WorldWideScience

Sample records for nonphotochemical hole-burning imaging

  1. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  2. Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ)were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  3. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    International Nuclear Information System (INIS)

    Satoshi Matsuzaki

    2002-01-01

    Burn wavelength (λ B )-dependent nonphotochemical hole spectra are reported for the lowest energy Q y -absorption band of the Fenna-Matthews-Olson (FMO) trimer complex from Prosthecochloris aestuarii. This band at 825 nm is contributed to by three states that stem from the lowest energy state of the subunit of the trimer. The spectra reveal unusually rich and quite sharp low energy satellite structure that consists of holes at 18, 24, 36, 48, 72, 120 and 165 cm -1 as measured relative to the resonant hole at λ B . The possibility that some of these holes are due to correlated downward energy transfer from the two higher energy states that contribute to the 825 nm band could be rejected. Thus, the FMO complex is yet another example of a photosynthetic complex for which structural heterogeneity results in distributions for the values of the energy gaps between Q y -states. The results of theoretical simulations of the hole spectra are consistent with the above holes being due to intermolecular phonons and low energy intramolecular vibrations of the bacteriochlorophyll a (BChl a) molecule. The 36 cm -1 and higher energy modes are most likely due to the intramolecular BChl a modes. The simulations lead to the determination of the Huang-Rhys (S) factor for all modes

  4. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  5. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  6. Photoinduced electron transfer and persistent spectral hole-burning in natural emerald.

    Science.gov (United States)

    Riesen, Hans

    2011-06-02

    Wavelength-selective excited-state lifetime measurements and absorption, luminescence, and hole-burning spectra of a natural African emerald crystal are reported. The (2)E excited-state lifetime displays an extreme wavelength dependence, varying from 190 to 37 μs within 1.8 nm of the R(1)-line. Overall, the excited state is strongly quenched, in comparison to laboratory-created emerald (τ=1.3 ms), with an average quenching rate of ∼6 × 10(3) s(-1) at 2.5 K. This quenching is attributed to photoinduced electron transfer caused by a relatively high concentration of Fe(2+) ions. The forward electron-transfer rate, k(f), from the nearest possible Fe(2+) sites at around 5 Å is estimated to be ∼20 × 10(3) s(-1) at 2.5 K. The photoreductive quenching of the excited Cr(3+) ions by Fe(2+) is followed by rapid electron back-transfer in the ground state upon deactivation. The exchange interaction based quenching can be modeled by assuming a random quencher distribution within the possible Fe(2+) sites with the forward electron-transfer rate, k(f), given as a function of acceptor-donor separation R by exp[(R(f)-R)/a(f)]; R(f) and a(f) values of 13.5 and 2.7 Å are obtained at 2.5 K. The electron transfer/back-transfer reorganizes the local crystal lattice, occasionally leading to a minor variation of the short-range structure around the Cr(3+) ions. This provides a mechanism for spectral hole-burning for which a moderately high quantum efficiency of about ∼0.005% is observed. Spectral holes are subject to spontaneous hole-filling and spectral diffusion, and both effects can be quantified within the standard two-level systems for non-photochemical hole-burning. Importantly, the absorbance increases on both sides of broad spectral holes, and isosbestic points are observed, in accord with the expected distribution of the "photoproduct" in a non-photochemical hole-burning process. © 2011 American Chemical Society

  7. Power budget analysis of image-plane storage in spectral hole-burning materials

    International Nuclear Information System (INIS)

    Neifeld, M.A.; Randall Babbitt, W.; Krishna Mohan, R.; Craig, A.E.

    2004-01-01

    We analyze the power requirements of a volumetric storage system based on hole-burning materials. We consider an image-plane architecture that uses ultra-fine wavelength addressing. We perform an optimization study in which hole-depth, material thickness, and spot size are selected to minimize the system power budget. We find that a data rate of 10 Gbps and a latency of 10 μs can be achieved in a read-once system based on Eu-YSO with a total power budget of only 23 mW. The same material system designed to tolerate 1000 read cycles would require only a factor of 15 increase in power

  8. Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment-Protein Complexes at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Herascu, N.; Ahmouda, S.; Picorel, R.; Seibert, M.; Jankowiak, R.; Zazubovich, V.

    2011-12-22

    Effects of the distributions of excitation energy transfer (EET) rates (homogeneous line widths) on the nonphotochemical (resonant) spectral hole burning (SHB) processes in photosynthetic chlorophyll-protein complexes (reaction center [RC] and CP43 antenna of Photosystem II from spinach) are considered. It is demonstrated that inclusion of such a distribution results in somewhat more dispersive hole burning kinetics. More importantly, however, inclusion of the EET rate distributions strongly affects the dependence of the hole width on the fractional hole depth. Different types of line width distributions have been explored, including those resulting from Foerster type EET between weakly interacting pigments as well as Gaussian ones, which may be a reasonable approximation for those resulting, for instance, from so-called extended Foerster models. For Gaussian line width distributions, it is possible to determine the parameters of both line width and tunneling parameter distributions from SHB data without a priori knowledge of any of them. Concerning more realistic asymmetric distributions, we demonstrate, using the simple example of CP43 antenna, that one can use SHB modeling to estimate electrostatic couplings between pigments and support or exclude assignment of certain pigment(s) to a particular state.

  9. Optical Hole Burning of Materials for Frequency Domain Optical Storage and Processing

    National Research Council Canada - National Science Library

    Gorokhovsky, Anshel

    2002-01-01

    .... Hole burning parameters were determined for eight materials; in particular, the hole burning kinetics was analyzed and the quantum efficiencies were determined to be between 0.1% and 1%. Holograms (data pages...

  10. Persistent hole-burning of perylene microcrystallites dispersed in PVA

    International Nuclear Information System (INIS)

    Mizuno, K.; Matsubara, T.; Sugahara, K.; Aoki-Matsumoto, T.; Ichida, M.; Ando, H.; Itoh, T.

    2011-01-01

    A persistent hole-burning is observed in β-perylene microcrystallites, which were embedded in poly-vinyl alcohol. By laser light excitation at 22,535 cm -1 and at 10 K, the hole is found at the excitation photon energy. The mechanism of the persistent hole-burning is interpreted in terms of the resolution of microcrystallites into smaller microcrystallites. This is a novel observation of the persistent hole-burning in aromatic microcrystallites. When the specimen, which includes a hole, is annealed at high temperatures, the resolved microcrystallites restore back to the old position as had been. The β-perylene microcrystallite specimen that we have grown was as small as 1.5 nm in average diameter. They are one order smaller in number of molecules included, compared to those that have been reported on aromatic microcrystallites, anthracene for example. Due to this, we were able to observe the 0-0 transition energy, which varied according as the number of molecules involved in the microcrystallites. We also observed the 0-0 absorption (excitation) spectrum, which depends on the molecular arrays in the microcrystallites. The 0-0 transition of a single molecule in poly-vinyl alcohol matrix is anticipated to be located at 22,885 cm -1 .

  11. Evaluation of burned aspen communities in Jackson Hole, Wyoming

    Science.gov (United States)

    Charles E. Kay

    2001-01-01

    Aspen has been declining in Jackson Hole for many years, a condition generally attributed to the fact that lightning fires have been aggressively suppressed since the early 1900s. It is also believed that burning will successfully regenerate aspen stands despite high elk numbers. To test this hypothesis, I evaluated 467 burned and 495 adjacent, unburned aspen stands at...

  12. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning

    International Nuclear Information System (INIS)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-01-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  13. Application of spectral hole burning to the study of in vitro cellular systems

    Energy Technology Data Exchange (ETDEWEB)

    Milanovich, Nebojsa [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  14. Spatial hole burning and spectral stability of a quantum-dot laser

    International Nuclear Information System (INIS)

    Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-01-01

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum

  15. Spatial hole burning and spectral stability of a quantum-dot laser

    Energy Technology Data Exchange (ETDEWEB)

    Savelyev, A. V., E-mail: savelev@mail.ioffe.ru; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E. [Russian Academy of Sciences, Nanotechnology Center, St. Petersburg Academic University (Russian Federation)

    2015-11-15

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum.

  16. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  17. Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Sun, Y.; Boettger, T.; Babbitt, W.R.; Cone, R.L.

    2010-01-01

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3 H 4 and 3 F 4 excited states of Tm 3+ , persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169 Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm 3+ and the 7 Li and 93 Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7 Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  18. Aspects of hole-burning and spectro-temporal holography in molecular doped solids

    International Nuclear Information System (INIS)

    Galap, J.-P.

    2006-01-01

    The persistent spectral hole-burning (PSHB) phenomenon has been known since 1974. It is still an important research area for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectra, photophysics, photochemistry, and dynamics of molecular doped amorphous media, organic as well as inorganic. From another point of view, PSHB allows the engraving of any spectral structures in the inhomogeneous absorption band profile of molecular doped amorphous hosts or ion doped crystals cooled down to liquid helium temperatures. Therefore, a PSHB material is programmable in the spectral domain and consequently it can be transformed in an optical processor capable of achieving user-defined optical functions. Some aspects of both fields are illustrated in the present paper. Concerning the search for efficient PSHB materials, the hole-burning performances and the photophysics of polymer and xerogel based systems are compared. The problem of high-temperature persistent spectral hole-burning materials and the search for new frequency selective photosensitive systems for fast optical pulse processing at 800 nm are considered. Regarding the points treated, inorganic hosts based on silicate xerogels or porous glasses have shown the best results. Moreover, by combining inorganic and organic capabilities or by grafting organic species to the host, hybrid xerogels have not yet revealed all possibilities. Also, the interest of two-photon materials for engraving spectral features with near-infrared or infrared light is developed. As an introduction to possible applications of PSHB material, the basics of spectro-temporal holography are remembered and a demonstrative experiment using a naphthalocyanine-doped polymer film is described, proving that the temporal aberration free recompression of ultrashort light pulses is feasible, therefore opening a way for applications in ultrashort light pulse shaping. Aspects for a comparison between cw hole-burning

  19. Optical decoherence and persistent spectral hole burning in Tm{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Babbitt, W.R. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Cone, R.L. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States)

    2010-09-15

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the {sup 3}H{sub 4} and {sup 3}F{sub 4} excited states of Tm{sup 3+}, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the {sup 169}Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 {mu}s at zero field to 23 {mu}s in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm{sup 3+} and the {sup 7}Li and {sup 93}Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for {sup 7}Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  20. Saturated multikilovolt x-ray amplification with Xe clusters: single-pulse observation of Xe(L) spectral hole burning

    International Nuclear Information System (INIS)

    Borisov, Alex B; Davis, Jack; Song, Xiangyang; Koshman, Yevgeniya; Dai Yang; Boyer, Keith; Rhodes, Charles K

    2003-01-01

    Single-pulse measurements of spectral hole burning of Xe(L) 3d → 2p hollow atom transition arrays observed from a self-trapped plasma channel provide new information on the dynamics of saturated amplification in the λ ∼ 2.8-2.9 A region. The spectral hole burning on transitions in the Xe 34+ and Xe 35+ arrays reaches full suppression of the spontaneous emission and presents a corresponding width Δ h-bar ω x ∼ = 60 eV, a value adequate for efficient amplification of multikilovolt x-ray pulses down to a limiting length τ x ∼ 30 as. The depth of the suppression at 2.86 A indicates that the gain-to-loss ratio is ≥10. An independent determination of the x-ray pulse energy from damage produced on the surface of a Ti foil in the far field of the source gives a pulse energy of 20-30 μJ, a range that correlates well with the observation of the spectral hole burning and indicates an overall extraction efficiency of ∼10%. (letter to the editor)

  1. Transient spectral hole burning observed on the single-molecule level in terrylene-doped biphenyl

    International Nuclear Information System (INIS)

    Pärs, M.; Palm, V.; Kikas, J.

    2014-01-01

    We use the method of fluorescence correlation spectroscopy to analyze the single-molecule (SM) spectroscopy data earlier recorded for a special type of terrylene SM impurity center (referred as “spectrally confined unstable molecule”, SCM) in an incommensurate single crystal of biphenyl. The SCM's SM line seems to be chaotically jumping around within a broad “spectral envelope” and was first considered being subject to a peculiar spectral diffusion behavior. However, our correlation analysis reveals that all the features observed for SCM at 1.8 K are consistent with an assumption that this SM center participates in a process of reversible (transient) spectral hole burning (THB) earlier observed for terrylene-doped polycrystalline biphenyl. No observations of THB processes on SM level have been so far reported for this impurity system, partially due to a low concentration of relevant impurity centers. Another reason making searching for such centers experimentally challenging is an unusual SM line behavior: the photoinduced transition to a metastable “dark state” leads to the SM line saturational broadening, which is much stronger than the triplet broadening. Hence required prolonged observation is often prevented by an SM act of persistent spectral hole burning. - Highlights: • SCM—special type of terrylene single-molecule center in incommensurate biphenyl. • An unusually stable SCM was investigated during several hours at T=1.8 K. • SCM undergoes photoinduced transitions to an unknown metastable “dark state” (DS). • The long DS lifetime causes strong saturational broadening of SCM spectral line. • SCM participates in an earlier observed process of transient hole burning

  2. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  3. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    recovery of the spectral hole within ~100 fs is measured, comparable to bulk and quantum-well amplifiers, which is contradicting a carrier relaxation bottleneck in electrically pumped QD devices. The CH dynamics in the QD is quantitatively compared with results on an InGaAsP bulk amplifier. Reduced CH......The ultrafast gain and index dynamics in a set of InAs-InGaAs-GaAs quantum-dot (QD) amplifiers are measured at room temperature with femtosecond resolution. The role of spectral hole-burning (SHB) and carrier heating (CH) in the recovery of gain compression is investigated in detail. An ultrafast...

