. Taken together, these pharmacological studies have shown than TM-3 and NPE cells apparently contain functional EP2 and EP4 prostanoid receptors positively coupled to adenylyl cyclase.

  5. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  6. Heat and pulsed electric field resistance of pigmented and non-pigmented enterotoxigenic strains of Staphylococcus aureus in exponential and stationary phase of growth.

    Science.gov (United States)

    Cebrián, G; Sagarzazu, N; Pagán, R; Condón, S; Mañas, P

    2007-09-30

    The survival of four enterotoxigenic strains of Staphylococcus aureus (with different pigment content) to heat and to pulsed electric fields (PEF) treatments, and the increase in resistance to both processing stresses associated with entrance into stationary phase was examined. Survival curves to heat (58 degrees C) and to PEF (26 kV/cm) of cells in the stationary and in the exponential phase of growth were obtained. Whereas a wide variation in resistance to heat treatments was detected amongst the four strains, with decimal reduction time values at 58 degrees C (D(58 degrees C)) ranging from 0.93 to 0.20 min, the resistance to PEF was very similar. The occurrence of a higher tolerance to heat in stationary phase was coincident with a higher content in carotenoid pigmentation in S. aureus colonies. However, cells of the most heat resistant (pigmented) and the most heat sensitive (non-pigmented) strains in the mid-exponential phase of growth showed similar resistance to heat and to PEF. Therefore the increase in thermotolerance upon entrance into stationary phase of growth was more marked for the pigmented strains. Recovery in anaerobic conditions particularly enhanced survival to heat treatments in a non-pigmented strain. Strain CECT 4630, which possess a deficient sigma B activity, showed low heat resistance, low pigmentation, and reduced increase in thermotolerance in stationary phase. These results indicate that the magnitude of the development of a higher heat resistance in S. aureus in stationary phase is positively related to the carotenoid content of the strain. The development of tolerance to pulsed electric field was less relevant and not linked to the carotenoid content.

  7. Dermoscopy of a non-pigmented eccrine poroma

    Directory of Open Access Journals (Sweden)

    Maria Clara De Diego

    2016-09-01

    Full Text Available Eccrine poroma is a benign adnexal tumor arising from cells of the outer layer of the acrosyringium and upper dermal eccrine duct. It generally appears as a solitary, slow growing, sessile, pink-to-red and well-circumscribed papule, plaque or nodule. It is usually located on the palms and soles but it may also develop on other locations. Its clinical appearance can resemble other types of tumors such as hypo- or amelanotic melanoma. Dermoscopy has  improved the evaluation of skin tumors. In the case of eccrine poroma, there are some studies that have described its dermoscopic findings. These mainly focus on its vascular structures. We present an 82-year-old patient who developed a 2×3-cm eccrine poroma on his lower back. Dermoscopy demonstrated the presence of a polymorphous vascular pattern displaying mostly linear looped (irregular hairpin-like and “leaf-flower-like” vessels (“cherry-blossom” and “chalice-like”, with some resembling “cactus-like” structures. Only a few linear coiled (glomerular and linear helical (corkscrew vessels were observed. Some of these vascular structures were surrounded by a whitish-to-pink halo. Moreover, some pink structureless areas were present. We highlight the finding of the “leaf-flower-like” vessels, as these are vascular structures that have not been described in other types of skin tumors.

  8. Vertical distribution of pigmented and non-pigmented nanoflagellates in the East China Sea

    Science.gov (United States)

    Tsai, Sheng-Fang; Lin, Fan-Wei; Chan, Ya-Fan; Chiang, Kuo-Ping

    2016-08-01

    Nanoflagellates can be separated into two groups according to their trophic mode, i.e. pigmented nanoflagellates (PNF) and heterotrophic nanoflagellates (HNF). However, a newly identified group, mixotrophic nanoflagellates (MNF), are pigmented and show the ability of prey on bacteria. To examine the vertical variations in PNF and HNF abundances, as well as their relationships and the nutritional strategies that they might use, two summer cruises were undertaken in the East China Sea in July 2011 (OR1 966) and July 2012 (OR1 1004). The results show that both HNF and PNF abundances decline with increasing water depth. Vertical variations of abundances are believed to be influenced by prey and light, for HNF and PNF respectively. Over a large part of the sampling area, the ratio of PNF to HNF abundances is about 1:1 in the disphotic and euphotic zones, but exceeds 1.5 in the nutrient-depleted environment along the margin of the continental shelf. The correlation between PNF abundance and bacteria/Synechococcus abundance is positive where PNF/HNF >1.5. However, there is no significant correlation between PNF/HNF abundance when PNF/HNF >1.5 and light/nutrients, indicating that vertical distributions are influenced mainly by prey (bacteria and Synechococcus) in the nutrient-depleted environment. This study assumes that PNF consists mostly of MNF. In the euphotic zone they receive energy from photosynthesis, which is stimulated by the available nutrients from grazing. Their abundance is thus higher than that of HNF. However, in the disphotic zone, both PNF and HNF satisfy their nutrient demands by grazing, and PNF/HNF is close to 1. In other words, mixotrophy might be the main trophic mode for PNF in the nutrient-depleted, oligotrophic environment. Meanwhile, in deeper water (300 m), the much lower prey density means that MNF cannot satisfy the basic energy demands of metabolism and photosynthesis, and thus HNF abundance exceeds that of PNF.

  9. GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Henrik Ring

    Full Text Available GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABA(A receptor system. To quantify the effects on proliferation by GABA(A receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABA(A receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABA(A receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl-transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABA(A receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABA(A receptors. This supported the depolarising role for the GABA(A receptors. Inhibition of L-type voltage-gated Ca(2+ channels (VGCCs reduced the proliferation in the same way as inhibition of the GABA(A receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27(KIP1, along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27(KIP1 after inhibition of either the GABA(A receptors or the L-type VGCCs suggests a link between the GABA(A receptors, membrane potential, and

  10. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented ('Njavara' and 'Jyothi') and a non-pigmented ('IR 64') rice varieties.

    Science.gov (United States)

    Deepa, G; Singh, Vasudeva; Naidu, K Akhilender

    2010-12-01

    In vitro starch digestibility and glycemic indices of three rice varieties- 'Njavara', 'Jyothi' (pigmented rice verities) and 'IR 64' (non-pigmented rice) with similar amylose content were studied. Starch digestibility studies showed differences in glycemic response in three types of rice. The rate of starch hydrolysis was maximum (67.3%) in 'Njavara' rice compared to other two rice varieties. 'Njavara' exhibited the lowest kinetic constant (k) indicating inherent resistance to enzymatic hydrolysis. The glycemic load (GL) and glycemic index (GI) of 'Njavara' were similar to 'Jyothi' and 'IR 64'. Resistant starch content was high in pigmented rice varieties compared to 'IR 64'. The resistant starch content of dehusked and cooked rice increased with the storage time at refrigeration temperature (4°C). 'Njavara' is an easily digestible rice and can be used for baby and geriatric foods.

  11. Visual evaluation of color stability after accelerated aging of pigmented and nonpigmented silicones to be used in facial prostheses

    Directory of Open Access Journals (Sweden)

    Mancuso Daniela

    2009-01-01

    Full Text Available Objectives: The objective of this study was to evaluate by a visual method of comparison the color stability of nonpigmented and pigmented facial silicones after accelerated aging. Materials and Methods: Two kinds of silicones were used in this study; one specifically formulated for facial prostheses and the other an acetic silicone for industrial use. Twenty-four trial bodies were made for each silicone. These were divided into colorless and intrinsically pigmented groups: ceramic, make-up, and iron oxide. The groups were submitted to accelerated aging for nonmetallic materials. An initial reading and subsequent readings were made at 163, 351, 692, and 1000 hours using a visual method of comparison. The values were annotated in a spreadsheet by two observers, according to scores elaborated for this study. Results: All groups presented color stability in the visual method. According to the results obtained and analyzed in this study, we can conclude that both silicones, Silastic 732 RTV and Silastic MDX 4-4210, behaved similarly, they can therefore be indicated for use in maxillofacial prosthesis. The time factor of aging influenced negatively, independently of the pigmentation, or lack of it, and of silicones and no group had visually noticeable alterations in any of the accelerated aging time, independently of the addition or not of pigments.

  12. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’ and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties

    OpenAIRE

    2010-01-01

    In vitro starch digestibility and glycemic indices of three rice varieties- ‘Njavara’, ‘Jyothi’ (pigmented rice verities) and ‘IR 64’ (non-pigmented rice) with similar amylose content were studied. Starch digestibility studies showed differences in glycemic response in three types of rice. The rate of starch hydrolysis was maximum (67.3%) in ‘Njavara’ rice compared to other two rice varieties. ‘Njavara’ exhibited the lowest kinetic constant (k) indicating inherent resistance to enzymatic hydr...

  13. Depression of Intraocular Pressure Following Inactivation of Connexin43 in the Nonpigmented Epithelium of the Ciliary Body

    Science.gov (United States)

    Calera, Mónica R.; Wang, Zhao; Sanchez-Olea, Roberto; Paul, David L.; Civan, Mortimer M.; Goodenough, Daniel A.

    2010-01-01

    Purpose Conditional inactivation of connexin43 (Cx43) in the pigmented epithelium of the mouse eye results in a reduction in aqueous humor production and complete loss of the vitreous chamber. It was proposed that gap junctions between pigmented and nonpigmented epithelia of the ciliary body are critical for the production of the aqueous humor. To form such junctions, Cx43 in the pigmented epithelium must interact with connexin(s) present in the adjacent cells of the nonpigmented epithelium. The importance of Cx43 expression in the nonpigmented epithelium for the establishment of gap junctions and the regulation of intraocular pressure was tested. Methods To inactivate Cx43 in the nonpigmented epithelium of the mouse eye, a mouse line was crossed with a floxed Cx43 locus (Cx43flox/flox) and a transgenic mouse line expressing cre recombinase under the control of the Pax6α promoter. General eye structure was evaluated by light microscopy, gap junctions were analyzed by electron microscopy, and intraocular pressure was directly assessed with micropipettes. Results In Pax6α-cre/Cx43flox/flox mice, Cx43 was partially inactivated in the nonpigmented epithelium of the ciliary body and iris. Animals developed dilatations between the pigmented and nonpigmented epithelia and displayed a significant reduction in intraocular pressure. However, gap junctions between the ciliary epithelial layers were decreased but not eliminated. Conclusions Cx43 expression in the nonpigmented epithelium of the ciliary body contributes to the formation of gap junctions with the cells of the pigmented epithelium. These gap junctions play a critical role in maintaining the physical integrity of the ciliary body epithelium. Although the partial loss of Cx43 from the nonpigmented epithelium was correlated with a measurable drop in intraocular pressure, possible changes in Cx43 in the aqueous outflow pathway may provide an additional contribution to the observed phenotype. PMID:19168903

  14. Composição química dos cascos de eqüinos das raças Pantaneira e Mangalarga Marchador Chemical composition of black versus non-pigmented hooves from Pantaneira and Mangalarga Marchador horses

    Directory of Open Access Journals (Sweden)

    G.A. Faria

    2005-10-01

    Full Text Available Pesquisaram-se eventuais diferenças na composição da matéria seca (MS, proteína bruta, extrato etéreo, cinzas, cálcio, fósforo, cobre, zinco, perfil de aminoácidos e biotina entre cascos pretos e claros, de eqüinos das raças Pantaneira e Mangalarga Marchador, criados na região do Pantanal, MS, e no município de Caeté, MG, respectivamente. De cada raça foram coletadas amostras de 10 éguas vazias, não lactantes, com idade entre 5 e 10 anos, sendo que, em um mesmo animal, foram retiradas amostras das duas colorações de casco nas regiões da pinça, ombro, quarto e talão. Na raça Pantaneira, os cascos claros apresentaram maior teor de fósforo que os pretos, e os demais elementos avaliados não foram diferentes segundo a cor. Na Mangalarga Marchador, não houve diferença entre os cascos claros e pretos, quanto a todas as características estudadas.Chemical composition (dry matter, crude protein, ether extract, ash, calcium, phosphorus, copper and zinc and amino acid profile in black and non-pigmented hooves from non-lactating five-to ten-year-old Pantaneira and Mangalarga Marchador mares raised in central and southeastern Brazil was studied. In the Pantaneira breed, phosphorus concentration was higher in non-pigmented than in black hooves, but hoof color did not affect any other composition variables. Likewise, black versus non-pigmented hooves did not differ for any composition variable in the Mangalarga Marchador mares.

  15. Bioactive compounds in pigmented rice bran inhibit growth of human cancer cells

    Science.gov (United States)

    Rice bran contains both lipophilic and hydrophilic antioxidants. Our previous studies have shown that pigmented rice cultivars contained several-fold higher total phenolic concentrations and antioxidant capacities than non-pigmented cultivars. We investigated three rice brans (purple, red and light-...

  16. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  17. Culturing of retinal pigment epithelium cells.

    Science.gov (United States)

    Valtink, Monika; Engelmann, Katrin

    2009-01-01

    The retinal pigment epithelium (RPE) is a monolayer of cells adjacent to the photoreceptors of the retina. It plays a crucial role in maintaining photoreceptor health and survival. Degeneration or dysfunction of the RPE can lead to photoreceptor degeneration and as a consequence to visual impairment. The most common diseased state of the RPE becomes manifest in age-related macular degeneration, an increasing cause of blindness in the elderly. RPE cells are therefore of great interest to researchers working in the field of tissue engineering and cell transplantation. In fact, studies in animal models have proven that the transplantation of RPE cells can delay the course of photoreceptor degenerative diseases. Although first attempts to transplant RPE cells into the subretinal space in human individuals suffering from age-related macular degeneration were less successful, RPE cell transplantation is still favored as a future therapeutic option, and much work is done to develop and design cell transplants. Cell banking is a prerequisite to have well-differentiated and characterized cells at hand when needed for research purposes, but also for therapeutic approaches. In this chapter the authors will describe methods to isolate, culture and preserve adult human RPE cells for the purpose of RPE cell banking. Copyright 2009 S. Karger AG, Basel.

  18. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    Science.gov (United States)

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  19. Pseudoephedrine may cause "pigmenting" fixed drug eruption.

    Science.gov (United States)

    Ozkaya, Esen; Elinç-Aslan, Meryem Sevinç

    2011-05-01

    Fixed drug eruption (FDE) is a distinctive drug eruption characterized by recurrent well-defined lesions in the same location each time the responsible drug is taken. Two different clinical forms have been described: the common classic pigmenting form and the rare nonpigmenting form. Nonpigmenting FDE is mainly characterized by symmetrical large erythematous plaques and the dermal histopathologic reaction pattern. Pseudoephedrine is known as the major inducer of nonpigmenting FDE. Pigmenting FDE from pseudoephedrine has not been reported previously. Here, the first case of pseudoephedrine-induced pigmenting FDE is reported, showing the characteristic features of classic pigmenting FDE such as asymmetry, normal-sized lesions, and the epidermodermal histopathologic reaction pattern. Moreover, a positive occlusive patch-test reaction to pseudoephedrine could be demonstrated on postlesional FDE skin for the first time.

  20. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.

    Science.gov (United States)

    Oonuma, Kouhei; Tanaka, Moeko; Nishitsuji, Koki; Kato, Yumiko; Shimai, Kotaro; Kusakabe, Takehiro G

    2016-12-01

    The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.

  1. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens.

    Science.gov (United States)

    Andreani, Nadia Andrea; Carraro, Lisa; Martino, Maria Elena; Fondi, Marco; Fasolato, Luca; Miotto, Giovanni; Magro, Massimiliano; Vianello, Fabio; Cardazzo, Barbara

    2015-11-20

    Pseudomonas fluorescens is a well-known food spoiler, able to cause serious economic losses in the food industry due to its ability to produce many extracellular, and often thermostable, compounds. The most outstanding spoilage events involving P. fluorescens were blue discoloration of several food stuffs, mainly dairy products. The bacteria involved in such high-profile cases have been identified as belonging to a clearly distinct phylogenetic cluster of the P. fluorescens group. Although the blue pigment has recently been investigated in several studies, the biosynthetic pathway leading to the pigment formation, as well as its chemical nature, remain challenging and unsolved points. In the present paper, genomic and transcriptomic data of 4 P. fluorescens strains (2 blue-pigmenting strains and 2 non-pigmenting strains) were analyzed to evaluate the presence and the expression of blue strain-specific genes. In particular, the pangenome analysis showed the presence in the blue-pigmenting strains of two copies of genes involved in the tryptophan biosynthesis pathway (including trpABCDF). The global expression profiling of blue-pigmenting strains versus non-pigmenting strains showed a general up-regulation of genes involved in iron uptake and a down-regulation of genes involved in primary metabolism. Chromogenic reaction of the blue-pigmenting bacterial cells with Kovac's reagent indicated an indole-derivative as the precursor of the blue pigment. Finally, solubility tests and MALDI-TOF mass spectrometry analysis of the isolated pigment suggested that its molecular structure is very probably a hydrophobic indigo analog.

  2. Pigmented basal cell carcinoma of the eyelid in Hispanics

    Directory of Open Access Journals (Sweden)

    Lily Koo Lin

    2008-10-01

    Full Text Available Lily Koo Lin1, Han Lee2, Eli Chang11Department of Oculoplastics, Doheny Eye Institute, Los Angeles, CA, USA; 2Department of Dermatology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USABackground: Pigmented basal cell carcinoma (PBCC of the eyelid has not been well cited in the literature, and is often overlooked in the differential diagnosis of pigmented eyelid lesions. We aim to describe PBCC of the eyelid in Hispanic patients.Methods: Retrospective review of patients with eyelid skin cancer who presented to the Department of Dermatology at the Keck School of Medicine of the University of Southern California and the Doheny Eye Institute from January 2002 to November 2005.Results: Sixty-nine of the 79 patients with eyelid skin cancer had basal cell carcinoma. Eight of these patients were Hispanic. Four of the eight Hispanic patients had PBCC.Conclusions: Although eyelid PBCC is regarded as a rare condition, it may occur more commonly in the Hispanic population and should be remembered in the differential diagnosis of pigmented eyelid lesions.Keywords: pigmented basal cell carcinoma, eyelid, skin cancer, lesions

  3. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures.

    Science.gov (United States)

    Ageenko, Natalya V; Kiselev, Konstantin V; Dmitrenok, Pavel S; Odintsova, Nelly A

    2014-06-27

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential.

  4. 紫色色杆菌感染小熊猫引起肺炎的临床调查%Clinical investigation of pneumonia in the red panda(Ailurus fulgens)caused by the non-pigmented strain of Chromobacterium violaceum

    Institute of Scientific and Technical Information of China (English)

    修云芳; 邵良平; 李碧春; 徐素慧; 吴尚明; 王隆伯; 王德春; 周伦江; 陈玉村

    2011-01-01

    This clinical investigation reports several cases of pneumonia in the red panda ( Ailurus fulgens ) which occurred at Fuzhou Giant Panda Research Center in July, 2008. Among 7 infected animals, 3 red pandas died within 3 days after showing symptoms of high fever and severe respiratory disease. Necropsy results showed a white foamy discharge in the trachea; suppurative necrosis and massive congestion in the lung; turbid pleural and pericardial effusions; a liver with multiple atrophic foci and focal congestive necrosis. Through bacterial isolation and identification, the pathogen was confirmed to be non-pigmented Chromobacterium violaceum. Based on GenBank database of 16S RNA gene sequences for Chromobacterium violaceum, primer pairs ( 5' GAG CAA ACA GGA TTA GAT ACC 3 '; 5' TTA CGG TrA CCT TGT TAC GAC 3' )were designed to amplify a 739 bp gene fragment by PCR. The nucleotide sequences obtained subsequently were compared to seven strains of Chromobacterium violaceum from the GenBank database and found to be 98.8% identical to strains CV09c and ESBV4400 as well as 98.2%, 98.0%, 94.9%, 93.1% and 92.8% identical to strains AY117554, EAV2,AJ871127, LMG3953 and JS1, respectively. Intraperitoneal inoculation of 5 mice with the isolated pathogen culture resulted in the death of all mice within 2 - 3 days, a reflection of the virulence of this isolate. Several measures were implemented to control the spread of infection including disinfecting of the grounds, housing environment, and water supply. We further tested the clinical isolate for antibiotic susceptibility and based on these findings, the 4 remaining asymptomatic pandas were all treated twice daily intramuscularly with Cefoperazone sodium for two days in combination with oral dosing of Sulfamethoxazole twice a day for four days, and no new case was seen after the treatments. This investigation indicates that the rapid onset of infection and high fatality rate of Chromobacterium violaceum in the red panda

  5. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  6. Nonvisual ganglion cells, circuits and nonvisual pigments

    Institute of Scientific and Technical Information of China (English)

    Ali Akbar Kashani; WANG Huai-zhou; WANG Ning-li

    2009-01-01

    @@ To the editor: WANG and his colleagues provided the evidence that "both melanopsin-containing and superior collicular retinal ganglion cells were damaged by chronic ocular hypertension, indicating that glaucomatous neural degeneration involves the non-image-forming visual pathway".

  7. Pigment developed to protect spacecraft/solar cells from Sun's harmful rays.

    Science.gov (United States)

    1995-01-01

    A pigment (phthalocyanine) is studied at the Marshall Materials and Processes Lab. The pigment has the ability to protect spacecraft against the harmful effects of the Sun's ultraviolet rays, and to increase the efficiency and life of solar cells.

  8. Rotating pigment cells exhibit an intrinsic chirality.

    Science.gov (United States)

    Yamanaka, Hiroaki; Kondo, Shigeru

    2015-01-01

    In multicellular organisms, cell properties, such as shape, size and function are important in morphogenesis and physiological functions. Recently, 'cellular chirality' has attracted attention as a cellular property because it can cause asymmetry in the bodies of animals. In recent in vitro studies, the left-right bias of cellular migration and of autonomous arrangement of cells under some specific culture conditions were discovered. However, it is difficult to identify the molecular mechanism underlying their intrinsic chirality because the left-right bias observed to date is subtle or is manifested in the stable orientation of cells. Here, we report that zebrafish (Danio rerio) melanophores exhibit clear cellular chirality by unidirectional counterclockwise rotational movement under isolated conditions without any special settings. The chirality is intrinsic to melanophores because the direction of the cellular rotation was not affected by the type of extracellular matrix. We further found that the cellular rotation was generated as a counter action of the clockwise movement of actin cytoskeleton. It suggested that the mechanism that directs actin cytoskeleton in the clockwise direction is pivotal for determining cellular chirality.

  9. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  10. Hemosiderotic clear-cell acanthoma: A pigmented mimicker

    Directory of Open Access Journals (Sweden)

    Leonardo Bugatti

    2011-01-01

    Full Text Available The authors report on a case of a 65-year-old man with pigmented clear-cell acanthoma located on the right thigh. Dermoscopy disclosed a peculiar picture consisting of diffuse black pigmentation with a superficial greyish veil in the central portion, dotted-to-globular dark red-black structures mainly located at the periphery with a homogenous regular reticular arrangement; peripheral translucid desquamation. Dermoscopic features are correlated with the histology, where hemosiderin deposits present in a sheet-like arrangement in the perivascular papillary dermis and in a band-like disposition in the reticular dermis at the base of the lesion can account for the pigmented picture. The lesion arose on a trauma-prone skin site; thus the authors believe that traumatic irritation may be responsible for the clinical and dermoscopic pictures, giving rise to a reaction similar in a way to the Auspitz′s sign provocated by trauma for psoriasis. Red blood cells extravasation from extremely superficialized capillaries may have led to hemosiderin deposition in the papillary and the reticular dermis.

  11. Retinal Pigment Epithelium Cell Alignment on Nanostructured Collagen Matrices

    OpenAIRE

    Ulbrich, Stefan; Friedrichs, Jens; Valtink, Monika; Murovski, Simo; Franz, Clemens M.; Müller, Daniel J.; Richard H. W. Funk; Engelmann, Katrin

    2014-01-01

    We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α2 were examined b...

  12. Yap and Taz regulate retinal pigment epithelial cell fate

    Science.gov (United States)

    Miesfeld, Joel B.; Gestri, Gaia; Clark, Brian S.; Flinn, Michael A.; Poole, Richard J.; Bader, Jason R.; Besharse, Joseph C.; Wilson, Stephen W.; Link, Brian A.

    2015-01-01

    The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma. PMID:26209646

  13. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    Science.gov (United States)

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  14. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    Directory of Open Access Journals (Sweden)

    Aaron H Fronk

    2016-07-01

    Full Text Available The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

  15. Effect of curcumin on aging retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-09-01

    Full Text Available Wei Zhu,1,* Yan Wu,2,* Yi-Fang Meng,1 Jin-Yu Wang,1 Ming Xu,1 Jian-Jun Tao,1 Jiong Lu1 1Department of Ophthalmology, Changshu No 2 People’s Hospital, Changshu, 2Department of Ophthalmology, The First People’s Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Age-related macular degeneration (AMD is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. Keywords: curcumin, retinal pigment epithelium, apoptosis, age-related macular degeneration

  16. Comparative study on the incidence and outcomes of pigmented versus non pigmented keratomycosis

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sengupta

    2011-01-01

    Full Text Available Purpose: To determine the incidence, outcomes and establish factors determining visual prognosis of keratomycosis due to pigmented fungi in comparison with nonpigmented fungi. Materials and Methods: All culture-proven cases of fungal keratitis from January 2006 to August 2008 were drawn from a computerized database and cases with adequate documentation were analyzed for predisposing factors, clinical characteristics, microbiology and treatment methods. Outcomes of keratitis due to pigmented and nonpigmented fungi were compared using t-test and χ2 test. Results: Of 373 cases of keratomycosis during the study period, pigmented fungi were etiological agents in 117 eyes (31.3% and nonpigmented fungi in 256 eyes (68.7%. Eyes with nonpigmented keratitis had significantly larger ulcers (14.96 mm 2 and poorer vision (1.42 logMAR at presentation compared to those with keratomycosis due to pigmented fungi (P=0.01. The characteristic macroscopic pigmentation was seen in only 14.5% in the pigmented keratitis group. Both groups responded favorably to medical therapy (78.1% vs. 69.1% with scar formation (P=0.32 and showed a significant improvement in mean visual acuity compared with that at presentation (P<0.01. Visual improvement in terms of line gainers and losers in the subgroup of eyes that experienced healing was also similar. Location of the ulcer was the only factor that had significant predictive value for visual outcome (P=0.021. Conclusion: Incidence of keratomycosis due to pigmented fungi may be increasing as compared to previous data. These eyes have similar response to medical therapy and similar visual outcome compared to nonpigmented keratitis. Central ulcers have a poor visual outcome.

  17. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  18. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution.

    Science.gov (United States)

    Patterson, Larissa B; Bain, Emily J; Parichy, David M

    2014-11-06

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation.

  19. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; Chandramohan, D.; LokaBharathi, P.A.

    to cadmium and the influence of pH on sensitivity. Appl. envir. Micro- biol. 33, 681-695. Baya A. M., Brayton P. R.. Brown V. L., Grimes D. J., Russek-Cohen E. and Colwell R. R. (1986) Coincident plasmids and antimicrobial resistance in marine bacteria... isolated from polluted and unpolluted Atlantic Ocean samples. Appl. envir. Microbiol. 51, 1285-1292. Foster T. J. (1983) Plasmid determined resistance to antimi- crobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47, 361-409. Goulder R...

  20. Yap and Taz regulate retinal pigment epithelial cell fate.

    Science.gov (United States)

    Miesfeld, Joel B; Gestri, Gaia; Clark, Brian S; Flinn, Michael A; Poole, Richard J; Bader, Jason R; Besharse, Joseph C; Wilson, Stephen W; Link, Brian A

    2015-09-01

    The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma. © 2015. Published by The Company of Biologists Ltd.

  1. Retinal pigment epithelium cell alignment on nanostructured collagen matrices.

    Science.gov (United States)

    Ulbrich, Stefan; Friedrichs, Jens; Valtink, Monika; Murovski, Simo; Franz, Clemens M; Müller, Daniel J; Funk, Richard H W; Engelmann, Katrin

    2011-01-01

    We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.

  2. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  3. Pigments and ultrastructures of pigment cells in xanthic sailfin mollies (Poecilia latipinna).

    Science.gov (United States)

    Blanchard, P D; Angus, R A; Morrison, R L; Frost-Mason, S K; Sheetz, J H

    1991-12-01

    Electron micrographs of skin from xanthic (gold) sailfin mollies revealed numerous xanthophores, as well as scattered melanophores. The melanophores were seen to contain premelanosomes in various stages of development. This is consistent with the fact that xanthic mollies have been shown to be tyrosinase positive. Melanosomes in xanthic mollies appear to develop by one of two pathways: 1) from an endoplasmic reticulum-derived vesicle which develops an internal lamellar framework, and 2) by fusion of multiple Golgi-derived vesicles which lack an internal lamellar framework. Analysis of the pigments in the skin of the xanthic mollies identified four colorless pteridine pigments (xanthopterin, isoxanthopterin, neopterin, and pterin) and a carotenoid with an absorbance spectrum similar to beta-carotene. It appears that, unlike some other poeciliid fishes, sailfin mollies do not use pteridine pigments for orange coloration. Rather, they appear to rely primarily on carotenoids.

  4. Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells.

    Science.gov (United States)

    Órdenes-Aenishanslins, N; Anziani-Ostuni, G; Vargas-Reyes, M; Alarcón, J; Tello, A; Pérez-Donoso, J M

    2016-09-01

    Here we report the use of pigments produced by UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells (DSSCs). Pigments were obtained from red and yellow colored psychrotolerant bacteria isolated from soils of King George Island, Antarctica. Based on metabolic characteristics and 16s DNA sequence, pigmented bacteria were identified as Hymenobacter sp. (red) and Chryseobacterium sp. (yellow). Pigments produced by these microorganisms were extracted and classified as carotenoids based on their spectroscopic and structural characteristics, determined by UV-Vis spectrophotometry and infrared spectroscopy (FTIR), respectively. With the purpose of develop green solar cells based on bacterial pigments, the photostability and capacity of these molecules as light harvesters in DSSCs were determined. Absorbance decay assays determined that bacterial carotenoids present high photostability. In addition, solar cells based on these photosensitizers exhibit an open circuit voltage (VOC) of 435.0 [mV] and a short circuit current density (ISC) of 0.2 [mA·cm(-2)] for the red pigment, and a VOC of 548.8 [mV] and a ISC of 0.13 [mA·cm(-2)] for the yellow pigment. This work constitutes the first approximation of the use of pigments produced by non-photosynthetic bacteria as photosensitizers in DSSCs. Determined photochemical characteristics of bacterial pigments, summed to their easy obtention and low costs, validates its application as photosensitizers in next-generation biological solar cells.

  5. Skin Pigmentation Disorders

    Science.gov (United States)

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  6. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  7. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  8. Treatment of tenosynovial giant cell tumor and pigmented villonodular synovitis.

    Science.gov (United States)

    Ravi, Vinod; Wang, Wei-Lien; Lewis, Valerae O

    2011-07-01

    To review recent developments in the molecular pathogenesis of tenosynovial giant cell tumor (TGCT) or pigmented villonodular synovitis (PVNS) and its therapeutic implications. TGCT or PVNS is a benign clonal neoplastic proliferation arising from the synovium characterized by a minor population of intratumoral cells that harbor a recurrent translocation. These cells overexpress CSF1, resulting in recruitment of CSF1R-bearing macrophages that are polyclonal and make up the bulk of the tumor. Inhibition of CSF1R using small molecule inhibitors such as imatinib, nilotinib or sunitinib can result in clinical, radiological and functional improvement in the affected joint. Currently, surgery remains the treatment of choice for patients with TGCT/PVNS. Localized TGCT/PVNS is managed by marginal excision. Recurrences occur in 8-20% of patients and are easily managed by re-excision. Diffuse TGCT/PVNS tends to recur more often (33-50%) and has a much more aggressive clinical course. Patients are often symptomatic and require multiple surgical procedures during their lifetime. For patients with unresectable disease or multiple recurrences, systemic therapy using CSF1R inhibitors may help delay or avoid surgical procedures and improve functional outcomes.

  9. Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius

    Directory of Open Access Journals (Sweden)

    Natalya V. Ageenko

    2011-01-01

    Full Text Available One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks and sulfotransferase (sult gene expression in embryos and larvae of the sea urchin Strongylocentrotus intermedius from various stages of development and in specific tissues of the adults. We observed the highest level of expression of the pks and sult genes at the gastrula stage. In unfertilized eggs, only trace amounts of the pks and sult transcripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of the pks and sult genes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development.

  10. Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution.

    Science.gov (United States)

    Wang, Bo; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong

    2016-08-01

    Growing cell submerged culture is usually applied for fermentative production of intracellular orange Monascus pigments, in which accumulation of Monascus pigments is at least partially associated to cell growth. In the present work, extractive fermentation in a nonionic surfactant micelle aqueous solution was utilized as a strategy for releasing of intracellular Monascus pigments. Those mycelia with low content of intracellular Monascus pigments were utilized as biocatalyst in resting cell submerged culture. By this means, resting cell submerged culture for production of orange Monascus pigments was carried out successfully in the nonionic surfactant micelle aqueous solution, which exhibited some advantages comparing with the corresponding conventional growing cell submerged culture, such as non-sterilization operation, high cell density (24 g/l DCW) leading to high productivity (14 AU of orange Monascus pigments at 470 nm per day), and recycling of cells as biocatalyst leading to high product yield (approximately 1 AU of orange Monascus pigments at 470 nm per gram of glucose) based on energy metabolism.

  11. Nonpigmented Chromobacterium violaceum bacteremic cellulitis after fish bite.

    Science.gov (United States)

    Yang, Ching-Huei

    2011-10-01

    A case of nonpigmented Chromobacterium violaceum bacteremic cellulitis after fish bite in Taiwan is reported. The patient was successfully treated with ciprofloxacin and doxycycline for an extended period. Chromobacterium violaceum should be listed in the differential diagnosis of patients with nonspecific cellulitis associated with marked leukocytosis and rapid progression to septicemia either with or without a distinct history of exposure to water or soil. A combination of prompt diagnosis, optimal antimicrobial therapy, and adequate therapeutic duration for C violaceum infection is the key for successful therapy.

  12. Trafficking of osteonectin by retinal pigment epithelial cells: evidence for basolateral secretion.

    Science.gov (United States)

    Ratnayaka, Arjuna; Paraoan, Luminita; Nelson, Glyn; Spiller, Dave G; White, Michael R H; Hiscott, Paul

    2007-01-01

    Osteonectin is a glycoprotein that modulates several aspects of cellular behaviour including proliferation and adhesion. The retinal pigment epithelium forms a continuous monolayer of polarised cells immediately bellow the neuroretina, and is integral to the homeostasis of photoreceptor cells. While osteonectin is expressed by normal retinal pigment epithelium in situ, its expression is significantly increased in retinal pigment epithelial cells associated with several common retinal diseases. This pattern of expression implies an important role for osteonectin in the biology of retinal pigment epithelial cells. However, the trafficking, processing, and eventual fate of osteonectin in these cells is not clear at present. Although the theoretical report of a leader sequence within the osteonectin open reading frame and its extracellular presence in some tissues indirectly support secretion of the protein, there is no direct experimental demonstration of the secretion route to date. As a first step towards understanding the role of osteonectin in retinal pigment epithelium, we studied the intracellular distribution and trafficking of the protein in living cells. Here, we present experimental evidence that a precursor osteonectin fusion protein is targeted to the endoplasmic reticulum/Golgi pathway, with a likely basal secretion in retinal pigment epithelial cells. In addition, we show that the precursor osteonectin protein having the leader sequence masked fails to undergo secretion leading to cell death, a phenotype which may be of relevance not only for retinal pathology, but also for other diseases such as the bone disorder known as pseudoachondroplasia that is associated with a lack of osteonectin secretion.

  13. Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection.

    Science.gov (United States)

    Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L; Aisen, Phil; Hay, Roderick J; Nosanchuk, Joshua D; Casadevall, Arturo; Hamilton, Andrew J

    2003-07-01

    Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis.

  14. Photocurrent generation by dye-sensitized solar cells using natural pigments.

    Science.gov (United States)

    Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel

    2017-01-01

    The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (Voc ) of 0.72 V in 2 cm(2) , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells.

  15. Puerarin antagonizes peroxyntrite-induced injury in retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Lina Hao; Xudong Zhang; Tao Yang; Junling Ma

    2012-01-01

    A rat model of diabetes mellitus was established by intraperitoneal injection of streptozotocin. Three days later, the rats were intraperitoneally administered 140 mg puerarin/kg daily, for a total of 60 successive days. DNA ladder results showed increased apoptosis over time in retinal pigment epithelial cells from rats with streptozotocin-induced diabetes mellitus. Western blot analysis, Reverse transcription-PCR, immunohistochemistry, and flow cytometry results showed increased expression of 3-nitrotyrosine, a peroxyntrite marker, as well as inducible nitric synthase and Fas/FasL, in retinal pigment epithelial cells. Puerarin reversed these changes, and results demonstrated that puerarin inhibited Fas/FasL expression and alleviated peroxyntrite injury to retinal pigment epithelial cells. These results suggested that puerarin inhibited production of inducible nitric oxide synthase and directly antagonized peroxyntrite injury in retinal pigment epithelial cells.

  16. A HEARTWOOD PIGMENT IN DALBERGIA CELL CULTURES. (R827612E02)

    Science.gov (United States)

    In an extensive survey of the genera Baphia, Caesalpinia, Dalbergia, Haematoxylon, and Pterocarpus, we have identified a number of species whose cell cultures accumulated pigments similar to those in heartwood. Thirteen rosewood (Dalbergia) species produce...

  17. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata).

    Science.gov (United States)

    Kottler, Verena A; Koch, Iris; Flötenmeyer, Matthias; Hashimoto, Hisashi; Weigel, Detlef; Dreyer, Christine

    2014-01-01

    The fitness of male guppies (Poecilia reticulata) highly depends on the size and number of their black, blue, and orange ornaments. Recently, progress has been made regarding the genetic mechanisms underlying male guppy pigment pattern formation, but we still know little about the pigment cell organization within these ornaments. Here, we investigate the pigment cell distribution within the black, blue, and orange trunk spots and selected fin color patterns of guppy males from three genetically divergent strains using transmission electron microscopy. We identified three types of pigment cells and found that at least two of these contribute to each color trait. Further, two pigment cell layers, one in the dermis and the other in the hypodermis, contribute to each trunk spot. The pigment cell organization within the black and orange trunk spots was similar between strains. The presence of iridophores in each of the investigated color traits is consistent with a key role for this pigment cell type in guppy color pattern formation.

  18. In vitro differentiation of retinal pigment epithelium from adult retinal stem cells.

    Science.gov (United States)

    Aruta, Claudia; Giordano, Francesca; De Marzo, Anna; Comitato, Antonella; Raposo, Graça; Nandrot, Emeline F; Marigo, Valeria

    2011-02-01

    One of the limitations in molecular and functional studies of the retinal pigment epithelium (RPE) has been the lack of an in vitro system retaining all the features of in vivo RPE cells. Retinal pigment epithelium cell lines do not show characteristics typical of a functional RPE, such as pigmentation and expression of specific markers. The present study was aimed at the development of culture conditions to differentiate, in vitro, retinal stem cells (RSC), derived from the adult ciliary body, into a functional RPE. Retinal stem cells were purified from murine eyes, grown as pigmented neurospheres and induced to differentiate into RPE on an extracellular matrix substrate using specific culture conditions. After 7-15 days of culture, pigmented cells with an epithelial morphology showed a polarized organization and a capacity for phagocytosis. We detected different stages of melanogenesis in cells at 7 days of differentiation, whereas RPE at 15 days contained only mature melanosomes. These data suggest that our protocol to differentiate RPE in vitro can provide a useful model for molecular and functional studies.

  19. Identification and Profiling of Active Compounds from Golden Apple Snail’s Egg Pigments

    Directory of Open Access Journals (Sweden)

    Asadatun Abdullah

    2017-08-01

    Full Text Available Golden apple snail (Pomacea canaliculata has been known as rice corps pest due to high adaptability and reproductive power. Utilization of Pomacea canaliculata’s eggs as raw materials in the food and health industry is one of the efforts to eradicate the pest snail. This study was aimed to identify the active compounds contained in the extract pigments of Pomacea canaliculata’s eggs. The methods of this study were extraction of pigments using acetone and methanol, analyzing the active compound (secondary metabolite qualitatively, TLC to determine pigment components and LC-MS/MS to identify active compounds semi quantitatively. The results showed that active compounds in the methanol extract contain 11 carotenoid pigments of xanthophyl group, two carotenoid pigments of carotene group, and 2 active compounds in nonpigmented form, whereas the acetone extract contain 11 pigmentcarotenoids of xanthophyl group and 2 compounds active in non-pigment form.

  20. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  1. Adenoma of the nonpigmented ciliary epithelium: an analysis of 5 cases%睫状体无色素上皮腺瘤诊治分析

    Institute of Scientific and Technical Information of China (English)

    刘显勇; 张平; 李永平; 刘荣娇; 林菁; 颜建华

    2015-01-01

    46.0 years).The right eye was affected in 4 cases and the left in 1 case.All 5 patients were admitted to our hospital with chief complaint of decreased vision.Ophthalmic examination showed that a gray-white,sometimes translucent,mass lay behind the iris root and extend to the area of the pupil,the local iris was pushed forward.The mass was relatively rich in vessels.All complicated with lens opacity and 3 cases with lens dislocation.UBM examination demonstrated that the tumor was located in the ciliary body,it was a round or oval,heterogeneous,moderate-or hyperechoic solid mass,the free edge of the tumor was well-defined.Two cases with larger ciliary tumors also had iris cysts in the same eye.B-mode ultrasound examination also revealed a well-demarcated moderate-or hyper-echoic round mass at the anterior segment of eye balls.Histopathological examination showed that the surgical mass had no capsule,microscopically,it consisted of polygonal or spindle-shaped tumor cells,arranged in strip or duct-like,the cytoplasm was lightly stained with no pigment,the nuclear was cylindrical or spindle-shaped and no atypia cells existed in them.Immunohistochemistry staining showed positive for Vimentin,S100,CK,and negative for HMB45.All patients were treated with partial lamellar sclera and ciliary body mass excision.Among them,the two cases with larger tumors were treated with tumor removal combined with vitrectomy.After an average follow-up of 5.5 years,visual acuity in 4 cases were equal to or better than 0.6,1 case had no light perception.All cases had their eyes saved,with no tumor recurrence.Conclusions The adenoma of the non-pigmented ciliary epithelium is a rare clinical entity,UBM can be used for early detection,surgical resection of the local tumor had very good outcome of saving both the eyeball and eye vision.