  4. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  5. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations

  6. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations.

  7. Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: Comparison with bulk amplifiers

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    The ultrafast gain dynamics in an electrically pumped InAs/InGaAs/GaAs quantum-dot amplifier are measured at room temperature with femtosecond resolution, and compared with results on an InGaAsP bulk amplifier. The role of spectral hole burning and carrier heating in the recovery of the gain...

  8. Event horizon image within black hole shadow

    OpenAIRE

    Dokuchaev, V. I.; Nazarova, N. O.

    2018-01-01

    The external border of the black hole shadow is washed out by radiation from matter plunging into black hole and approaching the event horizon. This effect will crucially influence the results of future observations by the Event Horizon Telescope. We show that gravitational lensing of the luminous matter plunging into black hole provides the event horizon visualization within black hole shadow. The lensed image of the event horizon is formed by the last highly red-shifted photons emitted by t...

  9. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  10. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  11. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  12. A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae

    Czech Academy of Sciences Publication Activity Database

    Bína, David; Bouda, Karel; Litvín, Radek

    2017-01-01

    Roč. 131, č. 1 (2017), s. 65-77 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : Nonphotochemical quenching * Xanthophyll cycle * Chl a fluorescence Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.864, year: 2016

  13. Superresolving Black Hole Images with Full-Closure Sparse Modeling

    Science.gov (United States)

    Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.

  14. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    Science.gov (United States)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  15. Engineering dissipation with phononic spectral hole burning

    Science.gov (United States)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  16. Zone-plate coded imaging of thermonuclear burn

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1978-01-01

    The first high-resolution, direct images of the region of thermonuclear burn in laser fusion experiments have been produced using a novel, two-step imaging technique called zone-plate coded imaging. This technique is extremely versatile and well suited for the microscopy of laser fusion targets. It has a tomographic capability, which provides three-dimensional images of the source distribution. It is equally useful for imaging x-ray and particle emissions. Since this technique is much more sensitive than competing imaging techniques, it permits us to investigate low-intensity sources

  17. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  18. Impact of pediatric burn camps on participants' self esteem and body image: an empirical study.

    Science.gov (United States)

    Bakker, Anne; Van der Heijden, Peter G M; Van Son, Maarten J M; Van de Schoot, Rens; Van Loey, Nancy E E

    2011-12-01

    This study focuses on possible effects of specialized summer camps on young burn survivors' self esteem and body image. Quantitative as well as qualitative measures was used. To study possible effects, a pretest-posttest comparison group design with a follow-up was employed. Self-report questionnaires were used to measure self esteem and body image in a burn camp group (n=83, 8-18 years) and in a comparison group of children with burns who did not attend a burn camp during the course of the study (n=90, 8-18 years). Additionally, burn camp participants and parents completed an evaluation form about benefits derived from burn camp. A small positive short-term effect of burn camp participation was found on the 'satisfaction with appearance' component of body image. Overall, participants and parents showed high appreciation of the burn camps and reported several benefits, particularly concerning meeting other young burn survivors. Albeit statistically modest, this is the first quantitative study to document on a significant short-term impact of burn camp on young burn survivors' body image. Implications of this result for future research and burn camp organization were discussed, including the strengths of residential camps for young burn survivors. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  19. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  20. Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time

    NARCIS (Netherlands)

    Kloppenberg, FWH; Beerthuizen, GIJM; ten Duis, H. J.

    Average perfusion in various burn wounds was assessed using Laser Doppler Imaging (LDI). The time necessary for a complete healing of the wound was compared to the results of the LDI measurements. A certain depth of burn was associated with a typical pattern of perfusion in the course of time. There

  1. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model☆

    Science.gov (United States)

    Burmeister, David M.; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C.; Choi, Bernard; Durkin, Anthony J.; Christy, Robert J.

    2015-01-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter ( μs′) and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  2. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  3. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    NARCIS (Netherlands)

    M.J. Hop (M. Jenda); J. Hiddingh (J.); C.M. Stekelenburg (C.); H.C. Kuipers (Hester); E. Middelkoop (Esther); M. Nieuwenhuis (Marianne); S. Polinder (Suzanne); M.E. van Baar (Margriet)

    2013-01-01

    textabstractBackground: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which

  4. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  5. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    NARCIS (Netherlands)

    Hop, M.J.; Hiddingh, J.; Stekelenburg, C.; Kuipers, H.C.; Middelkoop, E.; Nieuwenhuis, M.K.; Polinder, S.; van Baar, M.E.

    2013-01-01

    Background: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which a more

  6. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.

    2009-01-01

    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  7. Laser Doppler imaging as a tool in the burn wound treatment protocol

    OpenAIRE

    Venclauskiene, Algirda; Basevicius, Algidas; Zacharevskij, Ernest; Vaicekauskas, Vytautas; Rimdeika, Rytis; Lukosevicius, Saulius

    2014-01-01

    Introduction The main treatment of burns is early excision of injured tissues. Aim To compare two different methods of examination of burned patients: clinical burn depth examination (CDE) and laser Doppler imaging (LDI). Material and methods A prospective randomized study of 57 burn patients treated in 2009–2011 was carried out. The burned patients were randomized into a CDE group and an LDI group. The CDE and LDI scan were performed 72 h after injury, with the second and third CDE and LDI s...

  8. Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

    Science.gov (United States)

    Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.

  9. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  10. Images of God used by self-injurious burn patients.

    Science.gov (United States)

    Grossoehme, D H; Springer, L S

    1999-08-01

    Suicide by burning and other forms of self-injurious behaviors which involve burning are sometimes considered to have religious overtones. The ritual death of widows upon their husband's funeral pyre is closely associated with Hindu beliefs. Buddhists have used self-immolation as a form of protest. The Judaeo-Christian traditions have imagery of fire as cleansing and purifying; there is also secular imagery associating fire with images of condemnation and evil. Previous studies have described religiosity as a common theme among survivors. The present study describes the ways in which persons who inflicted self-injurious behaviors through burning, including attempted suicide, imagine the Divinity and use religious language to give meaning to their experience.

  11. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  12. Direct imaging rapidly-rotating non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2012-05-01

    Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.

  13. Segmentation and Classification of Burn Color Images

    Science.gov (United States)

    2001-10-25

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2000, Las Vegas (USA), pp. 411-415. [21] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (New

  14. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    Directory of Open Access Journals (Sweden)

    Hop M Jenda

    2013-02-01

    Full Text Available Abstract Background Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate. Laser Doppler imaging (LDI is a technique with which a more accurate (>95% estimate of burn depth can be made by measuring the dermal perfusion. The actual effect on therapeutic decisions, clinical outcomes and the costs of the introduction of this device, however, are unknown. Before we decide to implement LDI in Dutch burn care, a study on the effectiveness and cost-effectiveness of LDI is necessary. Methods/design A multicenter randomised controlled trial will be conducted in the Dutch burn centres: Beverwijk, Groningen and Rotterdam. All patients treated as outpatient or admitted to a burn centre within 5 days post burn, with burns of indeterminate depth (burns not obviously superficial or full thickness and a total body surface area burned of ≤ 20% are eligible. A total of 200 patients will be included. Burn depth will be diagnosed by both clinical assessment and laser Doppler imaging between 2–5 days post burn in all patients. Subsequently, patients are randomly divided in two groups: ‘new diagnostic strategy’ versus ‘current diagnostic strategy’. The results of the LDI-scan will only be provided to the treating clinician in the ‘new diagnostic strategy’ group. The main endpoint is the effect of LDI on wound healing time. In addition we measure: a the effect of LDI on other patient outcomes (quality of life, scar quality, b the effect of LDI on diagnostic and therapeutic decisions, and c the effect of LDI on total (medical and non-medical costs and cost-effectiveness. Discussion This trial will contribute to our current knowledge on the use of LDI in burn care and will provide evidence on its cost-effectiveness. Trial registration NCT01489540

  15. Plasmon mediated non-photochemical nucleation of nanoparticles by circularly polarized light

    OpenAIRE

    Karpov, Victor G.; Grigorchuk, Nicholas I.

    2014-01-01

    We predict nucleation of pancake shaped metallic nanoparticles having plasmonic frequencies in resonance with a non-absorbed circularly polarized electromagnetic field. We show that the same field can induce nucleation of randomly oriented needle shaped particles. The probabilities of these shapes are estimated vs. field frequency and strength, material parameters, and temperature. This constitutes a quantitative model of non-photochemical laser induced nucleation (NPLIN) consistent with the ...

  16. Evidence for a Very Early Intermediate in Bacterial Photosynthesis. A Photon-Echo and Hole-Burning Study of the Primary Donor Band in Rhodopseudomonas Sphaeroides

    NARCIS (Netherlands)

    Meech, S.R.; Hoff, A.J.

    1985-01-01

    Two coherent spectroscopic methods, accumulated photon echo and population bottleneck hole-burning, have been employed in a study of the decay rate of the primary donor (P) of Rhodopseudomonas sphaeroides at 1.5 K. The decay rate is instrument-limited in the photon-echo experiment, implying a

  17. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    International Nuclear Information System (INIS)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah; Azemin, Mohd Zulfaezal Che

    2015-01-01

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner

  18. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah [Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia); Azemin, Mohd Zulfaezal Che [Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia)

    2015-04-24

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.

  19. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex

    Czech Academy of Sciences Publication Activity Database

    Niedzwiedzki, D.M.; Tronina, T.; Liu, H.; Staleva, H.; Komenda, Josef; Sobotka, Roman; Blankenship, R.E.; Polívka, T.

    2016-01-01

    Roč. 1857, č. 9 (2016), s. 1430-1439 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:61388971 Keywords : Carotenoids * Non-photochemical quenching * Energy transfer Subject RIV: CE - Biochemistry Impact factor: 4.932, year: 2016

  20. Venous malformations: MR imaging features that predict skin burns after percutaneous alcohol embolization procedures

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Hazirolan, Tuncay; Carrino, John A.; Bluemke, David A.; Mitchell, Sally

    2008-01-01

    To examine the value of magnetic resonance (MR) imaging for predicting the occurrence of skin burns in patients with venous malformations who undergo percutaneous alcohol embolization was the objective of the study. Pre-procedural MR imaging at 1.5 T from 40 patients with venous malformations who had undergone percutaneous alcohol embolization was retrospectively reviewed by two observers for these features: anatomic location, definition (well-defined or ill-defined), and the presence of skin, subcutaneous tissue, muscle, tendon, bone, joint, and deep venous system involvement. One observer recorded the length of skin involvement and volume of the malformation. Univariate and multivariate analysis tests were used to determine whether an association between the occurrence of skin burns and MR imaging features existed. The anatomic locations of the venous malformations were the lower extremity (20 out of 40), upper extremity (11 out of 40), trunk (four out of 40), head/neck (three out of 40) and pelvis (two out of 40). Of the 40 subjects, 15% (six out of 40) experienced skin burns. There was a significant association between the absence of muscle involvement (p=0.0198) as well as the length of skin involvement (p=0.027), with the occurrence of skin burns. Malformation size and all other features were not significantly associated with skin burns. Skin burns in patients with venous malformations treated with alcohol embolization are associated with the length of skin involvement and with the absence of deeper tissue involvement, as depicted on MR imaging. (orig.)

  1. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P. [Theoretical Division, T-4, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Nesterov, Alexander I., E-mail: nesterov@cencar.udg.mx [Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco (Mexico); Sayre, Richard T. [Biological Division, B-11, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Still, Susanne [Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1860 East–West Road, Honolulu, HI 96822 (United States)

    2016-03-22

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification. - Highlights: • Improvement of the efficiency of the charge-transfer nonphotochemical quenching in CP29. • Strategy for restoring the NPQ efficiency when the environment changes. • By changing of energy transfer rates to the sinks, one can significantly improve the performance of the NPQ.

  2. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    International Nuclear Information System (INIS)

    Johannsen, Tim; Psaltis, Dimitrios

    2010-01-01

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of ∼10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a ∼< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

  3. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  4. [Psychiatric co-morbidity, body image problems and psychotherapeutic interventions for burn survivors: a review].

    Science.gov (United States)

    Jasper, Stefanie; Rennekampff, Hans-Oliver; de Zwaan, Martina

    2013-11-01

    Due to progress in burn treatment, more patients even with severe burn injuries survive. Despite this positive development, however, there are still negative somatic and mental consequences. These include the life-long care of scars and pain. In addition, posttraumatic-stress disorder and depression are common consequences. Also distress due to disfigurement and body image problems have to be considered, since this is likely to result in social withdrawal, low self-esteem, and reduction of quality of life. Overall, the impact of mental strain on burn victims is quite high. Therefore, psychotherapeutic treatment approaches should be integrated into the care of patients with burns. This might be helpful for both coping and compliance with long-term treatment. This paper provides a review of the mental co-morbidity of burn victims and of psychotherapeutic treatment approaches focusing on changes in body image and the respective social consequences. © Georg Thieme Verlag KG Stuttgart · New York.