  2. Aquaporin-1 Expression in Retinal Pigment Epithelial Cells Overlying Retinal Drusen

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten

    2016-01-01

    PURPOSE: In the outer retina, age-related macular degeneration (AMD) results in reduced hydraulic conductivity in Bruch's membrane, possibly leading to altered water transport in retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may express aquaporin-1 (AQP1) to compensate...

  3. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  4. Drosophila DOCK Family Protein Zizimin Involves in Pigment Cell Differentiation in Pupal Retinae.

    Science.gov (United States)

    Ozasa, Fumito; Morishita, Kazushige; Dang, Ngoc Anh Suong; Miyata, Seiji; Yoshida, Hideki; Yamaguchi, Masamitsu

    2017-08-26

    The dedicator of cytokinesis (DOCK) family proteins are known as one of guanine nucleotide exchange factors (GEFs), that contribute to cellular signaling processes by activating small G proteins. Although mammalian Zizimin is known to be a GEF for Cdc42 of Rho family small GTPase, its role in vivo is not well understood. Here we studied in vivo function of Drosophila Zizimin (Ziz). Knockdown of Ziz in eye imaginal discs induced the rough eye phenotype accompanied with fusion of ommatidia, loss of bristles and loss of pigments. Immunostaining analyses revealed that Ziz mainly localizes in the secondary pigment cells (SPCs) and tertiary pigment cells (TPCs) in pupal retinae. Ziz-knockdown induced SPC- and TPC-like cells with aberrant morphology in the pupal retina. Delta (Dl), a downstream target of EGFR signaling is known to regulate pigment cell differentiation. Loss-of-function mutation of Dl suppressed the rough eye phenotype and the defect in differentiation of SPCs and TPCs in Ziz-knockdown flies. Moreover, Ziz-knockdown increased Dl expression level especially in SPCs and TPCs. In addition, mutations of rhomboid-1 and roughoid that are activators of EGFR signaling pathway also suppressed both the rough eye phenotype and the defect in differentiation of SPCs and TPCs in Ziz-knockdown flies. Activation of EGFR signaling in Ziz-knockdown flies were further confirmed by immunostaining with anti-diphospho ERK IgG. These results indicate that Ziz negatively regulates the Dl expression in SPCs and TPCs to control differentiation of pigment cells and this regulation is mediated by EGFR signaling pathway.Key words: Zizimin, DOCK, EGFR signaling pathway, pigment cell, Drosophila.

  5. Ultrastructural characteristic of cells and pigment analysis in floating and submerged leaves of Trapa natans L.

    Directory of Open Access Journals (Sweden)

    Оlena M. Nedukha

    2012-03-01

    Full Text Available The comparative analysis of ultrastructure of the photosynthetic cells and pigment content of Trapa natans in both floating and submerged leaves at vegetative phase were conducted. It has shown that the changes of cell ultrasructure and pigment content in leaves are depended from the location of leaves above or under water surface. It has ascertained that submersion of the leaves under water lead to: 1 increase of thylakoid number in grana; 2 decrease of number of the chloroplasts with starch grains; 3 decrease of the relation between chlorophylls (Chlа/ Chlb and of the sum of chlorophylls (Chlа+ Chlb in comparison with analogical parameters in floating leaves

  6. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells.

    Science.gov (United States)

    Choudhary, Parul; Whiting, Paul John

    2016-09-02

    Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.

  7. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  8. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  9. Derivation of Neural Progenitors and Retinal Pigment Epithelium from Common Marmoset and Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Laughing Bear Torrez

    2012-01-01

    Full Text Available Embryonic and induced pluripotent stem cells (IPSCs derived from mammalian species are valuable tools for modeling human disease, including retinal degenerative eye diseases that result in visual loss. Restoration of vision has focused on transplantation of neural progenitor cells (NPCs and retinal pigmented epithelium (RPE to the retina. Here we used transgenic common marmoset (Callithrix jacchus and human pluripotent stem cells carrying the enhanced green fluorescent protein (eGFP reporter as a model system for retinal differentiation. Using suspension and subsequent adherent differentiation cultures, we observed spontaneous in vitro differentiation that included NPCs and cells with pigment granules characteristic of differentiated RPE. Retinal cells derived from human and common marmoset pluripotent stem cells provide potentially unlimited cell sources for testing safety and immune compatibility following autologous or allogeneic transplantation using nonhuman primates in early translational applications.

  10. Sox5 functions as a fate switch in medaka pigment cell development.

    Directory of Open Access Journals (Sweden)

    Yusuke Nagao

    2014-04-01

    Full Text Available Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores, making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3 mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor.

  11. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited.

    Science.gov (United States)

    Elias, Peter M; Williams, Mary L

    2016-10-01

    The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities. © 2016 Wiley Periodicals, Inc.

  12. Insect Pupil Mechanisms. I. On the Pigment Migration in the Retinula Cells of Hymenoptera (Suborder Apocrita)

    NARCIS (Netherlands)

    Stavenga, D.G.; Kuiper, J.W.

    1977-01-01

    The pupil mechanism of Hymenoptera (suborder Apocrita) has been studied by simultaneous recordings of transmission and reflection from the compound eye of virtually intact animals. It is confirmed that the light flux in the photoreceptors is controlled by pigment granules in the retinula cells; the

  13. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma.

    NARCIS (Netherlands)

    Gudbjartsson, D.F.; Sulem, P.; Stacey, S.N.; Goldstein, A.M.; Rafnar, T.; Sigurgeirsson, B.; Benediktsdottir, K.R.; Thorisdottir, K.; Ragnarsson, R.; Sveinsdottir, S.G.; Magnusson, V.; Lindblom, A.; Kostulas, K.; Botella-Estrada, R.; Soriano, V.; Juberias, P.; Grasa, M.; Saez, B.; Andres, R.; Scherer, D.; Rudnai, P.; Gurzau, E.; Koppova, K.; Kiemeney, L.A.L.M.; Jakobsdottir, M.; Steinberg, S.; Helgason, A.; Gretarsdottir, S.; Tucker, M.A.; Mayordomo, J.I.; Nagore, E.; Kumar, R.; Hansson, J.; Olafsson, J.H.; Gulcher, J.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.

    2008-01-01

    Fair color increases risk of cutaneous melanoma (CM) and basal cell carcinoma (BCC). Recent genome-wide association studies have identified variants affecting hair, eye and skin pigmentation in Europeans. Here, we assess the effect of these variants on risk of CM and BCC in European populations

  14. Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters

    Science.gov (United States)

    Roa, Simon; Radhakrishnan, Sivakumar; Manidurai, Paulraj

    2016-05-01

    In this study we used photosynthetic pigments extracted from spinach and purple cabbage for their potential application in dye sensitized solar cells (DSSC). Pigments were extracted by dissolving small amounts of each one of these plant products in methanol and distilled water. The extraction was also done at two different temperatures (70° C and 80° C respectively). This was to assess for the solvent that promotes better extraction of the pigments. A parallel study was also carried out using a mixture of both these dyes in 1:1 ratio. Good absorption, about 60% to 80% was obtained for spinach pigments diluted in methanol in the visible range between 400-480nm, and between 9% to 15% for purple cabbage pigments in the wavelength range between 480-630 nm when extracted using distilled water at 80°C. In contrast, the diluted mixture in methanol shows good absorption of 20% and 32% for wavelengths in the range 400-480nm. Solar cells sensitized using these natural dyes were studied for their photovoltaic properties by measuring current-voltage behavior. Efficiencies ranging from 0.011% to 0.0719% were observed. Mixture of spinach & purple cabbage pigments extracted using methanol was found to have the highest efficiency of 0.0719%.

  15. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula.

    Science.gov (United States)

    Prados-Rosales, Rafael; Toriola, Stacy; Nakouzi, Antonio; Chatterjee, Subhasish; Stark, Ruth; Gerfen, Gary; Tumpowsky, Paul; Dadachova, Ekaterina; Casadevall, Arturo

    2015-08-26

    Many of the most widely consumed edible mushrooms are pigmented, and these have been associated with some beneficial health effects. Nevertheless, the majority of the reported compounds associated with these desirable properties are non-pigmented. We have previously reported that melanin pigment from the edible mushroom Auricularia auricula can protect mice against ionizing radiation, although no physicochemical characterization was reported. Consequently, in this study we have characterized commercial A. auricula mushroom preparations for melanin content and carried out structural characterization of isolated insoluble melanin materials using a panel of sophisticated spectroscopic and physical/imaging techniques. Our results show that approximately 10% of the dry mass of A. auricula is melanin and that the pigment has physicochemical properties consistent with those of eumelanins, including hosting a stable free radical population. Electron microscopy studies show that melanin is associated with the mushroom cell wall in a manner similar to that of melanin from the model fungus C. neoformans. Elemental analysis of melanin indicated C, H, and N ratios consistent with 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and 1,8-dihydroxynaphthalene eumelanin. Validation of the identity of the isolated product as melanin was achieved by EPR analysis. A. auricula melanin manifested structural differences, relative to the C. neoformans melanin, with regard to the variable proportions of alkyl chains or oxygenated carbons. Given the necessity for new oral and inexpensive radioprotective materials coupled with the commercial availability of A. auricula mushrooms, this product may represent an excellent source of edible melanin.

  16. Dermatoscopy-guided therapy of pigmented basal cell carcinoma with imiquimod*

    Science.gov (United States)

    Husein-ElAhmed, Husein; Fernandez-Pugnaire, Maria Antonia

    2016-01-01

    BACKGROUND Dermatoscopy is a non-invasive diagnostic tool used to examine skin lesions with an optical magnification. It has been suggested as a useful tool for monitoring therapeutic response in lentigo maligna patients treated with imiquimod. OBJECTIVE To examine the accuracy of dermatoscopy as a tool to monitor the therapeutic response of pigmented basal cell carcinoma treated with imiquimod. METHOD The authors designed a prospective study. Patients with pigmented basal cell carcinoma were included and data regarding the dermatoscopy features were collected following the Menzies criteria, prior to initiating the imiquimod treatment. Subsequent dermatoscopic evaluations were performed at weeks 4 and 8, following imiquimod discontinuation. RESULTS Twenty lesions were included. The most common pigmented dermatoscopy features were large blue-grey ovoid nests (80%), followed by blue-grey globules (50%) and leaf-like areas (30%). No spoke wheel areas were observed. In 17 out of 20 patients, a response was noted during the first evaluation at 4 weeks, while the clearance was noted at the second check-up after 8 weeks. In two patients, the clearance was found at the initial evaluation at 4 weeks, while in one patient, the response remained unchanged. Blue-grey globules were the fastest to exhibit clearance (50% at week 4), followed by leaf-like areas (15%) and large blue-grey ovoid nests (6.25%). CONCLUSION According to our results, dermatoscopic evaluation enhances the accuracy in the assessment of the clinical response to imiquimod in pigmented basal cell carcinoma. PMID:28099598

  17. Primary Adult Human Retinal Pigment Epithelial Cell Cultures on Human Amniotic Membranes

    Directory of Open Access Journals (Sweden)

    Singhal Shweta

    2005-01-01

    Full Text Available Purpose: Retinal pigment epithelial (RPE cells grow well on surfaces that provide an extracellular matrix. Our aim was to establish primary adult human RPE cell cultures that retain their epithelial morphology in vitro using human amniotic membrane (hAM as substrate. Materials and Methods: Human cadaver eyeballs (16 were obtained from the eye bank after corneal trephination. RPE cells were harvested by a mechanical dissection of the inner choroid surface (10, group 1 or by b enzymatic digestion using 0.25% Trypsin/0.02% EDTA (6, group 2. The cells were explanted onto de-epithelialized hAM, nourished using DMEM/HAMS F-12 media and monitored for growth under the phase contrast microscope. Cell cultures were characterised by whole mount studies and paraffin sections. Growth data in the two groups were compared using the students′ ′t′ test. Results: Eleven samples (68.75% showed positive cultures with small, hexagonal cells arising from around the explant which formed a confluent and progressively pigmented monolayer. Whole mounts showed closely placed polygonal cells with heavily pigmented cytoplasm and indistinct nuclei. The histologic sections showed monolayers of cuboidal epithelium with variable pigmentation within the cytoplasm. Growth was seen by day 6-23 (average 11.5 days in the mechanical group, significantly earlier ( P Conclusions: Primary adult human RPE cell cultures retain epithelial morphology in vitro when cultured on human amniotic membranes . Mechanical dissection of the inner choroid surface appears to be an effective method of isolating RPE cells and yields earlier growth in cultures as compared to isolation by enzymatic digestion

  18. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  19. Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells.

    Science.gov (United States)

    Hanus, J; Zhang, H; Wang, Z; Liu, Q; Zhou, Q; Wang, S

    2013-12-12

    Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry

  20. Expression of endothelin receptors in frog, chicken, mouse and human pigment cells.

    Science.gov (United States)

    Scarparo, Ana Cristina; Isoldi, Mauro César; de Lima, Leonardo Henrique Ribeiro Graciani; Visconti, Maria Aparecida; Castrucci, Ana Maria de Lauro

    2007-07-01

    Several reports have shown the participation of vasoactive endothelins (ETs) in the regulation of vertebrate pigment cells. In the present study, we identified ET receptors in pigment cells of vertebrate species by RT-PCR assays, and compared the differential expression of the various subtypes in each species by quantitative PCR. RT-PCR was performed with specific primers for ETC, ETA(X) or ETA in Xenopus laevis melanophores, ETA or ETB(2) in chicken melanocytes, ETA or ETB in murine (B-16, S-91 or Melan-A) or human (SK-Mel 23 or SK-Mel 28) melanoma cells, and the products obtained were confirmed by cloning and sequencing. The results showed the presence of ETA(X), but not ETA mRNA, and confirmed the expression of ETC in X. laevis melanophores. ETA and ETB(2) mRNAs were also demonstrated in chicken melanocytes. ETA and ETB receptor were identified in S-91, B16 and Melan-A murine cells. In human melanoma cells, SK-Mel 23 and SK-Mel 28, we confirmed the presence of ETB mRNA, and also found ETA mRNA. The comparison between the two subtypes present in the pigment cell of each species and among species demonstrated that the expression of ETAs in chicken, mouse, and human melanocytes is negligible, as is the expression of ETA(X) in Xenopus melanophores. The relative expression, as determined by quantitative PCR, was as follows: chicken ETB>SK-Mel 23 ETB>S91 ETB>Xenopus ETC, suggesting that the endothelin system plays a major role in avian and mammalian pigment cell regulation, as compared to lower vertebrates. The phylogenetic analysis revealed that subtype A receptors were probably the most primitive ET receptors, directly deriving from the ancestral type; all the other receptors, B subtypes and C, originated from diverse derivative molecules.

  1. Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis.

    Science.gov (United States)

    McCauley, David W; Hixon, Ernest; Jeffery, William R

    2004-01-01

    Pigmentation and eyes are often lost in cave-adapted animals. Although the mechanisms of eye degeneration are beginning to be understood, little is known about the evolutionary and developmental processes involved in pigment cell regression. In teleost embryos, a population of neural crest cells migrates into the body wall and differentiates into melanophores, xanthophores, and iridophores. All three pigment cell types are present in the eyed surface-dwelling form (surface fish) of the teleost Astyanax mexicanus. However, melanophores are absent or substantially reduced in number in various derived populations of the conspecific blind cave-dwelling form (cavefish). We show here that tyrosinase-positive melanoblasts are present in cavefish. DiI labeling revealed a population of trunk neural crest cells in cavefish embryos that migrate to locations normally occupied by differentiated melanophores. We also discovered a cell population in cavefish embryos and adults resembling melanoblasts in several features, including the ability to synthesize melanin when supplied with the tyrosinase substrate l-dopa. DiI-tyrosinase double-labeling and neural keel explant experiments showed that the tyrosinase-positive cells are derived from the neural crest. The number of melanoblasts varies in different adult cavefish populations relative to the extent of melanophore reduction. Although cavefish melanoblasts can synthesize melanin from exogenous l-dopa, they are unable to convert exogenous l-tyrosine to l-dopa and melanin. We conclude that pigment cell regression in cavefish is mediated by an evolutionary change late in melanogenesis that may involve an impediment in the ability to convert l-tyrosine to l-dopa and melanin.

  2. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata.

    Directory of Open Access Journals (Sweden)

    Verena A Kottler

    Full Text Available The fitness of male guppies (Poecilia reticulata highly depends on the size and number of their black, blue, and orange ornaments. Recently, progress has been made regarding the genetic mechanisms underlying male guppy pigment pattern formation, but we still know little about the pigment cell organization within these ornaments. Here, we investigate the pigment cell distribution within the black, blue, and orange trunk spots and selected fin color patterns of guppy males from three genetically divergent strains using transmission electron microscopy. We identified three types of pigment cells and found that at least two of these contribute to each color trait. Further, two pigment cell layers, one in the dermis and the other in the hypodermis, contribute to each trunk spot. The pigment cell organization within the black and orange trunk spots was similar between strains. The presence of iridophores in each of the investigated color traits is consistent with a key role for this pigment cell type in guppy color pattern formation.

  3. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by ...... of inflammatory ocular diseases such as uveitis and age-related macular degeneration. --------------------------------------------------------------------------------...

  4. Establishment of a blue light damage model of human retinal pigment epithelial cells in vitro.

    Science.gov (United States)

    Su, G; Cai, S J; Gong, X; Wang, L L; Li, H H; Wang, L M

    2016-06-24

    To establish a blue-light damage model of human retinal pigment epithelium (RPE). Fourth-generation human RPE cells were randomly divided into two groups. In group A, cells were exposed to blue light (2000 ± 500 lux) for 0 (control), 3, 6, 9, and 12 h, and cell culture was stopped after 12 h. In group B, cells were exposed to blue light at the same intensity and time periods, but cell culture was stopped after 24 h. TdT-mediated dUTP nick-end labeling (TUNEL) assay was performed to determine the most suitable illuminating time with apoptotic index. Flow cytometry was used to determine apoptotic ratio of RPEs. In group A, the apoptotic index of cells that received 6, 9 and 12 h of blue light was higher than that of control. The apoptotic index of cells receiving 9 and 12 h was higher than that of 6 h (P = 0.000). In group B, the apoptotic index and RPE cell apoptosis ratio of cells exposed to 6, 9 and 12 h of blue light were higher than that of 3 h (P = 0.000); and cells receiving 9 and 12 h had higher values than that of 6 h. This study demonstrated that the best conditions to establish a blue light damage model of human retinal pigment epithelial cells in vitro are 2000 ± 500 lux light intensity for 6 h, with 24 h of cell culture post-exposure.

  5. Exploiting the Autofluorescent Properties of Photosynthetic Pigments for Analysis of Pigmentation and Morphology in Live Fremyella diplosiphon Cells

    Directory of Open Access Journals (Sweden)

    Juliana R. Bordowitz

    2010-07-01

    Full Text Available Fremyella diplosiphon is a freshwater, filamentous cyanobacterium that exhibits light-dependent regulation of photosynthetic pigment accumulation and cellular and filament morphologies in a well-known process known as complementary chromatic adaptation (CCA. One of the techniques used to investigate the molecular bases of distinct aspects of CCA is confocal laser scanning microscopy (CLSM. CLSM capitalizes on the autofluorescent properties of cyanobacterial phycobiliproteins and chlorophyll a. We employed CLSM to perform spectral scanning analyses of F. diplosiphon strains grown under distinct light conditions. We report optimized utilization of CLSM to elucidate the molecular basis of the photoregulation of pigment accumulation and morphological responses in F. diplosiphon.

  6. Human Bone Marrow Stromal Cells can Differentiate to a Retinal Pigment Epithelial Phenotype when Co-Cultured with Pig Retinal Pigment Epithelium using a Transwell System

    Directory of Open Access Journals (Sweden)

    Ping Duan

    2013-05-01

    Full Text Available Background: There is an increasing interest in generating retinal pigment epithelial (RPE cells from stem cells for therapy against degenerative eye diseases. Human bone marrow stromal cells (hBMSCs can be induced to express retinal neuron-specific markers when co-cultured with retinal neurons, however, whether hBMSCs can differentiate into RPE-like cells in a co-culture system has not been clarified. Methods: The induction of hBMSCs into RPE-like cells was performed by combining hBMSCs and pig RPE cells in a transwell system. The biomarkers of hBMSCs-derived RPE cells were determined by quantitative RT-PCR and immunofluorescence. The function of induced cells was assayed by ELISA for secretion of neurotrophic factors. Results: Intracellular pigment granules and many RPE markers existed in hBMSCs-derived RPE cells after co-culturing with pig RPE cells for 14 days. Typical RPE functions, such as phagocytosis of photoreceptor outer segments and secretion of the trophic factors, brain-derived neurotrophic factor (BDNF and glia-derived neurotrophic factor (GDNF, were observed in these induced cells. Conclusion: hBMSCs can be induced toward functional RPE cells simply by transwell-based co-culture with RPE cells.

  7. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  8. Biological Role of Pigment Production for the Bacterial Phytopathogen Pantoea stewartii subsp. stewartii

    OpenAIRE

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M. Caroline

    2012-01-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contribute...

  9. Natural Pigment-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    A.R. Hernández-Martínez

    2012-03-01

    Full Text Available The performance of dye-sensitized solar cells (DSSC based on natural dyes extracted from five different sources is reported. These are inexpensive, have no nutritional use, and are easy to find in Mexico. The solar cells were assembled using a thin film and a TiO2 mesoporous film on ITO-coated glass; these films were characterized by FTIR. The extracts were characterized using UV–Vis and typical I-V curves were obtained for the cells. The best performance was for Punica Granatum with a solar energy conversion efficiency of 1.86%, with a current density Jsc of 3.341 mA/cm2using an incident irradiation of 100 mW/cm2 at 25 ºC.

  10. Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells.

    Science.gov (United States)

    Vogt, Rhonda R; Unda, Richard; Yeh, Lee-Chuan C; Vidro, Eileen K; Lee, John C; Tsin, Andrew T

    2006-08-01

    Retinal pigment epithelial (RPE) cells secrete vascular endothelial growth factor (VEGF), a cytokine known to promote angiogenesis. Results from RNase protection assays (RPAs) show that RPE from non-diabetic human donors and from adult retinal pigment epithelium-19 (ARPE-19) cells expressed significant bone morphogenetic protein-4 (BMP-4) message. In addition, ARPE-19 cells cultured in high glucose (25 mM), compared to those in physiological glucose (5.5 mM) released significantly more BMP-4 into the conditioned media (CM). However, the effect of BMP-4 on the release of VEGF by ARPE-19 cells has not been studied. Accordingly, ARPE-19 cells were treated with BMP-4 to determine VEGF secretion. BMP-4 and VEGF levels in the CM and cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). Cells treated with exogenous BMP-4 had higher VEGF in the CM and this treatment effect was dose- and time-dependent, while cell lysates had low levels of VEGF. Addition of cycloheximide (CHX) or actinomycin-D (ACT) significantly reduced VEGF secretion from cells treated with BMP-4, suggesting that the BMP-4-induced secretion of VEGF requires new RNA and protein synthesis. Our results suggest that BMP-4 may play a role in the regulation of ocular angiogenesis associated with diabetic retinopathy (DR) by stimulating VEGF release from RPE cells.

  11. Blockage of Notch Signaling Inhibits the Migration and Proliferation of Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2013-01-01

    Full Text Available The Notch signaling is an evolutionarily conserved cell-cell communication pathway that plays critical roles in the proliferation, survival, apoptosis, and fate determination of mammalian cells. Retinal pigment epithelial (RPE cells are responsible for supporting the function of the neural retina and maintaining vision. This study investigated the function of Notch signaling in RPE cells. We found that the members of the Notch signaling pathway components were differentially expressed in RPE cells. Furthermore, blockage of Notch signaling inhibited the migration and proliferation of RPE cells and reduced the expression levels of certain Notch signaling target genes, including HES1, MYC, HEY2, and SOX9. Our data reveal a critical role of Notch signaling in RPE cells, suggesting that targeting Notch signaling may provide a novel approach for the treatment of ophthalmic diseases related to RPE cells.

  12. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink.

    Science.gov (United States)

    Sepehri, Mitra; Sejersen, Tobias; Qvortrup, Klaus; Lerche, Catharina M; Serup, Jørgen

    2017-01-01

    Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace tattoo pigments in internal organs in mice extensively tattooed with 2 different tattoo ink products. Three groups of mice were studied, i.e., 10 tattooed black, 10 tattooed red, and 5 untreated controls. They were tattooed on the entire back with commercial tattoo inks, black and red. Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). TEM identified intracellular tattoo pigments in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs. The study demonstrated black and red tattoo pigment deposits in the liver; thus, tattoo pigment distributed from the tattooed skin via the blood stream to this important organ of detoxification. The finding adds a new dimension to tattoo pigment distribution in the body, i.e., as observed via the blood in addition to the lymphatic pathway. © 2017 S. Karger AG, Basel.

  13. Photosynthetic pigments, cell extrusion and relative leaf water content of the castor bean under silicon and salinity

    National Research Council Canada - National Science Library

    Ferraz, Rener L. de S; Magalhães, Ivomberg D; Beltrão, Napoleão E. de M; Melo, Alberto S. de; Brito Neto, Jósé F. de; Rocha, Maria do S

    2015-01-01

    .... Thus, this study aimed to evaluate the contents of photosynthetic pigments, cell membrane extrusion and the relative water content in the leaves of the castor bean cultivar 'BRS Energia' under...

  14. A rare case of extensive diffuse nonpigmented villonodular synovitis as a cause of total knee arthroplasty failure.

    Science.gov (United States)

    Tosun, Hacı Bayram; Uludağ, Abuzer; Serbest, Sancar; Gümüştaş, Seyitali; Erdoğdu, Ibrahim Halil

    2014-01-01

    Nonpigmented villonodular synovitis (non-PVNS) is a benign proliferative disease involving the synovium. It is a rare condition that is little recognized. Non-PVNS has been reported as a cause of total knee replacement failure. We report a case of extensive diffuse non-PVNS in a patient with tibial component loosening after total knee replacement and review the related literature. It is reported that pigmented villonodular synovitis (PVNS) occurs less frequently than non-PVNS after knee replacement. However, there are many more case reports of PVNS than non-PVNS after knee arthroplasty in the English-language literature. Previously, there were no reported cases of extensive diffuse non-PVNS after total knee arthroplasty (TKA). This case study highlights an unusual case of non-PVNS as a cause of TKA failure. We propose that non-PVNS should be considered as a differential diagnosis in patients after TKA who present with recurrent pain and effusion/hemarthrosis of the knee, and that it is one of the causes of implant loosening after TKA. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stressinduced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lian; Liu; Wei; Lao; Qing-Shan; Ji; Zhi-Hao; Yang; Guo-Cheng; Yu; Jing-Xiang; Zhong

    2015-01-01

    AIM: To investigate the protective effect and its mechanism of lycium barbarum polysaccharides(LBP)against oxidative stress-induced apoptosis in human retinal pigment epithelial cells.METHODS: ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8(CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction(RT-PCR) technique.RSULTS: LBP significantly reduced the H2O2-induced ARPE-19 cells’ apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax.CONCLUSION: LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP.

  16. Controlling gene expression in mice with tetracycline: application in pigment cell research.

    Science.gov (United States)

    Shin, M K

    2000-10-01

    Genetic manipulation techniques are widely used in mice to study the functions of genes. The most common strategy for assessing in vivo function involves making irreversible changes in the genome by homologous recombination. To complement this approach, a number of systems have been developed that allow specific and controlled expression of a gene. One of the more versatile and promising systems is based on the tetracycline (tet) responsive bacterial tetracycline repressor (TetR). In recent years, the tet system has proven to be a valuable method for understanding the function of genes involved in a number of physiological processes, including mouse models for human diseases such as cancer and neurological and pigment disorders. This review will highlight the power and elegance of the tet system by focusing on its utility in the study of two pigment cell-related biological problems, the pathogenesis of melanomas and melanocyte development in the embryo.

  17. Interaction of minoxidil with pigment in cells of the hair follicle: an example of binding without apparent biological effects.

    Science.gov (United States)

    Buhl, A E; Kawabe, T T; MacCallum, D K; Waldon, D J; Knight, K A; Johnson, G A

    1992-01-01

    To identify minoxidil target cells in hair follicles we followed the uptake of radiolabeled drug in mouse vibrissae follicles both in vitro and in vivo. Autoradiography showed that both 3H-minoxidil and 3H-minoxidil sulfate accumulated in the differentiating epithelial matrix cells superior to the dermal papilla, a distribution similar to that of pigment. Minoxidil localized in melanocytes, melanocyte processes, and areas of greater melanin concentrations within the epithelial cells. Although uptake of minoxidil was significantly less in unpigmented follicles, the drug stimulated proliferation and differentiation of both pigmented and unpigmented follicles. Labeled minoxidil bound to Sepia melanin and was displaced with unlabeled minoxidil and other electron donor drugs. This interaction with melanin acts as a targeting mechanism of minoxidil to pigmented hair follicles but has no apparent functional significance in hair growth. This work illustrates how measurement of drugs in hair may be biased by pigmentation.

  18. Effects of PDTC on the Proliferation and PCNA Expression of Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    HU Jun; LI Guigang

    2006-01-01

    To investigate the effects of pyrrolidine dithiocarbamate (PDTC) on the proliferation and PCNA (proliferating cell nuclear antigen) expression of cultured human retinal pigment epithelium cells, human retinal pigment epithelium cells (RPE) were cultured from normal adults who died accidentally. The effects of PDTC on the proliferation of RPE cells were examined by using methyl thiazlyl tetrazolium (MTT) assay. The effects of PDTC on the PCNA expression of RPE cells were immunohistochemically examined by employing biological image analysis system (BIAS). After treatment with PDTC of various of concentration ranging from 0.062 to 1 g/L for 24 h, or concentrations ranging from 0. 031 to 1 g/L, the proliferation of RPE cells decreased in a dose-dependent manner. After treatment with PDTC of concentration varying from 0. 062 to 1 g/L for 24 h, the PCNA expression was also suppressed in a dose-dependent manner. It is concluded that PDTC can inhibit the proliferation of RPE cells in vitro in a dose-and time-dependent manner, at least in part,by down-regulating the expression of PCNA. PDTC may be used to prevent and treat the proliferative vitreoretinopathy (PVR).

  19. Evaluation of ultraviolet light toxicity on cultured retinal pigment epithelial and retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Sankarathi Balaiya

    2010-01-01

    Full Text Available Sankarathi Balaiya, Ravi K Murthy, Vikram S Brar, Kakarla V ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: Our study is aimed at evaluating the role of UVB light in inducing cytotoxicity in an in vitro model.Methods: RGC-5 and ARPE-19 cells were exposed to different time periods of UVB light: 0, 15, 30, and 45 min. They were subsequently examined for changes in cell morphology, cell viability (neutral red uptake assay, generation of reactive oxygen species (ROS, expression of bax, bcl-2 and cytochome C by reverse transcriptase polymerase chain reaction and western blot, respectively.Results: Dose-dependent reduction in cell viability to UVB light was demonstrated with parallel increase in ROS. Increased duration of exposure (>15 minutes, was associated with increased expression of bax and cytochrome C, and absence of bcl-2 expression.Conclusion: UVB light exposure results in cell cytotoxicity. The concomitant generation of ROS and expression of apoptotic markers suggests the role of oxidative stress in UVB-mediated apoptosis in an in vitro model of retinal ganglion and pigment epithelial cells.Keywords: ultraviolet light, retinal pigment epithelium, retinal ganglion cell, reactive oxygen species, cytochrome C

  20. Modification of Isolation and Culture of Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    ZhengJL; GuoY

    1999-01-01

    Purpose:To modify the isolation of human retinal pigment pithelial(RPE)cells and to increase the purification and production of cultured RPE cells.Methods:The human eyecups were fixed on a fubber holder.After digestion by trypsin,RPE cells were collected,then cultured and identified by morphology,immunohistochemistry and electron microscopy.Results:The cultured RPE cells grew actively in the early stage with transparent nucleus and abundant melanin particles in cytoplasm.These cells were positive in DOPA oxidase reaction and in anti-pancytokeratin antibody staining.Cellular microvilli and tight junctions could be seen through transmission electrom microscopy.Conclusion:We developed a rubber holder to fix the eyecup.Using this holder,more and purer cultured RPE cells can be obtained.These cultured REP cells are similar to those in vivo in morphology and immunohistochemical staining.

  1. Cyclin-dependent kinase inhibitor roscovitine induces cell cycle arrest and apoptosis in rabbit retinal pigment epithelial cells.

    Science.gov (United States)

    Wu, Pei-Chang; Tai, Ming-Hong; Hu, Dan-Ning; Lai, Chien-Hsiung; Chen, Yi-Hao; Wu, Yi-Chen; Tsai, Chia-Ling; Shin, Shyi-Jang; Kuo, Hsi-Kung

    2008-02-01

    Cyclin-dependent kinases (CDKs) play essential roles in the intracellular control of the cell cycle. It has been postulated that roscovitine, a potent CDK2, CDK5, and CDC2 inhibitor, might inhibit cellular proliferation by arresting the cell cycle. This in vitro study investigated the antiproliferative and apoptotic effects of roscovitine in cultured rabbit retinal pigment epithelial (RPE) cells. Experiments using rabbit RPE from young pigmented rabbits were carried out using roscovitine dissolved in dimethylsulfoxide at concentrations ranging from 1 to 100 micromol. Cell proliferation was measured by an MTT assay. The cell cycle response of RPE cells to roscovitine was analyzed by flow cytometry of propidium iodide-stained nuclei. Proteins related to DNA damage in the RPE cells were then assayed by Western blot. Roscovitine inhibited proliferation of RPE cells in a dose-dependent manner. Cell cycle analysis after treatment demonstrated an accumulation of cells arrested in the S- and G2/M phases. Flow cytometry showed that 40 microM of roscovitine increased the cell population in the sub-G1 peak, which is considered a marker of cell death by apoptosis. Western blot analysis revealed Bcl-2 decreased and Bax increased after treatment of RPE cells with roscovitine. This study of the response of RPE cells to roscovitine demonstrated a bidirectional relationship between cell cycle control and apoptosis.

  2. Benign Pigmented Dermal Basal Cell Tumor in a Namibian Cheetah (Acinonyx jubatus

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-01-01

    Full Text Available A 3.5-year-old wild born cheetah (Acinonyx jubatus, living in a large enclosure on a private Namibian farm, developed a large exophytic nodular neoplasm in its skin at the height of the left shoulder blade. We describe the clinical appearance, the surgical removal, and histological examination of the tumor, which was diagnosed as a moderately pigmented benign basal cell tumor. A three-year follow-up showed no evidence of recurrence after the surgery. Although neoplasia is reported in nondomestic felids, only very few concern cheetahs. So far, no case of basal cell tumor was described in this species.

  3. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    Directory of Open Access Journals (Sweden)

    Marius Ueffing

    2012-10-01

    Full Text Available The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS, and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP and retinal pigment epithelium-specific protein 65kDa (RPE65. Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  4. Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E

    Directory of Open Access Journals (Sweden)

    Khandakar A.S.M. Saadat

    2014-01-01

    Full Text Available In this study, we show augmented autophagy in the retinal pigment epithelial cell line ARPE-19 when cultured in the presence of the lipofuscin pigment A2E. A2E alone does not induce RPE cell death, but cell death was induced in the presence of A2E with the autophagy inhibitor 3-methyladenine (3MA, with a concomitant increase in the generation of mitochondrial reactive oxygen species. On the other hand, the ATP production capacity of mitochondria was decreased in the presence of A2E, and pharmacological inhibition of autophagy had no additional effects. The altered mRNA expression level of mitochondrial function markers was confirmed by real-time polymerase chain reaction, which showed that the antioxidant enzymes SOD1 and SOD2 were not reduced in the presence of A2E alone, but significantly suppressed with the addition of 3MA. Furthermore, transmission electron micrography revealed autophagic vacuole formation in the presence of A2E, and inhibition of autophagy resulted in the accumulation of abnormal mitochondria with loss of cristae. Spheroid culture of human RPE cells demonstrated debris accumulation in the presence of A2E, and this accumulation was accelerated in the presence of 3MA. These results indicate that autophagy in RPE cells is a vital cytoprotective process that prevents the accumulation of damaged cellular molecules.

  5. The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells?

    Directory of Open Access Journals (Sweden)

    Shu-Zhen Wang

    2014-01-01

    Full Text Available Recent success in restoring visual function through photoreceptor replacement in mouse models of photoreceptor degeneration intensifies the need to generate or regenerate photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness caused by photoreceptor degeneration. Current research on deriving new photoreceptors for replacement, as regenerative medicine in general, focuses on the use of embryonic stem cells and induced pluripotent stem (iPS cells to generate transplantable cells. Nonetheless, naturally occurring regeneration, such as wound healing, involves awakening cells at or near a wound site to produce new cells needed to heal the wound. Here we discuss the possibility of tweaking an ocular tissue, the retinal pigment epithelium (RPE, to produce photoreceptor cells in situ in the eye. Unlike the neural retina, the RPE in adult mammals maintains cell proliferation capability. Furthermore, progeny cells from RPE proliferation may differentiate into cells other than RPE. The combination of proliferation and plasticity opens a question of whether they could be channeled by a regulatory gene with pro-photoreceptor activity towards photoreceptor production. Studies using embryonic chick and transgenic mouse showed that indeed photoreceptor-like cells were produced in culture and in vivo in the eye using genedirected reprogramming of RPE cells, supporting the feasibility of using the RPE as a convenient source of new photoreceptor cells for in situ retinal repair without involving cell transplantation.

  6. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...... tissue sections, were positive for FasL, indicating a discrepancy between RPE cells in vitro and in vivo with regard to this molecule....

  7. Role of Pigment Epithelium-Derived Factor in Stem/Progenitor Cell-Associated Neovascularization

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2012-01-01

    Full Text Available Pigment epithelium-derived factor (PEDF was first identified in retinal pigment epithelium cells. It is an endogenously produced protein that is widely expressed throughout the human body such as in the eyes, liver, heart, and adipose tissue; it exhibits multiple and varied biological activities. PEDF is a multifunctional protein with antiangiogenic, antitumorigenic, antioxidant, anti-inflammatory, antithrombotic, neurotrophic, and neuroprotective properties. More recently, PEDF has been shown to be the most potent inhibitor of stem/progenitor cell-associated neovascularization. Neovascularization is a complex process regulated by a large, interacting network of molecules from stem/progenitor cells. PEDF is also involved in the pathogenesis of angiogenic eye disease, tumor growth, and cardiovascular disease. Novel antiangiogenic agents with tolerable side effects are desired for the treatment of patients with various diseases. Here, we review the value of PEDF as an important endogenous antiangiogenic molecule; we focus on the recently identified role of PEDF as a possible new target molecule to influence stem/progenitor cell-related neovascularization.

  8. Effect of retinoic acid on proliferation and polyamine metabolism in cultured bovine retinal pigment epithelial cells.

    Science.gov (United States)

    Yasunari, T; Yanagihara, N; Komatsu, T; Moriwaki, M; Shiraki, K; Miki, T; Yano, Y; Otani, S

    1999-01-01

    Reports regarding the effect of all-trans-retinoic acid (RA) on the cell growth of retinal pigment epithelial cells (RPE) have been contradictory. The aims of this study are to clarify the in vitro effect of RA on RPE cells and to examine polyamine metabolism after RA stimulation. A 4-day incubation of fetal-calf-serum (FCS)-stimulated RPE cells with 10 or 25 microM RA significantly increased both cell number and [3H]thymidine incorporation. RPE cells grown over an extended period for 8 days also increased in number and reached full confluency. However, if the incubation was further extended to 12 days, no further increase in cell number was detected. RA treatment of FCS-stimulated RPE cells shifted the peak of ornithine decarboxylase (ODC) activity from 16 to 4 h. S-adenosylmethionine decarboxylase (SAMDC) activity and spermidine/spermine N1-acetyltransferase (SAT) activity of RA-treated RPE cells were significantly greater until 8 and 16 h after incubation, respectively. The putrescine content was significantly increased in RA-treated RPE cells up until 24 h, while spermidine, spermine and N1-acetylspermidine contents were significantly increased until 16 h. Our findings suggest that RA treatment increases the intracellular polyamine concentration of RPE cells via activation of ODC, SAMDC and SAT and that this results in the promotion of RPE cell growth until the cells reach full confluency.

  9. MicroRNA expression profiles of human iPS cells, retinal pigment epithelium derived from iPS, and fetal retinal pigment epithelium.

    Science.gov (United States)

    Greene, Whitney A; Muñiz, Alberto; Plamper, Mark L; Kaini, Ramesh R; Wang, Heuy-Ching

    2014-06-24

    The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.

  10. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  11. Reflectance Confocal Microscopy Criteria of Pigmented Squamous Cell Carcinoma In Situ.

    Science.gov (United States)

    Shahriari, Neda; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2017-08-09

    Pigmented squamous cell carcinoma in situ (pSCCis) is difficult to diagnose based on clinical and dermoscopic examination. Reflectance confocal microscopy (RCM) allows noninvasive differentiation between malignant and benign pigmented skin lesions. We determined the frequency of key RCM features of pSCCis and correlated the RCM criteria with the corresponding dermoscopic and histopathologic criteria. The study included 28 lesions with biopsy-proven diagnosis of pSCCis derived from 28 patients. Clinical, dermoscopic, and RCM images of these lesions were retrospectively analyzed by 3 independent observers. Assessment for the presence of RCM criteria revealed scale or parakeratosis (20/28; 71%); irregular honeycomb pattern in the spinous-granular layer (28/28; 100%); spindle-shaped cells with dendritic branches infiltrating the epidermis (12/28; 43%); edged papillae (24/28; 86%), and dilated looped blood vessels within the papillae (18/28; 64%). Fifty-three percent of the cases displayed at least 4 RCM criteria and 96% of cases displayed at least 3 RCM criteria. We propose that the diagnosis of pSCCis could be established based on 1 major criterion-irregular honeycomb pattern-and 2 of the following minor criteria-scale or parakeratosis, spindle-shaped cells with dendritic branches infiltrating the epidermis, edged papillae, and dilated looped blood vessels within the papillae.

  12. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment.

  13. Biological effects of bacterial pigment undecylprodigiosin on human blood cells treated with atmospheric gas plasma in vitro.

    Science.gov (United States)

    Lazović, Saša; Leskovac, Andreja; Petrović, Sandra; Senerovic, Lidija; Krivokapić, Nevena; Mitrović, Tatjana; Božović, Nikola; Vasić, Vesna; Nikodinovic-Runic, Jasmina

    2017-01-01

    It is known that some bacterial species are more resilient to different kinds of irradiation due to the naturally developed protective mechanisms and compounds such as pigments. On the other hand, reasoned tissue engineering using plasma remains a critical task and requires very precise control of plasma parameters in order to mitigate its potential detrimental effects. Here we isolated a natural protective agent, microbially produced undecylprodigiosin ((5'Z)-4'-methoxy-5'-[(5-undecyl-1H-pyrrol-2-yl)methylene]-1H,5'H-2,2'-bipyrrole), and investigated its effects on human blood cells independently and in combination with plasma. Two approaches were applied; the first, undecylprodigiosin (UP pigment) was added to the blood cultures, which then were exposed to plasma (pre-treatment); and the second- the blood cultures were exposed to plasma and then treated with pigment (post-treatment). The interactions of plasma and UP pigment with blood cells were investigated by conducting a series of biological tests providing the information regarding their genotoxicity, cytotoxicity and redox modulating activities. The exposure of cells to plasma induced oxidative stress as well as certain genotoxic and cytotoxic effects seen as elevated micronuclei incidence, decreased cell proliferation and enhanced apoptosis. In blood cultures treated with UP pigment alone, we found that both cytotoxic and protective effects could be induced depending on the concentration used. The highest UP pigment concentration increased lipid peroxidation and the incidence of micronuclei by more than 70% with maximal suppression of cell proliferation. On the contrary, we found that the lowest UP pigment concentration displayed protective effects. In combined treatments with plasma and UP pigment, we found that UP pigment could provide spatial shielding to plasma exposure. In the pre-treatment approach, the incidence of micronuclei was reduced by 35.52% compared to control while malondialdehyde level

  14. Bystander effects elicited by single-cell photo-oxidative blue-light stimulation in retinal pigment epithelium cell networks

    Science.gov (United States)

    Ishii, Masaaki; Rohrer, Bärbel

    2017-01-01

    ‘Bystander effect’ refers to the induction of biological effects in cells not directly targeted. The retinal pigment epithelium consists of hexagonal cells, forming a monolayer interconnected by gap junctions (GJs). Oxidative stress initiated in an individual cell by photostimulation (488 nm) triggered changes in reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (ψm). The Ca2+ signal was transmitted to neighboring cells slowly and non-uniformly; the ROS signal spread fast and radially. Increased Ca2+ levels were associated with a loss in ψm. GJ blockers prevented the spreading of the Ca2+, but not the ROS-related signal. The GJ-mediated Ca2+ wave was associated with cell death by 24 h, requiring endoplasmic reticulum–mitochondria Ca2+ transfer. Ensuing cell death was correlated with baseline Ca2+ levels, and baseline Ca2+ levels were correlated with pigmentation. Hence, local oxidative stress in a donor cell can trigger changes in certain connected recipient cells, a signal that required GJ communication and an ROS-Ca2+ dual-hit. Finally, damage apparently occurred in susceptible cells, which correlated with baseline Ca2+ levels. PMID:28179989

  15. Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?

    Science.gov (United States)

    Du, M; Wu, M; Fu, D; Yang, S; Chen, J; Wilson, K; Lyons, T J

    2013-10-01

    Blood-retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown. In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavily-oxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5-40 μmol/l) or 4-hydroxynonenal (4-HNE, 5-80 μmol/l), with or without pretreatment with N-HDL or HOG-HDL. ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures. In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.

  16. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death.

    Science.gov (United States)

    Meléndez García, Rodrigo; Arredondo Zamarripa, David; Arnold, Edith; Ruiz-Herrera, Xarubet; Noguez Imm, Ramsés; Baeza Cruz, German; Adán, Norma; Binart, Nadine; Riesgo-Escovar, Juan; Goffin, Vincent; Ordaz, Benito; Peña-Ortega, Fernando; Martínez-Torres, Ataúlfo; Clapp, Carmen; Thebault, Stéphanie

    2016-05-01

    The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.

  17. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death

    Directory of Open Access Journals (Sweden)

    Rodrigo Meléndez García

    2016-05-01

    Full Text Available The identification of pathways necessary for retinal pigment epithelium (RPE function is fundamental to uncover therapies for blindness. Prolactin (PRL receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19 human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2 expression, which inhibits the TRPM2-mediated intracellular Ca2+ rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr−/− mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.

  18. Origins and consequences of hyperosmolar stress in retinal pigmented epithelial cells.

    Science.gov (United States)

    Willermain, François; Libert, Sarah; Motulsky, Elie; Salik, Dany; Caspers, Laure; Perret, Jason; Delporte, Christine

    2014-01-01

    The retinal pigmented epithelium (RPE) is composed of retinal pigmented epithelial cells joined by tight junctions and represents the outer blood-retinal barrier (BRB). The inner BRB is made of endothelial cells joined by tight junctions and glial extensions surrounding all the retinal blood vessels. One of the functions of the RPE is to maintain an osmotic transepithelial gradient created by ionic pumps and channels, avoiding paracellular flux. Under such physiological conditions, transcellular water movement follows the osmotic gradient and flows normally from the retina to the choroid through the RPE. Several diseases, such as diabetic retinopathy, are characterized by the BRB breakdown leading to leakage of solutes, proteins, and fluid from the retina and the choroid. The prevailing hypothesis explaining macular edema formation during diabetic retinopathy incriminates the inner BRB breakdown resulting in increased osmotic pressure leading in turn to massive water accumulation that can affect vision. Under these conditions, it has been hypothesized that RPE is likely to be exposed to hyperosmolar stress at its apical side. This review summarizes the origins and consequences of osmotic stress in the RPE. Ongoing and further research advances will clarify the mechanisms, at the molecular level, involved in the response of the RPE to osmotic stress and delineate potential novel therapeutic targets and tools.

  19. The Anti-Proliferative Effect of Inhibitor of Telomerase on Cultured Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to provide a new method for treating proliferative vitreoretinopathy (PVR), the effects of anti-proliferation and apoptosis induction of inhibitors of telomerase and heat shock protein 90 (Hsp90) on the cultured retinal pigment epithelial (RPE) cells were investigated. The rate of apoptosis cells was measured by using TUNEL on the cultured RPE cells, the co-cultured RPE cells with inhibitor of telomerase (camptothecin) or the co-cultured RPE cells with inhibitor of Hsp90 (geldanamycin). The cell proliferation status was measured in the above three groups by using MTT method. The rate of apoptosis in the RPE cells co-cultured with camptothecin or geldanamycin was increased remarkably (P<0.05). MTT showed the rate of growth inhibition was 8.4 %, 32.3 % and 72.3 % at the concentrations of camptothecin 1 μmol/L, 5 μmol/L, 10 μmol/L, respectively, and 6.5 %, 30.9 %, 71.9 % at the concentrations of geldanamycin 1 μmol/L, 5 μmol/L, 10 μmol/L, respectively. It was concluded that telomerase and Hsp90 can promote the proliferation of the cultured RPE cells, while the inhibitor of them can induce apoptosis and inhibit the growth of the RPE cells.

  20. Unraveling the cellular uptake of bioreducible poly(amido amine) — Gene complexes in cells of the retinal pigment epithelium

    NARCIS (Netherlands)

    Vercauteren, D.; Piest, M.; Soraj, M. Al; Jones, A.T.; Engbersen, J.F.J.; Smedt, de S.C.; Braeckmans, K.

    2010-01-01

    In vitro endocytosis of gene complexes composed of a bioreducible polyamidoamine CBA ABOL and plasmid DNA, in cells of the retinal pigment epithelium (RPE) was studied, the latter being an interesting target for ocular gene therapy. We found that cationic CBA ABOL DNA polyplexes attach to cell surfa

  1. The immune privilege of the eye: human retinal pigment epithelial cells selectively modulate T-cell activation in vitro

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Lovato, Paola; Ødum, Niels

    2005-01-01

    PURPOSE: To examine the effect of human retinal pigment epithelial (RPE) cells on phytohemagglutinin (PHA) activation of T cells. METHODS: Resting peripheral blood lymphocytes (PBLs) were stimulated with PHA with or without the presence of gamma-irradiated RPE cells. Proliferation and the cell...... cycle profile were thereafter investigated by 3H-thymidine incorporation and flow cytometric analysis. In addition, the PBLs expression of CD69, major histocompatibility complex (MHC) class I and II, CD3, as well as the IL-2 receptor chains were evaluated by flow cytometry, and the content of IL-2...... in cell culture supernatant was measured by ELISA. RESULTS: Human RPE cells were found to suppress PHA-induced proliferation, cyclin A, IL-2R-alpha and -gamma, and CD71 expression and decrease the production of IL-2; but RPE cells do not inhibit the PHA-induced expression of early activation markers CD69...

  2. Adenoma of the Nonpigmented Ciliary Body and Iris Epithelium in Mexican Mestizo Patients

    Science.gov (United States)

    Serna-Ojeda, Juan Carlos; Ariza-Camacho, Enrique; Collado-Solórzano, Alberto; Flores-Sánchez, Blanca C.; Rodríguez-Reyes, Abelardo A.; Fulda-Graue, Emiliano

    2015-01-01

    The adenoma of the nonpigmented ciliary epithelium is a benign rare tumor, which may present with different clinical characteristics and requires resection along with histopathologic analysis and the identification of specific immunohistochemical markers for an accurate diagnosis. Here, we report a case series of 4 patients in a Mexican mestizo population with this diagnosis, their clinical features, the ultrasound imaging characteristics and the histopathological and immunohistochemical findings. PMID:27171918

  3. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, Jens Folke; la Cour, Morten

    2003-01-01

    The retinal pigment epithelium (RPE) of the eye transports water and lactate ions in the direction from retina to choroid. The water transport is important in maintenance of retinal adhesion and the transport of lactate ions serves to regulate the lactate levels and pH of the subretinal space....... This study investigates by means of a non-invasive technique the mechanism of coupling between transport of H(+), lactate ion, and water in the monocarboxylate transporter (MCT1) located in the apical (retinal) membrane of a mammalian RPE. Primary cultures of porcine RPE cells were grown to confluence...... using the fluorescent dye BCECF. In lactate-free solutions, mannitol addition to the retinal bath caused intracellular acidification and cell shrinkage, given by a single osmotic water permeability of 1.2+/-0.1 x 10(-4)cmsec(-1) (osmoll(-1))(-1). In solutions containing 50 mmoll(-1) lactate, however...

  4. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M Caroline

    2012-10-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.

  5. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  6. Melanins and melanogenesis: from pigment cells to human health and technological applications.

    Science.gov (United States)

    d'Ischia, Marco; Wakamatsu, Kazumasa; Cicoira, Fabio; Di Mauro, Eduardo; Garcia-Borron, Josè Carlos; Commo, Stephane; Galván, Ismael; Ghanem, Ghanem; Kenzo, Koike; Meredith, Paul; Pezzella, Alessandro; Santato, Clara; Sarna, Tadeusz; Simon, John D; Zecca, Luigi; Zucca, Fabio A; Napolitano, Alessandra; Ito, Shosuke

    2015-09-01

    During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine-based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature. A closer intersectoral interaction between research centers is essential to raise the interests and increase the awareness of the biomedical, biomaterials science and hi-tech sectors of the manifold opportunities offered by pigment cells and related metabolic pathways. Starting from a survey of biological roles and functions, the present review aims at providing an interdisciplinary perspective of melanin pigments and related pathway with a view to showing how it is possible to translate current knowledge about physical and chemical properties and control mechanisms into new bioinspired solutions for biomedical, dermocosmetic, and technological applications.

  7. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation.

    Science.gov (United States)

    Hu, Qirui; Friedrich, Amy M; Johnson, Lincoln V; Clegg, Dennis O

    2010-11-01

    Induced pluripotent stem (iPS) cells have been generated from a variety of somatic cell types via introduction of transcription factors that mediate pluripotency. However, it is unknown that all cell types can be reprogrammed and whether the origin of the parental cell ultimately determines the behavior of the resultant iPS cell line. We sought to determine whether human retinal-pigmented epithelial (RPE) cells could be reprogrammed, and to test the hypothesis that reprogrammed cells retain a "memory" of their origin in terms of propensity for differentiation. We reprogrammed primary fetal RPE cells via lentiviral expression of OCT4, SOX2, LIN28, and Nanog. The iPS cell lines derived from RPE exhibited morphologies similar to human embryonic stem cells and other iPS cell lines, expressed stem cell markers, and formed teratomas-containing derivatives of all three germ layers. To test whether these iPS cells retained epigenetic imprints from the parental RPE cells, we analyzed their propensity for spontaneous differentiation back into RPE after removal of FGF2. We found that some, but not all, iPS lines exhibited a marked preference for redifferentiation into RPE. Our results show that RPE cells can be reprogrammed to pluripotency, and suggest that they often retain a memory of their previous state of differentiation.

  8. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis.

    Science.gov (United States)

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration.

  9. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells.

    Science.gov (United States)

    Said, Toihiri; Tremblay-Mercier, Jennifer; Berrougui, Hicham; Rat, Patrice; Khalil, Abdelouahed

    2013-10-01

    The aim of this study was to investigate the effect of vegetable oil enrichment of retinal pigment epithelial (RPE) cells on their biochemical and biophysical properties. For this, RPE cells were incubated with 4 different vegetables oils (olive oil, corn oil, argan oil, and camelina oil). The cytotoxicity of these vegetable oils was assessed in vivo on 8-week-old mice and in vitro by using the neutral red and YO-PRO-1 tests. Membrane fluidity was evaluated by fluorescence anisotropy using the fluorescent probe diphenylhexatriene, and membrane fatty acid composition was assessed by gas chromatography. None of the oils tested displayed cytotoxic effects. In vitro, omega-3 rich oils improved membrane fluidity by 47% compared with the control cells. The omega-3 PUFA content within membranes decreased by 38% to 55% when cells were incubated separately with olive oil, corn oil, or argan oil, and increased when cells were incubated with a mixture of those oils, or with camelina oil alone (50% and 103% increase, respectively). Our results show that the fatty acids in vegetable oil incorporate into retinal cells and increase the plasma membrane fluidity.

  10. Superantigen presentation by human retinal pigment epithelial cells to T cells is dependent on CD2-CD58 and CD18-CD54 molecule interactions

    DEFF Research Database (Denmark)

    Jørgensen, A; Junker, N; Kaestel, C G

    2001-01-01

    Human retinal pigment epithelial (RPE) cells are capable of presenting bacterial superantigens (SAg) to T cells in vitro by ligation of MHC class II molecules on RPE cells with the T cell receptor. The purpose of this study was to evaluate the involvement of adhesion molecules in presentation...

  11. Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells.

    Science.gov (United States)

    Bose, Karthikeyan; Lakshminarasimhan, Harini; Sundar, Krishnan; Kathiresan, Thandavarayan

    2016-11-01

    The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.

  12. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation.

    Directory of Open Access Journals (Sweden)

    Erine H Budi

    2011-05-01

    Full Text Available The pigment cells of vertebrates serve a variety of functions and generate a stunning variety of patterns. These cells are also implicated in human pathologies including melanoma. Whereas the events of pigment cell development have been studied extensively in the embryo, much less is known about morphogenesis and differentiation of these cells during post-embryonic stages. Previous studies of zebrafish revealed genetically distinct populations of embryonic and adult melanophores, the ectotherm homologue of amniote melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging, mutational analyses, and transgenesis to identify peripheral nerves as a niche for precursors to adult melanophores that subsequently migrate to the skin to form the adult pigment pattern. We further identify genetic requirements for establishing, maintaining, and recruiting precursors to the adult melanophore lineage and demonstrate novel compensatory behaviors during pattern regulation in mutant backgrounds. Finally, we show that distinct populations of latent precursors having differential regenerative capabilities persist into the adult. These findings provide a foundation for future studies of post-embryonic pigment cell precursors in development, evolution, and neoplasia.

  13. Incorporation of codeine and metabolites into hair. Role of pigmentation.

    Science.gov (United States)

    Gygi, S P; Joseph, R E; Cone, E J; Wilkins, D G; Rollins, D E

    1996-04-01

    Xenobiotics circulating in the blood may become incorporated into growing hair. Melanin has affinity for many pharmacologically unrelated drugs and is responsible for the pigmentation in hair. To assess the role of pigmentation in the incorporation of drugs into hair, the distribution of codeine and its metabolites was studied in Sprague-Dawley (SD; white nonpigmented hair), Dark Agouti (DA; brown pigmented hair), and hooded Long-Evans (LE; both black pigmented and white nonpigmented hair) rats. Codeine was administered at a dose of 40 mg/kg/day i.p. for 5 days. Fourteen days after beginning the dosing protocol, hair was collected and analyzed for codeine, and its metabolite, morphine, by positive-ion chemical ionization GC/ion-trap MS. The plasma pharmacokinetics for codeine and morphine were also determined after a single 40 mg/kg injection (equivalent to first dose in 5-day dosing protocol) in all three strains of rats. Hair and plasma codeine and morphine concentrations were also determined after acid hydrolysis to evaluate the presence of glucuronide metabolites. Codeine concentrations in the hair of SD, DA, and pigmented LE hair were 0.98 +/- 0.10, 5.99 +/- 1.24, and 111.93 +/- 18.69 ng/mg hair, respectively; morphine concentrations were 0.34 +/- 0.04, 0.51 +/- 0.11, and 14.46 +/- 1.81 ng/mg hair, respectively; morphine glucuronide concentrations were 0.67 +/- 0.08, 1.04 +/- 0.37, and 13.80 +/- 3.60 ng/mg hair, respectively. Studies examining the in vitro binding of [3H] codeine and [3H]morphine to hair demonstrated both specific and nonspecific binding sites for codeine and morphine. Pigmented hair from LE rats possessed the greatest number of binding sites, white hair from SD rats contained the least, and brown hair from DA rats was intermediate. A time course study of codeine and its metabolites showed pigment-mediated differences in incorporation of codeine and metabolites within a few hours of drug administration. These data indicate that pigmented hair

  14. Screening and Extraction of Plant Pigments and Fabrication of Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Gaanappriya Mohan

    2016-12-01

    Full Text Available Photovoltaic devices are constructed on the concept of charge separation at an interface of two different materials with different conduction mechanism. Till date, this area of research has been dominated by solid-state junction devices that are usually made of silicon, and profiting from the experience and material availability resulting from the semiconductor industry. In the present study, research is undertaken to unravel the typical coloring pigments from a variety of plant species that can be used for photochemical conversion of the solar energy. Eleven plants’ samples were taken for the screening procedure. Spectrophotometrial analyses were carried out for all the natural dyes extracted. Based on the absorption spectra two dyes were found to be possessing absorption spectra of the permissible range. These two samples were used for the assemblages of Dye Sensitized Solar Cells(DSSC. The photovoltaic characters were analyzed. The Conversion efficiency is reported and discussed.

  15. The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Dasari Bhanu

    2010-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD and age-related macular degeneration (AMD share several pathological features including β-amyloid (Aβ peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD. Methods ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER stress markers, Ca2+ homeostasis, glutathione depletion, reactive oxygen species (ROS generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays. Results 27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP, reduced mitochondrial membrane potential, triggered Ca2+ dyshomeostasis, increased levels of the nuclear factor κB (NFκB and heme-oxygenase 1 (HO-1, two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death. Conclusions The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for

  16. Aliskiren inhibits the renin-angiotensin system in retinal pigment epithelium cells.

    Science.gov (United States)

    Simão, Sónia; Santos, Daniela F; Silva, Gabriela A

    2016-09-20

    Observations of increased angiotensin II levels and activation of the (pro)renin receptor in retinopathies support the role of ocular renin-angiotensin system (RAS) in the development of retinal diseases. While targeting RAS presents significant therapeutic potential, current RAS-based therapies are ineffective halting the progression of these diseases. A new class of drugs, the direct renin inhibitors such as aliskiren, is a potential therapeutic alternative. However, it is unclear how aliskiren acts in the retina, in particular in the retinal pigment epithelium (RPE), the structure responsible for the maintenance of retinal homeostasis whose role is deeply compromised in retinal diseases. We firstly analyzed the expression and activity of the main RAS components in RPE cells. Time- and concentration-dependent treatments with aliskiren were performed to modulate different pathways of the RAS in RPE cells. Our data demonstrate that RPE cells express the main RAS constituents. Exposure of RPE cells to aliskiren inhibited the activity of renin and consequently decreased the levels of angiotensin II. Additionally, aliskiren reduced the translocation of the (pro)renin receptor to the cellular membrane of RPE cells preventing the activation of ERK1/2. Our findings of the RPE well-defined RAS, together with the demonstration that aliskiren effectively blocks this system at different steps of the cascade, suggest that aliskiren might be an alternative and successful drug in preventing the deleterious effects derived from the overactivation of the RAS, known to contribute to the pathogenesis of different retinal diseases.

  17. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  18. PRODUKSI PIGMEN ANGKAK OLEH MONACUS [Production of Angkak Pigments by (Monascus

    Directory of Open Access Journals (Sweden)

    K H Timotius

    2004-04-01

    Full Text Available Monascus is one of the important molds for producing food colorants. Monascus produces non polar, semi polar, as well as polar food colorants and brown, red or yellow poliketide pigments. The production is usually done under solid state system, but various submerged system have been develop. Immobilized system showed prospective results. The pigments production is influenced by the availability of carbon and nitrogen sources, humidity, temperature, pH, and aeration. Poliketide pigments are used as food colorant in animal products, beverages, yoghurt, nata de coco, and daily home cooking practices. The stability of the pigments is influenced by temperature (various heating treatments, pH (acidity, oxygen, water activity, and light. Beside pigments, Monascus also produces various non-pigment metabolites, such as citrinin (a nephrotoxic agent, lavostatin (a hypocholesteremic agent, a monascidin (an antibacterial agent.

  19. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    Science.gov (United States)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  20. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  1. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors

    Directory of Open Access Journals (Sweden)

    Sunao Sugita

    2016-10-01

    Full Text Available Allografts of retinal pigment epithelial (RPE cells have been considered for the treatment of ocular diseases. We recently started the transplantation of induced pluripotent stem cell (iPSC-derived RPE cells for patients with age-related macular degeneration (autogenic grafts. However, there are at least two problems with this approach: (1 high cost, and (2 uselessness for acute patients. To resolve these issues, we established RPE cells from induced iPSCs in HLA homozygote donors. In vitro, human T cells directly recognized allogeneic iPSC-derived RPE cells that expressed HLA class I/II antigens. However, these T cells failed to respond to HLA-A, -B, and -DRB1-matched iPSC-derived RPE cells from HLA homozygous donors. Because of the lack of T cell response to iPSC-derived RPE cells from HLA homozygous donors, we can use these allogeneic iPSC-derived RPE cells in future clinical trials if the recipient and donor are HLA matched.

  2. Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture.

    Science.gov (United States)

    Miura, Yoko; Klettner, Alexa; Noelle, Bernhard; Hasselbach, Heike; Roider, Johann

    2010-01-01

    To evaluate the changes of morphological and functional characteristics of the retinal pigment epithelium (RPE)-choroid perfusion culture during cultivation. PorcineRPE-choroid tissue was cultivated in a perfusion tissue culture system. After the indicated times, histology, immunolocalization of collagen IV and von Willebrand factor, RPE cell viability with calcein-AM, TUNEL assay and occludin immunolocalization of RPE cells were examined. The tissue was treated with selective RPE treatment laser after different time periods and the wound healing response was characterized. Vascular endothelial growth factor secretion was measured by enzyme-linked immunosorbent assay. On day 8, prominent morphological degenerative changes of RPE cells were observed in histology. According to the immunohistochemistry for collagen IV, the Bruch's membrane did not display any obvious decomposition until day 8. Von Willebrand factor staining decreased during cultivation, especially at the choriocapillaris. Calcein-AM staining and TUNEL assay displayed the increase of apoptotic changes in only a minority of the cells on day 4, but in many cells on day 8. Occludin delocalization was observed on day 8. Selective RPE treatment laser-produced wounds were completely closed by monolayer RPE when wounded on fresh and 3-day-old cultures, but not when wounded on 6-day-old cultures. Vascular endothelial growth factor secretion was stable between days 2 and 5, but increased after that. Under the stated culture perfusion conditions, porcine RPE-choroid tissue was suitable for experimentation up to 5 days of maintenance. Copyright 2009 S. Karger AG, Basel.

  3. Distribution and ultrastructure of pigment cells in the skins of normal and albino adult turbot, Scophthalmus Maximus

    Institute of Scientific and Technical Information of China (English)

    GUO Huarong; HUANG Bing; QI Fei; ZHANG Shicui

    2007-01-01

    The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what environmental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.

  4. Optical coherence tomography in clinical examinations of nonpigmented skin malignancies

    Science.gov (United States)

    Jensen, Laura K.; Thrane, Lars; Andersen, Peter E.; Tycho, Andreas; Pedersen, Finn; Andersson-Engels, Stefan; Bendsoe, Niels; Svanberg, Sune; Svanberg, Katarina

    2003-10-01

    Optical coherence tomography (OCT) images of basal cell carcinomas (BCCs) have been acquired using a compact handheld proble with an integrated video camera allowing the OCT images to be correlated to a skin surface image. In general the healthy tissue of the skin has an obvious stratified structure, whereas the cancerous tissue shows a more homogeneous structure. Thus it was demonstrated that it is possible to distinguish BCCs from healthy tissue by means of OCT. Furthermore different histological types of BCC were identified. Comparison of OCT images taken prior to and immediately after photodynamic theory clearly shows the tissue response to the treatment, and indicates local oedema in the treated area.

  5. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  6. Lectin from Agaricus Bisporus Suppresses Akt Phosphorylation and Arrests Cell Cycle Progression in Primary Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Y. H. Cheung

    2011-05-01

    Full Text Available Anomalous retinal pigment epithelial (RPE cells have been implicated in the development of retinal diseases. Lectin from the edible mushroom Agaricus bisporus (ABL was found to inhibit growth of RPE cells. To elucidate the mechanism through which ABL inhibits RPE cell proliferation, we investigated the changes in cell proliferation-related signaling pathways and cell cycle distribution patterns. Primary human RPE cells were grown with or without the lectin (ABL supplement (20ug or 90ug/ml for three days. Phosphorylation statuses of Akt, Jnk and p38 as well as p53 expression level were investigated by Western blotting. Cellular distributions in various cell cycle phases were investigated using flow cytometry. After ABL treatment (90ug/ml, Akt was found to be hypo-phosphorylated while the expression levels of p53, phosphorylated-Jnk and phosphorylated-p38 were not altered. The amount of cells present at S phase was reduced. Our results showed that ABL hypo-phosphorylated Akt and this observation is in line with the finding that ABL could attenuate cell proliferation. As the level of p53 was not significantly altered by ABL, this suggested that the mechanism in which ABL arrested cell proliferation was independent of Akt-mediated MDM2 activation but was possibly mediated by altering G1 to S phase transition.

  7. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    Science.gov (United States)

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  8. Taurine inhibits interleukin-6 expression and release induced by ultraviolet B exposure to human retinal pigment epithelium cells.

    Science.gov (United States)

    Dayang, Wu; Jinsong, Zhang

    2015-01-01

    The massive uptake of compatible osmolytes is a self-protective response shared by retina exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet damage in human retinal pigment epithelium cells. Real-time PCR, radioimmunoassay, ELISA and immunoassay were used to measure osmolyte uptake and IL-6 expression. Compared with normotonic stress, hypertonic stress led to an induction of osmolyte uptake including betaine, myoinositol and taurine. UVB exposure upregulated osmolyte transporter mRNA expression and increased osmolyte uptake respectively. Especially, taurine suppressed UVB-induced IL-6 mRNA expression significantly. The accumulation of IL-6 in UVB-exposed human retinal pigment epithelial cells supernatant was much slower when the cells were preincubated with taurine. Moreover, taurine suppressed IL-6 concentration in aqueous humour. The effect of compatible osmolyte taurine on IL-6 expression and release may play an important role in cell resistance and adaption to UVB exposure.

  9. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Cour, Morten la; Ming Lui, Ge

    2000-01-01

    Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange......Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange...

  10. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    Science.gov (United States)

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  11. Pharmacological protection of retinal pigmented epithelial cells by sulindac involves PPAR-α.

    Science.gov (United States)

    Sur, Arunodoy; Kesaraju, Shailaja; Prentice, Howard; Ayyanathan, Kasirajan; Baronas-Lowell, Diane; Zhu, Danhong; Hinton, David R; Blanks, Janet; Weissbach, Herbert

    2014-11-25

    The retinal pigmented epithelial (RPE) layer is one of the major ocular tissues affected by oxidative stress and is known to play an important role in the etiology of age-related macular degeneration (AMD), the major cause of blinding in the elderly. In the present study, sulindac, a nonsteroidal antiinflammatory drug (NSAID), was tested for protection against oxidative stress-induced damage in an established RPE cell line (ARPE-19). Besides its established antiinflammatory activity, sulindac has previously been shown to protect cardiac tissue against ischemia/reperfusion damage, although the exact mechanism was not elucidated. As shown here, sulindac can also protect RPE cells from chemical oxidative damage or UV light by initiating a protective mechanism similar to what is observed in ischemic preconditioning (IPC) response. The mechanism of protection appears to be triggered by reactive oxygen species (ROS) and involves known IPC signaling components such as PKG and PKC epsilon in addition to the mitochondrial ATP-sensitive K(+) channel. Sulindac induced iNOS and Hsp70, late-phase IPC markers in the RPE cells. A unique feature of the sulindac protective response is that it involves activation of the peroxisome proliferator-activated receptor alpha (PPAR-α). We have also used low-passage human fetal RPE and polarized primary fetal RPE cells to validate the basic observation that sulindac can protect retinal cells against oxidative stress. These findings indicate a mechanism for preventing oxidative stress in RPE cells and suggest that sulindac could be used therapeutically for slowing the progression of AMD.

  12. Effect of {gamma}-ray irradiation of the cell growth and the change of pigment contents of Phaeodactylum tricornutum

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Takaharu; Kubodera, Akiko [Science Univ. of Tokyo (Japan). Faculty of Pharmaceutical Science; Kikuchi, Masako; Kawakami, Yasushi

    1997-03-01

    The effects of gamma-ray irradiation to a marine pennate diatom Phaeodactylum tricornutum were investigated. The diatom is rich in carotenoid pigments, fucoxanthin and {beta}-carotene which are known to have antioxidative activity in vitro. The cell growth and the pigment contents were measured under various irradiation conditions. In every run, the algae grew 20 to 30-fold in 5 days after irradiation of up to 193 Gy, which was acutely fatal to animal body or cells. The cell growth and the pigment contents showed little differences between irradiated samples and its control when they were exposed to gamma-ray of up to 100 Gy for 12 min. But 60 min irradiation gave inhibitory effects on the cell growth and the fucoxanthin content decreased when 1.0 Gy dose was given. Conversely, low doses ranging from 0.2 Gy to 0.5 Gy did simulate the cell growth compared to its control though the doses over 0.5 Gy showed inhibitory effects. In contrast to the cell growth, both the amounts and contents of {beta}-carotene or fucoxanthin, however, considerably decreased under these low doses. Fucoxanthin decreased while {beta}-carotene increased compared to the control when the algae was exposed to gamma-ray for 60 min with over 1.0 Gy. There was no significant correlation between the doses and {beta}-carotene content below 1.0 Gy. (author)

  13. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue

    Directory of Open Access Journals (Sweden)

    Richard J. Davis

    2017-07-01

    Full Text Available Age-related macular degeneration (AMD is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC-derived RPE cells (RPESC-RPE preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.

  14. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria.

    Science.gov (United States)

    Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime

    2016-01-01

    We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.

  15. Pigments for natural dye-sensitized solar cells from in vitro grown shoot cultures

    Science.gov (United States)

    Di Bari, Chiara; Forni, Cinzia; Di Carlo, Aldo; Barrajón-Catalán, Enrique; Micol, Vicente; Teoli, Federico; Nota, Paolo; Matteocci, Fabio; Frattarelli, Andrea; Caboni, Emilia; Lucioli, Simona

    2017-04-01

    In vitro grown shoots cultures (Prunus salicina × Prunus persica), elicited by methyl jasmonate (MJ), are reported here for the first time to prepare a natural dye for dye-sensitized solar cells (DSSC). Redox properties of the dye, its photostability, and light absorption properties suggested it as a candidate as natural photosensitizers for TiO2 photoelectrodes. Redox properties of the dye influence the DSSC production of photocurrent, thus three antioxidant assays were performed in order to characterize the antioxidant potential of this dye. The dye exhibited a high antioxidant activity in all the assays performed. Photostability assay revealed that the dye was quite stable to light. The power conversion efficiency that we obtained (0.53%) was comparable to the data by other authors with anthocyanins-based dyes from in vivo grown plants. Finally, we compared the dye with the partially purified one as photosensitizer in DSSC. The results indicated that the raw pigment from in vitro shoot cultures of P. salicina × P. persica elicited with MJ can be proposed without the needing of any other chemicals, thermal or purification process, or pH adjustments, as a dye for natural sensitized solar cells.

  16. Diffuse-type giant cell tumor/pigmented villonodular synovitis arising in the sacrum: malignant form.

    Science.gov (United States)

    Oda, Yoshinao; Takahira, Tomonari; Yokoyama, Ryohei; Tsuneyoshi, Masazumi

    2007-09-01

    Diffuse-type giant cell tumor (GCT)/pigmented villonodular synovitis (PVNS) in the axial skeleton or spine is rare. Herein is reported a case of diffuse-type GCT/PVNS involving the sacrum and the fifth lumbar vertebra, in which the patient developed regional lymph node swelling after recurrence. The recurrent tumor was found to have atypical histological features such as spindle cell morphology, cytological atypia and high mitotic rate, which are compatible with the diagnostic criteria of secondary malignant diffuse-type GCT/PVNS. Although the nodal lesions were not sampled histologically, the clinical and histological features indicate that the current case is an example of malignant diffuse-type GCT/PVNS. This case is considered to be the first case of malignant diffuse-type GCT/PVNS in the spine, because no such lesions have been previously reported in the axial skeleton or spine. Careful surveillance should be required for diffuse-type GCT/PVNS arising at unusual site.

  17. Influence of ultraviolet A radiation on osmolytes transport in human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Da-Yang Wu

    2014-04-01

    Full Text Available AIM: To demonstrate that ultraviolet A(UVAinduces osmolytes accumulation in retinal pigment epithelial(RPEcells.METHODS: Under different experimental conditions such as UVA exposure, hyperosmotic stress condition and hypoosmotic stress condition, RPE cells were cultured for different time periods. The betaine /γ-amino- n-butyric acid(GABAtransporter, the sodium-dependent myoinositol transporter and the taurine transporter(TAUTmRNA were measured by quantitative PCR. The radioactive labeled osmolytes were measured to evaluate the level of osmolytes transportation. RESULTS: This study demonstrated that RPE expressed mRNA specific for the betaine/GABA transporter, for the sodium-dependent myoinositol transporter and for the TAUT. In comparison to norm osmotic(300mosmol/Lcontrols, a 3-5-fold induction of mRNA expression for the betaine/GABA transporter, the sodium-dependent myoinositol transporter and the TAUT was observed within 6-24h after hyperosmotic exposure(400mosmol/L. Expression of osmolyte transporters was associated with an increased uptake of radioactive labeled osmolytes. Conversely, hypoosmotic(200mosmol/Lstimulation induced significant efflux of these osmolytes. UVA significantly stimulated osmolyte uptake. Increased osmolyte uptake was associated with upregulation of mRNA steady-state levels for osmolyte transporters in irradiated cells.CONCLUSION: UVA induces osmolyte uptake in RPE. It is similar reaction to hyperosmotic stress. This suggests that osmolyte uptake response by UVA may be important to maintain homeostasis.

  18. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  19. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma. A Danish case-control study

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1999-01-01

    the present hair colour and eye colour, and the constitutive skin pigmentation was measured objectively by skin reflectance of UV unexposed buttock skin. There were no differences between basal cell carcinoma cases and controls in hair colour or eye colour or constitutive skin pigmentation, but more cases......To assess the importance of hair and eye colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma in fair-skinned Caucasians, we conducted two identical case-control studies in Denmark. We studied 145 cases with basal cell...

  20. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells.

    Science.gov (United States)

    Wang, Hua; Linetsky, Mikhail; Guo, Junhong; Yu, Annabelle O; Salomon, Robert G

    2016-07-18

    4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.

  1. Twenty natural organic pigments for application in dye sensitized solar cells

    Science.gov (United States)

    Castillo, D.; Sánchez Juárez, A.; Espinosa Tapia, S.; Guaman, A.; Obregón Calderón, D.

    2016-09-01

    In this work we present the results of a study of twenty natural pigments obtained from plants and insects from southern Ecuador. Many of them will be considered as a potential natural sensitizer for the construction of DSSCs. The results indicate that these pigments have a good performance in the absorbance and wavelength spectra. Were selected four best pigments for the construction of DSSCs, Rumex tolimensis Wedd, Raphanus sativus, Hibiscus sabdariffa, and Prunus serótina, however the conversion efficiency is lower than 1%.

  2. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells.

    Science.gov (United States)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-04

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great promise for these RPE cell therapies. The aim of the present study was to assess whether a flexible, elastic and biodegradable poly(trimethylene carbonate) (PTMC) film promotes the formation of functional hESC-RPE and performs better than often used biodegradable poly(d,l-lactide) (PDLLA) film. Human ESC-RPE maturation and functionality on PTMC films was assessed by cell proliferation assays, RPE-specific gene and protein expression, phagocytic activity and growth factor secretion. It is demonstrated that the mechanical properties of PTMC films have close resemblance to those of the native Bruch's membrane and support the formation hESC-RPE monolayer in serum-free culture conditions with high degree of functionality. In contrast, use of PDLLA films did not lead to the formation of confluent monolayers of hESC-RPE cells and had unsuitable mechanical properties for retinal application. In conclusion, the present study indicates that flexible and elastic biodegradable PTMC films show potential for retinal tissue engineering applications. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Detection of oxidative stress biomarker-induced assembly of gold nanoparticles in retinal pigment epithelial cells

    Science.gov (United States)

    Yasmin, Z.; Lee, Y.; Maswadi, S.; Glickman, R.; Nash, K. L.

    2013-02-01

    Oxidative stress (OS) is increasingly implicated as an underlying pathogenic mechanism in a wide range of diseases, resulting from an imbalance between the production of reactive oxygen species (ROS) and the system's ability to detoxify the reactive intermediates or repair the resulting damage. ROS can be difficult to detect directly; however, they can be detected indirectly from the effects on oxidative stress biomarkers (OSB), such as glutathione (GSH), 3-nitrotyrosine, homocysteine, and cysteine. Moreover the reaction of transition metals with thiol-containing amino acids (for example GSH) oxidized by ROS can yield reactive products that accumulate with time and contribute to aging and diseases. The study of the interaction between OSB using functionalized nanoparticles (fNPs) has attracted interest because of potential applications in bio-sensors and biomedical diagnostics. A goal of the present work is to use fNPs to detect and ultimately quantitate OS in retinal pigment epithelial (RPE) cells subjected to external stressors, e.g. nonionizing (light) and ionizing (gamma) radiation. Specifically, we are investigating the assembly of gold fNPs mediated by the oxidation of GSH in irradiated RPE cells. The dynamic interparticle interactions had been characterized in previously reported work by monitoring the evolution of the surface plasmon resonance band using spectroscopic analysis (UV-VIS absorption). Here we are comparing the dynamic evolution of fNP assembly using photoacoustic spectroscopy (PAS). We expect that PAS will provide a more sensitive measure allowing these fNP sensors to measure OS in cell-based models without the artifacts limiting the use of current methods, such as fluorescent indicators.

  4. Chemometric classification of pigmented rice varieties based on antioxidative properties in relation to color

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2016-10-01

    Full Text Available The pigmented Thai rice varieties including red and black color and non-pigmented rice (white collected from different growth sites in the north of Thailand and were determined for color and antioxidant properties. Anthocyanins were the major compound in group of black rice (21.15-441.96 mg/100 g rice. Total phenolic, flavonoid, and -tocopherol contents were highest in the black rice followed by red rice and antioxidant capacities were predominant in pigmented varieties. Black rice grown in mountainous area presented the highest antioxidant activity compared to the other growing locations. The color parameters, especially L* value presented the negative correlations with antioxidant parameters, while the antioxidant contents, excepted -oryzanol content had significant correlation with antioxidant capacities. Pigmented rice varieties could be clearly classified into 4 groups using PCA and HCA, which provided a good indicator to classify pigmented rice varieties based on color and antioxidative properties.

  5. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  6. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.

    Science.gov (United States)

    Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

    2013-03-26

    Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins.

  7. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium.

    Science.gov (United States)

    Calejo, Maria Teresa; Ilmarinen, Tanja; Jongprasitkul, Hatai; Skottman, Heli; Kellomäki, Minna

    2016-07-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in developed countries, characterised by the degeneration of the retinal pigment epithelium (RPE), a pigmented cell monolayer that closely interacts with the photoreceptors. RPE transplantation is thus considered a very promising therapeutic option to treat this disease. In this work, porous honeycomb-like films are for the first time investigated as scaffold materials for human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). By changing the conditions during film preparation, it was possible to produce films with homogeneous pore distribution and adequate pore size (∼3-5 µm), that is large enough to ensure high permeability but small enough to enable cell adherence and spreading. A brief dip-coating procedure with collagen type IV enabled the homogeneous adsorption of the protein to the walls and bottom of pores, increasing the hydrophilicity of the surface. hESC-RPE adhered and proliferated on all the collagen-coated materials, regardless of small differences in pore size. The differentiation of hESC-RPE was confirmed by the detection of specific RPE protein markers. These results suggest that the porous honeycomb films can be promising candidates for hESC-RPE tissue engineering, importantly enabling the free flow of ions and molecules across the material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1646-1656, 2016.

  8. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    Science.gov (United States)

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  9. The measurement of constitutive and facultative skin pigmentation and estimation of sun exposure in Caucasians with basal cell carcinoma and cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1998-01-01

    In two identical and simultaneously performed case-control studies of basal cell carcinoma (BCC) and cutaneous malignant melanoma (CMM) with age-matched, sex-matched and residence-matched controls, skin pigmentation was measured objectively by skin reflectance spectroscopy in 145 BCC patients...... by all subjects. There were no statistically significant differences in constitutive skin pigmentation at the buttocks between BCC patients and controls (P = 0.96) or between CMM patients and controls (P = 0.13). Facultative skin pigmentation in ultraviolet-exposed sites was not significantly different...... between BCC patients and controls except that women patients had higher pigmentation at the lateral side of the upper arm. For CMM, men patients had higher pigmentation at the lateral side of the upper arm. Self-estimations of sun exposure did not show differences between patients and controls...