  5. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study.

    Science.gov (United States)

    Jaspers, M E H; Carrière, M E; Meij-de Vries, A; Klaessens, J H G M; van Zuijlen, P P M

    2017-11-01

    Objective measurement tools may be of great value to provide early and reliable burn wound assessment. Thermal imaging is an easy, accessible and objective technique, which measures skin temperature as an indicator of tissue perfusion. These thermal images might be helpful in the assessment of burn wounds. However, before implementation of a novel measurement tool into clinical practice is considered, it is appropriate to test its clinimetric properties (i.e. reliability and validity). The objective of this study was to assess the reliability and validity of the recently introduced FLIR ONE thermal imager. Two observers obtained thermal images of burn wounds in adult patients at day 1-3, 4-7 and 8-10 after burn. Subsequently, temperature differences between the burn wound and healthy skin (ΔT) were calculated on an iPad mini containing the FLIR Tools app. To assess reliability, ΔT values of both observers were compared by calculating the intraclass correlation coefficient (ICC) and measurement error parameters. To assess validity, the ΔT values of the first observer were compared to the registered healing time of the burn wounds, which was specified into three categories: (I) ≤14 days, (II) 15-21 days and (III) >21 days. The ability of the FLIR ONE to discriminate between healing ≤21 days and >21 days was evaluated by means of a receiver operating characteristic curve and an optimal ΔT cut-off value. Reliability: ICCs were 0.99 for each time point, indicating excellent reliability up to 10 days after burn. The standard error of measurement varied between 0.17-0.22°C. the area under the curve was calculated at 0.69 (95% CI 0.54-0.84). A cut-off value of -1.15°C shows a moderate discrimination between burn wound healing ≤21 days and >21 days (46% sensitivity; 82% specificity). Our results show that the FLIR ONE thermal imager is highly reliable, but the moderate validity calls for additional research. However, the FLIR ONE is pre-eminently feasible

  6. Reliability and validity of the body image quality of life inventory: version for Brazilian burn victims.

    Science.gov (United States)

    Assunção, Flávia Fernanda Oliveira; Dantas, Rosana Aparecida Spadoti; Ciol, Márcia Aparecida; Gonçalves, Natália; Farina, Jayme Adriano; Rossi, Lidia Aparecida

    2013-06-01

    The aims of this study were to adapt the Body Image Quality of Life Inventory (BIQLI) into Brazilian Portuguese (BP) and to assess the psychometric properties of the adapted version. Construct validity was assessed by correlating the BIQLI-BP scores with the Rosenberg's Self-Esteem Scale, with Burns Specific Health Scale-Revised (BSHS-R), and with gender, total body surface area burned, and visibility of the scars. Participants were 77 adult burn patients. Cronbach's alpha for the adapted version was .90 and moderate linear correlations were found between body image and self-esteem and between BIQLI-BP scores and two domains of the BSHS-R: affect and body image and interpersonal relationships. The BIQLI-BP showed acceptable levels of reliability and validity for Brazilian burn patients. Copyright © 2013 Wiley Periodicals, Inc.

  7. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  8. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  9. A thematic study of the role of social support in the body image of burn survivors

    Directory of Open Access Journals (Sweden)

    Kellie Hodder

    2014-01-01

    Full Text Available There is evidence that social support is important for the development and mainte- nance of body image satisfaction for people who have sustained burn injuries. This qualitative study explored the specific mechanisms by which social support impacts the body image satisfaction of burn survivors, drawing on nine participants’ in depth accounts. Participants were recruited through a burns unit at a public hospital in South Australia. Interviews were conducted with nine female burn survivors aged between 24 and 65 (mean age 44.6. Participants described their perceptions about their appearance post burn and their social support experiences. Four themes were identified: acceptance, social comparison, talking about appearance concerns, and the gaze of others. Results indicate that for these participants, social support was an important factor in coming to terms with changes in appearance, specifically support that helps to minimise feelings of difference. Unhelpful aspects of social support were also identified included feeling that suffering was being dismissed and resenting the perceived expectation from supports to be positive. Social supports are important to consider in relation to body image for those working with people who have survived burn injuries.

  10. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure

  11. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    Science.gov (United States)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  12. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  13. Imaging a non-singular rotating black hole at the center of the Galaxy

    Science.gov (United States)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  14. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  15. Excitation of photonic atoms (dielectric microspheres) on optical fibers: application to room-temperature persistent spectral hole burning

    Science.gov (United States)

    Serpenguzel, Ali; Arnold, Stephen; Griffel, Giora

    1995-05-01

    Recently, photonic atoms (dielectric microspheres) have enjoyed the attention of the optical spectroscopy community. A variety of linear and nonlinear optical processes have been observed in liquid microdroplets. But solid state photonic devices using these properties are scarce. A first of these applications is the room temperature microparticle hole-burning memory. New applications can be envisioned if microparticle resonances can be coupled to traveling waves in optical fibers. In this paper we demonstrate the excitation of narrow morphology dependent resonances of microparticles placed on an optical fiber. Furthermore we reveal a model for this process which describes the coupling efficiency in terms of the geometrical and material properties of the microparticle-fiber system.

  16. The role of the nurse in the rehabilitation of patients with radical changes in body image due to burn injuries.

    Science.gov (United States)

    Aacovou, I

    2005-06-30

    Burn injuries are among the most serious causes of radical changes in body image. The subject of body image and self-image is essential in rehabilitation, and the nurse must be aware of the issues related to these concepts and take them seriously into account in drafting out the nursing programme. This paper defines certain key words related to body image and discusses the social context of body image. Burn injuries are considered in relation to the way each of these affects the patient's body image. The aim of nursing is defined and the nurse's role in cases of severe changes in body image due to burn injuries is discussed.

  17. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a–lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching. PMID:15719016

  18. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-03-09

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.

  19. Burning Mouth Syndrome

    Science.gov (United States)

    ... Care Home Health Info Health Topics Burning Mouth Burning Mouth Syndrome (BMS) is a painful, complex condition often described ... or other symptoms. Read More Publications Cover image Burning Mouth Syndrome Publication files Download Language English PDF — Number of ...

  20. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    Science.gov (United States)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  1. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX

    Directory of Open Access Journals (Sweden)

    Lennert Schepers

    2014-02-01

    Full Text Available Uncontrolled, large fires are a major threat to the biodiversity of protected heath landscapes. The severity of the fire is an important factor influencing vegetation recovery. We used airborne imaging spectroscopy data from the Airborne Prism Experiment (APEX sensor to: (1 investigate which spectral regions and spectral indices perform best in discriminating burned from unburned areas; and (2 assess the burn severity of a recent fire in the Kalmthoutse Heide, a heathland area in Belgium. A separability index was used to estimate the effectiveness of individual bands and spectral indices to discriminate between burned and unburned land. For the burn severity analysis, a modified version of the Geometrically structured Composite Burn Index (GeoCBI was developed for the field data collection. The field data were collected in four different vegetation types: Calluna vulgaris-dominated heath (dry heath, Erica tetralix-dominated heath (wet heath, Molinia caerulea (grass-encroached heath, and coniferous woodland. Discrimination between burned and unburned areas differed among vegetation types. For the pooled dataset, bands in the near infrared (NIR spectral region demonstrated the highest discriminatory power, followed by short wave infrared (SWIR bands. Visible wavelengths performed considerably poorer. The Normalized Burn Ratio (NBR outperformed the other spectral indices and the individual spectral bands in discriminating between burned and unburned areas. For the burn severity assessment, all spectral bands and indices showed low correlations with the field data GeoCBI, when data of all pre-fire vegetation types were pooled (R2 maximum 0.41. Analysis per vegetation type, however, revealed considerably higher correlations (R2 up to 0.78. The Mid Infrared Burn Index (MIRBI had the highest correlations for Molinia and Erica (R2 = 0.78 and 0.42, respectively. In Calluna stands, the Char Soil Index (CSI achieved the highest correlations, with R2 = 0

  2. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  3. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    Science.gov (United States)

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  4. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  5. Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate

    International Nuclear Information System (INIS)

    Rodenas, Airan; Lamela, Jorge; Jaque, Daniel; Lifante, Gines; Jaque, Francisco; Garcia-Martin, Antonio; Zhou Guangyong; Gu Min

    2009-01-01

    We report on the direct femtosecond laser ablation of sub-λ/4 (80-250 nm) holes in LiNbO 3 crystals and on its local near-field imaging. We show that the near-field transmission of holes can feature an attenuation of ∼75% at hole central position, and a ∼20% transmission enhancement at its sides. This high-contrast ring-shaped near-field distribution is found to be in agreement with simulations, suggesting the surface relief as the main contrast mechanism.

  6. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  7. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  8. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  9. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  10. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    Science.gov (United States)

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  12. The Role of the Nurse in the Rehabilitation of Patients with Radical Changes in Body Image Due to Burn Injuries

    OpenAIRE

    Aacovou, I.

    2005-01-01

    Burn injuries are among the most serious causes of radical changes in body image. The subject of body image and self-image is essential in rehabilitation, and the nurse must be aware of the issues related to these concepts and take them seriously into account in drafting out the nursing programme. This paper defines certain key words related to body image and discusses the social context of body image. Burn injuries are considered in relation to the way each of these affects the patient's bod...

  13. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    Science.gov (United States)

    Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.

    2018-02-01

    Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle

  14. Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Directory of Open Access Journals (Sweden)

    Reiss Martin A.

    2015-01-01

    Full Text Available We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA, we prepared datasets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011–2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine (SVM, Linear Support Vector Machine, Decision Tree, and Random Forest, and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ≈ 0.90. Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.

  15. Hole burning with pressure and electric field: A window on the electronic structure and energy transfer dynamics of bacterial antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.

    1999-02-12

    Light-harvesting (LH) complexes of cyclic (C{sub n}) symmetry from photosynthetic bacteria are studied using absorption and high pressure- and Stark-hole burning spectroscopies. The B800 absorption band of LH2 is inhomogeneously broadened while the B850 band of LH2 and the B875 band of the LH1 complex exhibit significant homogeneous broadening due to ultra-fast inter-exciton level relaxation. The B800{r_arrow}B850 energy transfer rate of ({approximately}2 ps){sup {minus}1} as determined by hole burning and femtosecond pump-probe spectroscopies, is weakly dependent on pressure and temperature, both of which significantly affect the B800-B850 energy gap. The resilience is theoretically explained in terms of a modified Foerster theory with the spectral overlap provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. Possible explanations for the additional sub-picosecond relaxation channel of B800 observed with excitation on the blue side of B800 are given. Data from pressure and temperature dependent studies show that the B800 and B850 bacteriochlorophyll a (BChl a) molecules are weakly and strongly excitonically coupled, respectively, which is consistent with the X-ray structure of LH2. The B875 BChl a molecules are also strongly coupled. It is concluded that electron-exchange, in addition to electrostatic interactions, is important for understanding the strong coupling of the B850 and B875 rings. The large linear pressure shifts of {approximately}{minus}0.6 cm{sup {minus}1}/MPa associated with B850 and B875 can serve as important benchmarks for electronic structure calculations.

  16. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning

    National Research Council Canada - National Science Library

    Rebane, Aleksander

    2001-01-01

    .... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.

  17. Coherent hole burning and Mollow absorption effects in the cycling transition Fe=0↔Fg=1 subject to a magnetic field

    International Nuclear Information System (INIS)

    Gu Ying; Sun Qingqing; Gong Qihuang

    2004-01-01

    With saturation and probing by circularly polarized fields, quantum coherence effects are investigated for the cycling transition F e =0↔F g =1, which is subject to a linearly polarized field and a magnetic field. The saturation field is applied to the case of maximum coherence between the drive Rabi frequency and magnetic field, corresponding to the electromagnetically induced absorption (EIA) with negative dispersion found by Gu et al. For a small saturation Rabi frequency, holes are burned in two Autler-Towns peaks outside two symmetric electromagnetically induced transparency windows due to the two-photon resonance. However, when the saturation Rabi frequency is comparable with the drive Rabi frequency, holes caused by the coherent population oscillation appear in the EIA spectrum. Finally, when the saturation Rabi frequency is large enough, several emission peaks are observed due to the Mollow absorption effects. Furthermore, the dispersion at the pump-probe detuning center is kept negative with an increase in saturation field, which is a precursor of superluminal light propagation

  18. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  19. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  20. The black hole information paradox and highly squeezed interior quantum fluctuations

    Science.gov (United States)

    Oshita, Naritaka

    2017-10-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox.

  1. The black hole information paradox and highly squeezed interior quantum fluctuations

    International Nuclear Information System (INIS)

    Oshita, Naritaka

    2017-01-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox. (paper)

  2. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  3. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    Science.gov (United States)

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients

  4. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  5. Burn Depth Estimation Using Thermal Excitation and Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, F.M.; Holswade, S.C.; Yee, M.L.