  10. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  11. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Directory of Open Access Journals (Sweden)

    Lisa Fauteux

    Full Text Available There is now evidence that aerobic anoxygenic phototrophic (AAP bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively. AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC, whereas cell-specific BChla content was negatively related to chlorophyll a (Chla. As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  12. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Science.gov (United States)

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  13. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  14. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas

    Science.gov (United States)

    Alexander, Nathan S.; Palczewska, Grazyna; Palczewski, Krzysztof

    2015-01-01

    Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE. PMID:26309765

  15. Pigment Epithelium-derived Factor in Cataractous Aqueous Humor and Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Tian Liu; Yizhi Liu; Mingxing Wu

    2006-01-01

    Purpose:To study the characteristics of PEDF in cataractous aqueous humor and its expression in human lens epithelium.Methods:The PEDF concentration in the aqueous humor was measured by enzyme linked immunosorbent assay in senile (130cases) and congenital (18cases) cataract patients who underwent cataract phacoemulsification extraction surgery. Anterior lens capsular specimens were obtained from these patients to count lens epithelial cells(LEC) density. The Lens Opacities Classification System Ⅲ was used to classify the senile cataracts as cortical, nuclear, posterior subcapsular and mixed types of opacity, and quantitative analysis of the nuclear opacities was performed by Pentacam Scheimpflug imaging system. Anterior lens capsular specimens from another senile(10cases) and congenital (10cases) cataract were collected for immunofluorescence with polyclonal antibodies specific to human pigment epithelium-derived factor(PEDF).Results:The mean aqueous level of PEDF was(178. 9±87. 5)ng/ml, and there was negative linear correlation of PEDF level and age (r=0. 811, P < 0. 001) . In senile cases, the aqueous PEDF concentration decreased with increasing nuclear opacities(r=0. 447, P < 0.01 ), and the mean PEDF level in nuclear cataract was significantly lower than that in posterior subcapsular opacity (P < 0.01 ) . PEDF immunostaining was detected in LEC of all capsular specimens.Conclusion :The PEDF level in human aqueous humor is related to age, types of cataracts and lens opacity. PEDF also express in human LEC. The study results suggest PEDF may regulate and/or protect LEC by paracrine and autocrine, and lack of PEDF may play a role in cataractogenesis.

  16. Adenoma of nonpigmented epithelium in ciliary body:literature review and case report

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Adenomas of the nonpigmented ciliary epithelium (NPCE) are often clinically indistinguishable from amelanotic malignant melanomas of the ciliary body or metastatic carcinomas. This paper reports a case study of a distinctive variant of adenoma of the NPCE, which clinically appears as epiretinal membrane in the macular region. Histopathologic studies have revealed this is an adenoma of the NPCE. Identification of this clinic feature is important because it will miss the diagnosis of the adenoma of the NPCE. In this case study, B-scan ultrasonography as well as computerized tomography (CT) has been used to provide help in diagnosing the ciliary body tumor. Because of their anterior location in the ciliary body, partial lamellar sclerouvectomy is an effective method of treatment.

  17. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    Science.gov (United States)

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  18. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    Science.gov (United States)

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  19. The measurement of constitutive and facultative skin pigmentation and estimation of sun exposure in Caucasians with basal cell carcinoma and cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1998-01-01

    In two identical and simultaneously performed case-control studies of basal cell carcinoma (BCC) and cutaneous malignant melanoma (CMM) with age-matched, sex-matched and residence-matched controls, skin pigmentation was measured objectively by skin reflectance spectroscopy in 145 BCC patients...... by all subjects. There were no statistically significant differences in constitutive skin pigmentation at the buttocks between BCC patients and controls (P = 0.96) or between CMM patients and controls (P = 0.13). Facultative skin pigmentation in ultraviolet-exposed sites was not significantly different...

  20. Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice.

    Directory of Open Access Journals (Sweden)

    Masashi Fujihara

    Full Text Available The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD. Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85+/-3.7% of RPE cells counted compared to 9.5+/-3.9% in controls (p<0.00001. Bruch membrane was thicker in mice exposed to smoke (1086+/-332 nm than those raised in air (543+/-132 nm; p = 0.0069. The two most pronounced ultrastructural changes (severity grading scale from 0-3 seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001, and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001. Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001, increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002, and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001. TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0+/-1.1% than room air (average 0+/-0%; p = 0.043. Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the

  1. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  2. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Moritz Veltmann

    Full Text Available Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE cells.Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5 expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1 signaling and by NFAT5 si

  3. Cytoplasmic and nuclear anti-apoptotic roles of αB-crystallin in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Woo Jin Jeong

    Full Text Available In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO can alter the function of the basement membrane of retinal pigment epithelial (RPE cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.

  4. Adeno-associated Virus Mediated LacZ Gene Transfect to Cultured Human Iris Pigment Epithelium Cells

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shibo Tang; Yan Luo; Xiaoling Liang; Jing Ma; Shaofen Lin

    2003-01-01

    Purpose: To study the feasibility of adeno-associated virus mediated gene transfection tocultured human iris pigment epithelium (IPE) cells in vitro.Methods: Recombinant replication deficient adeno-associated viruses (AAV) expressingLacZ gene were produced without helper virus. The LacZ gene was transduced into culturedhuman IPE cells.Results: Cultured human IPE cells stained positively anticytokeratin, The titer ofrAAV-LacZ was 2.1 × 108 virus particles/ml, 42% cultured human IPE cells expressedβ-galactosidase 7 days after transfection and 67% after 14 days.Conclusions: Recombined AAV produced without helper virus can transfer a foreign geneinto human IPE cells with high efficiency in vitro.

  5. Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    van der Burght, Barbro W; Hansen, Morten; Olsen, Jørgen;

    2013-01-01

    Purpose:  Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we...... investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). Methods:  A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA...... levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. Results:  Principal component analysis revealed that the A2E-laden RPE cells...

  6. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  7. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    Science.gov (United States)

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage.

  8. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2015-01-01

    Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially influe...

  9. Effects of pigment glands andgossypol on somatic cell cul-ture of upland cotton (Gos-sypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of pigment glands and gossypol on the somatic cell culture of upland cotton were studied, using the materials as follows: three pairs of glanded and glandless upland cotton near isogenic lines, TM-1, and Coker 312. The results showed that the pigment glands and gossypol contents in the explants had great inhibiting effect on the induction and growth of callus in somatic cell culture of upland cotton, and the induction rate of callus and the single callus weight of glandless cotton were much higher than those of their glanded near isogenic lines. It was easier to obtain regeneration plants from glandless cotton than from their glanded near isogenic lines. There was a significant inverse correlation between the gossypol contents in the explants and callus induction rate, with the correlation coefficient of ?0.84. The vitro gossypol in the medium had some inhibiting effect on the induction and growth of callus, especially for the glandless cotton. However, a certain concentration of vitro gossypol in the medium (0.1 mg/L) was an aid to the steadiness growth of callus in glandless cotton somatic cell culture, with a high rate of embryogenic cells which was in favor of plant regeneration, and it was also relatively easy to obtain regeneration plants when they were transferred into differentiation medium with 0.1 mg/L of vitro gossypol, even for some cultivars which are difficult in somatic cell culture. In addition, the gossypol content and its variation in the seedlings and callus during culture of Coker 312 were discussed, as well as the relationship between gossypol variation in the explants and its somatic cell culture. The probability of vitro gossypol used in cotton somatic cell culture for the improvement of somatic cell culture was suggested.

  10. Photosynthetic pigments, cell extrusion and relative leaf water content of the castor bean under silicon and salinity

    Directory of Open Access Journals (Sweden)

    Rener L. de S. Ferraz

    2015-09-01

    Full Text Available ABSTRACTThe castor bean crop plays an important social, environmental and economic role, especially due to possibility of its use as feedstock for the generation of clean energy. Thus, this study aimed to evaluate the contents of photosynthetic pigments, cell membrane extrusion and the relative water content in the leaves of the castor bean cultivar ‘BRS Energia’ under silicon and salinity levels. The experiment was carried out at Embrapa Cotton, in a completely randomized design, in a 4 x 4 factorial scheme, and the treatments consisted of four silicon levels (0, 100, 200 and 300 mg L-1 and four water salinity levels of (ECw 0, 2, 4 and 6 dS m-1, with three replicates. The gradual increase in salinity levels reduced the concentration of photosynthetic pigments, relative water content in the leaves and increased cell membrane extrusion. The increase in the concentration of silicon reduced the harmful effects of salts on the analysed variables in the castor bean ‘BRS Energia’.

  11. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium.

    Science.gov (United States)

    Reichman, Sacha; Terray, Angélique; Slembrouck, Amélie; Nanteau, Céline; Orieux, Gaël; Habeler, Walter; Nandrot, Emeline F; Sahel, José-Alain; Monville, Christelle; Goureau, Olivier

    2014-06-10

    Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease.

  12. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis.

    NARCIS (Netherlands)

    Cassier, P.A.; Gelderblom, H.; Stacchiotti, S.; Thomas, D.; Maki, R.G.; Kroep, J.R.; Graaf, W.T.A. van der; Italiano, A.; Seddon, B.; Domont, J.; Bompas, E.; Wagner, A.J.; Blay, J.Y.

    2012-01-01

    BACKGROUND: Pigmented villonodular synovitis (PVNS) (also known as diffuse-type giant cell tumor) and tenosynovial giant cell tumors (TGCT) are rare, usually benign neoplasms that affect the synovium and tendon sheaths in young adults. These tumors are driven by the overexpression of colony stimulat

  13. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis.

    NARCIS (Netherlands)

    Cassier, P.A.; Gelderblom, H.; Stacchiotti, S.; Thomas, D.; Maki, R.G.; Kroep, J.R.; Graaf, W.T.A. van der; Italiano, A.; Seddon, B.; Domont, J.; Bompas, E.; Wagner, A.J.; Blay, J.Y.

    2012-01-01

    BACKGROUND: Pigmented villonodular synovitis (PVNS) (also known as diffuse-type giant cell tumor) and tenosynovial giant cell tumors (TGCT) are rare, usually benign neoplasms that affect the synovium and tendon sheaths in young adults. These tumors are driven by the overexpression of colony stimulat

  14. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  15. Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells.

    Science.gov (United States)

    Sugiura, Kana; Itoh, Shigeru

    2012-08-01

    The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.

  16. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    Science.gov (United States)

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  17. A pigmented calcifying odontogenic cyst.

    Science.gov (United States)

    Soames, J V

    1982-04-01

    A case of the pigmented variant of the calcifying odontogenic cyst occurring in a 15-year-old West Indian girl is reported. Melanin pigment was widely distributed and appeared in greatest amount in cells exhibiting the appearance of stellate reticulum. Ultrastructural examination demonstrated large numbers of melanosomes in these cells but relatively few in epithelial ghost cells. The latter contained thick bundles of tonofilaments. Melanocytes were identified and two forms were distinguished, depending on their content of premelanosomes and fully melanized melanosomes.

  18. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    Science.gov (United States)

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  19. Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies.

    Science.gov (United States)

    Muñiz, Alberto; Ramesh, Kaini R; Greene, Whitney A; Choi, Jae-Hyek; Wang, Heuy-Ching

    2015-02-04

    Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during in vitro differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of differentiation in different sizes of EBs monitored by fluorescence-activated cell sorting (FACS) analysis of RPE markers is described. These techniques will facilitate the differentiation of iPS cells into RPE for future applications.

  20. Glycosaminoglycans in human retinoblastoma cells: Heparan sulfate, a modulator of the pigment epithelium-derived factor-receptor interactions

    Science.gov (United States)

    Alberdi, Elena M; Weldon, John E; Becerra, S Patricia

    2003-01-01

    Background Pigment epithelium-derived factor (PEDF) has binding affinity for cell-surface receptors in retinoblastoma cells and for glycosaminoglycans. We investigated the effects of glycosaminoglycans on PEDF-receptor interactions. Results 125I-PEDF formed complexes with protease-resistant components of medium conditioned by human retinoblastoma Y-79 cells. Using specific glycosaminoglycan degrading enzymes in spectrophotometric assays and PEDF-affinity chromatography, we detected heparin and heparan sulfate-like glycosaminoglycans in the Y-79 conditioned media, which had binding affinity for PEDF. The Y-79 conditioned media significantly enhanced the binding of 125I-PEDF to Y-79 cell-surface receptors. However, enzymatic and chemical depletion of sulfated glycosaminoglycans from the Y-79 cell cultures by heparitinase and chlorate treatments decreased the degree of 125I-PEDF binding to cell-surface receptors. Conclusions These data indicate that retinoblastoma cells secrete heparin/heparan sulfate with binding affinity for PEDF, which may be important in efficient cell-surface receptor binding. PMID:12625842

  1. Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reena Kushwaha

    2013-01-01

    Full Text Available Four natural pigments, extracted from the leaves of teak (Tectona grandis, tamarind (Tamarindus indica, eucalyptus (Eucalyptus globulus, and the flower of crimson bottle brush (Callistemon citrinus, were used as sensitizers for TiO2 based dye-sensitized solar cells (DSSCs. The dyes have shown absorption in broad range of the visible region (400–700 nm of the solar spectrum and appreciable adsorption onto the semiconductor (TiO2 surface. The DSSCs made using the extracted dyes have shown that the open circuit voltages (Voc varied from 0.430 to 0.610 V and the short circuit photocurrent densities (Jsc ranged from 0.11 to 0.29 mA cm−2. The incident photon-to-current conversion efficiencies (IPCE varied from 12–37%. Among the four dyes studied, the extract obtained from teak has shown the best photosensitization effects in terms of the cell output.

  2. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat.

    Directory of Open Access Journals (Sweden)

    Amanda-Jayne Carr

    Full Text Available Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs. These induced pluripotent stem (iPS cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD, the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE. As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.

  3. A2E induces IL-1ß production in retinal pigment epithelial cells via the NLRP3 inflammasome.

    Directory of Open Access Journals (Sweden)

    Owen A Anderson

    Full Text Available AIMS: With ageing extracellular material is deposited in Bruch's membrane, as drusen. Lipofuscin is deposited in retinal pigment epithelial cells. Both of these changes are associated with age related macular degeneration, a disease now believed to involve chronic inflammation at the retinal-choroidal interface. We hypothesise that these molecules may act as danger signals, causing the production of inflammatory chemokines and cytokines by the retinal pigment epithelium, via activation of pattern recognition receptors. METHODS: ARPE-19 cells were stimulated in vitro with the following reported components of drusen: amyloid-ß (1-42, Carboxyethylpyrrole (CEP modified proteins (CEP-HSA, Nε-(Carboxymethyllysine (CML modified proteins and aggregated vitronectin. The cells were also stimulated with the major fluorophore of lipofuscin: N-retinylidene-N-retinylethanolamine (A2E. Inflammatory chemokine and cytokine production was assessed using Multiplex assays and ELISA. The mechanistic evaluation of the NLRP3 inflammasome pathway was assessed in a stepwise fashion. RESULTS: Of all the molecules tested only A2E induced inflammatory chemokine and cytokine production. 25 µM A2E induced the production of significantly increased levels of the chemokines IL-8, MCP-1, MCG and MIP-1α, the cytokines IL-1ß, IL-2, IL-6, and TNF-α, and the protein VEGF-A. The release of IL-1ß was studied further, and was determined to be due to NLRP3 inflammasome activation. The pathway of activation involved endocytosis of A2E, and the three inflammasome components NLRP3, ASC and activated caspase-1. Immunohistochemical staining of ABCA4 knockout mice, which show progressive accumulation of A2E levels with age, showed increased amounts of IL-1ß proximal to the retinal pigment epithelium. CONCLUSIONS: A2E has the ability to stimulate inflammatory chemokine and cytokine production by RPE cells. The pattern recognition receptor NLRP3 is involved in this process. This

  4. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    Directory of Open Access Journals (Sweden)

    Masahiko Sugimoto

    2016-01-01

    Full Text Available Aim. We investigated whether lecithin-bound iodine (LBI can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19 cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1 intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation. But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1. The levels of monocyte chemoattractant protein-1 (MCP-1 and Chemokine (C-C Motif Ligand 11 (CCL-11 were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1 and 5.46 ± 1.9 pg/mL for CCL-11. Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia.

  5. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    2016-01-01

    Full Text Available To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV, self-complementary adeno-associated virus 2 (scAAV2 with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con or constitutively active Rap1a (scAAV2-CARap1a showed strong GFP at the 5 × 108 viral particle/μl dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/β-catenin complexes, increased transepithelial electrical resistance through an interaction of β-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes.

  6. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Bretz, Colin A; Becker, Silke; Gambhir, Deeksha; Smith, George W; Samulski, R Jude; Wittchen, Erika S; Quilliam, Lawrence A; Chrzanowska-Wodnicka, Magdalena; Hartnett, M Elizabeth

    2016-01-01

    To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 10(8) viral particle/µl dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS)-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE)/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/β-catenin complexes, increased transepithelial electrical resistance through an interaction of β-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC) transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes.

  7. The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts.

    Science.gov (United States)

    Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S; Widmer, Daniel S; Pontiggia, Luca; Weber, Andreas D; Weber, Daniel M; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2015-03-01

    It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application.

  8. Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Al-Alwani, Mahmoud A. M.; Ludin, Norasikin A.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Sopian, Kamaruzzaman

    2017-05-01

    Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80 °C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80 °C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3 mA/cm- 2, open-circuit voltage (Voc) of 0.62 V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5 V, Isc of 0.4 mA/cm- 2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).

  9. Culture of Iris Pigment Epithelial Cells on Expanded-Polytetrafluroethylene (ePTFE Substrates for the Treatment of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    S Nian

    2011-05-01

    Full Text Available Introduction: Transplantation of an intact differentiated retinal pigment epithelial (RPE cell layer may provide a means to treat Age-Related Macular Degeneration (AMD. However, harvesting RPE cells can be a technically complicated procedure. Our current work aimed to prepare intact differentiated iris pigment epithelial (IPE cell layers, which are easy to obtain and have the same embryonic origin and similar properties as RPE cells, on ePTFE substrates for transplantation purposes to rescue deteriorated photoreceptors in AMD. Methods: IPE cells isolated from rat eyes were seeded on different substrates, including fibronectin n-heptylamine (HA ePTFE substrates, HA ePTFE substrates, ePTFE substrates and fibronectin tissue culture polystyrene (TCPS as control. Cell number and morphology were assessed at each time interval. The formation of tight junction was examined by immunostaining of junction proteins. Results: An obvious increasing trend of cell number was observed in IPE cells on fibronectin n-heptylamine (HA ePTFE substrate, exhibiting heavy pigmentation and epithelial morphology. At Day 28, tight junction formation was indicated by cell-cell junctional proteins along cell borders. Conclusion: Harvested IPE cells cultured on fibronectin HA-ePTFE substrates can differentiate and form a cell monolayer that may be suitable for transplantation.

  10. Comparative analysis of cell populations involved in the proliferative and inflammatory processes in diffuse and localised pigmented villonodular synovitis.

    Science.gov (United States)

    Berger, I; Ehemann, V; Helmchen, B; Penzel, R; Weckauf, H

    2004-07-01

    The aim of the present study was a comparative quantitative evaluation of cell populations involved in the proliferative and inflammatory compartment in both localised and diffuse pigmented synovitis villonodularis (PVNS). 15 cases of each localised and diffuse PVNS were examined by flow cytometry, immunohistochemistry, double immuno-fluorescence and confocal microscopy with quantitative evaluation of CD3-, CD4-, CD8-, CD20-, CD57-, CD55-, CD68-, CD163- and h4Ph positive (+) cells. The proliferative compartment of localised and diffuse PVNS was mainly composed of double-positive CD68+/h4Ph+ (CD163+/CD55+) synoviocytes. The number of double-positive synoviocytes for macrophage and fibroblast markers was significantly higher in diffuse compared to localised PVNS. The accompanying inflammatory infiltrate showed a predominance of cytotoxic cells (CD8+, CD57+), whereby the number of CD3+ and CD20+ cells was significantly higher in localised PVNS. The number of CD57+ NK cells was significantly higher in diffuse PVNS. The proliferating macrophage- like synovial cells and the cytotoxic lymphocytes could contribute to the aggressive behaviour of localised and diffuse PVNS. Moreover, with regard to the quantitative differences in cell composition between diffuse and localised PVNS and their different clinical behaviour, further studies should continue to analyse localised and diffuse PVNS separately.

  11. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Min Sun

    2015-06-01

    Full Text Available Background: Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L. anthocyanin (PSPA, a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective: The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation of human retinal pigment epithelial (RPE cells, which perform essential functions for the visual process. Methods: The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results: PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions: We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.

  12. New Dye-Sensitized Solar Cells Obtained from Extracted Bracts of Bougainvillea Glabra and Spectabilis Betalain Pigments by Different Purification Processes

    OpenAIRE

    Rogelio Rodriguez; Susana Vargas; Fracisco Quintanilla; Angel Ramon Hernandez-Martinez; Miriam Estevez

    2011-01-01

    The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis’ bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized....

  13. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress

    National Research Council Canada - National Science Library

    Chang, Yun-Ching; Chang, Wei-Chao; Hung, Kuo-Hsuan; Yang, Der-Ming; Cheng, Yung-Hsin; Liao, Yi-Wen; Woung, Lin-Chung; Tsai, Ching-Yao; Hsu, Chih-Chien; Lin, Tai-Chi; Liu, Jorn-Hon; Chiou, Shih-Hwa; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-01-01

    .... Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE) cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration...

  14. Locational heterogeneity of maturation by changes in migratory behaviors of human retinal pigment epithelial cells in culture.

    Science.gov (United States)

    Sonoi, Rie; Kim, Mee-Hae; Kino-oka, Masahiro

    2015-01-01

    To better characterize human retinal pigment epithelial (RPE) cells, their maturation was studied by time-lapse observation and immunostaining of the tight junction protein ZO-1. During subconfluency with active migration, the cells had an elongated shape. During cell division to reach confluency, RPE cells became small and tight, exhibiting cobblestone-like morphology. In addition, RPE maturation at the peripheral region of the culture vessel was delayed when compared with the central region, demonstrating local heterogeneity during maturation. To correlate cellular migration and maturation, we compared frequencies of migration rate and number of ZO-1-positive cells at the central and peripheral regions. Cells having migration rates less than 5.0 μm/h in the central region were 1.4-fold higher than in the peripheral region at day 5. Regardless of locational differences in the culture vessel, the frequency of cells having migration rates less than 5.0 μm/h showed 90% agreement with the frequency of ZO-1-positive cells. To inhibit cell migration, RPE cells were exposed to medium containing 50 μg/ml Rac1 inhibitor at day 5. Frequencies of ZO-1-positive cells and cells having migration rates less than 5.0 μm/h at the peripheral region were similar to those at the central region. The results show that migration is an important factor affecting maturation, and demonstrate that location heterogeneity during maturation is caused by different migratory behaviors in the culture vessel. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells.

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    Full Text Available DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB, piggyBac (PB, and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4 insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.

  16. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    Science.gov (United States)

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  17. JAM-C maintains VEGR2 expression to promote retinal pigment epithelium cell survival under oxidative stress.

    Science.gov (United States)

    Jia, Xin; Zhao, Chen; Chen, Qishan; Du, Yuxiang; Huang, Lijuan; Ye, Zhimin; Ren, Xiangrong; Wang, Shasha; Lee, Chunsik; Tang, Zhongshu; Li, Xuri; Ju, Rong

    2017-04-03

    Junctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.

  18. Cross-talk between ciliary epithelium and trabecular meshwork cells in-vitro: a new insight into glaucoma.

    Directory of Open Access Journals (Sweden)

    Natalie Lerner

    Full Text Available PURPOSE: It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM cell line (NTM of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2. METHODS: The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60 min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate assay. MMP levels were determined by gelatin zymography. RESULTS: Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5 min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15 min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture. CONCLUSIONS: Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.

  19. Rheumatoid arthritis and pigmented villonodular synovitis: comparative analysis of cell polyploidy, cell cycle phases and expression of macrophage and fibroblast markers in proliferating synovial cells.

    Science.gov (United States)

    Berger, I; Weckauf, H; Helmchen, B; Ehemann, V; Penzel, R; Fink, B; Bernd, L; Autschbach, F

    2005-05-01

    Rheumatoid arthritis (RA) and pigmented villonodular synovitis (PVNS) are aggressive diseases with progressive joint destruction. The present study aims to define cell cycle phases, polyploidy and the immunophenotype of proliferating synovial cells in both diseases. Synovial tissues from patients with proliferative-active RA, localized and diffuse PVNS were analysed by DNA flow cytometry, immunohistochemistry and double immunofluorescence with confocal laser scan microscopy. Expression of macrophage markers (CD68/CD163), fibroblast markers (h4Ph/CD55) and Ki67 antigen was examined. Synovial cells positive for either macrophage or fibroblast markers as well as double-labelled cells were found in both RA and PVNS. In RA, CD68/CD163+ synoviocytes were preferentially located in the vicinity of the synovial lining layer, while they were more randomly distributed in PVNS. Of cases with diffuse PVNS, 20% showed an aneuploid cell pattern. All samples of localized PVNS and RA were diploid. Proliferative activity was significantly higher in aneuploid PVNS. In spite of their histologically homogeneous appearance, proliferating synovial cells display a heterogeneous immunophenotype in both RA and PVNS, indicating functional properties of both macrophages and fibroblasts. Aneuploidy seems to be a special feature of diffuse PVNS.

  20. Brown seaweed pigment as a dye source for photoelectrochemical solar cells

    Science.gov (United States)

    Calogero, Giuseppe; Citro, Ilaria; Di Marco, Gaetano; Armeli Minicante, Simona; Morabito, Marina; Genovese, Giuseppa

    2014-01-01

    Chlorophylls based-dyes obtained from seaweeds represent attractive alternatives to the expensive and polluting pyridil based Ru complexes because of their abundance in nature. Another important characteristic is that the algae do not subtract either cropland or agricultural water, therefore do not conflict with agro-food sector. This pigment shows a typical intense absorption in the UV/blue (Soret band) and a less intense band in the red/near IR (Q band) spectral regions and for these reasons appear very promising as sensitizer dyes for DSSC. In the present study, we utilized chlorophylls from samples of the brown alga Undaria pinnatifida as sensitizer in DSSCs. The dye, extracted by frozen seaweeds and used without any chemical purification, showed a very good fill factor (0.69). Even the photelectrochemical parameters if compared with the existent literature are very interesting.

  1. ROCK Inhibition Promotes Attachment, Proliferation, and Wound Closure in Human Embryonic Stem Cell-Derived Retinal Pigmented Epithelium.

    Science.gov (United States)

    Croze, Roxanne H; Thi, William J; Clegg, Dennis O

    2016-11-01

    Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell-derived RPE (hESC-RPE) attachment, proliferation, and wound closure. H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies.

  2. Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration.

    Science.gov (United States)

    Dwyer, Mary A; Kazmin, Dmitri; Hu, Peng; McDonnell, Donald P; Malek, Goldis

    2011-02-01

    Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood-retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD.

  3. Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution.

    Directory of Open Access Journals (Sweden)

    Jan-Erik Thrane

    Full Text Available The Gauss-peak spectra (GPS method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method's performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC. The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material.

  4. Fenretinide induces ubiquitin-dependent proteasomal degradation of stearoyl-CoA desaturase in human retinal pigment epithelial cells.

    Science.gov (United States)

    Samuel, William; Kutty, R Krishnan; Duncan, Todd; Vijayasarathy, Camasamudram; Kuo, Bryan C; Chapa, Krysten M; Redmond, T Michael

    2014-08-01

    Stearoyl-CoA desaturase (SCD, SCD1), an endoplasmic reticulum (ER) resident protein and a rate-limiting enzyme in monounsaturated fatty acid biosynthesis, regulates cellular functions by controlling the ratio of saturated to monounsaturated fatty acids. Increase in SCD expression is strongly implicated in the proliferation and survival of cancer cells, whereas its decrease is known to impair proliferation, induce apoptosis, and restore insulin sensitivity. We examined whether fenretinide, (N-(4-hydroxyphenyl)retinamide, 4HPR), which induces apoptosis in cancer cells and recently shown to improve insulin sensitivity, can modulate the expression of SCD. We observed that fenretinide decreased SCD protein and enzymatic activity in the ARPE-19 human retinal pigment epithelial cell line. Increased expression of BiP/GRP78, ATF4, and GADD153 implicated ER stress. Tunicamycin and thapsigargin, compounds known to induce ER stress, also decreased the SCD protein. This decrease was completely blocked by the proteasome inhibitor MG132. In addition, PYR41, an inhibitor of ubiquitin activating enzyme E1, blocked the fenretinide-mediated decrease in SCD. Immunoprecipitation analysis using anti-ubiquitin and anti-SCD antibodies and the blocking of SCD loss by PYR41 inhibition of ubiquitination further corroborate that fenretinide mediates the degradation of SCD in human RPE cells via the ubiquitin-proteasome dependent pathway. Therefore, the effect of fenretinide on SCD should be considered in its potential therapeutic role against cancer, type-2 diabetes, and retinal diseases.

  5. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  6. Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available BACKGROUND: The proliferation of retinal pigment epithelium (RPE cells resulting from an epithelial-mesenchymal transition (EMT plays a key role in proliferative vitreoretinopathy (PVR, which leads to complex retinal detachment and the loss of vision. Genes of Snail family encode the zinc finger transcription factors that have been reported to be essential in EMT during embryonic development and cancer metastasis. However, the function of Snail in RPE cells undergoing EMT is largely unknown. PRINCIPAL FINDINGS: Transforming growth factor beta(TGF-β-1 resulted in EMT in human RPE cells (ARPE-19, which was characterized by the expected decrease in E-cadherin and Zona occludin-1(ZO-1 expression, and the increase in fibronectin and α-smooth muscle actin (α-SMA expression, as well as the associated increase of Snail expression at both mRNA and protein levels. Furthermore, TGF-β1 treatment caused a significant change in ARPE-19 cells morphology, with transition from a typical epithelial morphology to mesenchymal spindle-shaped. More interestingly, Snail silencing significantly attenuated TGF-β1-induced EMT in ARPE-19 cells by decreasing the mesenchymal markers fibronectin and a-SMA and increasing the epithelial marker E-cadherin and ZO-1. Snail knockdown could effectively suppress ARPE-19 cell migration. Finally, Snail was activated in epiretinal membranes from PVR patients. Taken together, Snail plays very important roles in TGF-β-1-induced EMT in human RPE cells and may contribute to the development of PVR. SIGNIFICANCE: Snail transcription factor plays a critical role in TGF-β1-induced EMT in human RPE cells, which provides deep insight into the pathogenesis of human PVR disease. The specific inhibition of Snail may provide a new approach to treat and prevent PVR.

  7. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  8. Diffuse pigmented villonodular synovitis (diffuse-type giant cell tumour) of the foot and ankle.

    Science.gov (United States)

    Stevenson, J D; Jaiswal, A; Gregory, J J; Mangham, D C; Cribb, G; Cool, P

    2013-03-01

    Pigmented villonodular synovitis (PVNS) is a rare benign disease of the synovium of joints and tendon sheaths, which may be locally aggressive. We present 18 patients with diffuse-type PVNS of the foot and ankle followed for a mean of 5.1 years (2 to 11.8). There were seven men and 11 women, with a mean age of 42 years (18 to 73). A total of 13 patients underwent open or arthroscopic synovectomy, without post-operative radiotherapy. One had surgery at the referring unit before presentation with residual tibiotalar PVNS. The four patients who were managed non-operatively remain symptomatically controlled and under clinical and radiological surveillance. At final follow-up the mean Musculoskeletal Tumour Society score was 93.8% (95% confidence interval (CI) 85 to 100), the mean Toronto Extremity Salvage Score was 92 (95% CI 82 to 100) and the mean American Academy of Orthopaedic Surgeons foot and ankle score was 89 (95% CI 79 to 100). The lesion in the patient with residual PVNS resolved radiologically without further intervention six years after surgery. Targeted synovectomy without adjuvant radiotherapy can result in excellent outcomes, without recurrence. Asymptomatic patients can be successfully managed non-operatively. This is the first series to report clinical outcome scores for patients with diffuse-type PVNS of the foot and ankle.

  9. Hybrid pigment organelles in an invertebrate.

    Science.gov (United States)

    Schliwa, M; Euteneuer, U

    1979-02-28

    Observations of a number of vertebrate chromatophores have revealed the presence of more than one type of pigment organelles, suggesting that the different types are all derived from an equipotential organelle able to differentiate into any of the major pigment-containing organelles (Bagnara, 1972). Observations are presented concerning the occurrence of hybrid pigment inclusions, i.e., all kinds of intergrades between melanosomes, pterinosomes, and reflecting platelets in pigment cells of the daddy-long-legs. It therefore seems possible that pigment organelles in some invertebrates may also be derived from a common pluripotential primordial organelle.

  10. Effects of Nerve Growth Factor on Proliferation and DNA Synthesis of Cultured Human Fetal Retinal Pigment Epithelium Cells

    Institute of Scientific and Technical Information of China (English)

    Wensheng Li; Jun Wen; Deyong Jiang; Jianguang Ding

    2002-01-01

    Objective: To investigate the effects of nerve growth factor(NGF)on proliferation and DNAthesis of cultured human fetal retinal pigment epithelium (RPE)cells in vitro.Methods: Primary culture and subculture of human fetal retinal pigment epithelium cellswere established in vitro first. Cultured RPE cells were treated with NGF by variousconcentrations 0μg/L, 50μg/L, 100μg/L, 200μg/L and 300μg/L(final concentration)for 48 hs.After 48 hs, cells proliferation was measured with methyl thiazolyl tetrazolium(MTT)assay method and the amount of DNA was determined by the absorbance at 280nm of nucleic acid & protein analysis.Results: The A values of 100 μg/L, 200 μg/L, 300 μg/L NGF was(0. 213 7 ± 0. 23 3),(0. 218 8 ±0. 018 1), (0. 232 2 ±0. 016 4) as compared with(0. 189 7 ±0. 015 2) of Avalue of 0 μg/L NGF respectively, q value was 3.63,4.40, 6. 42 and P value was0. 015, 0. 000, 0. 000(q-test). The DNA concentrations of 100 μg/L, 200 μg/L, 300μg/L and 400 μg/L NGF was (981. 220 4 ± 123.535 7), (1 375. 848 4 ±244. 471 8),(1 658.707 1 ± 176. 938 1), (2 353.086 3 ±609. 906 4) μg/ml as compared with(666. 818 8 ± 141. 330 2) μg/ml of DNA concentration of 0 μg/L NGF respectively, qvalue was 3.63,8.20,11.47,19.46, P value was 0. 024,0. 000,0. 000,0. 000 (q-test).Conclusion: The data suggested that NGF could stimulate the proliferation and DNAsynthesis of cultured of hRPE cells in vitro in a dose-dependent manner.

  11. Retinal pigment epithelium cell-derived exosomes: Possible relevance to CNV in wet-age related macular degeneration.

    Science.gov (United States)

    Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-12-01

    Exosomes are small vesicles that are released by almost every cell type and play a crucial role in many physiological and pathological processes associated with different diseases. Specifically, they promote angiogenesis in the pathogenesis of some diseases. According to previous research, the proteins of exosomes taken from the aqueous humor (AH) of patients with wet-age related macular degeneration (AMD) may function as a new diagnostic biomarker of AMD, suggesting that exosomes may play an important role in the occurrence and development of choroidal neovascularization (CNV). Moreover, additional research has revealed that the levels of some protein makers of exosomes are up-regulated in aged retinal pigment epithelium (RPE) and that drusen and oxidative stress may promote the secretion of exosomes derived from RPE cells. Consequently, we hypothesize that RPE cell-derived exosomes may be relevant to CNV in wet AMD. If this hypothesis is proven correct, future studies based on this link may also help to elucidate the molecular mechanisms of wet AMD and to find new therapeutic targets for the treatment of AMD.

  12. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    Science.gov (United States)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  13. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xionggao [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Department of Ophthalmology, Hainan Medical College, Haikou (China); Wei, Yantao; Ma, Haizhi [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Zhang, Shaochong, E-mail: zhshaochong@163.com [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  14. In Vitro Response of Retinal Pigment Epithelial Cells Exposed to Chitosan Materials Prepared with Different Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2010-12-01

    Full Text Available The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE cells to genipin (GP or glutaraldehyde (GTA cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80% were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or SN2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases.

  15. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjie [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Zhang, Xiaomei, E-mail: zhangxm667@163.com [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Lu, Hong [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Matsukura, Makoto [Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Zhao, Jien; Shinohara, Makoto [Ashikita Institution for Developmental Disabilities, 2813 Oaza Ashikita, Ashikita-machi, Ashikita, Kumamoto 869-5461 (Japan)

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  16. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity.

    Science.gov (United States)

    Hollborn, Margrit; Reichmuth, Konrad; Prager, Philipp; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2016-08-01

    One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes.

  17. Large-scale purification of porcine or bovine photoreceptor outer segments for phagocytosis assays on retinal pigment epithelial cells.

    Science.gov (United States)

    Parinot, Célia; Rieu, Quentin; Chatagnon, Jonathan; Finnemann, Silvia C; Nandrot, Emeline F

    2014-12-12

    Analysis of one of the vital functions of retinal pigment epithelial (RPE) cells, the phagocytosis of spent aged distal fragments of photoreceptor outer segments (POS) can be performed in vitro. Photoreceptor outer segments with stacks of membranous discs containing the phototransduction machinery are continuously renewed in the retina. Spent POS are eliminated daily by RPE cells. Rodent, porcine/bovine and human RPE cells recognize POS from various species in a similar manner. To facilitate performing large series of experiments with little variability, a large stock of POS can be isolated from porcine eyes and stored frozen in aliquots. This protocol takes advantage of the characteristic of photopigments that display an orange color when kept in the dark. Under dim red light, retinae are collected in a buffer from opened eyecups cut in halves. The retinal cell suspension is homogenized, filtered and loaded onto a continuous sucrose gradient. After centrifugation, POS are located in a discrete band in the upper part of the gradient that has a characteristic orange color. POS are then collected, spun, resuspended sequentially in wash buffers, counted and aliquoted. POS obtained this way can be used for phagocytosis assays and analysis of protein activation, localization or interaction at various times after POS challenge. Alternatively, POS can be labeled with fluorophores, e.g., FITC, before aliquoting for subsequent fluorescence quantification of POS binding or engulfment. Other possible applications include the use of modified POS or POS challenge combined with stress conditions to study the effect of oxidative stress or aging on RPE cells.

  18. Multi-lineage differentiation and angiogenesis potentials of pigmented villonodular synovitis derived mesenchymal stem cells--pathological implication.

    Science.gov (United States)

    Chiang, En-Rung; Ma, Hsiao-Li; Wang, Jung-Pan; Liu, Chien-Lin; Chen, Tain-Hsiung; Hung, Shih-Chieh

    2016-03-01

    Pigmented villonodular synovitis (PVNS) is a benign tissue proliferation characterized by its hyper-vascularity within the lesion. The true etiology and cell source of this disease entity still remain unclear. Mesenchymal stem cells (MSCs) exist in various tissues of human body. However, it has not been clarified whether MSCs could be isolated from tissue of PVNS. Here, we isolated MSCs from PVNS (PVNS-SCs), and by comparing to the MSCs from normal synovium (Syn-SCs) of the same individual, we investigated whether PVNS-SCs differed in the capacity for multi-differentiation and inducing angiogenesis. We first demonstrated that PVNS-SCs existed in the lesion of PVNS of three individuals. Moreover, we showed PVNS-SCs had better osteogenic differentiation potential than Syn-SCs, whereas Syn-SCs had better capacity for adipogenic and chondrogenic differentiation. By genome-wide analysis of gene expression profile using a complementary DNA microarray and comparing to Syn-SCs, we identified in PVNS-SCs a distinct gene expression profile characterized by up-regulation of genes involved in angiogenesis. In vitro and in vivo studies further confirmed that PVNS-SCs had better capacities for promoting angiogenesis. In summary, the identification of PVNS-SCs in PVNS tissue and their distinct angiogenic potential may help elucidate the underlying etiology of this disease. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Imatinib mesylate induces mitochondria-dependent apoptosis and inhibits invasion of human pigmented villonodular synovitis fibroblast-like synovial cells.

    Science.gov (United States)

    Chen, Kang; Ren, Qiao; Han, Xiao-Rui; Zhang, Xiao-Nan; Wei, Bo; Bai, Xi-Zhuang

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a rare sarcoma-like disorder characterized by synovial lesions proliferation and invasion to articular cartilage for which no effective treatments are available. Imatinib mesylate (IM) is known to exert antitumor activity in some tumors, but its effects on PVNS fibroblast-like synoviocytes (PVNS-FLS) and the specific mechanism involved remain to be established. In the present study, the in vitro effects of IM on cell proliferation and survival rates were investigated in PVNS-FLS. Apoptosis induction was assessed via acridine orange/ethidium bromide (AO)/(EB) and Annexin V/PI staining as well as western blotting. The invasion ability of PVNS-FLS was evaluated by Transwell invasion chambers. IM significantly inhibited survival and invasion ability of PVNS-FLS in a dose- and time-dependent manner. The drug-treated cell groups exhibited markedly higher apoptosis, which was blocked upon pretreatment with the specific caspase-9 inhibitor Z-LEHD-FMK. Expression of cleaved caspase-9 was significantly increased and the Bcl-2 family and caspase-3 were activated following treatment with IM. Our results collectively demonstrated that IM has a strong antiproliferative effect on PVNS-FLS in vitro, attributable to induction of mitochondrial-dependent apoptosis in association with activation of caspase-9/-3 and the Bcl-2/Bax family, and exhibits significant inhibition on the invasion ability of PVNS-FLS, suggesting that IM may be useful as a novel treatment of this disease.

  20. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration.

    Science.gov (United States)

    Zhang, Mimi W; Park, Hansoo; Guo, Xuan; Nakamura, Kenta; Raphael, Robert M; Kasper, F Kurtis; Mikos, Antonios G; Tsonis, Panagiotis A

    2010-04-01

    This study investigated the encapsulation of newt iris pigment epithelial cells (PECs), which have the ability to regenerate a lens by trans-differentiation in vivo, within a biodegradable hydrogel of oligo(poly(ethylene glycol) fumarate) crosslinked with poly(ethylene glycol)-diacrylate. Hydrogel beads of initial diameter of 1 mm were fabricated by a molding technique. The swelling ratio and degradation rate of the hydrogel beads decreased with increasing crosslinking ratios. Confocal microscopy confirmed the cytocompatibility of crosslinking hydrogel formulations as evidenced by the viability of an encapsulated model cell line within a crosslinked hydrogel bead. Hydrogel beads encapsulating iris PECs were also implanted into lentectomized newts in vivo; histological evaluation of explants after 30 days revealed a regenerated lens, thus demonstrating that the presence of degrading hydrogel did not adversely affect lens regeneration. The results of this study suggest the potential of a method for lens regeneration involving oligo(poly(ethylene glycol) fumarate) hydrogels for iris PEC encapsulation and transplantation.

  1. Recombinant human pigment epithelium-derived factor (PEDF): characterization of PEDF overexpressed and secreted by eukaryotic cells.

    Science.gov (United States)

    Stratikos, E.; Alberdi, E.; Gettins, P. G.; Becerra, S. P.

    1996-01-01

    Pigment epithelium-derived factor (PEDF) is a serpin found in the interphotoreceptor matrix of the eye, which, although not a proteinase inhibitor, possesses a number of important biological properties, including promotion of neurite outgrowth and differential expression in quiescent versus senescent states of certain cell types. The low amounts present in the eye, together with the impracticality of using the eye as a source for isolation of the human protein, make it important to establish a system for overexpression of the recombinant protein for biochemical and biological studies. We describe here the expression and secretion of full-length glycosylated human recombinant PEDF at high levels (> 20 micrograms/ mL) into the growth medium of baby hamster kidney cells and characterization of the purified rPEDF by circular dichroism and fluorescence spectroscopies and neurite outgrowth assay. By these assays, the recombinant protein behaves as expected for a correctly folded full-length human PEDF. The availability of milligram amounts of PEDF has permitted quantitation of its heparin binding properties and of the effect of reactive center cleavage on the stability of PEDF towards thermal and guanidine hydrochloride denaturation. PMID:8976566

  2. Monascus pigments.

    Science.gov (United States)

    Feng, Yanli; Shao, Yanchun; Chen, Fusheng

    2012-12-01

    Monascus pigments (MPs) as natural food colorants have been widely utilized in food industries in the world, especially in China and Japan. Moreover, MPs possess a range of biological activities, such as anti-mutagenic and anticancer properties, antimicrobial activities, potential anti-obesity activities, and so on. So, in the past two decades, more and more attention has been paid to MPs. Up to now, more than 50 MPs have been identified and studied. However, there have been some reviews about red fermented rice and the secondary metabolites produced by Monascus, but no monograph or review of MPs has been published. This review covers the categories and structures, biosynthetic pathway, production, properties, detection methods, functions, and molecular biology of MPs.

  3. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables.

    Science.gov (United States)

    Zhang, Yanjun; Vareed, Shaiju K; Nair, Muraleedharan G

    2005-02-11

    Anthocyanidins, the aglycones of anthocyanins, impart brilliant colors in many fruits and vegetables. The widespread consumption of diets rich in anthocyanin and anthocyanidins prompted us to determine their inhibitory effects on human cancer cell proliferation. Five anthocyanidins, cyanidin (1), delphinidin (2), pelargonidin (3), petunidin (4) and malvidin (5), and four anthocyanins, cyanidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-galactoside and pelargonidin-3-galactoside were tested for cell proliferation inhibitory activity against human cancer cell lines, AGS (stomach), HCT-116 (colon), MCF-7 (breast), NCI H460 (lung), and SF-268 (Central Nervous System, CNS) at 12.5-200 microg/mL concentrations. The viability of cells after exposure to anthocyanins and anthocyanidins was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric methods. The anthocyanins assayed did not inhibit cell proliferation of cell lines tested at 200 microg/mL. However, anthocyanidins showed cell proliferation inhibitory activity. Malvidin inhibited AGS, HCT-116, NCI-H460, MCF-7 and SF-268 cell growth by 69, 75.7, 67.7, 74.7 and 40.5%, respectively, at 200 microg/mL. Similarly, pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth by 64, 63, 62, 63 and 34%, respectively, at 200 microg/mL. At 200 microg/mL, cyanidin, delphinidin and petunidin inhibited the breast cancer cell growth by 47, 66 and 53%, respectively. This is the first report of tumor cell proliferation inhibitory activity by anthocyanidins.

  4. A Val85Met mutation in melanocortin-1 receptor is associated with reductions in eumelanic pigmentation and cell surface expression in domestic rock pigeons (Columba livia.

    Directory of Open Access Journals (Sweden)

    Michael W Guernsey

    Full Text Available Variation in the melanocortin-1 receptor (Mc1r is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon (Columbalivia is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met. In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species.

  5. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  6. Salvianolic Acid B (Sal B Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1

    Directory of Open Access Journals (Sweden)

    Xiaobin Liu

    2016-11-01

    Full Text Available Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG between cysteine residues and glutathione (GSH, can lead to cell death. Glutaredoxin 1 (Grx1 is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B, a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2, the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.

  7. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1).

    Science.gov (United States)

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-11-03

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H₂O₂-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H₂O₂-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.

  8. Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death

    DEFF Research Database (Denmark)

    Juel, Helene B; Faber, Carsten; Svendsen, Signe Goul

    2013-01-01

    expression of anti-oxidative enzymes, and protein expression was validated by immunoblotting. RESULTS: Viability of RPE cells was reduced by exposure to inflammatory agents (PCM, IFNγ+/-TNFα) or to oxidative agents (H2O2 or NaIO3). Unexpectedly, cells treated with either H2O2 or NaIO3 were partially......-cultured with activated T cells, or treated with cytokines showed increased expression of anti-oxidative genes, with upregulation of superoxide dismutase 2 protein following PCM treatment. CONCLUSION: Oxidative stress-induced cell death was reduced by concomitant inflammatory stress. This is likely due to the cytokine......-mediated induction of the anti-oxidative stress response, upregulating protective anti-oxidant pathway(s). These findings suggest caution for the clinical use of anti-inflammatory agents in the management of immune-associated eye diseases such as age-related macular degeneration....

  9. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562.

    Science.gov (United States)

    Sreekanth, Devalraju; Arunasree, M K; Roy, Karnati R; Chandramohan Reddy, T; Reddy, Gorla V; Reddanna, Pallu

    2007-11-01

    Betalains are water-soluble nitrogenous vacuolar pigments present in flowers and fruits of many caryophyllales with potent antioxidant properties. In the present study the antiproliferative effects of betanin, a principle betacyanin pigment, isolated from the fruits of Opuntia ficus-indica, was evaluated on human chronic myeloid leukemia cell line (K562). The results show dose and time dependent decrease in the proliferation of K562 cells treated with betanin with an IC(50) of 40 microM. Further studies involving scanning and transmission electron microscopy revealed the apoptotic characteristics such as chromatin condensation, cell shrinkage and membrane blebbing. Agarose electrophoresis of genomic DNA of cells treated with betanin showed fragmentation pattern typical for apoptotic cells. Flow cytometric analysis of cells treated with 40 microM betanin showed 28.4% of cells in sub G0/G1 phase. Betanin treatment to the cells also induced the release of cytochrome c into the cytosol, poly (ADP) ribose polymerase (PARP) cleavage, down regulation Bcl-2, and reduction in the membrane potentials. Confocal microscopic studies on the cells treated with betanin suggest the entry of betanin into the cells. These studies thus demonstrate that betanin induces apoptosis in K562 cells through the intrinsic pathway and is mediated by the release of cytochrome c from mitochondria into the cytosol, and PARP cleavage. The antiproliferative effects of betanin add further value to the nutritional characteristics of the fruits of O. ficus-indica.

  10. Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-β1.

    Science.gov (United States)

    Klar, Agnes S; Biedermann, Thomas; Michalak, Katarzyna; Michalczyk, Teresa; Meuli-Simmen, Claudia; Scherberich, Arnaud; Meuli, Martin; Reichmann, Ernst

    2017-07-31

    There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model (melDESS) of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consisted either of adipose tissue-derived stromal cells (ASC), dermal fibroblasts, or a mixture of both cell types. These skin substitutes were transplanted for five weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and western blot analyses showed a significantly higher expression of transforming growth factor-β1 (TGF-β1) by ASC in comparison to dermal fibroblasts. In addition we showed that melanocytes responded to the increased levels of TGF-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and consequently greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that that ASC derived from the hypodermis fail to appropriately interact with epidermal melanocytes thus preventing the sustainable restoration of the patient's native skin color in bio-engineered skin grafts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Transforming growth factor-β2 increases the capacity of retinal pigment epithelial cells to induce the generation of regulatory T cells.

    Science.gov (United States)

    Yan, Feng; He, Jin; Tang, Li; Kong, Yi; Shi, Yuhua; Chen, Suihua; Huang, Zhenping

    2016-02-01

    The present study investigated the underlying mechanism of the induction of regulatory T cells (Tregs) by retinal pigment epithelial (RPE) cells and the characteristics of these Tregs. Human RPE cells were cultured in the presence or absence of transforming growth factor-β 2 (TGF-β2), and reverse-transcription quantitative PCR was performed to determine the mRNA expression of indoleamine 2,3-dioxygenase (IDO) and nuclear factor erythroid 2-related factor (Nrf2). Supernatants of RPE cell cultures were added to CD4+ T cells to induce Tregs. The RPE-induced Tregs were purified by two-step magnetic cell sorting. The natural Tregs were isolated from the peripheral blood mononuclear cells of healthy volunteers. Purified CD4+ CD25- T cells (2 x 10(5)/well) were cultured alone or with Tregs (various densities, natural or RPE-induced). The proliferation of CD4+ CD25- T cells was determined by 3H-thymidine incorporation. After 24 h of stimulation with TGF-β2, the mRNA expression of IDO in RPE cells was upregulated. The highest level of IDO mRNA expression was reached after 72 h of stimulation with TGF-β2. However, the Nrf2 mRNA expression was slightly decreased after 24 h of stimulation with TGF-β2 and significantly increased after 48-72 h of TGF-β2 stimulation. Increased levels of CD25 expression were observed on CD4+ T cells exposed to supernatants of RPE cell cultures treated with TGF-β2 and recombinant interleukin-2. The RPE-induced Tregs were more effective at suppressing the proliferation of CD4+ CD25- T cells compared with native Tregs. These findings suggested that IDO may be a signaling protein in RPE cells which is implicated in the induction of Tregs. RPE-induced Tregs have the potential to be applied for immunotherapy for ocular inflammatory diseases.

  12. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling.

    Science.gov (United States)

    Leung, Kar Wah; Barnstable, Colin J; Tombran-Tink, Joyce

    2009-04-01

    Inflammation is a major contributing factor to many blinding disorders including uveitis, diabetic retinopathy, and age-related macular degeneration. Here we examined the response of the retinal pigment epithelium (RPE) to physiological levels of lipopolysaccharide (LPS) to understand the role of this epithelium in inflammatory retinal conditions. Expression of a group of inflammatory mediators was identified by gene array analysis and confirmed by PCR and immunocytochemistry in primary human RPE cultures and ARPE19. The effects of LPS on the expression of these cytokines and RPE survival were examined by PCR, Luminex bead, and MTT assays. RPE cells express many cytokine receptors including IL-1R, -4R, -6R, -8RA, IFNAR1, IFNGR1/2 and secrete a range of pro- and anti-inflammatory cytokines including IL-4, -6, -8, -10, -17, IFN-gamma, MCP-1, and VEGF. LPS increases IL-13RA1 and IFNAR1, and decreases IL-7R receptor expression. It also increases RPE secretion of IL-4, -6, -8, -10, IFN-gamma and MCP-1, and is toxic to RPE cells at LC(50)=17.7 microg/ml. LPS toxicity is mediated by IL-6 and IL-8 through an autocrine feedback loop. Silencing IL-6R and IL-8RA gene expression by siRNA blocks death by their respective ligands or LPS. These findings imply that RPE cells are acutely sensitive to inflammatory stress and that over secretion of IL-6 and IL-8 by this epithelium during inflammatory stimulus may be an underlying factor in the progression of some retinal pathologies.

  13. The Lipid Moiety of Haemozoin (Malaria Pigment and P. falciparum Parasitised Red Blood Cells Bind Synthetic and Native Endothelin-1

    Directory of Open Access Journals (Sweden)

    Nicoletta Basilico

    2010-01-01

    Full Text Available Endothelin1 (ET-1 is a 21-amino acid peptide produced by the vascular endothelium under hypoxia, that acts locally as regulator of vascular tone and inflammation. The role of ET-1 in Plasmodium falciparum malaria is unknown, although tissue hypoxia is frequent as a result of the cytoadherence of parasitized red blood cell (pRBC to the microvasculature. Here, we show that both synthetic and endothelial-derived ET-1 are removed by parasitized RBC (D10 and W2 strains, chloroquine sensitive, and resistant, resp. and native haemozoin (HZ, malaria pigment, but not by normal RBC, delipidized HZ, or synthetic beta-haematin (BH. The effect is dose dependent, selective for ET-1, but not for its precursor, big ET-1, and not due to the proteolysis of ET-1. The results indicate that ET-1 binds to the lipids moiety of HZ and membranes of infected RBCs. These findings may help understanding the consequences of parasite sequestration in severe malaria.

  14. Expression of a novel alternative transcript of the novel retinal pigment epithelial cell gene NORPEG in human testes

    Institute of Scientific and Technical Information of China (English)

    Wa Yuan; Ying Zheng; Ran Huo; Li Lu; Xiao-Yan Huang; Lan-Lan Yin; Jian-Min Li; Zuo-Min Zhou; Jia-Hao Sha

    2005-01-01

    Aim: To identify a novel alternative transcript of the novel retinal pigment epithelial cell gene (NORPEG) expressed in the human testis. Methods: A human testis cDNA microarray was established and hybridized with cDNA probes from human fetal testes, adult testes and human spermatozoa. Differentially expressed clones were sequenced and analyzed. One of these clones was a short transcript of NORPEG which we proceeded to analyze by RT-PCR.Results: The novel short alternative transcript of NORPEG was isolated and named sNORPEG. It was 3486 bp in length and contained a 2952-bp open reading frame, encoding a 110.4-kDa protein of 983 amino acids. Amino acid sequence analysis showed that the sNORPEG protein contains six ankyrin repeats and two coiled-coil domains. It shares a high homology with the NORPEG and ankycorbin proteins in both its sequence and motifs. Blasting the human genome database localized sNORPEG to human chromosome 5p13.2-13.3. Expression profiles showed that sNORPEG was expressed in human fetal testes, adult testes and spermatozoa. Moreover, sNORPEG was found to be ubiquitously expressed in human tissues. Conclusion: sNORPEG is expressed in different developmental stages of the testis and encodes a protein that may have roles in human testis development and spermatogenesis.

  15. Tenosynovial Giant Cell Tumor, Diffuse Type/Pigmented Villonodular Synovitis in a Pars Defect: A Case Report.

    Science.gov (United States)

    Kimura, Tetsuya; Nishisho, Toshihiko; Sakai, Toshinori; Miyagi, Ryo; Takao, Shoichiro; Iwamoto, Seiji; Higashino, Kosaku; Takata, Yoichiro; Goda, Yuichiro; Toki, Shunichi; Sairyo, Koichi

    2015-06-15

    Case report. To describe a rare case of tenosynovial giant cell tumor, diffuse type/pigmented villonodular synovitis (PVNS) in a pars defect in a patient with lumbar spondylolysis. PVNS rarely occurred in lumbar spine, and no studies in the English literature have reported PVNS in a pars defect in lumbar spondylolysis. The patient was a 14-year-old female presented with a 5-month history of low back pain. Plain radiography showed spondylolysis at L5 and computed tomography revealed a 1 × 2-cm slightly eroding tumorous mass at the left L5 pars. On magnetic resonance imaging, the mass showed intermediate intensity and gadolinium enhancement on T1-weighted images (WI) and high intensity on T2-WI and T2 STAR-WI. After undergoing computed tomography-guided needle biopsy, a pathological diagnosis of PVNS was made and total gross resection was performed. The gross appearance and the postoperative pathological diagnosis were consistent with PVNS. The postoperative clinical course was uneventful and postoperative computed tomography and magnetic resonance imaging revealed no residual lesion. This is the first report of PVNS occurring in spondylolysis. N/A.

  16. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    Science.gov (United States)

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-09

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  17. Bioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials

    Science.gov (United States)

    2010-05-10

    electron transfer from TiO2  and stabilizes the resultant charge-separated state between TiOand carotenoid. No dye-based PV solar cells have...as TiO2 as shown bellow, collaborated with Prof. Minoru Taya, University of Washinton in Seattle,US. 10 Scheme 4. Schemetic model of dye...sensitized solar cell ( DSSC ) Design of Dye using tandem system Electronic integration of devices were achieved by self-assembled monolayers with

  18. Inhibitions by hydrogen-occluding silica microcluster to melanogenesis in human pigment cells and tyrosinase reaction.

    Science.gov (United States)

    Kato, Shinya; Saitoh, Yasukazu; Miwa, Nobuhiko

    2013-01-01

    We investigated the anti-melanogenetic efficacy of hydrogen-occluding silica microcluster (H2-Silica), which is a silsesquioxane-based compound with hydrogen interstitially embedded in a matrix of caged silica, against melanogenesis in HMV-II human melanoma cells and L-DOPA-tyrosinase reaction [EC1.14.18.1]. HMV-II cells were subjected to oxidative stress by ultraviolet ray-A (UVA) exposure of 3-times of 0.65 J/cm2 summed up to 1.95 J/cm2. After UVA irradiation, HMV-II cells were stimulated to produce melanin by 2.72-fold more abundantly than unirradiated control. When HMV-II cells were treated with H2-Silica of 20 ppm or kojic acid of 28.4 ppm before and after UVA-irradiation, the amount of melanin was repressed to 12.2% or 14.5% as compared to that of UVA-irradiated control, respectively. That is, H2-Silica exhibited a comparable efficacy to the whitening agent kojic acid. The H2-Silica could prevent melanogenesis in HMV-II cells by low-level doses at 1-10 ppm, and cell viability and apoptosis event did not change even by high-level doses at 100-1000 ppm. On the contrary, kojic acid was cytotoxic at the concentration of 14-28 ppm or more. By microscopic observation, H2-Silica suppressed such properties indicative of melanin-rich cells as cellular hypertrophy, cell process formation, and melanogenesis around the outside of nuclei. The enzymatic assay using L-DOPA and mushroom tyrosinase demonstrated that H2-Silica restrained UVA-mediated melanin formation owing to down-regulation of tyrosinase activity, which could be attributed to scavenging of free radicals and inhibition of L-DOPA-to-dopachrome oxidation by hydrogen released from H2-Silica. Thus H2-Silica has a potential to prevent melanin production against UVA and serves as a skin-lightening ingredient for supplements or cosmetics.

  19. The etiology and molecular genetics of human pigmentation disorders.

    Science.gov (United States)

    Baxter, Laura L; Pavan, William J

    2013-01-01

    Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells, melanocytes. The scope of this genetic heterogeneity in humans ranges from normal to pathological pigmentation phenotypes. Clinically, normal human pigmentation encompasses a variety of skin and hair color as well as punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropic genes, where a single gene is required for various functions in different cell types. Thus, unravelling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, arising from a common developmental origin and/or shared genetic regulatory pathways. Herein we discuss notable human pigmentation disorders and their associated genetic alterations, focusing on the fact that the developmental genetics of pigmentation abnormalities are instructive for understanding normal pathways governing development and function of melanocytes. Copyright © 2012 Wiley Periodicals, Inc.

  20. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; El-Ewasy, Sara M.

    2017-01-01

    In this present study, a newly isolated strain, Streptomyces sp. NEAE-H, capable of producing high amount of black extracellular melanin pigment on peptone-yeast extract iron agar and identified as Streptomyces glaucescens NEAE-H. Plackett–Burman statistical design was conducted for initial screening of 17 independent (assigned) variables for their significances on melanin pigment production by Streptomyces glaucescens NEAE-H. The most significant factors affecting melanin production are incubation period, protease-peptone and ferric ammonium citrate. The levels of these significant variables and their interaction effects were optimized by using face-centered central composite design. The maximum melanin production (31.650 μg/0.1 ml) and tyrosinase activity (6089.10 U/ml) were achieved in the central point runs under the conditions of incubation period (6 days), protease-peptone (5 g/L) and ferric ammonium citrate (0.5 g/L). Melanin pigment was recovered by acid-treatment. Higher absorption of the purified melanin pigment was observed in the UV region at 250 nm. It appeared to have defined small spheres by scanning electron microscopy imaging. The maximum melanin yield was 350 mg dry wt/L of production medium. In vitro anticancer activity of melanin pigment was assayed against skin cancer cell line using MTT assay. The IC50 value was 16.34 ± 1.31 μg/ml for melanin and 8.8 ± 0.5 μg/ml for standard 5-fluorouracil. PMID:28195138

  1. Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior

    Science.gov (United States)

    Gustavsson, Martin; Hörnström, David; Lundh, Susanna; Belotserkovsky, Jaroslav; Larsson, Gen

    2016-01-01

    Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants. PMID:27782179

  2. Effects of mechanical stress and vitreous samples in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eri, E-mail: eritakahashi@fc.kuh.kumamoto-u.ac.jp; Fukushima, Ayako; Haga, Akira; Inomata, Yasuya; Ito, Yasuhiro; Fukushima, Mikiko; Tanihara, Hidenobu

    2016-02-12

    In rhegmatogenous retinal detachment (RRD), scattered RPE cells from the basement membrane into the vitreous cavity undergo an epithelial mesenchymal transition (EMT) and form the intraocular fibrous membrane in response to vitreous fluid. We investigated whether exposure to vitreous samples was associated with EMT-associated signals and mesenchymal characters. Human vitreous samples were collected from patients with RRD, epiretinal membrane (ERM), or macular hole (MH). We evaluated the effects of vitreous on ARPE-19 cells in suspension cultures using poly 2-hydroxyethyl methacrylate-coated dishes and three-dimensional (3D) Matrigel cultures. We found that exposure to vitreous samples did not induce morphological changes or accelerate wound closure in monolayers. Several samples showed increased phosphorylation of Smad2 and nuclear translocation of nuclear factor-κB. Mechanical stress triggered an elevation of phosphorylation levels in Smad2. In addition, exposure to vitreous fluid increased the phosphorylation of p38 mitogen-activated protein kinase in cell suspension cultures after mechanical stress. Moreover, ARPE-19 cells showed a stellate invasive phenotype in 3D Matrigel cultures with vitreous samples. In this study, we demonstrated that mechanical stress and vitreous were associated with EMT-associated signals and invasive phenotypes in 3D cultures but not in monolayers. These results have important implications for the role of vitreous humor in the induction of EMT and intraocular fibrosis.

  3. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    Directory of Open Access Journals (Sweden)

    Susana Vargas

    2013-02-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs, based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE with Tetraethylorthosilicate (TEOS, are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time.

  4. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells.

    Science.gov (United States)

    Kim, Eun Sung; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Kim, Jae-Sung; Kang, Il-Hwan; Nam, Jung-Bum; Chung, Doo-Young; Cho, Yoonchul; Lee, EunJoo H; Chang, Jong Wook; Cho, Dong-Hyung

    2015-01-01

    Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.

  5. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and other reactive synovitides.

    Science.gov (United States)

    Cupp, John S; Miller, Melinda A; Montgomery, Kelli D; Nielsen, Torsten O; O'Connell, John X; Huntsman, David; van de Rijn, Matt; Gilks, Cyril B; West, Robert B

    2007-06-01

    We recently demonstrated that CSF1, the ligand of the tyrosine kinase receptor, CSF1R, can be translocated in pigmented villonodular synovitis (PVNS) and tenosynovial giant cell tumor (TGCT). In this study, we evaluated the staining characteristics of PVNS/TGCT and reactive synovitides for CSF1 and CSF1R by in situ hybridization and immunohistochemistry on tissue microarrays and correlated these findings with the recently described translocation. We collected specimens of TGCT/PVNS from 60 patients and of rheumatoid arthritis and other reactive synovitides from 74 patients. We identify 2 groups of PVNS and TGCT cases by the presence of CSF1 translocation and CSF1 expression. The first group (35 of 57 cases; 61%) had both the CSF1 translocation and high expression of CSF1 RNA, confirming our previous findings. Interestingly, a second group (22 of 57 cases; 39%) was identified that showed high expression of CSF1 RNA or CSF1 protein but did not have the translocation. The rheumatoid arthritis and reactive synovitis specimens showed localization of CSF1 RNA and protein to the synovial lining cells, implying a possible role for CSF1 in the pathogenesis of these lesions. As the CSF1 translocation is postulated to play an important role in the biology of PVNS/TGCT, the consistent presence of CSF1 expression in translocation-negative cases implies that other mechanisms can lead to CSF1 up-regulation. The consistent presence of CSF1 overexpression in all cases of PVNS/TGCT and reactive synovitides suggests both an important role for CSF1 in the spectrum of synovial pathologies and the possibility of targeting the CSF1/CSF1R interaction therapeutically.

  6. Putting it all on pigmentation: Heuristics of a bold and stochastic cell fate decision.

    Science.gov (United States)

    Xing, Jianhua; Lee, Robin E C

    2015-10-06

    Gradients of transmembrane potential coordinate cell-fate decisions and patterning during embryogenesis and wound-healing. Bioelectrical signaling may also be more important for adult pathologies than currently recognized. In this issue of Science Signaling, Lobikin et al. describe a role for bioelectric signals during the development of Xenopus leavis embryos to instruct an organism-level response reminiscent of neoplastic progression in melanoma.

  7. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway

    OpenAIRE

    Said, Hamid M.; Wang, S.L.; Ma, T Y

    2005-01-01

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B-2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study w...

  8. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    Science.gov (United States)

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  9. Downregulation of VEGF mRNA expression by triamcinolone acetonide acetate-loaded chitosan derivative nanoparticles in human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhou H

    2012-08-01

    Full Text Available Huaisheng Zhou,1 Liqun Yang,2,* Huajie Li,2 Haijun Gong,1 Liangzheng Cheng,2 Haisheng Zheng,1 Li-Ming Zhang,2 Yuqing Lan1,*1Department of Ophthalmology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 2Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China*Both corresponding authors contributed equally to this workBackground: The purpose of this study was to investigate the downregulation of mRNA expression of vascular endothelial growth factor (VEGF by triamcinolone acetonide acetate (TAA-loaded chitosan nanoparticles in human retinal pigment epithelial cells.Methods: TAA-loaded deoxycholic acid-modified chitosan (TAA/DA-Chit nanoparticles were prepared via a self-assembly mechanism, and their morphology and zeta potential were examined by transmission electron microscopy and zeta potential analysis, respectively. DA-Chit and TAA/DA-Chit nanoparticle toxicity was evaluated using a Cell Counting Kit-8 assay. The efficiency of cellular uptake was determined using fluorescein isothiocyanate-labeled DA-Chit nanoparticles, in place of TAA/DA-Chit nanoparticles, assessed by both inverted fluorescence microscopy and flow cytometry. Downregulation of VEGF mRNA expression by TAA/DA-Chit nanoparticles was further investigated by real-time reverse transcription polymerase chain reaction (RT-PCR assay of the treated human retinal pigment epithelial cells.Results: TAA/DA-Chit nanoparticles were prepared with a TAA-loading capacity in the range of 12%–82%, which increased the water solubility of TAA from 0.3 mg/mL to 2.1 mg/mL. These nanoparticles showed oblate shapes 100–550 nm in size in transmission electron microscopic images and had positive zeta potentials. The Cell Counting Kit-8 assay indicated that the DA-Chit and

  10. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration.

    Science.gov (United States)

    Rossi, Ethan A; Rangel-Fonseca, Piero; Parkins, Keith; Fischer, William; Latchney, Lisa R; Folwell, Margaret A; Williams, David R; Dubra, Alfredo; Chung, Mina M

    2013-01-01

    Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular those affected by age-related macular degeneration (AMD). In this work, we improve Morgan's method by accounting for chromatic aberration variations by optimizing the confocal aperture axial and transverse placement through an automated iterative maximization of image intensity. The increase in image intensity after algorithmic aperture placement varied depending upon patient and aperture position prior to optimization but increases as large as a factor of 10 were observed. When using a confocal aperture of 3.4 Airy disks in diameter, images were obtained using retinal radiant exposures of less than 2.44 J/cm(2), which is ~22 times below the current ANSI maximum permissible exposure. RPE cell morphologies that were strikingly similar to those seen in postmortem histological studies were observed in AMD eyes, even in areas where the pattern of fluorescence appeared normal in commercial fundus autofluorescence (FAF) images. This new method can be used to study RPE morphology in AMD and other diseases, providing a powerful tool for understanding disease pathogenesis and progression, and offering a new means to assess the efficacy of treatments designed to restore RPE health.

  11. Complement Factor H Expressed by Retinal Pigment Epithelium Cells Can Suppress Neovascularization of Human Umbilical Vein Endothelial Cells: An in vitro Study.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available Complement factor H (CFH is one of the most important soluble complement regulatory proteins and is closely associated with age-related macular degeneration (AMD, the leading cause of irreversible central vision loss in the elderly population in developed countries. Our study searches to investigate whether CFH expression is changed in oxidative damaged retinal pigment epithelium (RPE cells and the role of CFH in the in vitro neovascularization. First, it was confirmed by immunofluorescence staining that CFH was expressed by ARPE-19 cells. CFH mRNA and protein in oxidative (H2O2 damaged ARPE-19 cells were both reduced, as determined by Real-time PCR and Western blotting analysis. Enzyme-linked immunosorbent assay (ELISA also showed that ARPE-19 cells treated with H2O2 caused an increase in C3a content, which indicates complement activation. Then, wound assays were performed to show that CFH expression suppression promoted human umbilical vein endothelial cell (HUVECs migration. Thereafter, ARPE-19 cells were transfected with CFH-specific siRNA and CFH knockdown was confirmed with the aid of Real-time PCR, immunofluorescence staining and Western blotting. The ELISA results showed that specific CFH knockdown in ARPE-19 cells activated the complement system. Finally, in vitro matrigel tube formation assay was performed to determine whether change of CFH expression in RPE would affect tube formation by HUVECs. More tubes were formed by HUVECs co-cultured with ARPE-19 cells transfected with CFH specific-siRNA when compared with controls. Our results suggested that RPE cells might be the local CFH source, and RPE cell injuries (such as oxidative stress may cause CFH expression suppression, which in turn may lead to complement activation and promotion of tube formation by HUVECs. This finding is of importance in elucidating the role of complement in the pathogenesis of ocular neovascularization including choroidal neovascularization.

  12. Cell viability, pigments and photosynthetic performance of Arctic phytoplankton in contrasting ice-covered and open-water conditions during the spring-summer transition

    KAUST Repository

    Alou-Font, E

    2015-12-02

    © Inter-Research 2016. We examined phytoplankton biomass and community composition (mostly based on pigments) as well as cell viability with the cell digestion assay in surface waters of the Canadian Beaufort Sea during the spring-summer transition. Our aim was to understand phytoplankton responses to the large environmental changes (irradiance, temperature and nutrients) occurring during this period. Two categories of stations were visited in May and June 2008: ice-covered (IC), exposed to low irradiances, and open-water (OW), exposed to higher irradiances. We observed a large variation in the percentage of living cells (%LC) relative to the total community. No relationship was found between %LC and nitrate concentration (the nutrient potentially limiting in this environment). The in situ irradiance influenced the status of the cells at OW stations. Mean surface mixed layer irradiances >600 μmol photons m-2 s-1 were associated with low cell viability and a decline in photosynthetic performance (Fv/Fm). For IC stations, %LC declined at temperatures above 0°C, whereas for OW stations, it increased, suggesting that ice melting resulted in the release into surface waters of unhealthy cells from the bottom ice in one case, and that seasonal warming favored the communities present in open waters. A chlorophyll degradation pigment tentatively identified as pyropheophorbide a-\\'like\\' showed a significant negative relationship between its concentration (relative to chlorophyll a) and the %LC and Fv/Fm. Our results suggest that the melting conditions influence the distribution of this pigment and that it may be useful as a marker for low cell viability of ice algae being released into surface waters.

  13. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: Involvement of NFAT5

    Science.gov (United States)

    Vogler, Stefanie; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2015-01-01

    Purpose High intake of dietary salt increases extracellular osmolarity, which results in hypertension, a risk factor of neovascular age-related macular degeneration. Neovascular retinal diseases are associated with edema. Various factors and channels, including vascular endothelial growth factor (VEGF) and aquaporins (AQPs), influence neovascularization and the development of edema. Therefore, we determined whether extracellular hyperosmolarity alters the expression of VEGF and AQPs in cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA. Results Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. Conclusions Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and

  14. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin

    Science.gov (United States)

    Bullara, D.; de Decker, Y.

    2015-05-01

    The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction-diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction-diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns.

  15. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, Jens Folke; la Cour, Morten;

    2003-01-01

    and placed in a perfusion chamber in which the solution facing the retinal membrane could be changed rapidly. Two types of experiments were performed: Changes in cell water volume were measured by self-quenching of the fluorescent dye Calcein, and changes in intracellular pH were measured ratiometrically......) for the H(+) and lactate fluxes. The data suggest that H(2)O is cotransported along with H(+) and lactate ions in MCT1 localized to the retinal membrane. The study emphasizes the importance of this cotransporter in the maintenance of water homeostasis and pH in the subretinal space of a mammalian tissue...... and supports our previous study performed by an invasive technique in an amphibian tissue....

  16. Attenuated virulence of pigment-producing mutant of Aeromonas veronii bv. sobria in HeLa cells and Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Said K. Abolghait

    2013-06-01

    Full Text Available Aeromonas species are potential water/foodborne pathogens, whereas Aeromonas veronii bv. sobria is one of the most virulent species to human and fish. Most current experimental evidence has publicized that suicide plasmid dependent IS1-element untargeted integration into A. veronii bv. sobria ATCC 9071T strain was recently used to generate brown pigment-producing and spontaneous pelleting (BP+SP+ mutant. Current study was conducted to compare virulence of wild-type ATCC 9071T strain and its BP+SP+ mutant with respect to cytotoxicity in HeLa cells and lethality in Nile tilapia. It was found that the cytotoxicity of wild-type ATCC 9071T strain to HeLa cells has reached 75% versus 50% for the cytotoxicity of BP+SP+ mutant. Further, the median lethal dose (LD50 of wild-type ATCC 9071T strain in Nile tilapia was 8.25 Log10 colony-forming units (CFU/ml, compared to 9.16 Log10 CFU/ml for the LD50 of BP+SP+ mutant. Thus, current study supports the notion that non pigment-producing Aeromonas strains are more virulent than pigment-producing ones.

  17. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells.

    Science.gov (United States)

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.

  18. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells

    Science.gov (United States)

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J.; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene. PMID:26985665

  19. Development of multiple pigmented viral plaques and squamous cell carcinomas in a dog infected by a novel papillomavirus.

    Science.gov (United States)

    Munday, John S; O'Connor, Karin I; Smits, Bronwyn

    2011-02-01

    Canine viral plaques are uncommon skin lesions that are induced by papillomaviruses (PVs). Plaques are usually of little clinical significance in dogs, although they have been reported rarely to progress to squamous cell carcinoma (SCC). Here is described a 7-year-old mixed-breed dog that developed numerous darkly pigmented plaques up to 8 cm in diameter. Multiple ulcerated nodular masses were visible within plaques on the ventrum and axilla. The dog showed no clinical evidence of immunodeficiency and appeared otherwise healthy. Over the next 2 years, five surgeries were performed to remove 23 ulcerated masses that ranged in size from 2 to 5 cm in diameter. Five masses were submitted for histology, and all were SCCs. Each was surrounded by epidermis that contained histological features consistent with those described in canine plaques. Suggestive of a PV aetiology, massive numbers of large keratohyaline granules were present throughout the thickened epidermis. Additionally, koilocytes were focally present, and one sample contained a band of keratinocytes within the superficial epidermis that contained pale cytoplasm and marginated chromatin. From two samples, DNA sequences from a previously unreported PV were amplified, and immunohistochemistry confirmed the presence of PV antigen in both. The PV DNA sequences were most similar to those of canine PVs previously associated with plaque formation. The plaques observed in this case were unusual owing to their rapid growth, large size and frequent malignant transformation. It is unknown whether this unusual behaviour was due to the specific PV detected in this case or to host factors within the dog.

  20. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    Science.gov (United States)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  1. A pilot study on expression of toll like receptors (TLRs in response to herpes simplex virus (HSV infection in acute retinal pigment epithelial cells (ARPE cells

    Directory of Open Access Journals (Sweden)

    S Moses

    2014-01-01

    Full Text Available Introduction: Toll like receptors (TLRs have been proven to play an important role in mounting the innate immune response in an infected host. The expression of TLRs against herpes simplex virus (HSV have not been studied in retinitis. Therefore, the current study was undertaken to determine the same using the retinal pigment epithelial (ARPE-19 cell line. Materials and Methods: APRE cells cultured in vitro were challenged with HSV 1 and 2 standard strains and 20 other clinical isolates. The cells were observed for cytopathic changes. The cell culture harvest was subjected to RNA extraction using a Total RNA mini kit. The RNA was subjected to reverse transcriptase polymerase chain reaction (PCR for the amplification of TLRs 3, 4 and 9 and GAPDH housekeeping gene. The amplified products were subjected to electrophoresis on a 2% agarose gel and viewed under a transilluminator. Results: TLR 3 and 4 were expressed by ARPE treated with all the 22 isolates. TLR 9 expression was seen in 16 of the 22 isolates. Bacterial contamination was ruled out by subjecting the harvests to PCR amplification of 16sRNA gene amplification of the eubacterial genome. Conclusions: The expression of TLR 4 has been reported for the first time in HSV infection. TLR 4 along with TLR 3 and 9 is responsible for the antiviral response in HSV infections.

  2. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    Science.gov (United States)

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  3. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1 isolated from a vaginal swab of a woman with spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Gartemann Karl-Heinz

    2010-02-01

    Full Text Available Abstract Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1 was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in

  4. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink

    DEFF Research Database (Denmark)

    Sepehri, Mitra; Steen Sejersen, Tobias; Qvortrup, Klaus

    2017-01-01

    tattoo pigments in internal organs in mice extensively tattooed with 2 different tattoo ink products. MATERIAL/METHODS: Three groups of mice were studied, i.e., 10 tattooed black, 10 tattooed red, and 5 untreated controls. They were tattooed on the entire back with commercial tattoo inks, black and red...

  5. Pigmented Villonodular Synovitis (PVNS)

    Science.gov (United States)

    ... OverviewWhat is pigmented villonodular synovitis?Pigmented villonodular synovitis (PVNS) is a joint problem that usually affects the ... ankle, elbow, hand or foot.When you have PVNS, the lining of a joint becomes swollen and ...

  6. Oral pigmentation: A review.

    Science.gov (United States)

    Sreeja, C; Ramakrishnan, K; Vijayalakshmi, D; Devi, M; Aesha, I; Vijayabanu, B

    2015-08-01

    Pigmentations are commonly found in the mouth. They represent in various clinical patterns that can range from just physiologic changes to oral manifestations of systemic diseases and malignancies. Color changes in the oral mucosa can be attributed to the deposition of either endogenous or exogenous pigments as a result of various mucosal diseases. The various pigmentations can be in the form of blue/purple vascular lesions, brown melanotic lesions, brown heme-associated lesions, gray/black pigmentations.

  7. Comparing three methods of co-culture of retinal pigment epithelium with progenitor cells derived human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noushin Amirpour

    2013-01-01

    The adherent cells were morphologically examined using phase contrast microscopy and characterized by immunofluorescent staining and reverse transcription-polymerase chain reaction (RT-PCR Results: Evaluation of immunostaining showed that hESC, highly (>80% can be directed to the RPs fate. Upon co-culture of RPCs with RPE sheet using insert for 2 weeks or by the cell-to-cell contact, these cells differentiated to neural retina and expressed photoreceptor-specific markers. However, in direct co-culture, some mature photoreceptor markers like arrestin expressed in compare with indirect co-culture. Conclusions: The expression of late photoreceptor marker could be improved when RPE cells seeded on RPCs in compare with the use of insert.

  8. New dye-sensitized solar cells obtained from extracted bracts of Bougainvillea glabra and spectabilis betalain pigments by different purification processes.

    Science.gov (United States)

    Hernandez-Martinez, Angel Ramon; Estevez, Miriam; Vargas, Susana; Quintanilla, Fracisco; Rodriguez, Rogelio

    2011-01-01

    The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis' bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO(2) thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density J(SC) of 2.29 mA/cm(2) using an irradiation of 100 mW/cm(2) at 25 °C.

  9. New Dye-Sensitized Solar Cells Obtained from Extracted Bracts of Bougainvillea Glabra and Spectabilis Betalain Pigments by Different Purification Processes

    Directory of Open Access Journals (Sweden)

    Rogelio Rodriguez

    2011-08-01

    Full Text Available The performance of a new dye-sensitized solar cell (DSSC based in a natural dye extracted from the Bougainvillea spectabilis’ bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO2 thin film on indium tin oxide (ITO-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density JSC of 2.29 mA/cm2 using an irradiation of 100 mW/cm2 at 25 °C.

  10. Neovascularisation by tattoo pigment

    Directory of Open Access Journals (Sweden)

    Abdul Razack E

    1991-01-01

    Full Text Available Split skin grafting for the removal of a tattoo resulted in the appearance of pigmented papules in the periphery of the grafted skin as well as distal to it on the normal skin. Histologically they showed large vascular laminae containing red blood corpuscles and pigment deposits, a hitherto not documented complication of tattoo pigment.

  11. Overview of plant pigments

    Science.gov (United States)

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  12. Adenoviral E4 Gene Stimulates Secretion of Pigmental Epithelium Derived Factor (PEDF) that Maintains Long-term Survival of Human Glomerulus-derived Endothelial Cells*

    Science.gov (United States)

    Jerebtsova, Marina; Kumari, Namita; Obuhkov, Yuri; Nekhai, Sergei

    2012-01-01

    Renal glomerular endothelial cells are specialized cells with an important role in physiological filtration and glomerular disease. However, maintenance of human primary endothelial cells requires stimulation with serum and growth factors that often results in modification of the cells properties. Previously, expression of early adenovirus region E4 was shown to help maintaining long-term survival of human endothelial cells in serum free media without addition of growth factors. In the current study, we showed that media conditioned with human epithelial cells stably transfected with Ad E4 region also supported survival of human glomerulus-derived endothelial cells in serum-free media. Mass-spectrometry analysis of the conditioned media identified pigmental epithelium derived factor (PEDF) as a major component of the conditioned media. PEDF expression in 293-E4 cells was validated by RT-PCR, Western blot and ELISA analysis. PEDF expression was detected in mouse glomeruli. Supplementation with recombinant PEDF supported survival of primary endothelial cells and the cells transformed with SV40 large T antigen in serum-free media, and extended the life-span of both cell cultures. PEDF did not inhibit FGF-2 stimulated growth and tubulogenesis of endothelial cells. Thus we demonstrated that adenoviral E4 region stimulated expression and secretion of PEDF by human renal epithelial cells that acted as a survival factor for glomerulus-derived endothelial cells. PMID:22915824

  13. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma. A Danish case-control study

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1999-01-01

    To assess the importance of hair and eye colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma in fair-skinned Caucasians, we conducted two identical case-control studies in Denmark. We studied 145 cases with basal cell...... were of skin type II than skin type IV; skin type 11 was a risk factor for basal cell carcinoma with an odds ratio (OR) of 2.3. For cutaneous malignant melanoma, more cases than controls were red-haired or blond and of skin type II, but there was no difference in constitutive skin pigmentation. Hair...... colour and skin type were found to be independent risk factors for cutaneous malignant melanoma; red hair vs. black/brown: OR >9.7, blond hair vs. brown/black: OR = 2.4, and skin type 11 vs. type IV: OR=2.0. There were no gender-related differences in risk factors for basal cell carcinoma and cutaneous...