    1998-12-17

    Accurate estimation of the depth of partial-thickness burns and the early prediction of a need for surgical intervention are difficult. A non-invasive technique utilizing the difference in thermal relaxation time between burned and normal skin may be useful in this regard. In practice, a thermal camera would record the skin's response to heating or cooling by a small amount-roughly 5{degrees} Celsius for a short duration. The thermal stimulus would be provided by a heat lamp, hot or cold air, or other means. Processing of the thermal transients would reveal areas that returned to equilibrium at different rates, which should correspond to different burn depths. In deeper thickness burns, the outside layer of skin is further removed from the constant-temperature region maintained through blood flow. Deeper thickness areas should thus return to equilibrium more slowly than other areas. Since the technique only records changes in the skin's temperature, it is not sensitive to room temperature, the burn's location, or the state of the patient. Preliminary results are presented for analysis of a simulated burn, formed by applying a patch of biosynthetic wound dressing on top of normal skin tissue.

  6. A new metric for quantifying burn severity: The Relativized Burn Ratio

    Science.gov (United States)

    Sean A. Parks; Gregory K. Dillon; Carol Miller

    2014-01-01

    Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat). There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) and its relativized form...

  7. Brown dwarfs and black holes

    International Nuclear Information System (INIS)

    Tarter, J.C.

    1978-01-01

    The astronomical missing-mass problem (the discrepancy between the dynamical mass estimate and the sum of individual masses in large groupings) is considered, and possible explanations are advanced. The existence of brown dwarfs (stars not massive enough to shine by nuclear burning) and black holes (extremely high density matter contraction such that gravitation allows no light emission) thus far provides the most plausible solutions

  8. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm -1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach

  9. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  10. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    OpenAIRE

    Eleni Dragozi; Ioannis Z. Gitas; Sofia Bajocco; Dimitris G. Stavrakoudis

    2016-01-01

    Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR) GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece) during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011) and one year after (2012) using the Composite Burn ...

  11. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Science.gov (United States)

    Berman, Gennady P.; Nesterov, Alexander I.; Sayre, Richard T.; Still, Susanne

    2016-03-01

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.

  12. Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images

    Directory of Open Access Journals (Sweden)

    Elif Sertel

    2016-07-01

    Full Text Available On 30 May 2013, a forest fire occurred in Izmir, Turkey causing damage to both forest and fruit trees within the region. In this research, pre- and post-fire SPOT-6 images obtained on 30 April 2013 and 31 May 2013 were used to identify the extent of forest fire within the region. SPOT-6 images of the study region were orthorectified and classified using pixel and object-based classification (OBC algorithms to accurately delineate the boundaries of burned areas. The present results show that for OBC using only normalized difference vegetation index (NDVI thresholds is not sufficient enough to map the burn scars; however, creating a new and simple rule set that included mean brightness values of near infrared and red channels in addition to mean NDVI values of segments considerably improved the accuracy of classification. According to the accuracy assessment results, the burned area was mapped with a 0.9322 kappa value in OBC, while a 0.7433 kappa value was observed in pixel-based classification. Lastly, classification results were integrated with the forest management map to determine the effected forest types after the fire to be used by the National Forest Directorate for their operational activities to effectively manage the fire, response and recovery processes.

  13. Burn-injured tissue detection for debridement surgery through the combination of non-invasive optical imaging techniques.

    Science.gov (United States)

    Heredia-Juesas, Juan; Thatcher, Jeffrey E; Lu, Yang; Squiers, John J; King, Darlene; Fan, Wensheng; DiMaio, J Michael; Martinez-Lorenzo, Jose A

    2018-04-01

    The process of burn debridement is a challenging technique requiring significant skills to identify the regions that need excision and their appropriate excision depths. In order to assist surgeons, a machine learning tool is being developed to provide a quantitative assessment of burn-injured tissue. This paper presents three non-invasive optical imaging techniques capable of distinguishing four kinds of tissue-healthy skin, viable wound bed, shallow burn, and deep burn-during serial burn debridement in a porcine model. All combinations of these three techniques have been studied through a k-fold cross-validation method. In terms of global performance, the combination of all three techniques significantly improves the classification accuracy with respect to just one technique, from 0.42 up to more than 0.76. Furthermore, a non-linear spatial filtering based on the mode of a small neighborhood has been applied as a post-processing technique, in order to improve the performance of the classification. Using this technique, the global accuracy reaches a value close to 0.78 and, for some particular tissues and combination of techniques, the accuracy improves by 13%.

  14. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy.

    Science.gov (United States)

    Sauer, Lydia; Peters, Sven; Schmidt, Johanna; Schweitzer, Dietrich; Klemm, Matthias; Ramm, Lisa; Augsten, Regine; Hammer, Martin

    2017-08-01

    To investigate the impact of macular pigment (MP) on fundus autofluorescence (FAF) lifetimes in vivo by characterizing full-thickness idiopathic macular holes (MH) and macular pseudo-holes (MPH). A total of 37 patients with MH and 52 with MPH were included. Using the fluorescence lifetime imaging ophthalmoscope (FLIO), based on a Heidelberg Engineering Spectralis system, a 30° retinal field was investigated. FAF decays were detected in a short (498-560 nm; ch1) and long (560-720 nm; ch2) wavelength channel. τ m , the mean fluorescence lifetime, was calculated from a three-exponential approximation of the FAF decays. Macular coherence tomography scans were recorded, and macular pigment's optical density (MPOD) was measured (one-wavelength reflectometry). Two MH subgroups were analysed according to the presence or absence of an operculum above the MH. A total of 17 healthy fellow eyes were included. A longitudinal FAF decay examination was conducted in nine patients, which were followed up after surgery and showed a closed MH. In MH without opercula, significant τ m differences (p hole area (MHa) and surrounding areas (MHb) (ch1: MHa 238 ± 64 ps, MHb 181 ± 78 ps; ch2: MHa 275 ± 49 ps, MHb 223 ± 48 ps), as well as between MHa and healthy eyes or closed MH. Shorter τ m , adjacent to the hole, can be assigned to areas with equivalently higher MPOD. Opercula containing MP also show short τ m . In MPH, the intactness of the Hele fibre layer is associated with shortest τ m . Shortest τ m originates from MP-containing retinal layers, especially from the Henle fibre layer. Fluorescence lifetime imaging ophthalmoscope (FLIO) provides information on the MP distribution, the pathogenesis and topology of MH. Macular pigment (MP) fluorescence may provide a biomarker for monitoring pathological changes in retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  16. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation

    DEFF Research Database (Denmark)

    Kukuczka, Bernadeta; Magneschi, Leonardo; Petroutsos, Dimitris

    2014-01-01

    To investigate the functional importance of Proton Gradient Regulation5-Like1 (PGRL1) for photosynthetic performances in the moss Physcomitrella patens, we generated a pgrl1 knockout mutant. Functional analysis revealed diminished nonphotochemical quenching (NPQ) as well as decreased capacity for...

  17. The Burn Medical Assistant: Developing Machine Learning Algorithms to Aid in the Estimation of Burn Wound Size

    Science.gov (United States)

    2017-10-01

    Produce multi-spectral burn wound images and enhanced burn wound diagrams for automated, multi- spectral feature extraction and image segmentation ...Raytheon will not occur, this in conjunction with ARA, we are in the process of market research with currently available Commercial off the Shelf (COTS...thorough market survey of current COTS technology and after review of the technology offered by RVS. This system offers the necessary resolution

  18. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    Science.gov (United States)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  19. Imaging using cross-hole seismoelectric tomography

    Science.gov (United States)

    Araji, A.H.; Revil, A.; Jardani, A.; Minsley, B.

    2011-01-01

    We propose a new cross-hole imaging approach based on seismoelectric conversions associated with the transmission of seismic waves from seismic sources located in a borehole to receivers electrodes located in a second borehole. The seismoelectric seismic-to-electric problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic coupling term. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with PML boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We have developed an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the seismoelectric conversions. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution at each time in the seismoelectric time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are stacked to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is fairly well-recovered using only the electrical disturbances associated with the seismoelectric conversions. ?? 2011 Society of Exploration Geophysicists.

  20. Geometric Calibration and Image Reconstruction for a Segmented Slant-Hole Stationary Cardiac SPECT System.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-06-01

    A dedicated stationary cardiac single-photon emission computed tomography (SPECT) system with a novel segmented slant-hole collimator has been developed. The goal of this paper is to calibrate this new imaging geometry with a point source. Unlike the commercially available dedicated cardiac SPECT systems, which are specialized and can be used only to image the heart, our proposed cardiac system is based on a conventional SPECT system but with a segmented slant-hole collimator replacing the collimator. For a dual-head SPECT system, 2 segmented collimators, each with 7 sections, are arranged in an L-shaped configuration such that they can produce a complete cardiac SPECT image with only one gantry position. A calibration method was developed to estimate the geometric parameters of each collimator section as well as the detector rotation radius, under the assumption that the point source location is calculated using the central-section data. With a point source located off the rotation axis, geometric parameters for each collimator section can be estimated independently. The parameters estimated individually are further improved by a joint objective function that uses all collimator sections simultaneously and incorporates the collimator symmetry information. Estimation results and images reconstructed from estimated parameters are presented for both simulated and real data acquired from a prototype collimator. The calibration accuracy was validated by computer simulations with an error of about 0.1° for the slant angles and about 1 mm for the rotation radius. Reconstructions of a heart-insert phantom did not show any image artifacts of inaccurate geometric parameters. Compared with the detector's intrinsic resolution, the estimation error is small and can be ignored. Therefore, the accuracy of the calibration is sufficient for cardiac SPECT imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling

    International Nuclear Information System (INIS)

    Holen, Roel van; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2008-01-01

    The main remaining challenge for a gamma camera is to overcome the existing trade-off between collimator spatial resolution and system sensitivity. This problem, strongly limiting the performance of parallel hole collimated gamma cameras, can be overcome by applying new collimator designs such as rotating slat (RS) collimators which have a much higher photon collection efficiency. The drawback of a RS collimated gamma camera is that, even for obtaining planar images, image reconstruction is needed, resulting in noise accumulation. However, nowadays iterative reconstruction techniques with accurate system modeling can provide better image quality. Because the impact of this modeling on image quality differs from one system to another, an objective assessment of the image quality obtained with a RS collimator is needed in comparison to classical projection images obtained using a parallel hole (PH) collimator. In this paper, a comparative study of image quality, achieved with system modeling, is presented. RS data are reconstructed to planar images using maximum likelihood expectation maximization (MLEM) with an accurate Monte Carlo derived system matrix while PH projections are deconvolved using a Monte Carlo derived point-spread function. Contrast-to-noise characteristics are used to show image quality for cold and hot spots of varying size. Influence of the object size and contrast is investigated using the optimal contrast-to-noise ratio (CNR o ). For a typical phantom setup, results show that cold spot imaging is slightly better for a PH collimator. For hot spot imaging, the CNR o of the RS images is found to increase with increasing lesion diameter and lesion contrast while it decreases when background dimensions become larger. Only for very large background dimensions in combination with low contrast lesions, the use of a PH collimator could be beneficial for hot spot imaging. In all other cases, the RS collimator scores better. Finally, the simulation of a

  2. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  3. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  4. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  5. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  6. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  7. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  8. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  9. Geophysical borehole logging and optical imaging of the pilot hole ONK-PH2

    International Nuclear Information System (INIS)

    Lahti, M.; Heikkinen, E.

    2005-01-01

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of pilot hole ONK-PH2 in ONKALO tunnel at the Olkiluoto site in December 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all the surveys, integration of the data as well as interpretation of the acoustic and borehole radar data. The report describes the field operation, equipment, processing procedures, interpretation results and shows the obtained geophysical and image data. The data as well as the interpretation results are delivered digitally in WellCAD and Excel format. (orig.)

  10. Geophysical borehole logging and optical imaging of the pilot hole ONK-PH2

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M. [Suomen Malmi Oy, Espoo (Finland); Heikkinen, E. [JP-Fintact Oy, Vantaa (Finland)

    2005-01-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of pilot hole ONK-PH2 in ONKALO tunnel at the Olkiluoto site in December 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all the surveys, integration of the data as well as interpretation of the acoustic and borehole radar data. The report describes the field operation, equipment, processing procedures, interpretation results and shows the obtained geophysical and image data. The data as well as the interpretation results are delivered digitally in WellCAD and Excel format. (orig.)

  11. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  12. Postfire soil burn severity mapping with hyperspectral image unmixing

    Science.gov (United States)

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  13. Imaging with cross-hole seismoelectric tomography

    Science.gov (United States)

    Araji, A.H.; Revil, A.; Jardani, A.; Minsley, Burke J.; Karaoulis, M.

    2012-01-01

    We propose a cross-hole imaging approach based on seismoelectric conversions (SC) associated with the transmission of seismic waves from seismic sources located in a borehole to receivers (electrodes) located in a second borehole. The seismoelectric (seismic-to-electric) problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic streaming current contribution. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with Perfect Match Layer (PML) boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We develop an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the SC. Because of the ill-posed nature of the inverse problem (inherent to all potential-field problems), regularization is used to constrain the solution at each time in the SC-time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are aggregated together to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion (partially saturated by oil) embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is recovered using only the electrical disturbances associated with the SC. That said, a joint inversion of the seismic and seismoelectric data could improve these results.