  14. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    Science.gov (United States)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  15. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    -cell–derived cytokines by upregulating expression of multiple chemokines related to microglial, T-cell, and monocyte chemotaxis and activation. This inflammatory stress response may have implications for immune homeostasis in the retina, and for the further understanding of inflammatory ocular diseases such as uveitis...

  16. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells.

    Directory of Open Access Journals (Sweden)

    Michelle J Hansen

    Full Text Available While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA. Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.

  17. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    Science.gov (United States)

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  18. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ming [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Department of Ophthalmology, Cardinal Tien Hospital, Taipei Hsien, Taiwan, ROC (China); Fang, Jia-You [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan, ROC (China); Lin, Hsin-Huang [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Yang, Chi-Yea [Department of Biotechnology, Vanung University, Taoyuan, Taiwan, ROC (China); Hung, Chi-Feng, E-mail: 054317@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China)

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  19. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  20. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaîne opératoire.

    Science.gov (United States)

    López-Montalvo, Esther; Roldán, Clodoaldo; Badal, Ernestina; Murcia-Mascarós, Sonia; Villaverde, Valentín

    2017-01-01

    We present a new multi-analytical approach to the characterization of black pigments in Spanish Levantine rock art. This new protocol seeks to identify the raw materials that were used, as well as reconstruct the different technical gestures and decision-making processes involved in the obtaining of these black pigments. For the first of these goals, the pictorial matter of the black figurative motifs documented at the Les Dogues rock art shelter (Ares del Maestre, Castellón, Spain) was characterized through the combination of physicochemical and archeobotanical analyses. During the first stage of our research protocol, in situ and non-destructive analyses were carried out by means of portable Energy Dispersive X-Ray Fluorescence spectrometry (EDXRF); during the second stage, samples were analyzed by Optical Microscopy (OM), Raman spectroscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). Two major conclusions have been drawn from these analyses: first, charred plant matter has been identified as a main component of these prehistoric black pigments; and second, angiosperm and conifer charcoal was a primary raw material for pigment production, identified by means of the archaeobotanical study of plant cells. For the second goal, black charcoal pigments were replicated in the laboratory by using different raw materials and binders and by reproducing two main chaînes opératoires. The comparative study of the structure and preservation of plant tissues of both prehistoric and experimental pigments by means of SEM-EDX underlines both a complex preparation process and the use of likely pigment recipes, mixing raw material with fatty or oily binders. Finally, the formal and stylistic analysis of the motifs portrayed at Les Dogues allowed us to explore the relationship between identified stylistic phases and black charcoal pigment use, raising new archaeological questions concerning the acquisition of know-how and the

  1. Sulforaphane Enhances the Ability of Human Retinal Pigment Epithelial Cell against Oxidative Stress, and Its Effect on Gene Expression Profile Evaluated by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Liang Ye

    2013-01-01

    Full Text Available To gain further insights into the molecular basis of Sulforaphane (SF mediated retinal pigment epithelial (RPE 19 cell against oxidative stress, we investigated the effects of SF on the regulation of gene expression on a global scale and tested whether SF can endow RPE cells with the ability to resist apoptosis. The data revealed that after exposure to H2O2, RPE 19 cell viability was increased in the cells pretreated with SF compared to the cell not treated with SF. Microarray analysis revealed significant changes in the expression of 69 genes in RPE 19 cells after 6 hours of SF treatment. Based on the functional relevance, eight of the SF-responsive genes, that belong to antioxidant redox system, and inflammatory responsive factors were validated. The up-regulating translation of thioredoxin-1 (Trx1 and the nuclear translocation of Nuclear factor-like2 (Nrf2 were demonstrated by immunoblot analysis in SF treated RPE cells. Our data indicate that SF increases the ability of RPE 19 cell against oxidative stress through up-regulating antioxidative enzymes and down-regulating inflammatory mediators and chemokines. The results suggest that the antioxidant, SF, may be a valuable supplement for preventing and retarding the development of Age Related Macular Degeneration.

  2. Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection.

    Science.gov (United States)

    Stafsnes, Marit H; Dybwad, Marius; Brunsvik, Anders; Bruheim, Per

    2013-03-01

    A challenge in the rational exploitation of microbial culture collections is to avoid superfluous testing of replicas. MALDI-TOF MS has been shown to be an efficient dereplication tool as it can be used to discriminate between bacterial isolates at the species level. A bacterial culture collection of more than 10,000 heterotrophic marine bacterial isolates from sea-water surface layers of the Norwegian Trondheimsfjord and neighbouring coastal areas has been established. A sub-collection of pigmented isolates was earlier screened for novel carotenoids with UVA-Blue light absorbing properties. This was a comprehensive analytical task and it was observed that a significant number of extracts with identical pigment profile were recovered. Hence, this study was undertaken to explore the use of MALDI-TOF MS as a dereplication tool to quickly characterize the bacterial collection. Furthermore, LC-DAD-MS analysis of pigment profiles was performed to check if pigment profile diversity was maintained among isolates kept after the potential MALDI-TOF MS selection step. Four hundred isolates comprising both pigmented and non-pigmented isolates were used for this study. The resulting MALDI-TOF MS dendrogram clearly identified a diversity of different taxa and these were supported by the pigment profile clustering, thus linking the pigment production as species-specific properties. Although one exception was found, it can be concluded that MALDI-TOF MS dereplication is a promising pre-screening tool for more efficient screening of microbial culture collection containing pigments with potential novel properties.

  3. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH3-N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DO<0.5mg/L led to the highest dehydrogenase activity. According to the different purposes, the optimal treatment time was different. The most pigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impacts of Temperature on the Stability of Tropical Plant Pigments as Sensitizers for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Aiman Yusoff

    2014-01-01

    Full Text Available Natural dyes have become a viable alternative to expensive organic sensitizers because of their low cost of production, abundance in supply, and eco-friendliness. We evaluated 35 native plants containing anthocyanin pigments as potential sensitizers for DSSCs. Melastoma malabathricum (fruit pulp, Hibiscus rosa-sinensis (flower, and Codiaeum variegatum (leaves showed the highest absorption peaks. Hence, these were used to determine anthocyanin content and stability based on the impacts of storage temperature. Melastoma malabathricum fruit pulp exhibited the highest anthocyanin content (8.43 mg/L followed by H. rosa-sinensis and C. variegatum. Significantly greater stability of extracted anthocyanin pigment was shown when all three were stored at 4∘C. The highest half-life periods for anthocyanin in M. malabathricum, H. rosa-sinensis, and C. variegatum were 541, 571, and 353 days at 4∘C. These were rapidly decreased to 111, 220, and 254 days when stored at 25∘C. The photovoltaic efficiency of M. malabathricum was1.16%, while the values for H. rosa-sinensis and C. variegatum were 0.16% and 1.08%, respectively. Hence, M. malabathricum fruit pulp extracts can be further evaluated as an alternative natural sensitizer for DSSCs.

  5. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  6. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    Science.gov (United States)

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-05

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases.

  7. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    Science.gov (United States)

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  8. Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine from Lycium barbarum (Goji Berry in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    M. K. Song

    2012-01-01

    Full Text Available Diabetic retinopathy is a preventable microvascular diabetic complication and a leading cause of vision loss. Retinal pigment epithelial cell apoptosis is an early event in diabetic retinopathy. Taurine is reportedly beneficial for diabetic retinopathy and is abundant in the fruit of Lycium barbarum (LB. We have investigated the effect of pure taurine and an extract of LB rich in taurine on a model of diabetic retinopathy, the retinal ARPE-19 cell line exposed to high glucose. We demonstrate for the first time that LB extract and the active ligand, taurine, dose dependently enhance cell viability following high glucose treatment in the ARPE-19 retinal epithelial cell line. This cytoprotective effect was associated with the attenuation of high glucose-induced apoptosis, which was shown by characteristic morphological staining and the dose-dependent decrease in the number of apoptotic cells, determined by flow cytometry. Moreover, we have shown that LB extract and taurine dose dependently downregulate caspase-3 protein expression and the enzymatic activity of caspase-3. We conclude that taurine, a major component of LB, and the LB extract, have a cytoprotective effect against glucose exposure in a human retinal epithelial cell line and may provide useful approaches to delaying diabetic retinopathy progression.

  9. [Bacterial pigment prodigiosin and its genotoxic effects].

    Science.gov (United States)

    Gur'ianov, I D; Karamova, N S; Iusupova, D V; Gnezdilov, O I; Koshkarova, L A

    2013-01-01

    The prodigiosin preparation was isolated and purified from Serratia marcescens ATCC 9986, using chromatographic methods. The analysis of the preparation by TLC, NMR-spectrometry and mass-spectrometry allowed to confirm the red pigment fraction as the prodigiosin and detect its purity. Originally, the specific features of the toxic and genotoxic effects of prodigiosin and the possibility of induction of mutations by pigment in the cells of Salmonella typhimurium TA 100 (Ames test) and chromosome damage of mammalian erythroblasts have been determined.

  10. Oxygen permeability of the pigmented material used in cosmetic daily disposable contact lenses

    Science.gov (United States)

    Galas, Stephen; Copper, Lenora L

    2016-01-01

    Purpose To evaluate the individual contributions of pigment colorant and packing solution containing polyvinyl pyrrolidone (PVP) on the oxygen permeability (Dk) of a cosmetic printed etafilcon A daily disposable contact lens packaged with PVP. Method The oxygen transport of a contact lens is evaluated through the central optical zone of the lens. Cosmetic printed contact lenses contain pigment colorant in the periphery or mid-periphery of the lens. Therefore, to assess the impact of cosmetic print on oxygen permeability, special lenses need to be produced that contain the colorant within the central optical zone. This technique was used to obtain multiple measurements of nonedge-corrected Dk/t of both the center pigmented lens and its nonpigmented equivalent, using a polarographic measurement described in International Organization for Standardization (ISO) 18369-4:2006(E), and the Dk derived for each measurement is corrected for edge effect. In addition, the edge-corrected Dk values of lenses made from the same monomer batch were measured. The lenses were packaged and autoclaved with and without proprietary technology which embeds PVP in the contact lens during autoclaving. The resulting Dk value of the printed lens material was then used with thickness data to generate true Dk/t profiles for a given lens power. Results The edge-corrected Dk of the printed etafilcon A lens with offset pigment colorant was measured to be 19.7×10−11 (cm2/s) (mL O2/mL·mmHg) at 35°C. This was within ±20% tolerance range as specified in ISO 18369-2:2012(E) for the edge-corrected Dk of the nonpigmented etafilcon A control lens evaluated during the same session, 19.5×10−11 (cm2/s) (mL O2/mL·mmHg). The edge-corrected Dk values of the lenses packaged with PVP (mean 20.1, standard deviation [SD] 0.3) were also within the ±20% tolerance range compared to those packaged without PVP (mean 20.0, SD 0.3). Conclusion The pigment colorant and PVP embedded in the contact lens during

  11. Oxygen permeability of the pigmented material used in cosmetic daily disposable contact lenses

    Directory of Open Access Journals (Sweden)

    Galas S

    2016-12-01

    Full Text Available Stephen Galas, Lenora L Copper Johnson & Johnson Vision Care Inc., Jacksonville, FL, USA Purpose: To evaluate the individual contributions of pigment colorant and packing solution containing polyvinyl pyrrolidone (PVP on the oxygen permeability (Dk of a cosmetic printed etafilcon A daily disposable contact lens packaged with PVP. Method: The oxygen transport of a contact lens is evaluated through the central optical zone of the lens. Cosmetic printed contact lenses contain pigment colorant in the periphery or mid-periphery of the lens. Therefore, to assess the impact of cosmetic print on oxygen permeability, special lenses need to be produced that contain the colorant within the central optical zone. This technique was used to obtain multiple measurements of nonedge-corrected Dk/t of both the center pigmented lens and its nonpigmented equivalent, using a polarographic measurement described in International Organization for Standardization (ISO 18369-4:2006(E, and the Dk derived for each measurement is corrected for edge effect. In addition, the edge-corrected Dk values of lenses made from the same monomer batch were measured. The lenses were packaged and autoclaved with and without proprietary technology which embeds PVP in the contact lens during autoclaving. The resulting Dk value of the printed lens material was then used with thickness data to generate true Dk/t profiles for a given lens power. Results: The edge-corrected Dk of the printed etafilcon A lens with offset pigment colorant was measured to be 19.7×10-11 (cm2/s (mL O2/mL·mmHg at 35°C. This was within ±20% tolerance range as specified in ISO 18369-2:2012(E for the edge-corrected Dk of the nonpigmented etafilcon A control lens evaluated during the same session, 19.5×10-11 (cm2/s (mL O2/mL·mmHg. The edge-corrected Dk values of the lenses packaged with PVP (mean 20.1, standard deviation [SD] 0.3 were also within the ±20% tolerance range compared to those packaged without PVP

  12. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.

    Science.gov (United States)

    Liu, Ning-Ning; Zhao, Ning; Cai, Na

    2015-06-01

    Rapamycin, a highly specific inhibitor of mammalian target of rapamycin (mTOR), exhibits significant antitumor/antiangiogenic activity in human cancer cells. Its effect on the retinal pigment epithelial (RPE) cells was rarely investigated. This study assessed the proliferation of hypoxia-induced RPE and the inhibitory effects of rapamycin using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and examined the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells with or without rapamycin under normoxic and hypoxic conditions using real-time PCR and Western blot. We found that hypoxia increased the levels of mTOR, HIF-1α, and VEGF. The suppression of HIF-1α and VEGF by rapamycin was associated with dephosphorylation of mTOR and the downstream effector ribosomal protein S6 kinase (P70S6K) and 4E-binding protein-1 (4E-BP1) of mTORC1. Rapamycin only inhibited the protein levels and did not change the mRNA expression of HIF-1α. No cytotoxicity to the RPE cells by rapamycin was caused under either normoxia or hypoxia. Our data suggest that rapamycin suppresses hypoxia-induced RPE cell proliferation through a mechanism related to the targeting of mTOR/HIF-1α/VEGF signaling. Rapamycin may potentially provide a safe and effective novel treatment for choroidal vascular disease.

  13. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal.

    Science.gov (United States)

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2009-09-15

    N-acyl homoserine lactone (AHL) is a widely conserved quorum sensing (QS) signal of gram-negative bacteria and has received attention in fighting against human diseases and environmental pollution. However, a method for quantifying AHL is lacking although it is urgently required for diagnosis and bioprocess manipulation. This work screened out an aromatics degrader Pseudomonas aeruginosa for biosensing system development, which produced a blue-green pigment regulated by the RhlI-RhlR QS system. By taking advantage of the recognition of N-butyryl homoserine lactone (BHL, the signal molecule of RhlI-RhlR QS system and an AHL) by the product of rhlR, a new whole-cell biosensor P. aeruginosa Delta rhlIR/pYC-rhlR (rhlI(-)rhlR(++)) was developed. It was constructed through abolishing its BHL production by in-frame deletion of rhlIR and over-expressing rhlR by introducing a multi-copy plasmid pYC-rhlR into Delta rhlIR. By using the pigment production which responded to exogenous BHL as biosensor output, BHL quantification in samples was simply done spectrophotometrically. Under optimum conditions, the calibration curve had the limit of detection (LOD), the 50% activation/effect concentration, the limit of quantification (LOQ), and the quantitative detection range of 1.3 nM, 2.77+/-0.45 microM, 5.7 nM and 0.11-49.7 microM, respectively. The biosensor output was stable, culture samples could be stored 10 days under -20 degrees C, and this sensing system was resistant to interferences by toxic aromatic pollutants. It was successfully applied to environmental samples even without extraction. The new whole-cell biosensing system provided a simple, stable, toxic pollutants-tolerant, and cost-effective tool for quantitative investigation of the QS signals' role in environmental processes.

  14. Retinal pigmented epithelial cells cytotoxicity and apoptosis through activation of the mitochondrial intrinsic pathway: role of indocyanine green, brilliant blue and implications for chromovitrectomy.

    Directory of Open Access Journals (Sweden)

    Fernando M Penha

    Full Text Available PURPOSE: To investigate the in vitro effect of four vital dyes on toxicity and apoptosis in a human retinal pigment epithelial (RPE cell line. METHODS: ARPE-19 cells were exposed to brilliant blue (BriB, methyl blue (MetB, acid violet (AcV and indocyanine green (ICG. Balanced salt solution was used as control. Five different concentrations of each dye (1, 0.5, 0.25, 0.05 and 0.005 mg/mL and two exposure times (3 and 30 min were tested. Cell viability was determined by cell count and MTS assay and cell toxicity by LDH assay. Real-time PCR and Western blotting were used to access the apoptosis process. RESULTS: ICG significantly reduced cell viability after 3 minutes of exposure at all concentrations (p<0.01. BriB was safe at concentrations up to 0.25 mg/mL and MetB at concentrations up to 0.5 mg/mL, while AcV was safe up to 0.05 mg/ml, after 3 minutes of exposure. Toxicity was higher, when the cells were treated for 30 minutes. Expression of Bax, cytochrome c and caspase-9 was upregulated at the mRNA and protein level after ICG exposure, while Bcl-2 was downregulated. AcV and MetB were similar to control. However, BriB resulted in upregulation of Bcl-2, an antiapoptotic protein. CONCLUSIONS: The safest dye used on RPE cells was MetB followed by BriB and AcV. ICG was toxic at all concentrations and exposure times tested. Moreover, ICG was the only dye that induced apoptosis in ARPE-19 cells. BriB significantly increased Bcl-2 protein levels, which might protect against the apoptosis process.

  15. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  16. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners

    Directory of Open Access Journals (Sweden)

    Dong-Il Kim

    2015-01-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1 is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.

  17. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells

    Science.gov (United States)

    Schwarz, Nele; Carr, Amanda-Jayne; Lane, Amelia; Moeller, Fabian; Chen, Li Li; Aguilà, Mònica; Nommiste, Britta; Muthiah, Manickam N.; Kanuga, Naheed; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin; da Cruz, Lyndon; Coffey, Peter J.; Cheetham, Michael E.; Hardcastle, Alison J.

    2015-01-01

    Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gβ1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients. PMID:25292197

  18. Pigmentation in Anuran Testes: Anatomical Pattern and Variation

    OpenAIRE

    Franco-Belussi, Lilian [UNESP; Zieri, Rodrigo [UNESP; de Souza Santos, Lia Raquel; Moresco, Rafaela Maria; Oliveira, Classius de [UNESP

    2009-01-01

    In amphibians, pigmented cells are present in several organs, composing an extracutaneous pigmentary system. Seventeen species from two families were studied to develop a protocol for pigmentary classification. The amount and distribution of these cells are variable, allowing the establishment of anatomical patterns for visceral pigmentation in anuran testes. Anat Rec, 292:178-182, 2009. (C) 2008 Wiley-Liss, Inc.

  19. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  20. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    Science.gov (United States)

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes.

  1. Pigments in Thermophilic fungi

    OpenAIRE

    Somasundaram, T.; Rao, Sanjay SR; Maheshwari,R.

    1986-01-01

    UV and visible absorption spectra of thermophilic fungi were obtained by photoacoustic spectroscopy. Based on these data as well as on the chem. properties and IR spectra, it is suggested that the pigments may be hydroxylated polycyclic quinones.

  2. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Paulina Kuczynska; Malgorzata Jemiola-Rzeminska; Kazimierz Strzalka

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  3. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    Science.gov (United States)

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency.

  4. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  5. Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC)

    Science.gov (United States)

    Carter, David A.; Smart, Matthew J. K.; Letton, William V. G.; Ramsden, Conor M.; Nommiste, Britta; Chen, Li Li; Fynes, Kate; Muthiah, Manickam N.; Goh, Pollyanna; Lane, Amelia; Powner, Michael B.; Webster, Andrew R.; da Cruz, Lyndon; Moore, Anthony T.; Coffey, Peter J.; Carr, Amanda-Jayne F.

    2016-01-01

    Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients. PMID:27653836

  6. Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Shi-Bei; Wu, Ching-Shuang; Shen, Yi-Chun; Chiang, Tzu-Ying; Wei, Yau-Huei; Yu, Hsin-Su

    2012-03-01

    Solar lights encompass ultraviolet (UV), visible, and infrared spectrum. Most previous studies focused on the harmful UV effects, and the biologic effects of lights at other spectrums remained unclear. Recently, lights at visible region have been used for regenerative purposes. Using the process of vitiligo repigmentation as a research model, we focused on elucidating the pro-differentiation effects induced by visible light. We first showed that helium-neon (He-Ne) laser (632.8 nm) irradiation stimulated differentiation of primitive pigment cells, an effect not replicable by UVB treatment even at high and damaging doses. In addition, significant increases of mitochondrial DNA copy number and the regulatory genes for mitochondrial biogenesis were induced by He-Ne laser irradiation. Mechanistically, we demonstrated that He-Ne laser initiated mitochondrial retrograde signaling via a Ca(2+)-dependent cascade. The impact on cytochrome c oxidase within the mitochondria is responsible for the efficacy of He-Ne laser in promoting melanoblast differentiation. Taken together, we propose that visible lights from the sun provide important environmental cues for the relatively quiescent stem or primitive cells to differentiate. In addition, our results also indicate that visible light may be used for regenerative medical purposes involving stem cells.

  7. Pigment epithelium derived factor inhibits the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yanmei Sun

    Full Text Available Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.

  8. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space. CONCLUSIONS/SIGNIFICANCE: These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  9. Blockade of Jagged/Notch pathway abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells.

    Science.gov (United States)

    Chen, X; Xiao, W; Liu, X; Zeng, M; Luo, L; Wu, M; Ye, S; Liu, Y

    2014-05-01

    The epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays a key role in proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), which lead to the loss of vision. The Jagged/Notch pathway has been reported to be essential in EMT during embryonic development, fibrotic diseases and cancer metastasis. However, the function of Jagged/Notch signaling in EMT of RPE cells is unknown. Thus, we hypothesized that a crosstalk between Notch and transforming growth factor β2 (TGF-β2) signaling could induce EMT in RPE cells, which subsequently contributes to PVR and PDR. Here, we demonstrate that Jagged-1/Notch pathway is involved in the TGF-β2-mediated EMT of human RPE cells. Blockade of Notch pathway with DAPT (a specific inhibitor of Notch receptor cleavage) and knockdown of Jagged-1 expression inhibited TGF-β2-induced EMT through regulating the expression of Snail, Slug and ZEB1. Besides the canonical Smad signaling pathway, the noncanonical PI3K/Akt and MAPK pathway also contributed to TGF-β2-induced up-regulation of Jagged-1 in RPE cells. Overexpression of Jagged-1 could mimic TGF-β2 induce EMT. Our data suggest that the Jagged-1/Notch signaling pathway plays a critical role in TGF-β2-induced EMT in human RPE cells, and may contribute to the development of PVR and PDR. Inhibition of the Jagged/Notch signaling pathway, therefore, may have therapeutic value in the prevention and treatment of PVR and PDR.

  10. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

    Science.gov (United States)

    Lobato-Álvarez, Jorge A.; Roldán, María L.; López-Murillo, Teresa del Carmen; González-Ramírez, Ricardo; Bonilla-Delgado, José; Shoshani, Liora

    2016-01-01

    Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit. PMID:27774068

  11. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

    Directory of Open Access Journals (Sweden)

    Jorge Lobato Álvarez

    2016-10-01

    Full Text Available Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE, the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS, ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit.

  12. Tumorigenicity studies of induced pluripotent stem cell (iPSC-derived retinal pigment epithelium (RPE for the treatment of age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hoshimi Kanemura

    Full Text Available Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC-derived retinal pigment epithelium (RPE for the treatment of wet-type, age-related macular degeneration (AMD. First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG were tested for HeLa cells' tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 10(1.1, n = 75. The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 10(2.12; (n = 30. Based on these experiments, 1×10(6 iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65. Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 10(4.73 (n = 20 and for HeLa cells 10(1.32 (n = 37 respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8-1.5×10(4 iPSC-derived RPE in a collagen-lined (1 mm×1 mm sheet. No tumor was found with iPSC-derived RPE sheets during 6-12 months of monitoring (n = 26. Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was

  13. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    Science.gov (United States)

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  14. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    Science.gov (United States)

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  15. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yimin Zhong

    Full Text Available Damage to the retinal pigment epithelium (RPE is an early event in the pathogenesis of age-related macular degeneration (AMD. X-box binding protein 1 (XBP1 is a key transcription factor that regulates endoplasmic reticulum (ER homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.

  16. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells.

    Science.gov (United States)

    Paimela, Tuomas; Ryhänen, Tuomas; Mannermaa, Eliisa; Ojala, Johanna; Kalesnykas, Giedrius; Salminen, Antero; Kaarniranta, Kai

    2007-06-15

    Toll-like receptors (TLRs) and inflammatory cascades participate in the pathology of age-related macular degeneration (AMD). The effect of estrogens on the development of AMD is poorly understood, although many studies indicate that these compounds can modulate inflammatory responses. In this study, we investigated the regulatory role of TLR agonists and 17beta-estradiol (E(2)) on IL-6 expression and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells (ARPE-19). The inflammatory response of ARPE-19 cells to various TLR agonists, e.g. Pam, zymosan, flagellin, SLTA and lipopolysaccharide (LPS) exposures were examined via the secretion of IL-6 cytokine as analyzed by ELISA. In addition, the IL-6 responses to the estrogen-receptor agonist, E(2), and to the estrogen-receptor antagonist ICI 182.780 as well as to the NF-kappaB inhibitor helenalin were compared. The DNA-binding activity of NF-kappaB transcription factor of nuclear cell extracts was analyzed by the gel mobility shift assay (EMSA). TLR4 gene expression was studied by quantitave PCR. The TLR4 agonist, LPS, caused a clear IL-6 response that was attenuated by E(2) in ARPE-19-cells. The anti-inflammatory properties of E(2) were mediated through estrogen receptors and were associated with decreased NF-kappaB DNA-binding activity. The level of TLR4 gene expression was not affected by LPS exposure. Our results indicate that IL-6 expression is regulated through NF-kappaB transcription factor and stereoid-receptor signalling pathways in ARPE-19 cells.

  17. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    Science.gov (United States)

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.

  18. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  19. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2016-01-01

    Full Text Available The paracrine effect is the major mechanism of stem cell therapy. However, the details of the effect’s mechanism remain unknown. The aim of this study is to investigate whether adipose tissue-derived stem cells (ADSCs can ameliorate cavernous nerve injury-induced erectile dysfunction (CNIED rats and to determine its mechanism. Twenty-eight days after intracavernous injection of 5-ethynyl-2-deoxyuridine- (EdU- labeled ADSCs, the erectile function of all the rats was evaluated by intracavernosal pressure (ICP. The ADSCs steadily secreted detectable pigment epithelium-derived factor (PEDF in vitro. The expression of PEDF increased in the penis of the bilateral cavernous nerve injury (BCNI group for 14 days and then gradually decreased. On day 28 after the intracavernous injection, the ADSCs group exhibited a significantly increased ICP compared with the phosphate buffered saline- (PBS- treated group. Moreover, the neuronal nitric oxide synthase (nNOS and S100 expression in penile dorsal nerves and the smooth muscle content to collagen ratio in penile tissues significantly increased. Furthermore, elevated PEDF, p-Akt, and p-eNOS were identified in the ADSCs group. This study demonstrated that intracavernous injection of ADSCs improved erectile function, repaired the nerve, and corrected penile fibrosis. One potential mechanism is the PEDF secretion of ADSCs and subsequent PI3K/Akt pathway activation.

  20. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaîne opératoire

    Science.gov (United States)

    Roldán, Clodoaldo; Badal, Ernestina; Murcia-Mascarós, Sonia; Villaverde, Valentín

    2017-01-01

    We present a new multi-analytical approach to the characterization of black pigments in Spanish Levantine rock art. This new protocol seeks to identify the raw materials that were used, as well as reconstruct the different technical gestures and decision-making processes involved in the obtaining of these black pigments. For the first of these goals, the pictorial matter of the black figurative motifs documented at the Les Dogues rock art shelter (Ares del Maestre, Castellón, Spain) was characterized through the combination of physicochemical and archeobotanical analyses. During the first stage of our research protocol, in situ and non-destructive analyses were carried out by means of portable Energy Dispersive X-Ray Fluorescence spectrometry (EDXRF); during the second stage, samples were analyzed by Optical Microscopy (OM), Raman spectroscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). Two major conclusions have been drawn from these analyses: first, charred plant matter has been identified as a main component of these prehistoric black pigments; and second, angiosperm and conifer charcoal was a primary raw material for pigment production, identified by means of the archaeobotanical study of plant cells. For the second goal, black charcoal pigments were replicated in the laboratory by using different raw materials and binders and by reproducing two main chaînes opératoires. The comparative study of the structure and preservation of plant tissues of both prehistoric and experimental pigments by means of SEM-EDX underlines both a complex preparation process and the use of likely pigment recipes, mixing raw material with fatty or oily binders. Finally, the formal and stylistic analysis of the motifs portrayed at Les Dogues allowed us to explore the relationship between identified stylistic phases and black charcoal pigment use, raising new archaeological questions concerning the acquisition of know-how and the

  1. Inhibition of vascular endothelial growth factor gene expression by T7-siRNAs in cultured human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; FAN Bin; WU Ya-zhen; WANG Xin-rui; WANG Yao-hui; WU Jia-xiang

    2005-01-01

    Background Retinal pigment epithelial (RPE) cells play an important role in the occurrence of choroidal neovascularization (CNV). Vascular endothelial growth factor (VEGF) as a positive regulatory growth factor is produced by the RPE in an autocrine or paracrine manner, promoting CNV development. Duplexes of 21 nt RNAs, known as short interfering RNAs (siRNAs), efficiently inhibit gene expression by RNA interference when introduced into mammalian cells. We searched for an efficient siRNA to interfere with VEGF expression in RPE cells and shed light on the treatment of CNV.Methods Human primary RPE (hRPE) cells were cultured and identified. Three pairs of siRNAs were designed according to the sequence of VEGF 1-5 extrons and synthesized by T7 RNA polymerase transcription in vitro. To evaluate the inhibitory activity of T7-siRNAs, hRPE cells were transfected via siPORT Amine. The interfering effect of T7-siRNAs in hRPE cells was examined by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence. Results Three pairs of T7-siRNAs synthesized by in vitro transcription with T7 RNA polymerase suppressed VEGF gene expression with efficiency from 65% to 90%. T7-siRNA (B), targeted region at 207 nt to 228 nt and double stranded for 21 nt with 2 nt UU 3' overhangs, was the most effective sequence tested for inhibition of VEGF expression in hRPE cells. Compared with nontransfected cells, the mean fluorescence in hRPE cells transfected with T7-sRNAs was significantly less (P<0.01). siRNA with a single-base mismatch and ssRNA(+) did not show suppressing effect. Furthermore, it was found that siRNAs had a dose dependent inhibitory effect (5 to 10 pmol).Conclusion T7-siRNA can effectively and specifically suppress VEGF expression in hRPE cells and may be a new way to treat CNV.

  2. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  3. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  4. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis.

    Science.gov (United States)

    Cassier, Philippe A; Gelderblom, Hans; Stacchiotti, Silvia; Thomas, David; Maki, Robert G; Kroep, Judith R; van der Graaf, Winette T; Italiano, Antoine; Seddon, Beatrice; Dômont, Julien; Bompas, Emanuelle; Wagner, Andrew J; Blay, Jean-Yves

    2012-03-15

    Pigmented villonodular synovitis (PVNS) (also known as diffuse-type giant cell tumor) and tenosynovial giant cell tumors (TGCT) are rare, usually benign neoplasms that affect the synovium and tendon sheaths in young adults. These tumors are driven by the overexpression of colony stimulating factor-1 (CSF1). CSF1 is expressed by a minority of tumor cells, which, in turn attract non-neoplastic inflammatory cells that express CSF1 receptor (CSF1R) through a paracrine effect. Imatinib mesylate (IM) blocks CSF1R, and previous case reports indicated that it also exerts antitumor activity in PVNS. The authors conducted a multi-institutional retrospective study to assess the activity of IM in patients with locally advanced/metastatic PVNS/TGCT. Twenty-nine patients from 12 institutions in Europe, Australia, and the United States were included. There were 13 men, the median age was 41 years, and the most common site of disease was the knee (n = 17; 59%). Two patients had metastatic disease to the lung and/or bone. Five of 27 evaluable patients had Response Evaluation in Solid Tumor (RECIST) responses (overall response rate, 19%; 1 complete response and 4 partial responses), and 20 of 27 patients (74%) had stable disease. Symptomatic improvement was noted in 16 of 22 patients (73%) who were assessable for symptoms. Despite a high rate of symptomatic improvement and a favorable safety profile, 6 patients discontinued because of toxicity, and 4 patients decided to discontinue IM for no clear medical reason. IM displayed interesting activity in patients with PVNS/TGCT, providing proof of concept for targeting CSF1R in this disease. The authors concluded that the benefits of alleviating morbidity in patients with localized PVNS/TGCT must be balanced against the potential toxicity of chronic drug therapy. Copyright © 2011 American Cancer Society.

  5. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin, E-mail: jqin710@vip.sina.com; Yan, Biao, E-mail: yanbiao1982@hotmail.com

    2013-09-06

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.

  6. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells

    Science.gov (United States)

    Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2014-01-01

    Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt

  7. Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration.

    Science.gov (United States)

    Zhang, J; Bai, Y; Huang, L; Qi, Y; Zhang, Q; Li, S; Wu, Y; Li, X

    2015-11-12

    Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. Degeneration of retinal pigment epithelial (RPE) cells is a crucial causative factor responsible for the onset and progression of AMD. A2E, a major component of toxic lipofuscin implicated in AMD, is deposited in RPE cells with age. However, the mechanism whereby A2E may contribute to the pathogenesis of AMD remains unclear. We demonstrated that A2E was a danger signal of RPE cells, which induced autophagy and decreased cell viability in a concentration- and time-dependent manner. Within 15 min after the treatment of RPE with 25 μM A2E, the induction of autophagosome was detected by transmission electron microscopy. After continuous incubating RPE cells with A2E, intense punctate staining of LC3 and increased expression of LC3-II and Beclin-1 were identified. Meanwhile, the levels of intercellular adhesion molecule (ICAM), interleukin (IL)1β, IL2, IL-6, IL-8, IL-17A, IL-22, macrophage cationic peptide (MCP)-1, stromal cell-derived factor (SDF)-1, and vascular endothelial growth factor A (VEGFA) were elevated. The autophagic inhibitor 3-methyladenine (3-MA) and activator rapamycin were also used to verify the effect of autophagy on RPE cells against A2E. Our results revealed that 3-MA decreased the autophagosomes and LC3 puncta induced by A2E, increased inflammation-associated protein expression including ICAM, IL1β, IL2, IL-6, IL-8, IL-17A, IL-22, and SDF-1, and upregulated VEGFA expression. Whereas rapamycin augmented the A2E-mediated autophagy, attenuated protein expression of inflammation-associated and angiogenic factors, and blocked the Akt/mTOR pathway. Taken together, A2E induces autophagy in RPE cells at the early stage of incubation, and this autophagic response can be inhibited by 3-MA or augmented by rapamycin via the mTOR pathway. The enhancement of autophagy has a protective role in RPE cells against the adverse effects of A2E by reducing the

  8. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.

    Science.gov (United States)

    Bantseev, Vladimir; Youn, Hyun-Yi

    2006-12-01

    Mitochondria provide energy generated by oxidative phosphorylation and at the same time play a central role in apoptosis and aging. As a byproduct of respiration, the electron transport chain is known to be the major intracellular site for the generation of reactive oxygen species (ROS). Exposure to solar and occupational ultraviolet (UV) radiation, and thus production of ROS and subsequent cell death, has been implicated in a large spectrum of skin and ocular pathologies, including cataract. Retinal pigment epithelial cell apoptosis generates photoreceptor dysfunction and ultimately visual impairment. The purpose of this article was to characterize in vitro changes following oxidative stress with UV-B radiation in (a) ocular lens optics and cellular function in terms of mitochondrial dynamics of bovine lens epithelium and superficial cortical fiber cells and (b) human retinal pigment epithelial (ARPE-19) cells. Cultured bovine lenses and confluent cultures of ARPE-19 cells were irradiated with broadband UV-B radiation at energy levels of 0.5 and 1.0 J/cm(2). Lens optical function (spherical aberration) was monitored daily up to 14 days using an automated laser scanning system that was developed at the University of Waterloo. This system consists of a single collimated scanning helium-neon laser source that projects a thin (0.05 mm) laser beam onto a plain mirror mounted at 45 degrees on a carriage assembly. This mirror reflects the laser beam directly up through the scanner table surface and through the lens under examination. A digital camera captures the actual position and slope of the laser beam at each step. When all steps have been made, the captured data for each step position is used to calculate the back vertex distance for each position and the difference in that measurement between beams. To investigate mitochondrial movement, the mitochondria-specific fluorescent dye Rhodamine 123 was used. Time series were acquired with a Zeiss 510 (configuration Meta

  9. Laugier-hunziker pigmentation

    Directory of Open Access Journals (Sweden)

    Ajith C

    2005-01-01

    Full Text Available Laugier-Hunziker pigmentation (LHP is an acquired disorder of hypermelanosis characterized by mucocutaneous hyperpigmentation. LHP may resemble various disorders characterized by mucocutaneous pigmentation. A 58-year-old lady presented with progressively increasing number of variable sized, hyperpigmented macules over the lips, fingers, toes and nails. There was no family history of similar illness. Systemic examination and all relevant investigations were within normal limits. Histopathology of a skin lesion had features consistent with LHP. The diagnosis of LHP must be made only after relevant investigations to rule out any associated systemic involvement. This case further highlights that LHP is not restricted to European countries.

  10. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity

    Directory of Open Access Journals (Sweden)

    Thomas J. Corydon

    2016-11-01

    Full Text Available Background/Aims: Microgravity (µg has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19 cells is unknown. Methods: In this study we investigated the influence of simulated µg (s-µg; 5 and 10 days (d, using a Random Positioning Machine (RPM, on ARPE-19 cells. We performed phase-contrast/fluorescent microscopy, qRT-PCR, Western blotting and pathway analysis. Results: Following RPM-exposure a subset of ARPE-19 cells formed multicellular spheroids (MCS, whereas the majority of the cells remained adherent (AD. After 5d, alterations of F-actin and fibronectin were observed which reverted after 10d-exposure, suggesting a time-dependent adaptation to s-µg. Gene expression analysis of 12 genes involved in cell structure, shape, adhesion, migration, and angiogenesis suggested significant changes after a 10d-RPM-exposure. 11 genes were down-regulated in AD and MCS 10d-RPM-samples compared to 1g, whereas FLK1 was up-regulated in 5d- and 10d-RPM-MCS-samples. Similarly, TIMP1 was up-regulated in 5d-RPM-samples, whereas the remaining genes were down-regulated in 5d-RPM-samples. Western blotting revealed similar changes in VEGF, β-actin, laminin and fibronectin of 5d-RPM-samples compared to 10d, whereas different alterations of β-tubulin and vimentin were observed. The pathway analysis showed complementing effects of VEGF and integrin β-1. Conclusions: These findings clearly show that s-µg induces significant alterations in the F-actin-cytoskeleton and cytoskeleton-related proteins of ARPE-19, in addition to changes in cell growth behavior and gene expression patterns involved in cell structure, growth, shape, migration, adhesion and angiogenesis.

  11. True bursal pigmented villonodular synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahab, Ibrahim Fikry [Department of Radiology, New York Methodist Hospital, Affiliated with New York Hospital-Cornell Medical Center, Brooklyn, NY (United States); Kenan, Samuel [Department of Orthopedics, New York University Medical Center, NY (United States); Steiner, German C. [Department of Pathology, Hospital for Joint Diseases/Orthopedic Institute, New York, NY (United States); Abdul-Quader, Mohammed [Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY (United States)

    2002-06-01

    We describe two cases of pigmented villonodular synovitis affecting true bursae. This study was also designed to discuss the term ''pigmented villonodular bursitis'', not confined to true synovial bursae, sometimes creating misunderstanding. (orig.)

  12. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity

    DEFF Research Database (Denmark)

    Corydon, Thomas J; Mann, Vivek; Slumstrup, Lasse;

    2016-01-01

    BACKGROUND/AIMS: Microgravity (µg) has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19) cells is unknown. METHODS: In this study we investigated the i...

  13. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    Science.gov (United States)

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  14. Raman af hvide pigmenter

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard; Nielsen, Ole Faurskov; Sauer, Stephan P. A.;

    2013-01-01

    Et samspil mellem kunst og kemi. I et samarbejde mellem Statens Museum for Kunst og Kemisk Institut på KU er Ramanspek-troskopi brugt til at definere sammensætningen af blandinger af blyhvidt og calcit i maleriers hvide pigmenter....

  15. Pigmented villonodular synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Nakshabandi, N.A.; Ryan, A.G.; Choudur, H.; Torreggiani, W.; Nicoloau, S.; Munk, P.L. E-mail: plmunk@interchange.ubc.ca; Al-Ismail, K

    2004-05-01

    Pigmented villonodular synovitis (PVNS) is a rare benign proliferative growth of the synovium of obscure aetiology with a wide spectrum of clinical presentations and imaging findings. The purpose of this review is to acquaint the reader with the spectrum of imaging features of PVNS using a variety of imaging techniques.

  16. Using of cyanobacteria pigments

    OpenAIRE

    Кардаш, О. В.; Національний авіаційний університет; Курейшевич, А. В.; Інститут гідробіології НАН України; Васильченко, О. А.; Національний авіаційний університет

    2012-01-01

    Photosynthetic apparatus of all organisms contains light absorbing pigments. Cyanobacteria pigments may be divided into three groups – chlorophylls, carotenoids and phycobiliproteins. Pigments may be used in the food and pharmaceutical industry. Cyanobacteria pigments features and usage possibilities are observed. Фотосинтезирующий аппарат всех организмов состоит из поглощающих свет пигментов. Пигменты цианобактерий можно разделить на три группы – хлорофиллы, каротиноиды и фикобилипротеины...

  17. Raman af hvide pigmenter

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard; Nielsen, Ole Faurskov; Sauer, Stephan P. A.

    2013-01-01

    Et samspil mellem kunst og kemi. I et samarbejde mellem Statens Museum for Kunst og Kemisk Institut på KU er Ramanspek-troskopi brugt til at definere sammensætningen af blandinger af blyhvidt og calcit i maleriers hvide pigmenter....

  18. Pseudoepitheliomatous Hyperplasia in a Red Pigment Tattoo

    Science.gov (United States)

    Kazlouskaya, Viktoryia

    2015-01-01

    Red pigment tattoos are known to cause pseudoepitheliomatous hyperplasia in the skin, frequently simulating squamous cell carcinoma or keratoacanthoma. Herein, the authors present two additional cases of red pigment tattoo pseudoepitheliomatous hyperplasia in which they noted a lichenoid tissue reaction. They reviewed the previously published cases and observed a lichenoid reaction in the histopathological images similar to hypertrophic lichen planus. The authors suggest that these reactions might best be referred to as “lichenoid reaction with pseudoepitheliomatous hyperplasia” or “hypertrophic lichen planus-like reaction.” Accordingly, recognition of an inflammatory component may allow additional treatment options. PMID:26705448

  19. Retina-specific nuclear receptor: A potential regulator of cellular retinaldehyde-binding protein expressed in retinal pigment epithelium and Müller glial cells.

    Science.gov (United States)

    Chen, F; Figueroa, D J; Marmorstein, A D; Zhang, Q; Petrukhin, K; Caskey, C T; Austin, C P

    1999-12-21

    In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814-4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription-PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of approximately 7.5 kb, approximately 3.0 kb, and approximately 2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.

  20. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells.

    Science.gov (United States)

    Quah, Chin Chew; Kim, Kah Hwi; Lau, Mei Siu; Kim, Wee Ric; Cheah, Swee Hung; Gundamaraju, Rohit

    2014-01-01

    The preference for a fairer skin-tone has become a common trend among both men and women around the world. In this study, seaweeds Sargassum polycystum and Padina tenuis were investigated for their in vitro and in vivo potentials in working as skin whitening agents. Seaweed has been used as a revolutionary skin repairing agent in both traditional and modern preparations. The high antioxidant content is one of the prime reasons for its potent action. It has been employed in traditional Chinese and Japanese medicine. For centuries, most medical practitioners in the Asian cultures have known seaweed as an organic source of vitamins, minerals, fatty acids like omega-3 and omega-6 and antioxidants. The present objective of the study was to evaluate the potent dermal protective effect of the two seaweeds Sargassum polycystum and Padina tenuis on human cell lines and guinea pigs. Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments. Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically. SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.

  1. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    Science.gov (United States)

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  2. Phototrophic pigment production with microalgae

    NARCIS (Netherlands)

    Mulders, K.J.M.

    2014-01-01

    Abstract

    Microalgal pigments are regarded as natural alternatives for food colorants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main  focus

  3. Phototrophic pigment production with microalgae

    NARCIS (Netherlands)

    Mulders, K.J.M.

    2014-01-01

    Abstract

    Microalgal pigments are regarded as natural alternatives for food colorants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main  focus

  4. Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus.

    Science.gov (United States)

    Koli, Sunil H; Suryawanshi, Rahul K; Patil, Chandrashekar D; Patil, Satish V

    2017-03-15

    Traditional methods for the production of food grade pigments from fungus Monascus spp. are mostly relying on submerged fermentation. However, cell bound nature and intracellular accumulation of pigments in Monascus spp is the major hurdle in pigment production by submerged fermentation. The present study focused on the investigation of the effect of the antifungal agent, fluconazole on red pigment production from Monascus purpureus (NMCC-PF01). At the optimized concentration of fluconazole (30 μg/ml), pigment production was found to be enhanced by 88% after 96 h and it remained constant even after further incubation up to 168 h. An ergosterol, a sterol specific for fungi was also extracted and estimated as a function of fungal growth. The concentration of ergosterol in fluconazole-treated fermentation broth was reduced by 49% as compared to control broth. Thus it could be responsible for facilitating the release of intracellular and cell bound pigments. Nevertheless, the role of cell transporters in transporting out the red pigments cannot be ignored and deserves further attention. Qualitative analysis of red pigment by TLC, UV spectroscopy and mass spectrometric analysis (ESIMS) has confirmed the presence of well-known pigment, Rubropunctamine. In addition, this fermentation process produces citrinin-free pigments. This novel approach will be useful to facilitate increased pigment production by the release of intracellular or cell bound Monascus pigments.

  5. Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells

    Science.gov (United States)

    Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, Dhayalan

    2015-03-01

    Nanocrystalline TiO2 thin films have been prepared by sol-gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (101) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 25 and 33 nm for the films annealed at 400, 450 and 500 °C. The structure of the TiO2 nanocrystalline thin films have been examined by high-resolution transmission electron microscope, Raman spectroscopy and FTIR spectroscopy. TiO2 thin films were sensitized by natural dyes extracted from basella alba rubra spinach. It was found that the absorption peak of basella alba rubra extract is at about 665 nm. The dye-sensitized TiO2-based solar cell sensitized using basella alba rubra exhibited a J sc of 4.35 mA cm-2, V oc of 0.48 V, FF of 0.35 and efficiency of 0.70 %. Natural dyes as sensitizers for dye-sensitized solar cells are promising because of their environmental friendliness, low-cost production and fully biodegradable.

  6. Production of Extracellular Pigment by a Mutant of Monascus kaoliang sp. nov

    OpenAIRE

    Lin, Ching-Fwu; Iizuka, Hiroshi

    1982-01-01

    A hyperpigment-producing mutant, R-10847, was derived from Monascus kaoliang F-2 (ATCC 26264) through a series of mutagenesis steps. The mutant produced a large quantity of Monascus pigment when grown in mantou (steamed bread) by solid culture. The mutant produced pigments extracellularly by extruding the pigments outside the cell in a lump together with some viscous substances. The productivity of pigment was about 100-fold greater than that of the wild type. The mutant lost the capability o...

  7. Determination of pigments in vegetables.

    Science.gov (United States)

    Schoefs, Benoît

    2004-10-29

    Plant pigments are responsible for the shining color of plant tissues. They are also found in animal tissues and, eventually in transformed food products as additives. These pigments have an important impact on the commercial value of products, because the colors establish the first contact with the consumer. In addition plant pigments may have an influence on the health of the consumers. Pigments are labile: they can be easily altered, and even destroyed. Analytical processes have been developed to determine pigment composition. The aim of this paper is to provide a brief overview of these methods.

  8. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    Science.gov (United States)

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  9. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy.

    Science.gov (United States)

    Song, Chunjuan; Mitter, Sayak K; Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V; Ding, Jindong; Ip, Colin S; Gu, Hongmei; Akin, Debra; Dunn, William A; Bowes Rickman, Catherine; Lewin, Alfred S; Grant, Maria B; Boulton, Michael E

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  10. Retinal Pigment Epithelium and Müller Progenitor Cell Interaction Increase Müller Progenitor Cell Expression of PDGFR and Ability to Induce Proliferative Vitreoretinopathy in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Gisela Velez

    2012-01-01

    Full Text Available Purpose. Proliferative vitreoretinopathy (PVR is a complication of retinal detachment characterized by redetachment of the retina as a result of membrane formation and contraction. A variety of retinal cells, including retinal pigment epithelial (RPE and Müller glia, and growth factors may be responsible. Platelet-derived growth factor receptor alpha (PDGFRα is found in large quantities in PVR membranes, and is intrinsic to the development of PVR in rabbit models. This study explores the expression of PDGFR in cocultures of RPE and Müller cells over time to examine how these two cell types may collaborate in the development of PVR. We also examine how changes in PDGFRα expression alter Müller cell pathogenicity. Methods. Human MIO-M1 Müller progenitor (MPC and ARPE19 cells were studied in a transmembrane coculture system. Immunocytochemistry and Western blot were used to look at PDGFRα, PDGFRβ, and GFAP expression. A transfected MPC line cell line expressing the PDGFRα (MIO-M1α was generated, and tested in a rabbit model for its ability to induce PVR. Results. The expression of PDGFRα and PDGFRβ was upregulated in MIO-M1 MPCs cocultured with ARPE19 cells; GFAP was slightly decreased. Increased expression of PDGFRα in the MIO-M1 cell line resulted in increased pathogenicity and enhanced ability to induce PVR in a rabbit model. Conclusions. Müller and RPE cell interaction can lead to upregulation of PDGFRα and increased Müller cell pathogenicity. Müller cells may play a more active role than previously thought in the development of PVR membranes, particularly when stimulated by an RPE-cell-rich environment. Additional studies of human samples and in animal models are warranted.

  11. Pigmentos maculares Macular pigments

    Directory of Open Access Journals (Sweden)

    Renata Canovas

    2009-12-01

    Full Text Available A luteína e a zeaxantina são pigmentos amarelos que se localizam na mácula. Devido à sua localização, diminuem e filtram a quantidade de luz principalmente azul que chega aos fotorreceptores, atuam como antioxidantes e podem melhorar a qualidade visual. Esta é uma revisão do seu mecanismo de incorporação, ação, possíveis aplicações e conhecimento científico a respeito.Lutein and Zeaxanthin are yellow pigments located at the macula. Because of your location macular pigments decrease and filter the amount of blue light that reach photoreceptors, protect the outer retina from oxidative stress and may improve the vision quality. This is a review regarding incorporation mechanism, function and knowledge update.

  12. αB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells.

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    Full Text Available αB crystallin is a chaperone protein with anti-apoptotic and anti-inflammatory functions and has been identified as a biomarker in age-related macular degeneration. The purpose of this study was to determine whether αB crystallin is secreted from retinal pigment epithelial (RPE cells, the mechanism of this secretory pathway and to determine whether extracellular αB crystallin can be taken up by adjacent retinal cells and provide protection from oxidant stress. We used human RPE cells to establish that αB crystallin is secreted by a non-classical pathway that involves exosomes. Evidence for the release of exosomes by RPE and localization of αB crystallin within the exosomes was achieved by immunoblot, immunofluorescence, and electron microscopic analyses. Inhibition of lipid rafts or exosomes significantly reduced αB crystallin secretion, while inhibitors of classic secretory pathways had no effect. In highly polarized RPE monolayers, αB crystallin was selectively secreted towards the apical, photoreceptor-facing side. In support, confocal microscopy established that αB crystallin was localized predominantly in the apical compartment of RPE monolayers, where it co-localized in part with exosomal marker CD63. Severe oxidative stress resulted in barrier breakdown and release of αB crystallin to the basolateral side. In normal mouse retinal sections, αB crystallin was identified in the interphotoreceptor matrix. An increased uptake of exogenous αB crystallin and protection from apoptosis by inhibition of caspase 3 and PARP activation were observed in stressed RPE cultures. αB Crystallin was taken up by photoreceptors in mouse retinal explants exposed to oxidative stress. These results demonstrate an important role for αB crystallin in maintaining and facilitating a neuroprotective outer retinal environment and may also explain the accumulation of αB crystallin in extracellular sub-RPE deposits in the stressed microenvironment in age

  13. Regulation of pigment migration in the amphibian melanophore

    NARCIS (Netherlands)

    Burgers, A.C.J.; Oordt, G.J. van

    1962-01-01

    Among vertebrates rapid color changes in the skin are restricted to fishes, amphibia and reptiles. These reactions are based on the movements of pigment granules in special cells, the chromatophores which may be classified as leucophores, xanthophores, erythrophores and melanophores.

  14. Pigment dispersion syndrome

    Directory of Open Access Journals (Sweden)

    C.S. Sandhya

    2013-10-01

    Full Text Available We report of the rare occurrence of pigment dispersion syndrome (PDS with posterior subcapsular cataract in both eyes in a young male patient. The patient presented with complaints of progressive decrease in vision of one year duration. The patient also had high myopia with mild iridodonesis, phacodonesis and anterior insertion of zonules. Classical signs of PDS like Krukenberg's spindle on the posterior corneal surface were evident on slit lamp examination; transillumination defects in the iris could not be elicited by retroillumination as the iris was heavily pigmented. Gonioscopy revealed heavy and uniform pigmentation of trabecular meshwork. Evidence of a characteristic iris configuration on optical coherence tomography (OCT, namely, posterior bowing of iris in the mid periphery suggested the diagnosis of PDS. This case highlights the importance of OCT in identifying the iris configuration characteristically seen in PDS even in the absence of transillumination defects in the iris and reiterates the need to look for subtle signs like phacodonesis which are important when surgical intervention is planned.

  15. 离体培养藏红花细胞合成的藏红花色素稳定性%Stabilities of saffron pigments produced by in vitro cell culture of Crocus sativus L

    Institute of Scientific and Technical Information of China (English)

    扶文君; 袁丽红

    2015-01-01

    The effects of pH, temperature, light, oxidant, reductant, food additives and metal ions on the stabilities of saffron pigments produced by Crocus sativus cells were investigated,and their stabilities were also compared with those of pigments from saffron stigma. The results showed that they were all water⁃solubleand bright yellow. They were stable to food additives and H2 O2 . Compared with saffron stigma pigments, saffron pigments produced by cell culture were more stable to strong acid ( pH 1 ) , high temperature(80 ℃,100 ℃)and light(incandescent light,UV),and less stable to VCand Cu2+(0�001 mol/L)�The coloring power of saffron pigments produced by cell culture could be increased by dilute alkaline solutions(0�47 mol/L Na2CO3,0�1 mol/L NaOH),Na2SO3,Fe2+(0�050 mol/L) and Fe3+.%研究pH、温度、光照、氧化剂、还原剂、食品添加剂和金属离子对离体培养的藏红花细胞合成的藏红花色素稳定性的影响,并与藏红花柱头色素进行比较。结果表明:藏红花细胞合成的色素与柱头色素均为水溶性色素,呈亮黄色,对食品添加剂(食盐、柠檬酸、蔗糖、苯甲酸钠)和H2 O2表现出良好的稳定性。与柱头色素相比,藏红花细胞合成的色素对强酸( pH 1)、高温(80、100℃)和光照(日光灯光、紫外光)表现出更好的稳定性,对 VC和 Cu2+(0�001 mol/L)的稳定性略差。稀碱溶液(0�47 mol/L Na2CO3、0�1 mol/L NaOH)、Na2SO3、Fe2+(0�050 mol/L)和Fe3+能使细胞合成的色素色强增强。

  16. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes.

    Science.gov (United States)

    Imhof, Hannes K; Laforsch, Christian; Wiesheu, Alexandra C; Schmid, Johannes; Anger, Philipp M; Niessner, Reinhard; Ivleva, Natalia P

    2016-07-01

    Recently, macroplastic (>5 mm) and especially microplastic (<5 mm) particles have been reported as emerging contaminants in marine and limnetic ecosystems. Their coloration is gained by the addition of pigments to the polymer blend which is the major component of the respective product. However, color is also a feature of paint and coatings whereby the pigment is the major component. Once abraded from a surface, paint particles may enter the environment via similar pathways as microplastic particles. So far no detailed studies of microplastic particles (pigmented and non-pigmented) as well as paint particles have been performed focusing on very small microparticles (1-50 μm), in either marine or limnetic ecosystems. Using Raman microspectroscopy with a spatial resolution down to 1 μm, we report a remarkable increase in the occurrence of (pigmented) microplastic particles below 500 μm. Among those, most particles were found at a size of ∼130 μm in a freshwater ecosystem (subalpine Lake Garda, Italy). Moreover, our qualitative and quantitative analyses revealed that the number of paint microparticles significantly increased below the size range of 50 μm due to their brittleness (the smallest detected paint particle had a size of 4 μm). Inductively coupled plasma mass spectrometry measurements showed that both colored particles found in nature as well as virgin particles contain a high variety of metals such as cadmium, lead and copper. These additives may elicit adverse effects in biota ingesting these microparticles, thus paints and associated compounds may act as formerly overlooked contaminants in freshwater ecosystems.

  17. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Yun-Ching eChang

    2014-08-01

    Full Text Available Age-related macular degeneration (AMD is one retinal aging process that may lead to irreversible vision loss in the elderly. Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration. In this study, we have reprogrammed T cells from patients with dry type AMD into induced pluripotent stem cells (iPSCs via integration-free episomal vectors and differentiated them into RPE cells that were used as an expandable platform for investigating pathogenesis of the AMD and in-vitro drug screening. These patient-derived RPEs with the AMD-associated background (AMD-RPEs exhibited reduced antioxidant ability, compared with normal RPE cells. Among several screened candidate drugs, curcumin caused most significant reduction of ROS in AMD-RPEs. Pre-treatment of curcumin protected these AMD-RPEs from H2O2-induced cell death and also increased the cytoprotective effect against the oxidative stress of H2O2 through the reduction of ROS levels. In addition, curcumin with its versatile activities modulated the expression of many oxidative stress-regulating genes such as PDGF, VEGF, IGFBP-2, HO1, SOD2 and GPX1. Our findings indicated that the RPE cells derived from AMD patients have decreased antioxidative defense, making RPE cells more susceptible to oxidative damage and thereby leading to AMD formation. Curcumin represented an ideal drug that can effectively restore the neuronal functions in AMD patient-derived RPE cells, rendering this drug an effective option for macular degeneration therapy and an agent against aging-associated oxidative stress.

  18. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation

    DEFF Research Database (Denmark)

    Philipsen, P A; Knudsen, L; Gniadecka, M

    2013-01-01

    There is a general need for methods to obtain fast in vivo diagnosis of skin tumours. Raman spectroscopy measures molecular structure and may thus have potential as a tool for skin tumour diagnosis. The purpose of this study was to investigate how skin pigmentation influenced the Raman spectra an...

  19. Nonphotosynthetic Pigments as Potential Biosignatures

    CERN Document Server

    Schwieterman, Edward W; Meadows, Victoria S

    2015-01-01

    Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstr...

  20. Dermoscopy Clues in Pigmented Bowen's Disease

    Directory of Open Access Journals (Sweden)

    Daniela Gutiérrez-Mendoza

    2010-01-01

    Full Text Available Pigmented tumors have similar clinical features that overlap and hamper diagnosis. Dermoscopy increases the diagnostic accuracy of doubtful melanocytic lesions and has been used as a noninvasive tool in the detection of pigmented lesions (PLs like melanoma, basal cell carcinoma, and pigmented Bowen's disease (pBD. Our objective was to show the dermoscopic features of 2 cases of pBD and compare with the findings reported in the literature. Two dermoscopic images of biopsy proven pBD were retrospectively analyzed for dermoscopic patterns. Both cases showed brown regular globules, structureless brown and blue pigmentation, glomerular vessels, hypopigmented regression-like areas, and keratosis. These findings were similar to the cases reported previously. The dermoscopic diagnosis of pBD is based on the absence of criteria for a melanocytic lesion in the presence of glomerular vessels, regular brown globules and keratosis. Although pBD is rare, it should be included in the differential diagnosis of PLs, especially melanoma.

  1. MRI and thallium features of pigmented villonodular synovitis and giant cell tumours of tendon sheaths: a retrospective single centre study of imaging and literature review.

    Science.gov (United States)

    Lynskey, Samuel J; Pianta, Marcus J

    2015-01-01

    The purpose of this study was to characterize the MRI and thallium-201 ((201)TI) scintigraphy attributes of pigmented villonodular synovitis (PVNS) and giant cell tumours of tendon sheaths (GCTTS). The epidemiology of these uncommon lesions was also assessed and less commonly encountered pathology reported on including multifocality, necrosis and concurrent malignancy. A retrospective single centre review of MRI and (201)TI scintigraphy findings for 83 surgically proven or biopsy-proven consecutive cases of PVNS was undertaken. Radiological findings including lesion size, (201)TI uptake (as a marker of metabolic activity), location, extent and patient demographics were correlated with biopsy and surgical specimen histology. Typical appearances are described, as well as less common imaging manifestations. The study period encompassed all patients presenting or referred to a tertiary bone and soft-tissue tumour referral centre with PVNS or GCTTS between 1 January 2007 and the 1 December 2013. Lesions occur most commonly around the knee joint in the fourth decade of life, with younger patients showing a tendency to occur in the hip. Features of PVNS and GTTS include bone erosion, ligamentous and cartilage replacement, muscle infiltration and multifocality. MR signal characteristics were variable but post-contrast enhancement was near-universal. 14 of 83 cases showed no uptake of (201)TI and revealed a statistically significant smaller average axial dimension of 19.8 mm than lesions displaying active (201)TI uptake of 36.4 mm, p = 0.016. Four lesions demonstrated central necrosis on gross histology, two of each from both the (201)TI-avid and (201)TI-non-avid groups. MR is the imaging modality of choice when considering the diagnosis of these uncommon tumours. (201)TI scintigraphy as a marker of metabolic activity further adds minimal value although small lesions can appear to lack (201)TI avidity. This article depicts typical imaging findings of PVNS/GCTTS and

  2. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2 activation

    Directory of Open Access Journals (Sweden)

    Xiaobin Liu

    2016-08-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD. Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200 μM H2O2 for 6 h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI double staining and Hoechst 33342 fluorescent staining. Reduced (GSH and oxidized glutathione (GSSG were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100 nM of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes.

  3. Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study

    Science.gov (United States)

    Delpueyo, Xana; Vilaseca, Meritxell; Royo, Santiago; Ares, Miguel; Rey-Barroso, Laura; Sanabria, Ferran; Puig, Susana; Pellacani, Giovanni; Noguero, Fernando; Solomita, Giuseppe; Bosch, Thierry

    2017-06-01

    This article proposes a multispectral system that uses the analysis of the spatial distribution of color and spectral features to improve the detection of skin cancer lesions, specifically melanomas and basal cell carcinomas. The system consists of a digital camera and light-emitting diodes of eight different wavelengths (414 to 995 nm). The parameters based on spectral features of the lesions such as reflectance and color, as well as others empirically computed using reflectance values, were calculated pixel-by-pixel from the images obtained. Statistical descriptors were calculated for every segmented lesion [mean (x˜), standard deviation (σ), minimum, and maximum]; descriptors based on the first-order statistics of the histogram [entropy (Ep), energy (En), and third central moment (μ3)] were also obtained. The study analyzed 429 pigmented and nonpigmented lesions: 290 nevi and 139 malignant (95 melanomas and 44 basal cell carcinomas), which were split into training and validation sets. Fifteen parameters were found to provide the best sensitivity (87.2% melanomas and 100% basal cell carcinomas) and specificity (54.5%). The results suggest that the extraction of textural information can contribute to the diagnosis of melanomas and basal cell carcinomas as a supporting tool to dermoscopy and confocal microscopy.

  4. 条斑紫菜精子囊细胞色素含量及光合活性的研究%Study of Photosynthetic Pigment Contents and Photosynthesis of Spermatangium and Vegetative Cells in Porphyra yezoensis

    Institute of Scientific and Technical Information of China (English)

    潘光华; 杨睿灵; 王广策

    2012-01-01

    以条斑紫菜叶状体为材料,对精子囊细胞分化过程中光合活性、色素含量的变化进行研究并与营养细胞进行比较分析.结果表明:营养细胞在色素含量以及光合活性方面均明显高于精子囊细胞,二者表现出明显的生理生化差异.在脱水及复水过程中,营养细胞和精子囊细胞表现出相似的光响应特征.两种组织在生理生化特征上的差异和相似点表明紫菜精子囊细胞在形成过程中始终保留部分营养细胞的功能,反映了紫菜精子囊细胞形成过程中细胞功能分化的原始性.%The content of photosynthetic pigments and the photosynthetic activity were investigated in the formation process of spermatangium of Porphyra yezoensis, and the physiological and biochemical characters were compared between spermatangium and vegetative cells. The results showed that the pigment contents and photosynthetic activities in vegetative cells were significantly higher than those in spermatangium, and there were siginificant differences in physiology and biochemistry between spermatangium and vegetative cells. However, the light responses of both cells in photosynthesis were similar during the process of desiccation and rehydration. Indicated that the germ cells partly remained the functions of vegetative cells, and also implied that the primary cell differentiation was still in function during the formation of porphyra spermatangium.

  5. The ascidian pigmented sensory organs: structures and developmental programs.

    Science.gov (United States)

    Esposito, R; Racioppi, C; Pezzotti, M R; Branno, M; Locascio, A; Ristoratore, F; Spagnuolo, A

    2015-01-01

    The recent advances on ascidian pigment sensory organ development and function represent a fascinating platform to get insight on the basic programs of chordate eye formation. This review aims to summarize current knowledge, at the structural and molecular levels, on the two main building blocks of ascidian light sensory organ, i.e. pigment cells and photoreceptor cells. The unique features of these structures (e.g., simplicity and well characterized cell lineage) are indeed making it possible to dissect the developmental programs at single cell resolution and will soon provide a panel of molecular tools to be exploited for a deep developmental and comparative-evolutionary analysis.

  6. A rare case of TFE-related pigmented renal tumor with overlapping features between melanotic Xp11 translocation renal cancer and Xp11 renal cell carcinoma with melanotic features.

    Science.gov (United States)

    Cardili, Leonardo; Wrublevsky Pereira, Gregório; Viana, Cristiano Ribeiro

    2017-02-16

    In recent years, an increasing number of TFE3 rearrangement-associated tumors with melanotic features have been reported as primary neoplasm in different anatomical sites, including the kidney. Melanotic Xp11 translocation renal cancer (MXTRC) and Xp11 renal cell carcinoma with melanotic features (XRCCM) have been proposed to be main categories for pigmented lesions in the microophthalmia-associated transcription factor (MiTF/TFE3) family of renal tumors that may show variable degrees of melanocytic differentiation. Herein we report a rare case of TFE3-related pigmented renal tumor showing unusual immunoexpression of cytokeratins (AE1/AE3) and renal cell carcinoma markers (RCC, CD10). Cathepsin-K and Vimentin were diffusely positive whereas melanocytic markers (HMB-45 and Melan-A) displayed weak and patchy expression. We found no labelling for PAX-8, muscle markers (desmin, smooth muscle actin, muscle-specific actin and caldesmon) and S-100. TFE3 fusion was confirmed by break-apart fluorescence in situ hybridization (FISH). This case corroborates previous evidence for overlap in the TFE3-associated cancer family and illustrates that it may not be possible to set a clear cutoff between epithelial (XRCCM) and mesenchymal (MXTRC) subgroups.

  7. Natural pigments and sacred art

    Science.gov (United States)

    Kelekian, Lena, ,, Lady

    2010-05-01

    Since the dawn of mankind, cavemen has expressed himself through art. The earliest known cave paintings date to some 32,000 years ago and used 4 colours derived from the earth. These pigments were iron oxides and known as ochres, blacks and whites. All pigments known by the Egyptians, the Greeks, the Romans and Renaissance man were natural and it was not until the 18th century that synthetic pigments were made and widely used. Until that time all art, be it sacred or secular used only natural pigments, of which the preparation of many have been lost or rarely used because of their tedious preparation. As a geologist, a mineralogist and an artist specializing in iconography, I have been able to rediscover 89 natural pigments extracted from minerals. I use these pigments to paint my icons in the traditional Byzantine manner and also to restore old icons, bringing back their glamour and conserving them for years to come. The use of the natural pigments in its proper way also helps to preserve the traditional skills of the iconographer. In the ancient past, pigments were extremely precious. Many took an exceedingly long journey to reach the artists, and came from remote countries. Research into these pigments is the work of history, geography and anthropology. It is an interesting journey in itself to discover that the blue aquamarines came from Afghanistan, the reds from Spain, the greens Africa, and so on. In this contribution I will be describing the origins, preparation and use of some natural pigments, together with their history and provenance. Additionally, I will show how the natural pigments are used in the creation of an icon. Being a geologist iconographer, for me, is a sacrement that transforms that which is earthly, material and natural into a thing of beauty that is sacred. As bread and wine in the Eucharist, water during baptism and oil in Holy Union transmit sanctification to the beholder, natural pigments do the same when one considers an icon. The

  8. Fungal polyketide azaphilone pigments as future natural food colorants?

    Science.gov (United States)

    Mapari, Sameer A S; Thrane, Ulf; Meyer, Anne S

    2010-06-01

    The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply of raw materials, thus minimizing batch-to-batch variations. Here, we review the potential of polyketide pigments produced from chemotaxonomically selected non-toxigenic fungal strains (e.g. Penicillium and Epicoccum spp.) to serve as food colorants. We argue that the production of polyketide azaphilone pigments from such potentially safe hosts is advantageous over traditional processes that involve Monascus spp., which risks co-production of the mycotoxin citrinin. Thus, there is tremendous potential for the development of robust fungal production systems for polyketide pigments, both to tailor functionality and to expand the color palette of contemporary natural food colorants.

  9. Clinicopathological and immunohistochemical study of oral amalgam pigmentation.

    Science.gov (United States)

    Vera-Sirera, Beatriz; Risueño-Mata, Presentación; Ricart-Vayá, José M; Baquero Ruíz de la Hermosa, Carmen; Vera-Sempere, Francisco

    2012-01-01

    Amalgam tattoo, the most common exogenous oral pigmentation, can sometimes be confused with melanotic lesions, being then biopsied. We present the clinicopathological characteristics of 6 biopsied cases (5 females and 1 male) of oral amalgam pigmentation. The most common location was the gingival mucosa, followed by the buccal and palatal mucosa. Morphology and distribution (stromal, perivascular, perineural, endomysial) of pigmentation was variable; there was only 1 case with fibrous capsular reaction and likewise only a single case of granulomatous foreign body reaction. Morphological variability is conditioned by the timing and amount of the pigment deposit, which is often associated with infiltration by mast cells (CD117+), as well as overexpression of metallothionein and HLA-DR at different tissue levels.

  10. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Science.gov (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells.

  11. Body Pigmentation as a Risk Factor for the Formation of Intracranial Aneurysms

    Directory of Open Access Journals (Sweden)

    Günter Schulter

    2014-01-01

    Full Text Available Recent studies demonstrated pigmented cells both in the murine heart, in pulmonary veins, and in brain arteries. Moreover, a role for melanocytes in the downregulation of inflammatory processes was suggested. As there is increasing evidence that inflammation is contributing significantly to the pathogenesis of intracranial aneurysms, melanocyte-like cells may be relevant in preventing age-related impairment of vessels. As pigmentation of the heart reflects that of coat color, aspects of body pigmentation might be associated with the incidence of intracranial aneurysms. We performed a case-control study to evaluate associations between the pigmentation of hair and eyes and the formation of aneurysms. In addition to hair and eye color, constitutive and facultative skin pigmentation were assessed in a replication study as well as individual handedness which can be seen as a neurophysiological correlate of developmental pigmentation processes. Hair pigmentation was highly associated with intracranial aneurysms in both samples, whereas eye pigmentation was not. In the replication cohort, facultative but not constitutive skin pigmentation proved significant. The strongest association was observed for individual handedness. Results indicate a significant association of intracranial aneurysms with particular aspects of body pigmentation as well as handedness, and imply clinical usefulness for screening of aneurysms and possible interventions.

  12. The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as Natural Dye for Dye- Sensitized Solar Cells (DSSC)

    Science.gov (United States)

    Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.

    2016-02-01

    Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.

  13. Zinc deficiency leads to lipofuscin accumulation in the retinal pigment epithelium of pigmented rats.

    Directory of Open Access Journals (Sweden)

    Sylvie Julien

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. METHODOLOGY/PRINCIPAL FINDINGS: Adult Long Evans (LE rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE. The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4-3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. CONCLUSIONS/SIGNIFICANCE: In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane.

  14. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF

    Directory of Open Access Journals (Sweden)

    Min Xia

    2017-08-01

    Full Text Available DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases.

  15. 21 CFR 178.3725 - Pigment dispersants.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pigment dispersants. 178.3725 Section 178.3725 Food... regulation, the substances listed in this section may be safely used as pigment dispersants in food-contact... not to exceed 0.45 percent by weight of the pigment. The pigmented articles may contact all...

  16. Pigmented Pheochromocytoma: an Unusual Variant of a Common Tumor.

    Science.gov (United States)

    Kakkar, Aanchal; Kaur, Kavneet; Kumar, Tarun; Cherian, Libin Babu; Kaushal, Rohit; Sharma, Mehar Chand; Dhar, Anita; Seth, Amlesh; Jain, Deepali

    2016-03-01

    Pheochromocytoma is a neuroendocrine tumor arising from the adrenal medulla. A number of variants of pheochromocytoma are known; however, pigmented pheochromocytoma is extremely rare, with only few cases reported in literature. We report the cases of two patients with pigmented pheochromocytoma. Case 1 was a 28-year-old female who presented with complaints of breathlessness, palpitations, and anxiety for 5 years, which had worsened over the last 8 months. Computed tomography (CT) abdomen showed a right suprarenal mass. Case 2 was that of an 18-year-old girl who presented with similar complaints and was diagnosed with hypertension. CT abdomen showed bilateral adrenal masses. Urinary vanillyl mandelic acid was raised in both patients. Sections examined from all three tumors showed cells arranged in Zellballen pattern, separated by thin fibrovascular septae. Tumor cells showed moderate to marked nuclear pleomorphism in case 1. Mitoses were, however, not seen. There was no evidence of capsular or vascular invasion. Many of the tumor cells showed intracytoplasmic black pigment, which was positive for Fontana-Masson and was bleach-labile, confirming it as melanin. Hemosiderin deposition was also identified. Large areas of hemorrhagic necrosis were seen in case 1. Tumor cells were immunopositive for chromogranin and synaptophysin, while they were negative for HMB-45. Electron microscopy was performed. A final diagnosis of pigmented pheochromocytoma was rendered in both cases. Pigmented pheochromocytoma is a very rare tumor, which needs to be differentiated from other pigmented tumors like malignant melanoma of adrenal gland and pigmented adrenal adenoma. Histochemistry and immunohistochemistry help in making this distinction.

  17. Comparison of antioxidation systems of retinal pigment epithelium of pigmented and albino animals

    Energy Technology Data Exchange (ETDEWEB)

    Sakina, N.L.; Dontsov, A.E.; Ostrovskiy, M.A.

    1985-01-01

    The effectiveness of the lipid peroxidation inhibition process by tissue homogenates of retinal pigment epithelium of pigmented rabbits is higher than that of albino rabbits. The superoxide dismutase and glutathione perioxidase activity is nearly the same in both tissues of the pigment epithelium, the ..cap alpha..-tocopherol content is higher in retinal pigment epithelium tissue of albino animals, and the oxidizability of the lipid fraction of pigment epithelium tissue is higher in pigmented animals than in albinos. It is concluded that the higher resistance of the pigment epithelium of pigmented animals to the effects of prooxidant systems is due to the presence of melanoprotein granules in the pigment epithelium.

  18. Analysis of Indian pigment gallstones

    Energy Technology Data Exchange (ETDEWEB)

    Rautray, T.R. [Department of Physics, National Institute of Technology, Rourkela 769 008, Orissa (India)]. E-mail: tapash77@hotmail.com; Vijayan, V. [Institute of Physics, Bhubaneswar 751 005, Orissa (India); Panigrahi, S. [Department of Physics, National Institute of Technology, Rourkela 769 008, Orissa (India)

    2007-02-15

    Particle induced X-ray emission and particle induced {gamma}-ray emission spectroscopic techniques have been carried out to analyse the elemental concentrations of human pigment gallstone samples from eastern region (Orissa) and southern region (Chennai) of India. It was observed that 18 minor/trace elements namely Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb were present in the pigment gallstone samples of both the regions. Our study reveals that average concentration of all elements except Ni in south Indian pigment gallstone samples is higher than that of corresponding values in east Indian pigment gallstone samples whereas elements like Al, P, S, Cl and V did not show much variation between these two regions. Fourier transform infra-red analysis was carried out to identify the functional groups and the classification of the pigment type gallstones of both the regions. The thermal behaviour of pigment gallstones was carried out by thermogravimetry-derivative thermogravimetry analysis.

  19. Pigments, patterns, and fish behavior.

    Science.gov (United States)

    Price, Anna C; Weadick, Cameron J; Shim, Janet; Rodd, F Helen

    2008-12-01

    Color patterns in fish are often multicomponent signals, composed of pigment-based and structural color patches that can be used to communicate within species, in both inter- and intrasexual interactions, and between species. In this review, we discuss some of the roles played by pigment-based elements of color pattern. We begin by discussing general forms of coloration, classifying them by appearance (e.g., cryptic vs. conspicuous) and apparent function (e.g., conspicuous coloration and mating displays, stripes and cooperation, and bars and aggression). We then briefly discuss the roles pigments play in the perception of these color patterns via their presence in the eye. In the last section, we look at the relative importance of carotenoid versus melanic coloration in situations where honest signals to potential rivals and potential mates might be required. In this survey, we have highlighted some recent research, especially studies that consider both the physiological and behavioral processes underlying the evolution and expression of pigment-based color patterns in fish. The nature of pigmented color patterns depends not just on the dynamics of pattern development and physiological regulation, but also on the behavioral roles played by these patterns, both now and in the past. As such, advances in particular fields of study on pigment patterns (physiology, developmental biology, behavioral ecology, evolutionary biology, etc.) will increasingly depend on insights from other fields.

  20. New blue pigment produced by Pantoea agglomerans and its production characteristics at various temperatures.

    Science.gov (United States)

    Fujikawa, Hiroshi; Akimoto, Ryo

    2011-01-01

    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while the pigment spread into the agar plate, meaning that it is water soluble. Pigment production was affected by the initial cell density. Namely, at higher initial cell densities ranging from 10(6.3) to 10(8.2) CFU/cm(2) on the agar plate, faster pigment production was observed, but no blue pigment was produced at a very high initial density of 10(9.1) CFU/cm(2). Thus, the cell population of 10(8.2) CFU/cm(2) was used for subsequent study. Although the bacterium was capable of growing at temperatures above and below 10°C, it could produce the pigment only at temperatures of ≥10°C. Moreover, the pigment production was faster at higher temperatures in the range of 10 to 20°C. Pigment production at various temperature patterns was well described by a new logistic model. These results suggested that the bacterium could be used in the development of a microbial temperature indicator for the low-temperature-storage management of foods and clinical materials. To our knowledge, there is no other P. agglomerans strain capable of producing a blue pigment and the pigment is a new one of microbial origin.

  1. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks.

    Science.gov (United States)

    Wang, Lei; Yan, Jian; Hardy, William; Mosley, Charity; Wang, Shuguang; Yu, Hongtao

    2005-02-28

    DCB, 3,3'-dichlorobenzidine, is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing ink, textile, paint, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 microM and phototoxic at concentrations >100 microM when bacteria are exposed to DCB and light at the same time (1.2 J/cm2 of UVA and 2.1 J/cm2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a light irradiation dose of 2.3 J/cm2 of UVA and 4.2 J/cm2 of visible light, it causes the Jurkat T-cells to become nonviable in a DCB dose-dependent manner and the nonviable cells reaches 60% at DCB concentrations higher than 50 microM. At the same time, DNA fragmentation is observed for cells exposed to both DCB and light, determined by single cell gel electrophoresis (alkaline comet assay). As much as 5% (average) DNA fragmentation was observed when exposed to 200 microM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, leading to nonviable Jurkat T-cells. It appears, the nonviable cells are not caused solely by fragmentation of cellular DNA, but by other damages such as to proteins and cell membranes, or DNA alkylation. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-containing inks must not only concern about its toxicity without exposing to light, but also its phototoxicity.

  2. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats.

    Directory of Open Access Journals (Sweden)

    Francisco M Nadal-Nicolás

    Full Text Available The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i untouched; ii fluorogold (FG tracing from both superior colliculli; iii FG-tracing from one superior colliculus; iv intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs and ipsilateral RGC sub-populations. Our results show that: i 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26% or Brn3b; ii the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv The vast majority of ip-RGCs do not express Brn3; v The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.

  3. The anti-mutagenic properties of bile pigments.

    Science.gov (United States)

    Bulmer, A C; Ried, K; Blanchfield, J T; Wagner, K-H

    2008-01-01

    Bile pigments, including bilirubin and biliverdin, are endogenous compounds belonging to the porphyrin family of molecules. In the past, bile pigments and bilirubin in particular were thought of as useless by-products of heme catabolism that can be toxic if they accumulate. However, in the past 20 years, research probing the physiological relevance of bile pigments has been mounting, with evidence to suggest bile pigments possess significant antioxidant and anti-mutagenic properties. More specifically, bile pigments are potent peroxyl radical scavengers and inhibit the mutagenic effects of a number of classes of mutagens (polycyclic aromatic hydrocarbons, heterocyclic amines, oxidants). Coincidentally, persons with elevated circulating bilirubin concentrations have a reduced prevalence of cancer and cardio-vascular disease. Despite the encouraging in vitro anti-mutagenic effects of bile pigments, relatively little research has been conducted on their inhibitory capacity in bacterial and cultured cell assays of mutation, which might link the existing in vitro and in vivo observations. This is the first review to summarise the published data and it is our hope it will stimulate further research on these potentially preventative compounds.

  4. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D; Tomik, B; Lankosz, M; Gough, K

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinal cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.

  5. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents

    Directory of Open Access Journals (Sweden)

    Genji Imokawa

    2014-05-01

    Full Text Available Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation.

  6. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...

  7. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells.

    Science.gov (United States)

    Park, Sang-Il; Lee, Eun Hye; Kim, So Ra; Jang, Young Pyo

    2017-03-01

    The purpose of the study was to investigate the protective effect of the Curcuma longa L. extract (CLE) and its curcuminoids against blue light-induced cytotoxicity in human retinal pigment epithelial (RPE) cells laded with A2E. A2E has been concerned in age-related macular degeneration (AMD). To perform this study, A2E-accumulated ARPE-19 cells were exposed to blue light to induce cytotoxicity. The cytotoxicity and apoptotic gene expression levels were evaluated using a lactate dehydrogenase (LDH) assay and real-time PCR analysis, respectively. Curcuma longa L. extract was found to exert a protective effect in a dose-dependent manner. At a concentration of 15 μm, curcumin, demethoxycurcumin and bisdemethoxycurcumin exerted significant protective effects against blue light-induced cytotoxicity. Treatment with CLE and curcuminoids meaningfully reduced the mRNA levels of c-Abl and p53, which was known to be augmented in apoptotic RPE cells. Demethoxycurcumin and bisdemethoxycurcumin were found to inhibit p38 expression, which is increased in blue light-irradiated A2E-accumulated RPE cells. Curcuma longa L. extract and its curcuminoids provided significant protection against photooxidative damage and apoptosis in the RPE cells. Our results suggest that curcuminoids may show potential in the treatment of AMD. © 2017 Royal Pharmaceutical Society.