  14. Pupillometry reveals the physiological underpinnings of the aversion to holes.

    Science.gov (United States)

    Ayzenberg, Vladislav; Hickey, Meghan R; Lourenco, Stella F

    2018-01-01

    An unusual, but common, aversion to images with clusters of holes is known as trypophobia. Recent research suggests that trypophobic reactions are caused by visual spectral properties also present in aversive images of evolutionary threatening animals (e.g., snakes and spiders). However, despite similar spectral properties, it remains unknown whether there is a shared emotional response to holes and threatening animals. Whereas snakes and spiders are known to elicit a fear reaction, associated with the sympathetic nervous system, anecdotal reports from self-described trypophobes suggest reactions more consistent with disgust, which is associated with activation of the parasympathetic nervous system. Here we used pupillometry in a novel attempt to uncover the distinct emotional response associated with a trypophobic response to holes. Across two experiments, images of holes elicited greater constriction compared to images of threatening animals and neutral images. Moreover, this effect held when controlling for level of arousal and accounting for the pupil grating response. This pattern of pupillary response is consistent with involvement of the parasympathetic nervous system and suggests a disgust, not a fear, response to images of holes. Although general aversion may be rooted in shared visual-spectral properties, we propose that the specific emotion is determined by cognitive appraisal of the distinct image content.

  15. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  16. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  17. Assessment of Burned Area and Atmospheric Gases from Multi- temporal MODIS Images (2000- 2017) in Nainital District, Uttarakhand

    Science.gov (United States)

    Aggarwal, R.; K V, S. B.; Dhakate, P. M.

    2017-12-01

    Recent times have observed a significant rate of deforestation and forest degradation. One of the major causes of forest degradation is forest fires. Forest fires though have shaped the current forest ecosystem but also have continued to degrade the system by causing loss of flora and fauna. In addition to that, forest fire leads to emission of carbon and other trace gases which contributes to global warming. The hill states in India, particularly Uttarakhand witnesses annual forest fires; which are primarily anthropogenic caused, occurring from March to June. Nainital one of the thirteen districts in Uttarakhand, has been selected as the study site. The region has diverse endemic species of vegetation, ranging from Alpine in North to moist deciduous in South. The increasing forest fire incidents in the region and limited studies on the subject, calls for landscape assessment of the complex Human Environment System (HES). It is in this context, that a greater need for monitoring forest fire incidents has been felt. Remote Sensing and GIS which are robust tool, provides continuous information of an area at various spatial and temporal resolutions. The goal of this study is to map burned area, burned severity and estimate atmospheric gas emissions in forested areas of Nainital by utilizing cloud free MODIS images from 2000- 2017. Multiple spectral indices were generated from pre and post burn dataset of MODIS to conclude the most sensitive band combination. Inter- comparison of results obtained from different spectral indices and the global MODIS MCD45A1 was carried out using linear regression analysis. Additionally, burned area estimation from satellite was compared to figures reported by forest department. There were considerable differences amongst the two which could be primarily due to differences in spatial resolution, and timings of forest fire occurrence and image acquisition. Further, estimation of various atmospheric gases was carried out based on the IPCC

  18. Evaluation of tomographic image quality of extended and conventional parallel hole collimators using maximum likelihood expectation maximization algorithm by Monte Carlo simulations.

    Science.gov (United States)

    Moslemi, Vahid; Ashoor, Mansour

    2017-10-01

    One of the major problems associated with parallel hole collimators (PCs) is the trade-off between their resolution and sensitivity. To solve this problem, a novel PC - namely, extended parallel hole collimator (EPC) - was proposed, in which particular trapezoidal denticles were increased upon septa on the side of the detector. In this study, an EPC was designed and its performance was compared with that of two PCs, PC35 and PC41, with a hole size of 1.5 mm and hole lengths of 35 and 41 mm, respectively. The Monte Carlo method was used to calculate the important parameters such as resolution, sensitivity, scattering, and penetration ratio. A Jaszczak phantom was also simulated to evaluate the resolution and contrast of tomographic images, which were produced by the EPC6, PC35, and PC41 using the Monte Carlo N-particle version 5 code, and tomographic images were reconstructed by using maximum likelihood expectation maximization algorithm. Sensitivity of the EPC6 was increased by 20.3% in comparison with that of the PC41 at the identical spatial resolution and full-width at tenth of maximum here. Moreover, the penetration and scattering ratio of the EPC6 was 1.2% less than that of the PC41. The simulated phantom images show that the EPC6 increases contrast-resolution and contrast-to-noise ratio compared with those of PC41 and PC35. When compared with PC41 and PC35, EPC6 improved trade-off between resolution and sensitivity, reduced penetrating and scattering ratios, and produced images with higher quality. EPC6 can be used to increase detectability of more details in nuclear medicine images.

  19. Unsupervised Spatio-Temporal Data Mining Framework for Burned Area Mapping

    Science.gov (United States)

    Boriah, Shyam (Inventor); Kumar, Vipin (Inventor); Mithal, Varun (Inventor); Khandelwal, Ankush (Inventor)

    2016-01-01

    A method reduces processing time required to identify locations burned by fire by receiving a feature value for each pixel in an image, each pixel representing a sub-area of a location. Pixels are then grouped based on similarities of the feature values to form candidate burn events. For each candidate burn event, a probability that the candidate burn event is a true burn event is determined based on at least one further feature value for each pixel in the candidate burn event. Candidate burn events that have a probability below a threshold are removed from further consideration as burn events to produce a set of remaining candidate burn events.

  20. Cutaneous osteosarcoma arising from a burn scar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min A.; Yi, Jaehyuck [Kyungpook National University, Department of Radiology, College of Medicine, Daegu (Korea, Republic of); Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Chae, Jong Min [Kyungpook National University, Department of Pathology, College of Medicine, Daegu (Korea, Republic of)

    2017-04-15

    Tumors that develop in old burn scars are usually squamous cell carcinomas. Sarcomas have also been reported, albeit rarely. To our knowledge, there has been only one case report of an extraskeletal osteosarcoma arising in a prior burn scar reported in the English-language literature, mainly discussing the clinicopathological features. Herein, we present a case of cutaneous osteosarcoma visualized as a mineralized soft-tissue mass arising from the scar associated with a previous skin burn over the back. This seems to be the first report describing the imaging features of a cutaneous osteosarcoma from an old burn scar. (orig.)

  1. Burn Depth Estimation Based on Infrared Imaging of Thermally Excited Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, F.M.; Hoswade, S.C.; Yee, M.L.

    1999-03-05

    Accurate estimation of the depth of partial-thickness burns and the early prediction of a need for surgical intervention are difficult. A non-invasive technique utilizing the difference in thermal relaxation time between burned and normal skin may be useful in this regard. In practice, a thermal camera would record the skin's response to heating or cooling by a small amount-roughly 5 C for a short duration. The thermal stimulus would be provided by a heat lamp, hot or cold air, or other means. Processing of the thermal transients would reveal areas that returned to equilibrium at different rates, which should correspond to different burn depths. In deeper thickness burns, the outside layer of skin is further removed from the constant-temperature region maintained through blood flow. Deeper thickness areas should thus return to equilibrium more slowly than other areas. Since the technique only records changes in the skin's temperature, it is not sensitive to room temperature, the burn's location, or the state of the patient. Preliminary results are presented for analysis of a simulated burn, formed by applying a patch of biosynthetic wound dressing on top of normal skin tissue.

  2. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  3. [Influence of a variation potential on photosynthesis in pumpkin seedlings (Cucurbita pepo L.)].

    Science.gov (United States)

    Sukhov, V S; Shesterneva, O N; Surova, L M; Rumiantsev, E A; Vodeneev, V A

    2013-01-01

    The influence of a variation potential on photosynthesis in pumpkin seedlings (Cucurbita pepo L.) was investigated in our work. It was shown that the variation potential induced by cotyledon burning propagates into a leaf. It decreases CO2 assimilation and transpiration as well as increases nonphotochemical quenching. Investigation of isolated chloroplasts showed that lowering of the pH in incubation medium from 6.9-7.2 to 6.5 increases nonphotochemical quenching. It was proposed that lowering of the cytoplasmic pH induced by the variation potential takes place in the photosynthetic response development.

  4. Countering Stryker’s Punch: Algorithmically Filling the Black Hole

    OpenAIRE

    Michael J. Bennett

    2017-01-01

    Two current digital image editing programs are examined in the context of filling in missing visual image data from hole-punched United States Farm Security Administration (FSA) negatives. Specifically, Photoshop's Content-Aware Fill feature and GIMP's Resynthesizer plugin are evaluated and contrasted against comparable images. A possible automated workflow geared towards large scale editing of similarly hole-punched negatives is also explored. Finally, potential future research based upon th...

  5. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  6. The current ability to test theories of gravity with black hole shadows

    Science.gov (United States)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  7. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    Science.gov (United States)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  8. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  9. Gravitational lensing by a Horndeski black hole

    International Nuclear Information System (INIS)

    Badia, Javier; Eiroa, Ernesto F.

    2017-01-01

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  10. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    Directory of Open Access Journals (Sweden)

    Eleni Dragozi

    2016-07-01

    Full Text Available Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011 and one year after (2012 using the Composite Burn Index (CBI for explaining the post-fire vegetation response, which is measured using VHR satellite imagery. To determine this relationship, we applied redundancy analysis (RDA, which allowed us to identify which satellite variables among VHR spectral bands and Normalized Difference Vegetation Index (NDVI can better express the post-fire vegetation response. Results demonstrated that in the first year after the fire event, variations in the post-fire vegetation dynamics can be properly detected using the GeoEye VHR data. Furthermore, results showed that remotely-sensed NDVI-based variables are able to encapsulate burn severity variability over time. Our analysis showed that, in this specific case, burn severity variations are mildly affected by the topography, while the NDVI index, as inferred from VHR data, can be successfully used to monitor the short-term post-fire dynamics of the vegetation recovery.

  11. VHTR-fuel irradiation capsules for VT-1 hole of JRR-2

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Kikuchi, Akira; Tobita, Tsutomu; Kashimura, Satoru; Miyasaka, Yasuhiko

    1977-02-01

    Irradiations of VHTR fuels were made in the VT-1 irradiation hole of JRR-2. Three capsules, VP-1, VP-2 and VP-4, which contained fuel compacts, were irradiated for 300 hr at temperatures of 950 0 , 1370 0 and 1500 0 C up to the estimated burn-ups of 0.74, 0.87 and 0.80%FIMA, respectively. And, to study the amoeba effect of fuel particles, two capsules, VP-3 and VP-5, were irradiated for 300 hr at temperatures of 1650 0 and 1670 0 C up to the estimated burn-ups of 0.38 and 0.33%FIMA, respectively. (auth.)

  12. Sensitivity of Landsat image-derived burn severity indices to immediate post-fire effects

    Science.gov (United States)

    A. T. Hudak; S. Lewis; P. Robichaud; P. Morgan; M. Bobbitt; L. Lentile; A. Smith; Z. Holden; J. Clark; R. McKinley

    2006-01-01

    The USFS Remote Sensing Applications Center (RSAC) and the USGS Center for Earth Resources Observation and Science (EROS) produce Burned Area Reflectance Classification (BARC) maps as a rapid, preliminary indication of burn severity on large wildfire events. Currently the preferred burn severity index is the delta Normalized Burn Ratio (dNBR), which requires NBR values...

  13. Suppression of non-photochemical quenching in Arabidopsis leaves to a ionizing radiation

    International Nuclear Information System (INIS)

    Yu Ran Moon; Jin-Hong Kim; Min Hee Lee; Byung Yeoup Chung; Jae-Sung Kim

    2007-01-01

    Complete text of publication follows. Non-photochemical quenching (NPQ) of chlorophyll fluorescence has been known to be involved in a protection of photosystems against photoinhibition through a dissipation of excess light absorbed by photosynthetic pigments. In the present study, we aimed to elucidate the effects of a ionizing radiation on NPQ by comparing alterations in the development and release of NPQ after gamma-irradiation between the wild-type (WT) and the npq1-2 mutant of Arabidopsis. The npq1-2 mutant can't develop with a normal NPQ under excess light, since it is defective in its de-epoxidase activity for conversion of violaxanthin to zeaxanthin. Gamma-irradiation with a dose of 200 Gy inhibited the development of NPQ in both the WT and mutant but more noticeably in the latter. Moreover, Fv/Fm as an indice of the photochemical efficiency of photosystem II (PSII) was almost the same in both the WT and npq1-2 mutant throughout the post-irradiation period of 5 d. The obtained results will be also discussed with those from photoinhibition induced by non-ionizing radiations such as visible light and UV-B.

  14. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  15. Optimization of a collimator size for the pin-hole camera of X-rays, and proposal of a method to correct degradations of efficiencies in neighboring parts of the image

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki; Nishihara, Sadamitsu; Taniuchi, Shou; Kamiya, Naotaka

    2012-01-01

    A visual image of the scattered X-ray distributions gives us useful information for beginners to study radiation physics. A pin-hole camera for X-rays can be made by use of simple materials as well as a two-dimensional X-ray detector (imaging plate: IP). In contrast with a pin-hole camera for the visible radiations, a pin-hole camera for X-rays uses a collimator, having a sufficient thickness to reduce X-rays. This design causes the following problem: in the case in which the X-rays are incident to the collimator from the diagonal direction, the some X-rays are absorbed by the wall of the collimator. Namely, the images in the surrounding part of the IP are underrepresented. The aim of this study is to suggest a correction method of the underrepresentation. We used a pin-hole camera (320 mm(long)×270 mm(wide)×300 mm(depth)) by means of the clinically applied IP (10×12 inch). In order to determine proper conditions for a size of collimators (pin-hole), experiments using medical X-ray equipments were carried out. The efficiencies and resolutions were experimentally determined for the collimator sizes of 2 to 8 mm φ . Then, images of scattered X-ray distributions were measured by the irradiation of a head phantom, and considerations were taken for a practical use of the pin-hole camera. Moreover, an exponential absorption of X-rays in the phantom was visualized by our camera in order to indicate a potential of quantitative analysis based on the image of scattered X-ray distributions. (author)

  16. Accuracy of real time radiography burning rate measurement

    Science.gov (United States)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  17. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  18. Measurements of EUV coronal holes and open magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, C.; Qiu, J.; Leamon, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Liu, Y., E-mail: clowder@solar.physics.montana.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  19. BurnCase 3D software validation study: Burn size measurement accuracy and inter-rater reliability.

    Science.gov (United States)

    Parvizi, Daryousch; Giretzlehner, Michael; Wurzer, Paul; Klein, Limor Dinur; Shoham, Yaron; Bohanon, Fredrick J; Haller, Herbert L; Tuca, Alexandru; Branski, Ludwik K; Lumenta, David B; Herndon, David N; Kamolz, Lars-P

    2016-03-01

    The aim of this study was to compare the accuracy of burn size estimation using the computer-assisted software BurnCase 3D (RISC Software GmbH, Hagenberg, Austria) with that using a 2D scan, considered to be the actual burn size. Thirty artificial burn areas were pre planned and prepared on three mannequins (one child, one female, and one male). Five trained physicians (raters) were asked to assess the size of all wound areas using BurnCase 3D software. The results were then compared with the real wound areas, as determined by 2D planimetry imaging. To examine inter-rater reliability, we performed an intraclass correlation analysis with a 95% confidence interval. The mean wound area estimations of the five raters using BurnCase 3D were in total 20.7±0.9% for the child, 27.2±1.5% for the female and 16.5±0.1% for the male mannequin. Our analysis showed relative overestimations of 0.4%, 2.8% and 1.5% for the child, female and male mannequins respectively, compared to the 2D scan. The intraclass correlation between the single raters for mean percentage of the artificial burn areas was 98.6%. There was also a high intraclass correlation between the single raters and the 2D Scan visible. BurnCase 3D is a valid and reliable tool for the determination of total body surface area burned in standard models. Further clinical studies including different pediatric and overweight adult mannequins are warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    Science.gov (United States)

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. THE BLACK HOLE MASS-BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ∼0.1, somewhat shallower than the M BH ∝ L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M BH -σ * relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M BH -L bulge relationships. Recent work by Graham, however, presents a similar slope of ∼0.8 for the quiescent galaxies and may bring the relationship for AGNs and quiescent galaxies into agreement.

  2. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    Science.gov (United States)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would

  3. Intensity ratio to improve black hole assessment in multiple sclerosis.

    Science.gov (United States)

    Adusumilli, Gautam; Trinkaus, Kathryn; Sun, Peng; Lancia, Samantha; Viox, Jeffrey D; Wen, Jie; Naismith, Robert T; Cross, Anne H

    2018-01-01

    Improved imaging methods are critical to assess neurodegeneration and remyelination in multiple sclerosis. Chronic hypointensities observed on T1-weighted brain MRI, "persistent black holes," reflect severe focal tissue damage. Present measures consist of determining persistent black holes numbers and volumes, but do not quantitate severity of individual lesions. Develop a method to differentiate black and gray holes and estimate the severity of individual multiple sclerosis lesions using standard magnetic resonance imaging. 38 multiple sclerosis patients contributed images. Intensities of lesions on T1-weighted scans were assessed relative to cerebrospinal fluid intensity using commercial software. Magnetization transfer imaging, diffusion tensor imaging and clinical testing were performed to assess associations with T1w intensity-based measures. Intensity-based assessments of T1w hypointensities were reproducible and achieved > 90% concordance with expert rater determinations of "black" and "gray" holes. Intensity ratio values correlated with magnetization transfer ratios (R = 0.473) and diffusion tensor imaging metrics (R values ranging from 0.283 to -0.531) that have been associated with demyelination and axon loss. Intensity ratio values incorporated into T1w hypointensity volumes correlated with clinical measures of cognition. This method of determining the degree of hypointensity within multiple sclerosis lesions can add information to conventional imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  5. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    of Alabama who led the study. Irwin and his colleagues obtained optical spectra of the object using the Magellan I and II telescopes in Las Campanas, Chile. These data reveal emission from gas rich in oxygen and nitrogen but no hydrogen, a rare set of signals from globular clusters. The physical conditions deduced from the spectra suggest that the gas is orbiting a black hole of at least 1,000 solar masses. The abundant amount of oxygen and absence of hydrogen indicate that the destroyed star was a white dwarf, the end phase of a solar-type star that has burned its hydrogen leaving a high concentration of oxygen. The nitrogen seen in the optical spectrum remains an enigma. "We think these unusual signatures can be explained by a white dwarf that strayed too close to a black hole and was torn apart by the extreme tidal forces," said coauthor Joel Bregman of the University of Michigan. Theoretical work suggests that the tidal disruption-induced X-ray emission could stay bright for more than a century, but it should fade with time. So far, the team has observed there has been a 35% decline in X-ray emission from 2000 to 2008. The ULX in this study is located in NGC 1399, an elliptical galaxy about 65 million light years from Earth. Irwin presented these results at the 215th meeting of the American Astronomical Society in Washington, DC. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  6. A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp.

    Science.gov (United States)

    Cao, Shaona; Zhang, Xiaowen; Xu, Dong; Fan, Xiao; Mou, Shanli; Wang, Yitao; Ye, Naihao; Wang, Wenqi

    2013-05-02

    Non-photochemical quenching (NPQ) of chlorophyll fluorescence is thought to be an indicator of an essential regulation and photoprotection mechanism against high-light stress in photosynthetic organisms. In this report, special chemicals were used to perturb the kinetics of the ΔpH build-up and the xanthophyll cycle (XC) in Nannochloropsis sp. We found that NPQ was stimulated rapidly on exposure to high light and relaxed rapidly in darkness. The ΔpH could be obligatory for NPQ and ΔpH alone was not sufficient to induce NPQ. The XC, being strictly mediated by ΔpH, was also essential for NPQ. The results demonstrate that the mechanism of NPQ in Nannochloropsis sp. resembled that of diatoms. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Safety considerations to avoid current-induced skin burns in MRI

    International Nuclear Information System (INIS)

    Knopp, M.V.; Metzner, R.; Kaick, G. van; Brix, G.; Bundesamt fuer Strahlenschutz, Oberschleissheim

    1998-01-01

    The safety aspects of radiological methods continue to evolve. In this paper we report on two cases of skin burns in MRI caused by induced electrical current. A second- and a third-degree skin burn occurred during imaging in a 1.5 T system. The electromagnetic radiofrequency field inadvertently led to electrical currents caused by a conducting loop through the extremities and trunk. Skin burns induced by electrical current may occur in extremely rare cases even with standard MR imaging protocols operating within all current safety guidelines by inadvertently forming a closed conducting loop. By avoiding focal skin to skin contact of the extremities, this extremely rare adverse event can be avoided. (orig.) [de

  8. Strong deflection lensing by a Lee–Wick black hole

    Directory of Open Access Journals (Sweden)

    Shan-Shan Zhao

    2017-11-01

    Full Text Available We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very closed to the event horizon of the black hole. We estimate its observables for the supermassive black hole in our Galactic center. It is found that the Lee–Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects when the UV scale is not very large, but the requiring resolution is much higher than current capability.

  9. Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching?

    Science.gov (United States)

    Schörner, Mario; Beyer, Sebastian Reinhardt; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2015-11-05

    The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.

  10. Black Holes Versus Firewalls and Thermo-Field Dynamics

    Science.gov (United States)

    Chowdhury, Borun D.

    2013-09-01

    In this paper, we examine the implications of the ongoing black holes versus firewalls debate for the thermo-field dynamics of black holes by analyzing a conformal field theory (CFT) in a thermal state in the context of anti-de Sitter/CFT. We argue that the thermo-field doubled copy of the thermal CFT should be thought of not as a fictitious system, but as the image of the CFT in the heat bath. In case of strong coupling between the CFT and the heat bath, this image allows for free infall through the horizon and the system is described by a black hole. Conversely, firewalls are the appropriate dual description in case of weak interaction of the CFT with its heat bath.

  11. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  12. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  13. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  14. Color View of a 'Rat' Hole Trail Inside 'Endurance'

    Science.gov (United States)

    2004-01-01

    This view from the Mars Exploration Rover Opportunity's panoramic camera is an approximately true color rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).

  15. Image of the Black Hole, Cygnus X-1, Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  16. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI Data for Burned Area Discrimination

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    2016-10-01

    Full Text Available Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance and atmospherically corrected (surface reflectance images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence and non-parametric (decision tree approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.

  17. Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.

    Science.gov (United States)

    Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-11-28

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. Copyright © 2014, American Association for the Advancement of Science.

  18. Block selective redaction for minimizing loss during de-identification of burned in text in irreversibly compressed JPEG medical images.

    Science.gov (United States)

    Clunie, David A; Gebow, Dan

    2015-01-01

    Deidentification of medical images requires attention to both header information as well as the pixel data itself, in which burned-in text may be present. If the pixel data to be deidentified is stored in a compressed form, traditionally it is decompressed, identifying text is redacted, and if necessary, pixel data are recompressed. Decompression without recompression may result in images of excessive or intractable size. Recompression with an irreversible scheme is undesirable because it may cause additional loss in the diagnostically relevant regions of the images. The irreversible (lossy) JPEG compression scheme works on small blocks of the image independently, hence, redaction can selectively be confined only to those blocks containing identifying text, leaving all other blocks unchanged. An open source implementation of selective redaction and a demonstration of its applicability to multiframe color ultrasound images is described. The process can be applied either to standalone JPEG images or JPEG bit streams encapsulated in other formats, which in the case of medical images, is usually DICOM.

  19. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  20. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  1. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  2. Parallel hole collimator acceptance tests for SPECT and planar studies

    International Nuclear Information System (INIS)

    Babicheva, R.R.; Bennie, D.N.; Collins, L.T.; Gruenwald, S.M.

    1998-01-01

    Full text: Different kinds of collimator damage can occur either during shipping or from regular use. Imperfections of construction along the strips or their connections give rise to nonperpendicular hole alignments to the crystal face and can produce potential problems such as ring artifacts and image degradation. Gamma camera collimator hole alignments and integrity were compared in four parallel hole high resolution collimators-two new cast and two used foil collimators, one with damage to the protective surface. [1] The point source flood image of the defective collimator was non-circular as were the images of cast collimators. The image of new foil collimator was circular. [2] High count sheet flood did not show any imperfections. [3] Bone mineral densitometer was used to perform collimated X-ray beam. The collimator was placed on the scanning bed with an X-ray cassette placed directly above it. The damaged area was well demonstrated. [4] The COR offset test was taken at two extreme radii. The offset value with the defective collimator is increased by 0.53 pixel or 129% with increase of COR from radius 14 cm to 28cm. [5] The collimator hole alignment test involves performing multiple measurements of COR along the length of the collimator, and checking for variations in COR with both position of source and angle of rotation. The maximum variation in COR of the defective collimator hole alignment was 1.13 mm. Collimators require testing when new and at regular intervals, or following damage. The point source test can be used for foil collimators. The most sensitive tests were collimated X-ray source, COR offset test and collimator hole alignment

  3. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  4. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  5. Evaluation of parathyroid imaging methods with 99mTc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-01-01

    Parathyroid scintigraphy with 99m Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using 99m Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with 99m Tc-MIBI than the parallel-hole collimator. (author)

  6. Characterization of string cavitation in large-scale Diesel nozzles with tapered holes

    Science.gov (United States)

    Gavaises, M.; Andriotis, A.; Papoulias, D.; Mitroglou, N.; Theodorakakos, A.

    2009-05-01

    The cavitation structures formed inside enlarged transparent replicas of tapered Diesel valve covered orifice nozzles have been characterized using high speed imaging visualization. Cavitation images obtained at fixed needle lift and flow rate conditions have revealed that although the conical shape of the converging tapered holes suppresses the formation of geometric cavitation, forming at the entry to the cylindrical injection hole, string cavitation has been found to prevail, particularly at low needle lifts. Computational fluid dynamics simulations have shown that cavitation strings appear in areas where large-scale vortices develop. The vortical structures are mainly formed upstream of the injection holes due to the nonuniform flow distribution and persist also inside them. Cavitation strings have been frequently observed to link adjacent holes while inspection of identical real-size injectors has revealed cavitation erosion sites in the area of string cavitation development. Image postprocessing has allowed estimation of their frequency of appearance, lifetime, and size along the injection hole length, as function of cavitation and Reynolds numbers and needle lift.