  8. In vitro Anticancer Property of Yellow Pigment fromStreptomyces griseoaurantiacus JUACT 01

    Directory of Open Access Journals (Sweden)

    Kuruvalli Prashanthi

    2015-12-01

    Full Text Available ABSTRACT Despite the complications in isolation of pigments, microbial pigments are increasingly gaining the attention of researchers because of their broad range therapeutic potentials, especially against cancer. In this study the cytotoxic and anti proliferative potentials of yellow pigment from Streptomyces griseoaurantiacus JUACT 01 isolated from soil are investigated. The effect of pigment treatment on the growth and proliferation of in vitro cervical cancer cells (HeLa and liver cancer cells (Hep G2 was tested by various methods. Significant cytotoxicity was observed with IC 50 values as low as 1.5 and 1.8 µg /mL with HeLa and Hep G2 cells respectively. The pigment exhibited non toxic effects on human lymphocytes. Decrease in the number of viable cells, presence of apoptotic bodies, nuclear condensation and sheared DNA were distinctly observed in pigment treated cancer cells. The biochemical test and the infrared (IR spectra indicated the probable carotenoid presence in the TLC purified pigment fraction. High Performance Liquid Chromatography (HPLC analysis of the TLC purified yellow pigment showed a single large peak with a retention time of 9.90 min and m/z value corresponding to the peak was found to be 413.22 showing 100% relative abundance.

  9. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pig skin.

    Science.gov (United States)

    Peng, Li-Hua; Liu, Shuai; Xu, Shen-Yao; Chen, Lei; Shan, Ying-Hui; Wei, Wei; Liang, Wen-Quan; Gao, Jian-Qing

    2013-09-15

    Salidroside, the major active component of Rhodiola rosea, a herb with antioxidant, free radical scavenging and tyrosinase inhibitory effects, has been recently reported in protecting the kerationcytes from the UV radiation, suggesting the potential of this component in depigmentation. Paeonol is isolated from Moutan Cortex Radicis with anti-inflammation/microbial activities, was reported to induce the down-regulation of microphthalmia-associated transcription factor and subsequently tyrosinase. To testify the potential of these compounds as melanin formation inhibitors for hyperpigmentation therapy, the influence of salidroside and paeonol on pigmentation was investigated. With arbutin as a positive control, salidroside and paeonol were evaluated for their inhibitory effect on the cell viability, tyrosinase activity and melanin synthesis in B16F10 melanoma cells, as well as their effects in UVB-induced hyperpigmentation in brown guinea pig skins. It was demonstrated that the significant inhibition of salidroside (33.0%) and paeonol (22.2-30.9%) on the tyrosinase activity is slightly lower than that of arbutin (18.4-44.7%). However, salidroside exhibited the dose-dependent inhibition (30.6-42.0%) in melanin synthesis at a low concentration of 100 μM, paeonol and arbutin expressed inhibition rates of 27.4-37.2% and 25.8-45.6% within 500-1000 μM. The in vivo topical application of these compounds was demonstrated to obviously decrease the hyperpigmentation on UVB stimulated guinea pig skin. This study provided the original evidence for the salidroside and paeonol as therapeutic agents for pigmentation disorder and skin lightening, with further clinical investigation of these compounds in the field of depigmentation was suggested. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov.

    Science.gov (United States)

    Tong, Steven Y C; Schaumburg, Frieder; Ellington, Matthew J; Corander, Jukka; Pichon, Bruno; Leendertz, Fabian; Bentley, Stephen D; Parkhill, Julian; Holt, Deborah C; Peters, Georg; Giffard, Philip M

    2015-01-01

    We define two novel species of the genus Staphylococcus that are phenotypically similar to and have near identical 16S rRNA gene sequences to Staphylococcus aureus. However, compared to S. aureus and each other, the two species, Staphylococcus argenteus sp. nov. (type strain MSHR1132(T) = DSM 28299(T) = SSI 89.005(T)) and Staphylococcus schweitzeri sp. nov. (type strain FSA084(T) = DSM 28300(T) = SSI 89.004(T)), demonstrate: 1) at a whole-genome level considerable phylogenetic distance, lack of admixture, average nucleotide identity aureus; 6) a separate ecological niche for S. schweitzeri sp. nov.; and 7) a distinct clinical disease profile for S. argenteus sp. nov. compared to S. aureus.

  11. Development of Betta splendens embryos and larvae reveals variation in pigmentation patterns.

    Science.gov (United States)

    Carey, Alexis N; Lyvers, Benjamin H; Ferrill, Rachel N; Johnson, Rachel L; Dumaine, Anne Marie; Sly, Belinda J

    2016-06-01

    Vertebrate pigmentation provides an ideal system for studying the intersections between evolution, genetics, and developmental biology. Teleost fish, with their accessible developmental stages and intense and diverse colours produced by chromatophores, are an ideal group for study. We set out to test whether Betta splendens is a good model organism for studying the evolution and development of diverse pigmentation. Our results demonstrate that B. splendens can be bred to produce large numbers of offspring with easily visualized pigment cells. Depending on the colour of the parents, there was variation in larval pigmentation patterns both within and between breeding events. In juveniles the developing adult pigmentation patterns showed even greater variation. These results suggest that B. splendens has great potential as a model organism for pigmentation studies.

  12. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague–Dawley rats

    Science.gov (United States)

    Lo, Lara Marie Pangan; Kang, Mi Young; Yi, Seong Joon; Chung, Soo Im

    2016-01-01

    Background In the recent years, cases of elderly women suffering from metabolic diseases such as dyslipidemias brought about by hormonal imbalance after menopause are continuously increasing. In this regard, a continuous and escalating demand to develop a more functional and highly nutritional food product as an adjunct supplement that can help alleviate these diseases is still being sought. Objective This study investigated the effects of germinated blackish-purple rice cultivars Keunnunjami, Superjami, and reddish-brown cultivar Superhongmi in the lipid metabolism of ovariectomized Sprague–Dawley rats. Method The animals were randomly divided into nine groups (n=5) and were supplemented with either non-germinated or germinated rice for 9 weeks. Then the plasma, liver, and fat samples were collected for the lipid metabolism effects analyses. Results Animals fed with germinated rice cultivars had improved lipid profile levels relative to the groups supplemented with non-germinated rice cultivars. The germinated rice groups, Keununjami and Superjami in particular, showed a low total cholesterol levels, high levels of high-density lipoproteins-cholesterol, high fecal lipid output, low hepatic lipid values, and low hepatic adipocyte accumulation. There was also an increase in the rate of lipolysis and decrease in lipogenesis based on the lipid-regulating enzyme activity profiles obtained for the groups that fed on germinated rice. Also, results revealed that pigmented rice cultivars had superior effects in improving the lipid metabolism relative to the non-pigmented normal brown rice variety. Conclusion Based on the results, this study suggests that germinated pigmented rice consumption can confer better lipid metabolism than ordinary white rice and constitutes as an effective functional food in alleviating the risk of having dyslipidemias like those suffering from menopausal co-morbidities. PMID:27032671

  13. Dietary supplementation of germinated pigmented rice (Oryza sativa L. lowers dyslipidemia risk in ovariectomized Sprague–Dawley rats

    Directory of Open Access Journals (Sweden)

    Lara Marie Pangan Lo

    2016-03-01

    Full Text Available Background: In the recent years, cases of elderly women suffering from metabolic diseases such as dyslipidemias brought about by hormonal imbalance after menopause are continuously increasing. In this regard, a continuous and escalating demand to develop a more functional and highly nutritional food product as an adjunct supplement that can help alleviate these diseases is still being sought. Objective: This study investigated the effects of germinated blackish-purple rice cultivars Keunnunjami, Superjami, and reddish-brown cultivar Superhongmi in the lipid metabolism of ovariectomized Sprague–Dawley rats. Method: The animals were randomly divided into nine groups (n=5 and were supplemented with either non-germinated or germinated rice for 9 weeks. Then the plasma, liver, and fat samples were collected for the lipid metabolism effects analyses. Results: Animals fed with germinated rice cultivars had improved lipid profile levels relative to the groups supplemented with non-germinated rice cultivars. The germinated rice groups, Keununjami and Superjami in particular, showed a low total cholesterol levels, high levels of high-density lipoproteins-cholesterol, high fecal lipid output, low hepatic lipid values, and low hepatic adipocyte accumulation. There was also an increase in the rate of lipolysis and decrease in lipogenesis based on the lipid-regulating enzyme activity profiles obtained for the groups that fed on germinated rice. Also, results revealed that pigmented rice cultivars had superior effects in improving the lipid metabolism relative to the non-pigmented normal brown rice variety. Conclusion: Based on the results, this study suggests that germinated pigmented rice consumption can confer better lipid metabolism than ordinary white rice and constitutes as an effective functional food in alleviating the risk of having dyslipidemias like those suffering from menopausal co-morbidities.

  14. LOCALIZED PIGMENTED VILLONODULAR SYNOVITIS: CASE REPORT

    Science.gov (United States)

    Carvalho Godoy, Fabiola Andrea de; Faustino, Carlos Alberto Cury; Meneses, Cláudio Santos; Nishi, Sergio Tadao; Góes, César Eduardo Giancoli; Canto, Abaeté Leite do

    2015-01-01

    This case concerned a female patient with a complaint of pain in the anterior region of her left knee during and after sports activities, followed by joint blockage three months ago. From imaging examinations, simple radiography of the knee was normal and magnetic resonance showed a solid expansive mass, possibly corresponding to soft-tissue chondroma or focal nodular synovitis. Arthroscopic resection of the lesion was performed, and the diagnosis of diffuse giant cell tumor resembling localized pigmented villonodular synovitis (PVNS) was made from the result of the anatomopathological examination. The patient presented good clinical evolution, with disappearance of symptoms and return to physical activities. PMID:27027040

  15. LOCALIZED PIGMENTED VILLONODULAR SYNOVITIS: CASE REPORT.

    Science.gov (United States)

    Carvalho Godoy, Fabiola Andrea de; Faustino, Carlos Alberto Cury; Meneses, Cláudio Santos; Nishi, Sergio Tadao; Góes, César Eduardo Giancoli; Canto, Abaeté Leite do

    2011-01-01

    This case concerned a female patient with a complaint of pain in the anterior region of her left knee during and after sports activities, followed by joint blockage three months ago. From imaging examinations, simple radiography of the knee was normal and magnetic resonance showed a solid expansive mass, possibly corresponding to soft-tissue chondroma or focal nodular synovitis. Arthroscopic resection of the lesion was performed, and the diagnosis of diffuse giant cell tumor resembling localized pigmented villonodular synovitis (PVNS) was made from the result of the anatomopathological examination. The patient presented good clinical evolution, with disappearance of symptoms and return to physical activities.

  16. Diurnal variation of phytoplankton pigments and population in the nearshore waters off Thal (Maharashtra)

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam; Desai, B.N; Abidi, S.A

    Variations in phytoplankton species and pigments at three stations off Thal were studied for a period of 24 hrs in March and October, 1980 phytoplankton cell counts and pigment values were maximum around mid-day and mid-night which coincided...

  17. Effects of elicitors on saffron pigment production in cell suspension cultures of Crocus sativus L.%诱导子对藏红花悬浮培养细胞生产藏红花色素的影响

    Institute of Scientific and Technical Information of China (English)

    孙镇; 袁丽红; 吴频梅

    2013-01-01

    The effects of chitosan,chitosan oligosaccharides (COS),methyl jasmonate (MJ),salicylic acid (SA),and copper ions(Cu2+) on cell growth and saffron pigment production in cell suspension cultures of C.sativus were investigated.The results showed that COS(1-500 mg/L),chitosan(≤ 10 mg/L),M J(≤ 10μmol/L),SA(≤10 μmol/L),and Cu2+ (≤1 μmol/L) had no significant effects on saffron cell growth,whereas chitosan(≥100 mg/L),MJ(≥100 μmol/L),SA(≥ 100 μmol/L),and Cu2+ (≥ 10 μmol/L) at high concentrations obviously inhibited the cell growth.The effects of elicitors were significant on saffron pigment biosynthesis,and had relations with the concentrations of elicitors and the timing of elicitation.MJ was the best elicitor,the content of saffron pigment reached 28.57 mg/g DW by adding 100 μmol/L MJ on day 0,and it was higher by 177.9% than the control.Cu2+ was the second,the content of saffron pigment reached 19.82 mg/g DW by adding 500 μmol/L Cu2 + on day 4,and it was higher by 108.2% than the control.Chitosan and COS were the third,the contents of saffron pigment reached 18.33 mg/gDW and 17.39 mg/gDW by adding 100 mg/L chitosan and oligochitosan on day 14,and it was higher by 69.1% and 69.0% than the control,respectively.The last one is SA,the content of saffron pigment reached 14.65mg/gDW by adding 10 μmol/L SA on day 14 and it was higher by 45.4% than the control.%考察壳聚糖(chitosan)、壳寡糖(chitosan oligosaccharides,COS)、茉莉酸甲酯(methyl jasmonate,MJ)、水杨酸(salicylic acid,SA)和Cu2+等诱导子对藏红花悬浮培养细胞生长和藏红花色素合成的影响.结果表明:在实验考察浓度范围内,壳寡糖(1 ~ 500 mg/L)和较低浓度壳聚糖(≤10 mg/L)、MJ(≤10 μmol/L)、SA(≤10 μmol/L)和Cu2+(≤1 μmol/L)对细胞生长无显著影响;较高浓度壳聚糖(≥100 mg/L)、MJ(≥100 μmol/L)、SA(≥100 μmol/L)和Cu2+(≥10 μmol/L)显著抑制细胞生长.5种诱导子对藏红花色素合成的

  18. Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata.

    Science.gov (United States)

    Lalau, Cristina Moreira; Mohedano, Rodrigo de Almeida; Schmidt, Éder C; Bouzon, Zenilda L; Ouriques, Luciane C; dos Santos, Rodrigo W; da Costa, Cristina H; Vicentini, Denice S; Matias, William Gerson

    2015-01-01

    Recently, the application of copper oxide nanoparticles (CuO-NPs) has increased considerably, primarily in scientific and industrial fields. However, studies to assess their health risks and environmental impacts are scarce. Therefore, the present study aims to evaluate the toxicological effects of CuO-NPs on the duckweed species Landoltia punctata, which was used as a test organism. To accomplish this, duckweed was grown under standard procedures according to ISO DIS 20079 and exposed to three different concentrations of CuO-NPs (0.1, 1.0, and 10.0 g L(-1)), with one control group (without CuO-NPs). The toxicological effects were measured based on growth rate inhibition, changes in the plant's morphology, effects on ultrastructure, and alterations in photosynthetic pigments. The morphological and ultrastructural effects were evaluated by electronic, scanning and light microscopic analysis, and CuO-NPs were characterized using transmission electron microscopy (TEM), zeta potential, and superficial area methods of analysis. This analysis was performed to evaluate nanoparticle size and form in solution and sample stability. The results showed that CuO-NPs affected morphology more significantly than growth rate. L. punctata also showed the ability to remove copper ions. However, for this plant to be representative within the trophic chain, the biomagnification of effects must be assessed.

  19. Carbon monoxide and bile pigments: surprising mediators of vascular function.

    Science.gov (United States)

    Durante, William

    2002-08-01

    Heme oxygenase (HO) catalyzes the degradation of heme to CO, iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although long considered irrelevant byproducts of heme catabolism, recent studies indicate that CO and the bile pigments biliverdin and bilirubin may play an important physiological role in the circulation. The release of CO by vascular cells may modulate blood flow and blood fluidity by inhibiting vasomotor tone, smooth muscle cell proliferation, and platelet aggregation. CO may also maintain the integrity of the vessel wall by directly blocking vascular cell apoptosis and by inhibiting the release of pro-apoptotic inflammatory cytokines from the vessel wall. These effects of CO are mediated via multiple pathways, including activation of soluble guanylate cyclase, potassium channels, p38 mitogen-activated protein kinase, or inhibition of cytochrome P450. In addition, the release of bile pigments may serve to sustain vascular homeostasis by protecting vascular cells from oxidative stress and by inhibiting the adhesion and infiltration of leukocytes into the vessel wall. Induction of HO-1 gene expression and the subsequent release of CO and bile pigments are observed in numerous vascular disorders and may provide an important adaptive mechanism to preserve homeostasis at sites of vascular injury. Thus, the HO-catalyzed formation of CO and bile pigments by vascular cells may function as a critical endogenous vasoprotective system. Moreover, pharmacological or genetic approaches targeting HO-1 to the vessel wall may represent a novel therapeutic approach in treating vascular disease.

  20. Accuracy of pulse oximetry in pigmented patients

    African Journals Online (AJOL)

    Reflectance was measured at nine wavelengths. Results. The degree of pigmentation as measured by ... adversely affected by skin pigmentation, and it remains a ... the inner surface of the upper arm and the volar aspect of ..... Ph.D. mesis.

  1. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    Science.gov (United States)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  2. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    Science.gov (United States)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  3. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation

    Science.gov (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-01-01

    Summary In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product. PMID:23425092

  4. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation.

    Science.gov (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-09-01

    In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.

  5. Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling

    Science.gov (United States)

    Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook

    2016-01-01

    Purpose Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. Methods To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. Results H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. Conclusions SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases. PMID:27582624

  6. Clofazimine-induced Hair Pigmentation

    Science.gov (United States)

    Philip, Mariam; Samson, Joan Felicita; Simi, Puthenveedu Salahudeen

    2012-01-01

    A 45-year-old man was treated with WHO multibacillary multidrug therapy for borderline leprosy and high dose daily Clofazimine for lepra reaction. Along with the expected side effect of skin pigmentation, the patient also noticed darkening of previously grey hair. This colour persisted eight months after completing multibacillary multidrug therapy. PMID:23180930

  7. Clofazimine-induced Hair Pigmentation.

    Science.gov (United States)

    Philip, Mariam; Samson, Joan Felicita; Simi, Puthenveedu Salahudeen

    2012-07-01

    A 45-year-old man was treated with WHO multibacillary multidrug therapy for borderline leprosy and high dose daily Clofazimine for lepra reaction. Along with the expected side effect of skin pigmentation, the patient also noticed darkening of previously grey hair. This colour persisted eight months after completing multibacillary multidrug therapy.

  8. Primary pigmented nodular adrenocortical disease

    Directory of Open Access Journals (Sweden)

    Marie T Manipadam

    2011-01-01

    Full Text Available Primary pigmented nodular adrenocortical disease (PPNAD is a rare cause of ACTH-independent Cushing′s syndrome and has characteristic gross and microscopic pathologic findings. We report a case of PPNAD in a 15-year-old boy, which was not associated with Carney′s complex. Bilateral adrenalectomy is the treatment of choice.

  9. Functional annotation of the human retinal pigment epithelium transcriptome

    NARCIS (Netherlands)

    J.C. Booij (Judith); S. van Soest (Simone); S.M.A. Swagemakers (Sigrid); A.H.W. Essing (Anke); J.H.M. Verkerk (Annemieke); P.J. van der Spek (Peter); T.G.M.F. Gorgels (Theo); A.A.B. Bergen (Arthur)

    2009-01-01

    textabstractBackground: To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy

  10. Functional annotation of the human retinal pigment epithelium transcriptome

    NARCIS (Netherlands)

    Booij, J.C.; van Soest, S.; Swagemakers, S.M.A.; Essing, A.H.W.; Verkerk, A.J.M.H.; van der Spek, P.J.; Gorgels, T.G.M.F.; Bergen, A.A.B.

    2009-01-01

    ABSTRACT: BACKGROUND: To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy hu

  11. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo.

    Science.gov (United States)

    Masuelli, Laura; Pantanella, Fabrizio; La Regina, Giuseppe; Benvenuto, Monica; Fantini, Massimo; Mattera, Rosanna; Di Stefano, Enrica; Mattei, Maurizio; Silvestri, Romano; Schippa, Serena; Manzari, Vittorio; Modesti, Andrea; Bei, Roberto

    2016-03-01

    Violacein (VIO; 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one), an indole-derived purple-colored pigment, produced by a limited number of Gram-negative bacteria species, including Chromobacterium violaceum and Janthinobacterium lividum, has been demonstrated to have anti-cancer activity, as it interferes with survival transduction signaling pathways in different cancer models. Head and neck carcinoma (HNC) represents the sixth most common and one of the most fatal cancers worldwide. We determined whether VIO was able to inhibit head and neck cancer cell growth both in vitro and in vivo. We provide evidence that VIO treatment of human and mouse head and neck cancer cell lines inhibits cell growth and induces autophagy and apoptosis. In fact, VIO treatment increased PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of light chain 3-II (LC3-II). Moreover, VIO was able to induce p53 degradation, cytoplasmic nuclear factor kappa B (NF-κB) accumulation, and reactive oxygen species (ROS) production. VIO induced a significant increase in ROS production. VIO administration was safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) in vivo and prolonged median survival. Taken together, our results indicate that the treatment of head and neck cancer cells with VIO can be useful in inhibiting in vivo and in vitro cancer cell growth. VIO may represent a suitable tool for the local treatment of HNC in combination with standard therapies.

  12. Pigment production by a new thermotolerant microalga Coelastrella sp. F50.

    Science.gov (United States)

    Hu, Che-Wei; Chuang, Lu-Te; Yu, Po-Chien; Chen, Ching-Nen Nathan

    2013-06-15

    Microalgae are good crops to produce natural pigments because of their high growth rates. Tropical zones are better locations than temperate areas for microalgal cultivation because they have longer duration of daylight and more stable temperatures throughout the year, but the high temperatures pose a challenge to microalgal cultivation. A newly isolated thermotolerant microalga produces reddish pigments under environmental stress. Morphological and molecular evidence including meridional ribs on the cell wall, pigment production, and its 18S rDNA sequence suggests that this microalga belongs to the genus Coelastrella. Salt stress and high light intensity accelerated biosynthesis of the pigments, and significant quantities of oil accumulated as the cells experienced stress due to nutrient deficiency. This microalga could withstand temperature of 50°C for more than 8h, which is a necessary trait for outdoor cultivation in tropical areas. The pigments contain astaxanthin, lutein, canthaxanthin, and β-carotene as analysed by using HPLC.

  13. Pigmentation associated histopathological variations in sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E; Ikui, H

    1980-01-01

    The severity of inflammation in sympathetic ophthalmia is related to the degree of pigmentation, and the granulomatous response seems to be related to pigmentation. Eosinophilia is also associated with pigmentation, but this association appears to be fortuitous and is a result of the association of eosinophilia with severity of the inflammation. PMID:7387955

  14. 21 CFR 73.352 - Paracoccus pigment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive... mixtures for coloring foods. (b) Specifications. Paracoccus pigment shall conform to the...

  15. A case of pigmented Bowen's disease*

    Science.gov (United States)

    Vivan, Márcia Maria; Hirata, Sérgio Henrique; do Nascimento, Liliane Santos; Enokihara, Milvia Maria Simões e Silva

    2017-01-01

    Pigmented Bowen's disease is a rare subtype of Bowen's disease. Clinically it presents as a slow-growing, well-defined, hyperpigmented plaque, and should be included as a differential diagnosis of other pigmented lesions. The authors describe a challenging case of pigmented Bowen's disease with non-diagnostic dermscopy findings. PMID:28225972

  16. Pigmented villonodular synovitis: radiologic-pathologic correlation.

    Science.gov (United States)

    Murphey, Mark D; Rhee, John H; Lewis, Rachel B; Fanburg-Smith, Julie C; Flemming, Donald J; Walker, Eric A

    2008-01-01

    Pigmented villonodular synovitis (PVNS) represents an uncommon benign neoplastic process that may involve the synovium of the joint diffusely or focally (PVNS) or that may occur extraarticularly in a bursa (pigmented villonodular bursitis [PVNB]) or tendon sheath (pigmented villonodular tenosynovitis [PVNTS]). Pathologic specimens of the hypertrophic synovium may appear villous, nodular, or villonodular, and hemosiderin deposition, often prominent, is seen in most cases. The knee, followed by the hip, is the most common location for PVNS or PVNB, whereas PVNTS occurs most often in the hand and foot. PVNTS is also referred to as giant cell tumor of the tendon sheath (GCTTS). PVNTS is the most common form of this disease by a ratio of approximately 3:1. Radiographs reveal nonspecific features of a joint effusion in PVNS, a focal soft-tissue mass in PVNB or PVNTS, or a normal appearance. Extrinsic erosion of bone (on both sides of the joint) may also be seen and is most frequent with intraarticular involvement of the hip (>90% of cases). Cross-sectional imaging reveals diffuse involvement of the synovium (PVNS), an intimate relationship to the tendon (PVTNS), or a typical bursal location (PVNB), findings that suggest the diagnosis. However, the magnetic resonance (MR) imaging findings of prominent low signal intensity (seen with T2-weighting) and "blooming" artifact from the hemosiderin (seen with gradient-echo sequences) are nearly pathognomonic of this diagnosis. In addition, MR imaging is optimal for evaluating lesion extent. This information is crucial to guide treatment and to achieve complete surgical resection. Recurrence is more common with diffuse intraarticular disease and is difficult to distinguish, both pathologically and radiologically, from the rare complication of malignant PVNS. Recognizing the appearances of the various types of PVNS, which reflect their pathologic characteristics, improves radiologic assessment and is important for optimal patient

  17. Light-Induced Mutagenicity in Salmonella TA102 and Genotoxicity/Cytotoxicity in Human T-cells by 3,3’-Dichlorobenzidine: A Chemical Used in the Manufacture of Dyes and Pigments and in Tattoo Inks

    Science.gov (United States)

    Wang, Lei; Yan, Jian; Hardy, William; Mosley, Charity; Wang, Shuguang; Yu, Hongtao

    2013-01-01

    3,3’-Dichlorobenzidine (DCB) is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing inks, textiles, paints, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 µM and phototoxic at concentrations >100 µM when the bacteria is exposed to DCB and light at the same time (1.2 J/cm2 of UVA and 2.1 J/cm2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a constant light irradiation dose of 2.3 J/cm2 of UVA and 4.2 J/cm2 of visible light, it causes the Jurkat T-cells to become non-viable in a DCB dose-dependent manner and only 40% viable cells remaining at DCB concentrations higher than 50 µM. At the same time, DNA fragmentation is observed for the cells exposed to both DCB and light, determined by single cell gel electrophoresis (Comet assay). As much as 8 % of the cellular DNA is fragmented when exposed to 200 µM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, including DNA fragmentation, leading to non-viable Jurkat T-cells. It appears, though, non-viable cells may not be caused solely by fragmentation of cellular DNA, but other damages such as to proteins and cell membranes, or other forms of DNA damage such as alkylation that does not cause DNA to fragment, may also be involved. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-contaminated inks must not only concern about its toxicity without exposing to light, but also about its phototoxicity. PMID:15664269

  18. Predictive value of exfoliative cytology in pigmented conjunctival lesions.

    Science.gov (United States)

    Keijser, Sander; van Luijk, Chantal M; Missotten, Guy S; Veselic-Charvat, Maud; de Wolff-Rouendaal, Didi; de Keizer, Rob J W

    2006-04-01

    Pigmented lesions of the conjunctiva are often difficult to classify clinically. Exfoliative cytology may be helpful, but reliable data regarding the sensitivity and specificity of this test are currently lacking. We determined the value of exfoliative cytology with regard to pigmented conjunctival lesions. A total of 294 smears from 182 patients were screened for malignancy within 6 months of exfoliative cytology. Smears were classified according to the following categories: grade 0 = insufficient material for diagnosis; grade 1 = normal conjunctival cells; grade 2 = melanocytes with mild atypia; grade 3 = melanocytes with moderate atypia, and grade 4 = melanocytes with severe atypia. The sensitivity, specificity, positive predictive value and negative predictive value of exfoliative cytology were 85%, 78%, 59% and 93%, respectively. Exfoliative cytology is a fast, easy and non-invasive technique that may be used in the evaluation of patients with a pigmented conjunctival lesion.

  19. Accelerating of Pink Pigment Excretion from Cyanobacterium Oscillatoria by Co-Cultivation with Anabaena

    Directory of Open Access Journals (Sweden)

    DWI SUSILANINGSIH

    2007-03-01

    Full Text Available The freshwater cyanobacterium Oscillatoria BTCC/A 0004 excretes pink pigment containing lipoproteins with molecular weights of about 10 kDa. This pigment has surfactant properties with strong emulsification activity toward several hydrocarbons. This extracellular metabolite was suspected as toxin or allelochemical in their habitat. In this study, I investigated the effect of co-cultivation of Oscillatoria with Anabaena variabilis on the pigment excretion to explore the physiological roles of this pigment in its natural environment. The dead or viable cells and medium of A. variabilis were added into Oscillatoria cultures. Results showed that co-cultivation of free viable cells of A. variabilis enhanced the excretion of pigment without effect on the cell growth. Co-cultivation with viable cells in separated method and dead cells did not influenced the pigment production. The addition of A. variabilis medium was slightly increased the excretion of the pigment. Those results indicated that direct contact with A. variabilis caused Oscillatoria released a certain signaling compound.

  20. The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Chen

    Full Text Available Epithelial-mesenchymal transition (EMT of retinal pigment epithelium (RPE cells is a major pathologic change in the development of proliferative vitreoretinopathy (PVR, which leads to severe visual impairment. ERK1/2 pathway has been reported to play a key role in the carcinogenesis, cancer metastasis, and multiple fibrotic diseases. We hypothesized that ERK1/2 signaling could cross-interact with transforming growth factor β2 (TGFβ2/Smad and Notch signaling pathways in the regulation of EMT in RPE cells. Here, we demonstrated that ERK1/2 signaling was activated in TGFβ2-induced EMT in human RPE cells, while blockade of the canonical TGFβ2/Smad2/3 signaling with SB431542 could not inhibit TGFβ2-induced the activation of ERK1/2. Meanwhile, blockade of ERK1/2 signaling with a specific MEK/ERK1/2 inhibitor U0126 strongly prevented TGFβ2-induced the downregulation of P-cadherin, and the upregulation of α-SMA, collagen type IV, N-cadherin and fibronectin in RPE cells. In addition, we also identified that blockade of ERK1/2 signaling could inhibit not only the canonical TGFβ/Smad signaling, but also the Jagged/Notch pathway. Finally, we found that blockade of Notch pathway with a specific inhibitor DAPT could inhibit TGFβ2-induced the activation of ERK1/2 pathway conversely. Therefore, our study provides evidence that ERK1/2 signaling can cross-interact with the canonical TGFβ/Smad and the Jagged/Notch signaling pathways in RPE cells EMT. ERK1/2 inhibitor may have therapeutic value in the prevention and treatment of PVR and other fibrotic diseases.

  1. Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis.

    Science.gov (United States)

    Das, Prasanta Kumar; Geul, Bang; Choi, Sang-Bong; Yoo, Sang-Dong; Park, Youn-Il

    2011-01-01

    Light is the ultimate energy source for photo-autotrophs on earth. For green plants, however, it can also be toxic under certain stressful environmental conditions and at critical developmental stages. Anthocyanins, a class of flavonoids, act as an effective screening mechanism that allows plant survival and proliferation under occasional periods of harmful irradiation through modulation of light absorption. Apart from light-sensing through photoreceptors such as phytochrome and cryptochrome, plants use the photosynthetic electron transfer (PET) chain to integrate light information. The redox status of the plastoquinone (PQ) pool of the PET chain regulates anthocyanin biosynthesis genes, together with the plant hormone ethylene and plant hormone-like sugars. A complex signaling apparatus in acyanic cells appears to transduce information to cyanic cells to regulate anthocyanin production through an intercellular signaling pathway that remains largely uncharacterized. This review will highlight recent advances in this field and their implications for the regulation of anthocyanin pigmentation.

  2. Perstraction of Intracellular Pigments through Submerged Fermentation of Talaromyces spp. in a Surfactant Rich Media: A Novel Approach for Enhanced Pigment Recovery

    Directory of Open Access Journals (Sweden)

    Lourdes Morales-Oyervides

    2017-06-01

    Full Text Available A high percentage of the pigments produced by Talaromyces spp. remains inside the cell, which could lead to a high product concentration inhibition. To overcome this issue an extractive fermentation process, perstraction, was suggested, which involves the extraction of the intracellular products out of the cell by using a two-phase system during the fermentation. The present work studied the effect of various surfactants on secretion of intracellular pigments produced by Talaromyces spp. in submerged fermentation. Surfactants used were: non-ionic surfactants (Tween 80, Span 20 and Triton X-100 and a polyethylene glycerol polymer 8000, at different concentrations (5, 20, 35 g/L. The highest extracellular pigment yield (16 OD500nm was reached using Triton X-100 (35 g/L, which was 44% higher than the control (no surfactant added. The effect of addition time of the selected surfactant was further studied. The highest extracellular pigment concentration (22 OD500nm was achieved when the surfactant was added at 120 h of fermentation. Kinetics of extracellular and intracellular pigments were examined. Total pigment at the end of the fermentation using Triton X-100 was 27.7% higher than the control, confirming that the use of surfactants partially alleviated the product inhibition during the pigment production culture.

  3. 胎兔视网膜色素上皮移植的初步研究%Primary study of transplanted embryonic retinal pigment epithelial cells in rabbits

    Institute of Scientific and Technical Information of China (English)

    曲毅; 周芳; 李艳; 李剑桥; 冯进波

    2005-01-01

    目的:观察受体Bruch膜和视网膜色素上皮(retrial pigment epithelial,RPE)受损情况下供体RPE细胞的增殖、分化和凋亡状况.方法:制备有色素胎兔RPE细胞悬液,移植至破坏了Bruch膜和RPE细胞的12只成年新西兰大白兔的视网膜下腔.左眼作为实验组,右眼作为对照,于术后3、7和14d,采用Ki-67免疫组化和TUNEL染色,并提取RPE细胞DNA作琼脂糖凝胶电泳,观察Ki-67阳性RPE细胞及移植的RPE细胞和受体ONL细胞的凋亡百分率,行统计学分析.结果:术后随着时间的延长,实验组或对照组Ki-67阳性RPE细胞数显著增加(P<0.05);术后14 d实验组或对照组的TUNEL染色ONL核阳性百分率较术后3 d显著减少(P<0.05);术后实验组TUNEL染色阳性和细胞核深染的RPE细胞无显著增加(P>0.05);细胞核深染的RPE细胞百分率明显高于TUNEL阳性的细胞(P<0.01).对照组未见TUNEL阳性的RPE细胞.术后14d,移植的RPE细胞DNA电泳出现典型的凋亡带.结论:在受体Bruch膜、RPE受损状态下,供体的RPE细胞具有良好的增殖和分化能力.

  4. Photoinduced changes in photosystem II pigments

    Science.gov (United States)

    Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  5. Bile pigments in pulmonary and vascular disease

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2012-03-01

    Full Text Available The bile pigments, biliverdin and bilirubin, are endogenously-derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  6. Bile pigments in pulmonary and vascular disease.

    Science.gov (United States)

    Ryter, Stefan W

    2012-01-01

    The bile pigments, biliverdin, and bilirubin, are endogenously derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  7. Availability and Utilization of Pigments from Microalgae.

    Science.gov (United States)

    Begum, Hasina; Yusoff, Fatimah Md; Banerjee, Sanjoy; Khatoon, Helena; Shariff, Mohamed

    2016-10-02

    Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons.

  8. Skin pigmentation kinetics after UVB exposure

    DEFF Research Database (Denmark)

    Ravnbak, M.H.; Philipsen, P.A.; Wiegell, S.R.

    2008-01-01

    There have been few previous studies of the kinetics of pigmentation following ultraviolet B (UVB) exposure, and these have included only fair-skinned persons. The current study investigated pigmentation increase to steady state and fading in 12 Scandinavians and 12 Indians/Pakistanis. Over...... a period of 3 weeks the subjects were UV-irradiated 6 times on the right side of the back and 12 times on the left side using a Solar Simulator and narrowband UVB with equal sub-Minimal Melanogenesis Doses (individually predetermined). Pigmentation was measured from skin remittance at 555 urn and 660 nm...... (allowing correction for erythema). The absolute pigmentation increase was independent of pre-exposure pigmentation, therefore the percentage pigmentation increase was higher in fair-skinned volunteers. The UV dose to minimal pigmentation was higher in darker-skinned persons for single and multiple UV...

  9. The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Dong Qin

    2015-01-01

    Full Text Available Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR. Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.

  10. Holographic films from carotenoid pigments

    Science.gov (United States)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  11. Pigmented villonodular synovitis: MRI characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, T.H. [Dept. of Radiology, Univ. of California, San Diego, CA (United States)]|[Veterans Administration Medical Center, San Diego, CA (United States); Sartoris, D.J. [Dept. of Radiology, Univ. of California, San Diego, CA (United States)]|[Veterans Administration Medical Center, San Diego, CA (United States); Schweitzer, M.E. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Resnick, D.L. [Dept. of Radiology, Univ. of California, San Diego, CA (United States)]|[Veterans Administration Medical Center, San Diego, CA (United States)

    1995-01-01

    The magnetic resonance imaging (MRI) scans of 26 patients with histopathologically proven pigmented villonodular synovitis (PVNS), involving joints but excluding tendon sheaths, were reviewed retrospectively. The purpose of this study is to define the spectrum and frequency of MRI characteristics for PVNS using conventional spin echo (in two cases before and after intravenous administration of gadopentate dimeglumine) and also gradient echo techniques. A cystic variety is presented, the MRI appearances of which have not been found in a review of the literature. (orig.)

  12. Nanoscience of an ancient pigment.

    Science.gov (United States)

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-06

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times.

  13. 线粒体DNA损伤与视网膜色素上皮细胞关系的研究进展%The relationship between mitochondrial DNA damage and retinal pigment epithelium cells

    Institute of Scientific and Technical Information of China (English)

    俞永珍; 邹秀兰; 邹玉平

    2015-01-01

    Mitochondrial DNA (mtDNA) is a genetic effect DNA molecule of double closed loop, and is crucial for cells and their functions. Mitochondria take an active part in physiological activities of retinal pigment epithelium (RPE) cells. The oxidative stress is usually occurred in RPE for its active metabolism, which can lead to mitochondria and mtDNA dam⁃age. Once mitochondria and mtDNA lesions have not been repaired timely, the lesions can be accumulated, which can cause dysfunctions and damaged-structures of RPE and mitochondria, and can motivate the progression of cell apoptosis. In the end it can result in some ocular related diseases such as aged-related macular degeneration (AMD). This study reviewed the functional relationship between mtDNA and RPE, and repair and detection methods of mtDNA damage.%线粒体DNA(mtDNA)是线粒体内具有遗传效应的双股闭环DNA分子,对细胞及其功能具有重要作用。视网膜色素上皮(RPE)细胞活动亦由大量线粒体参与。因RPE细胞代谢活跃,当发生氧化应激时可引起线粒体及mtDNA损伤;当线粒体及mtDNA损伤无法及时修复而使损伤积累,可引起RPE及线粒体功能障碍,并诱发启动细胞凋亡,进而引发某些眼病,如年龄相关性黄斑变性等。现就mtDNA与RPE细胞的功能关系、mtDNA损伤修复及检测方法作一综述。

  14. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis

    Science.gov (United States)

    Balmer, Delphine; Bapst-Wicht, Linda; Pyakurel, Aswin; Emery, Martine; Nanchen, Natacha; Bochet, Christian G.; Roduit, Raphael

    2017-01-01

    Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD. PMID:28298893

  15. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.

    Science.gov (United States)

    Vendruscolo, Francielo; Schmidell, Willibaldo; de Oliveira, Débora; Ninow, Jorge Luiz

    2017-01-01

    Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO2 L(-1) at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO2 g x(-1)  h(-1) and 3.133 gx gO 2(-1) and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.

  16. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution.

    Science.gov (United States)

    Hu, Zhiqiang; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2012-04-01

    "Milking processing" describes the cultivation of microalgae in a water-organic solvent two-phase system that consists of simultaneous fermentation and secretion of intracellular product. It is usually limited by the conflict between the biocompatibility of the organic solvent to the microorganisms and the ability of the organic solvent to secret intracellular product into its extracellular broth. In the present work, submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle aqueous solution for pigment production is exploited, in which the fungus Monascus remains actively growing. Permeabilization of intracellular pigments across the cell membrane and extraction of the pigments to the nonionic surfactant micelles of its fermentation broth occur simultaneously. "Milking" the intracellular pigments in the submerged cultivation of Monascus is a perstraction process. The perstractive fermentation of intracellular pigments has the advantage of submerged cultivation by secretion of the intracellular pigments to its extracellular broth and the benefit of extractive microbial fermentation by solubilizing the pigments into nonionic surfactant micelles. It is shown as the marked increase of the extracellular pigment concentration by the submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle solution.

  17. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation.

    Science.gov (United States)

    Wang, Bo; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong

    2015-10-20

    Fermented Monascus pigments have been utilized as traditional Chinese medicine and food colorant for thousands of years. Under the limited nitrogen concentration and/or low initial pH 2.5 conditions, it was observed that production of intracellular pigments and accumulation of microbial lipids (high content reaching to approximately 50% in dry cell weight) by edible Monascus anka exhibited a positive correlated relationship. Extractive fermentation in nonionic surfactant micelle aqueous solution selectively exported the intracellular Monascus pigments into its extracellular broth, in which the concentration of intracellular pigments was negligible while the extracellular one was enhanced. The extractive fermentation provides a novel strategy for shifting of the metabolic channeling from intracellular lipid accumulation to Monascus pigment production. High pigment concentration, i.e., approximately 40 AU of extracellular Monascus pigments, was achieved by extractive fermentation at a relatively high nonionic surfactant concentration 10 g/l. This phenomenon might be attributed to the nonionic surfactant micelles acting as pigment reservoirs by biomimetic of intracellular lipids.

  18. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway

    Science.gov (United States)

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction – assessed by collagen matrix contraction assay – and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR.

  19. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway.

    Science.gov (United States)

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction - assessed by collagen matrix contraction assay - and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR.

  20. DRUGS CAUSING OROFACIAL PIGMENTATION: AN OVERVIEW OF LITERATURE

    OpenAIRE

    Shamimul Hasan; Nabeel Ishrat Khan; Osama Adeel Khan Sherwani; Shane Rafi; Ayesha Siddiqui

    2013-01-01

    The term “Oro-facial pigmentation” refers to a wide range of lesions or conditions featuring a change of color of Oro-facial tissues. Pigmentation of the Oro-facial tissues is seen in certain races or ethnic groups such as Indians, Africans and Europeans. Broadly classifying, Oro-facial pigmentation is divided into endogenous pigmentation and exogenous pigmentation. Endogenous pigmentation is due to pigments produced within the body. Exogenous pigmentation occurs when foreign bodies get impre...