  7. Precocious Supermassive Black Holes Challenge Theories

    Science.gov (United States)

    2004-11-01

    after the Big Bang." There is general agreement among astronomers that X-radiation from the vicinity of supermassive black holes is produced as gas is pulled toward a black hole, and heated to temperatures ranging from millions to billions of degrees. Most of the infalling gas is concentrated in a rapidly rotating disk, the inner part of which has a hot atmosphere or corona where temperatures can climb to billions of degrees. Although the precise geometry and details of the X-ray production are not known, observations of numerous quasars, or supermassive black holes, have shown that many of them have very similar X-ray spectra, especially at high X-ray energies. This suggests that the basic geometry and mechanism are the same for these objects. Chandra X-ray Image of SDSSp J1306 Chandra X-ray Image of SDSSp J1306 The remarkable similarity of the X-ray spectra of the young supermassive black holes to those of much older ones means that the supermassive black holes and their accretion disks, were already in place less than a billion years after the Big Bang. One possibility is that millions of 100 solar mass black holes formed from the collapse of massive stars in the young galaxy, and subsequently built up a billion-solar mass black hole in the center of the galaxy through mergers and accretion of gas. To answer the question of how and when supermassive black holes were formed, astronomers plan to use the very deep Chandra exposures and other surveys to identify and study quasars at even earlier ages. The paper by Schwartz and Virani on SDSSp J1306 was published in the November 1, 2004 issue of The Astrophysical Journal. The paper by Duncan Farrah and colleagues on SDSS J1030 was published in the August 10, 2004 issue of The Astrophysical Journal. Chandra observed J1306 with its Advanced CCD Imaging Spectrometer (ACIS) instrument for approximately 33 hours in November 2003. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA

  8. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  9. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  10. A multi-sensor burned area algorithm for crop residue burning in northwestern India: validation and sources of error

    Science.gov (United States)

    Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.

    2017-12-01

    A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build

  11. Burn propagation in a PBX 9501 thermal explosion

    International Nuclear Information System (INIS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-01-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning

  12. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  13. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-09-01

    This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. The gate Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole

  14. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Yu, Zhicong [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Zeng, Gengsheng L. [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Engineering, Weber State University, Ogden, Utah 84408 (United States)

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac

  15. Basic study on safety conditions for MR imaging. Mechanism of burn injury associated with electrode loops during MR scanning

    International Nuclear Information System (INIS)

    Nakamura, Tatsuo; Fukuda, Koji; Hayakawa, Katsumi

    1994-01-01

    Reports of severe burns associated with the clinical use of MRI scanning have continued to appear. However, the precise mechanism responsible for these injuries has not yet been clarified. Since MR imaging exposes the human body not only to a strong H 0 magnetic field but also high-frequency RF pulses (microwave range), and since previously reported burns have occurred only in the area of attachment to monitor cables, the burns have been considered to be due to electro-magnetic induction in the cables caused by the RF pulses. In the study, therefore, using conventional monitor cables, a variety of loops were prepared and the electromagnetic induction within them by RF pulses was checked with an oscilloscope. For a single turn loop (S=0.124 m 2 ) and a 10-roll loop (S=1.24 m 2 ), the peak induced in these loops were 75 V and 45 V, respectively. When a 50 Ω resistance was connected to the ends of the loop to make it a closed circuit, the voltages across the 50 Ω load were 60 V and 30 V, respectively. Furthermore, even under conditions where a circuit was interrupted at the center of the loop, a similar voltage was observed at the ends of the loop. These results indicate that a simple model of electromagnetic induction in the loop of a monitor cable cannot alone explain the cause of the burns associated with MRI. (author)

  16. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors.

    Science.gov (United States)

    Weremijewicz, Artur; Matuszczak, Ewa; Sankiewicz, Anna; Tylicka, Marzena; Komarowska, Marta; Tokarzewicz, Anna; Debek, Wojciech; Gorodkiewicz, Ewa; Hermanowicz, Adam

    2018-01-30

    The purpose of this study was the determination of matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in the blood plasma of burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors. 31 children scalded by hot water who were managed at the Department of Paediatric Surgery between 2014-2015, after primarily presenting with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2,5+1 years). There were 10 girls and 21 boys. Venous blood samples were drawn 2-6h, and 12-16h after the thermal injury, and on the subsequent days 3, 5 and 7. The matrix metalloproteinase-2, collagen type IV and laminin-5 concentrations were assessed using Surface Plasmon Resonance Imaging by the investigators blinded to the other data. The MMP-2, laminin-5 and collagen type IV concentrations in the blood plasma of patients with burns, were highest 12-16h after thermal injury, the difference was statistically significant. The MMP-2, laminin-5 and collagen type IV concentrations measured 3 days, 5 days and 7 days after the thermal injury, slowly decreased over time, and on the 7th day reached the normal range, when compared with the concentration measured in controls. Current work is the first follow-up study regarding MMP-2 in burns. MMP-2, laminin-5 and collagen type IV levels were elevated early after burn injury in the plasma of studied patients, and were highest 12-16h after the injury. MMP-2, laminin-5 and collagen type IV levels were not proportional to the severity of the burn. We believe in the possibility that the gradual decrease of MMP-2, collagen type IV and laminin-5 concentrations could be connected with the process of healing, but to prove it, more investigation is needed in this area. The SPR imaging biosensor is a good diagnostic tool for determination of MMP-2, laminin-5 and collagen type IV in blood plasma of patients with burns. Copyright © 2017 Elsevier Ltd

  17. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    International Nuclear Information System (INIS)

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo

    2014-01-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  18. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China)

    2014-06-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  19. A novel double patterning approach for 30nm dense holes

    Science.gov (United States)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  20. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    Science.gov (United States)

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  1. Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds.

    Science.gov (United States)

    Jan, Saadia Nosheen; Khan, Farid Ahmed; Bashir, Muhammad Mustehsan; Nasir, Muneeb; Ansari, Hamid Hussain; Shami, Hussan Birkhez; Nazir, Umer; Hanif, Asif; Sohail, Muhammad

    2018-03-01

    To compare the accuracy of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burns to decide whether early tangential excision and grafting or conservative management should be employed to optimize burn and patient management. March 2015 to November 2016. Ninety two wounds in 34 patients reporting within 5days of less than 40% burn surface area were included. Unstable patients, pregnant females and those who expired were excluded. The wounds were clinically assessed and LDI done concomitantly Plastic Surgeons blinded to each other's findings. Wound appearance, color, blanching, pain, hair follicle dislodgement were the clinical parameters that distinguished between superficial and deep partial thickness burns. On day 21, the wounds were again assessed for the presence of healing by the same plastic surgeons. The findings were correlated with the initial findings on LDI and clinical assessment and the results statistically analyzed. The data of 92 burn wounds was analyzed using SPSS (ver. 17). Clinical assessment correctly identified the depth of 75 and LDI 83 wounds, giving diagnostic accuracies of 81.52% and 90.21% respectively. The sensitivity of clinical assessment was 81% and of LDI 92.75%, whereas the specificity was 82% for both. The positive predictive value was 93% for clinical assessment and 94% for LDI while the negative predictive value was 59% and 79% respectively. Predictive accuracy of LDI was found to be better than clinical assessment in the prediction of wound healing, the gold standard for wound healing being 21 days. As such it can prove to be a reliable and viable cost effective alternative per se to clinical assessment. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  2. Evaluation of parathyroid imaging methods with {sup 99m}Tc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi [Keio Univ., Tokyo (Japan). School of Medicine; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-07-01

    Parathyroid scintigraphy with {sup 99m}Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using {sup 99m}Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with {sup 99m}Tc-MIBI than the parallel-hole collimator. (author)

  3. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    Science.gov (United States)

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  4. Quantitative Assessment of Graded Burn Wounds in a Porcine Model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI)

    Science.gov (United States)

    2014-09-08

    diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011). 21. A. J. Durkin, J. G. Kim, and D...Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing : An experimental study in rats,” Burns 39(1), 105...Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008). 15. H. F. Zhang, K. Maslov, G. Stoica, and

  5. A Look from the Inside: MicroCT Analysis of Burned Bones

    Directory of Open Access Journals (Sweden)

    Francesco Boschin

    2015-12-01

    Full Text Available MicroCT imaging is increasingly used in paleoanthropological and zooarchaeological research to analyse the internal microstructure of bone, replacing comparatively invasive and destructive methods. Consequently the analytical potential of this relatively new 3D imaging technology can be enhanced by developing discipline specific protocols for archaeological analysis. Here we examine how the microstructure of mammal bone changes after burning and explore if X-ray computed microtomography (microCT can be used to obtain reliable information from burned specimens. We subjected domestic pig, roe deer, and red fox bones to burning at different temperatures and for different periods using an oven and an open fire. We observed significant changes in the three-dimensional microstructure of trabecular bone, suggesting that biomechanical studies or other analyses (for instance, determination of age-at-death can be compromised by burning. In addition, bone subjected to very high temperatures (600°C or more became cracked, posing challenges for quantifying characteristics of bone microstructure. Specimens burned at 600°C or greater temperatures, exhibit a characteristic criss-cross cracking pattern concentrated in the cortical region of the epiphyses. This feature, which can be readily observed on the surface of whole bone, could help the identification of heavily burned specimens that are small fragments, where color and surface texture are altered by diagenesis or weathering.

  6. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data

    Directory of Open Access Journals (Sweden)

    Aitor Bastarrika

    2014-12-01

    Full Text Available A new supervised burned area mapping software named BAMS (Burned Area Mapping Software is presented in this paper. The tool was built from standard ArcGISTM libraries. It computes several of the spectral indexes most commonly used in burned area detection and implements a two-phase supervised strategy to map areas burned between two Landsat multitemporal images. The only input required from the user is the visual delimitation of a few burned areas, from which burned perimeters are extracted. After the discrimination of burned patches, the user can visually assess the results, and iteratively select additional sampling burned areas to improve the extent of the burned patches. The final result of the BAMS program is a polygon vector layer containing three categories: (a burned perimeters, (b unburned areas, and (c non-observed areas. The latter refer to clouds or sensor observation errors. Outputs of the BAMS code meet the requirements of file formats and structure of standard validation protocols. This paper presents the tool’s structure and technical basis. The program has been tested in six areas located in the United States, for various ecosystems and land covers, and then compared against the National Monitoring Trends in Burn Severity (MTBS Burned Area Boundaries Dataset.

  7. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    't entirely understand, the other one gets the upper hand." GRS 1915+105 Chandra X-ray Image of GRS 1915+105 The latest Chandra results also show that the wind and the jet carry about the same amount of matter away from the black hole. This is evidence that the black hole is somehow regulating its accretion rate, which may be related to the toggling between mass expulsion via either a jet or a wind from the accretion disk. Self-regulation is a common topic when discussing supermassive black holes, but this is the first clear evidence for it in stellar-mass black holes. "It is exciting that we may be on the track of explaining two mysteries at the same time: how black hole jets can be shut down and also how black holes regulate their growth," said co-author Julia Lee, assistant professor in the Astronomy department at the Harvard-Smithsonian Center for Astrophysics. "Maybe black holes can regulate themselves better than the financial markets!" Although micro-quasars and quasars differ in mass by factors of millions, they should show a similarity in behavior when their very different physical scales are taken into account. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image Celebrate the International Year of Astronomy Ghost Remains After Black Hole Eruption "If quasars and micro-quasars behave very differently, then we have a big problem to figure out why, because gravity treats them the same," said Neilsen. "So, our result is actually very reassuring, because it's one more link between these different types of black holes." The timescale for changes in behavior of a black hole should vary in proportion to the mass. For example, an hour-long timescale for changes in GRS 1915 would correspond to about 10,000 years for a supermassive black hole that weighs a billion times the mass of the Sun. "We cannot hope to explore at this level of detail in any single supermassive black hole

  8. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  9. Development of a Consistent and Reproducible Porcine Scald Burn Model

    Science.gov (United States)

    Kempf, Margit; Kimble, Roy; Cuttle, Leila

    2016-01-01

    There are very few porcine burn models that replicate scald injuries similar to those encountered by children. We have developed a robust porcine burn model capable of creating reproducible scald burns for a wide range of burn conditions. The study was conducted with juvenile Large White pigs, creating replicates of burn combinations; 50°C for 1, 2, 5 and 10 minutes and 60°C, 70°C, 80°C and 90°C for 5 seconds. Visual wound examination, biopsies and Laser Doppler Imaging were performed at 1, 24 hours and at 3 and 7 days post-burn. A consistent water temperature was maintained within the scald device for long durations (49.8 ± 0.1°C when set at 50°C). The macroscopic and histologic appearance was consistent between replicates of burn conditions. For 50°C water, 10 minute duration burns showed significantly deeper tissue injury than all shorter durations at 24 hours post-burn (p ≤ 0.0001), with damage seen to increase until day 3 post-burn. For 5 second duration burns, by day 7 post-burn the 80°C and 90°C scalds had damage detected significantly deeper in the tissue than the 70°C scalds (p ≤ 0.001). A reliable and safe model of porcine scald burn injury has been successfully developed. The novel apparatus with continually refreshed water improves consistency of scald creation for long exposure times. This model allows the pathophysiology of scald burn wound creation and progression to be examined. PMID:27612153

  10. Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  11. Application of OCT in traumatic macular hole

    Directory of Open Access Journals (Sweden)

    Wen-Li Fu

    2017-12-01

    Full Text Available AIM: To observe the application of optical coherence tomography(OCTin the diseases of traumatic macular hole. METHODS: Twenty-five eyes of 23 patients with traumatic macular hole from January 2015 to January 2017 were enrolled in this study, including 9 eyes treated without surgeries, 16 eyes with surgeries. The image features were analyzed using OCT from ZEISS. RESULTS: The OCT characteristics in patients with traumatic macular hole were partial or full-thickness disappearance of the neuro-epithelium. Posterior vitreous detachment was not seen in the traumatic macular hole. OCT examination revealed that 4 eyes had partial detachment of macular hole and 21 eyes had full thickness detachment. Of the twenty-one eyes, 4 eyes had simple macular hole, 10 eyes had macular full-layer division with peripheral nerve epithelium edema, 7 eyes had the macular full-layer hole with the neuro-epithelium localized detachment. In the 25 eyes, 9 eyes did not undergo the surgery, of which 7 eyes were self-healing; 16 eyes were surgically treated. Postoperative OCT showed the macular structure were normal in 12 eyes with the visual acuity improved 3 lines; retinal nerve epithelium were thinning in 4 eyes, visual acuities were not significant improved after surgery. CONCLUSION: OCT examination is necessary for the diagnosis and treatment of traumatic macular hole.

  12. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  13. Era of Galaxy and Black Hole Growth Spurt Discovered

    Science.gov (United States)

    2005-04-01

    Distant galaxies undergoing intense bursts of star formation have been shown by NASA's Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth. By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars - distant galaxies that contain the largest and most active black holes in the Universe. Simulation of a Galaxy Collision Simulation of a Galaxy Collision "The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today's largest galaxies looked when they were producing most of their stars and growing black holes," said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work. The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time. Chandra X-ray Image of CDFN Chandra X-ray Image of CDFN These galaxies are very faint and it is only with the deepest observations of the

  14. New Panorama Reveals More Than a Thousand Black Holes

    Science.gov (United States)

    2007-03-01

    By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur. The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies. X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN. "We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes." Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures. Scale Chandra Images to Full Moon Scale Chandra Images to Full Moon "With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA. The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An

  15. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  16. Strong lensing of a regular black hole with an electrodynamics source

    Science.gov (United States)

    Manna, Tuhina; Rahaman, Farook; Molla, Sabiruddin; Bhadra, Jhumpa; Shah, Hasrat Hussain

    2018-05-01

    In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.

  17. To burn or not to burn

    International Nuclear Information System (INIS)

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose

  18. Massive Black Holes and Galaxies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  19. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography

    Science.gov (United States)

    Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip

    2018-02-01

    We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.

  20. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study.

    Science.gov (United States)

    Nam, Kweon-Ho; Paeng, Dong-Guk

    2014-07-01

    The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Directory of Open Access Journals (Sweden)

    Thunaipragasam Selvakumaran

    2016-01-01

    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  2. [Ischemic cholangiopathy induced by extended burns].

    Science.gov (United States)

    Cohen, Laurence; Angot, Emilie; Goria, Odile; Koning, Edith; François, Arnaud; Sabourin, Jean-Christophe

    2013-04-01

    Ischemic cholangiopathy is a recently described entity occurring mainly after hepatic grafts. Very few cases after intensive care unit (ICU) for extended burn injury were reported. We report the case of a 73-year-old woman consulting in an hepatology unit, for a jaundice appearing during a hospitalisation in an intensive care unit and increasing from her leaving from ICU, where she was treated for an extended burn injury. She had no pre-existing biological features of biliary disease. Biological tests were normal. Magnetic resonance imaging acquisitions of biliary tracts pointed out severe stenosing lesions of diffuse cholangiopathy concerning intrahepatic biliary tract, mainly peri-hilar. Biopsie from the liver confirmed the diagnosis, showing a biliary cirrhosis with bile infarcts. This case is the fourth case of ischemic cholangiopathy after extended burn injury, concerning a patient without a prior history of hepatic or biliary illness and appearing after hospitalisation in intensive care unit. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*

    Science.gov (United States)

    Chael, Andrew; Rowan, Michael; Narayan, Ramesh; Johnson, Michael; Sironi, Lorenzo

    2018-05-01

    The accretion flow around the Galactic Centre black hole Sagittarius A* (Sgr A*) is expected to have an electron temperature that is distinct from the ion temperature, due to weak Coulomb coupling in the low-density plasma. We present four two-temperature general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of Sgr A* performed with the code KORAL. These simulations use different electron heating prescriptions, motivated by different models of the underlying plasma microphysics. We compare the Landau-damped turbulent cascade model used in previous work with a new prescription we introduce based on the results of particle-in-cell simulations of magnetic reconnection. With the turbulent heating model, electrons are preferentially heated in the polar outflow, whereas with the reconnection model electrons are heated by nearly the same fraction everywhere in the accretion flow. The spectra of the two models are similar around the submillimetre synchrotron peak, but the models heated by magnetic reconnection produce variability more consistent with the level observed from Sgr A*. All models produce 230 GHz images with distinct black hole shadows which are consistent with the image size measured by the Event Horizon Telescope, but only the turbulent heating produces an anisotropic `disc-jet' structure where the image is dominated by a polar outflow or jet at frequencies below the synchrotron peak. None of our models can reproduce the observed radio spectral slope, the large near-infrared and X-ray flares, or the near-infrared spectral index, all of which suggest non-thermal electrons are needed to fully explain the emission from Sgr A*.

  4. Delayed intracranial subdural empyema following burr hole drainage: Case series and literature review.

    Science.gov (United States)

    Kim, You-Sub; Joo, Sung-Pil; Song, Dong-Jun; Kim, Sung-Hyun; Kim, Tae-Sun

    2018-05-01

    A subdural empyema (SDE) following burr hole drainage of a chronic subdural hematoma (CSDH) can be difficult to distinguish from a recurrence of the CSDH, especially when imaging data is limited to a computed tomography (CT) scan. All patients underwent burr hole drainage of the CSDH at first, and the appearance of the SDE occurred within one month. A contrast-enhanced magnetic resonance imaging (MRI) scan, with diffusion-weighted imaging (DWI), revealed both the SDE and diffuse meningitis in all patients. In Case 1, because the patient was very young, burr hole drainage of the SDE, rather than craniotomy, was performed. However, subsequent craniotomy was required due to recurrence of the SDE. In Cases 2 and 3, an initial craniotomy was performed without burr hole drainage. Symptoms improved for all patients, and each was discharged without any neurologic deficits or subsequent recurrence. Neurosurgeons should consider the possibility of infection if recurrence of CSDH occurs within 1 month following drainage of a subdural hematoma. A contrast-enhanced MRI with DWI should be performed to differentiate SDE from CSDH. In addition, surgical evacuation of the empyema via wide craniotomy is preferred to burr hole drainage.

  5. The cultural adaptation and validation of the "Burn Specific Health Scale-Revised" (BSHS-R): version for Brazilian burn victims.

    Science.gov (United States)

    Ferreira, Eneas; Dantas, Rosana Aparecida Spadoti; Rossi, Lidia Aparecida; Ciol, Marcia Aparecida

    2008-11-01

    The Burns Specific Health Scale-Revised (BSHS-R) is of easy application, can be self-administered, and it is considered a good scale to evaluate various important life aspects of burn victims. To translate and culturally adapt the BSHS-R into the Brazilian-Portuguese language and to evaluate the internal consistency and convergent validity of the translated BSHS-R. The cultural adaptation of the BSHS-R included translation and back-translation, discussions with professionals and patients to ensure conceptual equivalence, semantic evaluation, and pre-test of the instrument. The Final Brazilian-Portuguese Version (FBPV) of the BSHS-R was tested on a group of 115 burn patients for internal consistency and validity of construct (using the Rosenberg Self-Esteem Scale (RSES) and the Beck Depression Inventory (BDI)). All values of Cronbach's alpha were greater than .8, demonstrating that the internal consistency of the FBPV was very high. Self-esteem was highly correlated with affect and body image (r=.59, preliability criteria required from an instrument of health status assessment for burn patients.

  6. Burns education for non-burn specialist clinicians in Western Australia.

    Science.gov (United States)

    McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona

    2015-03-01

    Burn patients often receive their initial care by non-burn specialist clinicians, with increasingly collaborative burn models of care. The provision of relevant and accessible education for these clinicians is therefore vital for optimal patient care. A two phase design was used. A state-wide survey of multidisciplinary non-burn specialist clinicians throughout Western Australia identified learning needs related to paediatric burn care. A targeted education programme was developed and delivered live via videoconference. Pre-post-test analysis evaluated changes in knowledge as a result of attendance at each education session. Non-burn specialist clinicians identified numerous areas of burn care relevant to their practice. Statistically significant differences between perceived relevance of care and confidence in care provision were reported for aspects of acute burn care. Following attendance at the education sessions, statistically significant increases in knowledge were noted for most areas of acute burn care. Identification of learning needs facilitated the development of a targeted education programme for non-burn specialist clinicians. Increased non-burn specialist clinician knowledge following attendance at most education sessions supports the use of videoconferencing as an acceptable and effective method of delivering burns education in Western Australia. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    Birch, Donovan S; Morgan, Penelope; Smith, Alistair M S; Kolden, Crystal A; Hudak, Andrew T

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  8. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  9. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    OpenAIRE

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms re...

  10. Air-freshener burns: a new paradigm in burns etiology?

    Science.gov (United States)

    Sarwar, Umran; Nicolaou, M; Khan, M S; Tiernan, E

    2011-10-01

    We report a rare case of burns following the use of automated air-fresheners. We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  11. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  12. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.

    Science.gov (United States)

    Takayama, Kotaro; King, Diana; Robinson, Sharon A; Osmond, Barry

    2013-11-01

    Long-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic induction in these hypostomatous, heterobaric leaves, but was adequately integrated by spot measurements, despite long-lasting artifacts from repeated saturating flashes during assays. Major veins (mid-vein, first- and second-order veins) defined areas of more static large-scale heterogeneous NPQ, with more dynamic small-scale heterogeneity most strongly expressed in mesophyll cells between third- and fourth-order veins. Both responded to external CO2 concentration ([CO2]), occlusion of stomata with Vaseline™, leaf dehydration and relative humidity (RH). We interpreted these responses in terms of independent behavior of stomata in adjacent areoles that was largely expressed through CO2-limited photosynthesis. Heterogeneity was most pronounced and prolonged in the absence of net CO2 fixation in 100 p.p.m. [CO2] when respiratory and photorespiratory CO2 cycling constrained the inferred ETR to ~75% of values in 400 or 700 p.p.m. [CO2]. Likewise, sustained higher NPQ under Vaseline™, after dehydration or at low RH, also restricted ETR to ~75% of control values. Low NPQ in chloroplast-containing cells adjacent to major veins but remote from stomata suggested internal sources of high [CO2] in these tissues.

  13. Evaluating the accuracy of a MODIS direct broadcast algorithm for mapping burned areas over Russia

    Science.gov (United States)

    Petkov, A.; Hao, W. M.; Nordgren, B.; Corley, R.; Urbanski, S. P.; Ponomarev, E. I.

    2012-12-01

    Emission inventories for open area biomass burning rely on burned area estimates as a key component. We have developed an automated algorithm based on MODerate resolution Imaging Spectroradiometer (MODIS) satellite instrument data for estimating burned area from biomass fires. The algorithm is based on active fire detections, burn scars from MODIS calibrated radiances (MOD02HKM), and MODIS land cover classification (MOD12Q1). Our burned area product combines active fires and burn scar detections using spatio-temporal criteria, and has a resolution of 500 x 500 meters. The algorithm has been used for smoke emission estimates over the western United States. We will present the assessed accuracy of our algorithm in different regions of Russia with intense wildfire activity by comparing our results with the burned area product from the Sukachev Institute of Forest (SIF) of the Russian Academy of Sciences in Krasnoyarsk, Russia, as well as burn scars extracted from Landsat imagery. Landsat burned area extraction was based on threshold classification using the Jenks Natural Breaks algorithm to the histogram for each singe scene Normalized Burn Ratio (NBR) image. The final evaluation consisted of a grid-based approach, where the burned area in each 3 km x 3 km grid cell was calculated and compared with the other two sources. A comparison between our burned area estimates and those from SIF showed strong correlation (R2=0.978), although our estimate is approximately 40% lower than the SIF burned areas. The linear fit between the burned area from Landsat scenes and our MODIS algorithm over 18,754 grid cells resulted with a slope of 0.998 and R2=0.7, indicating that our algorithm is suitable for mapping burned areas for fires in boreal forests and other ecosystems. The results of our burned area algorithm will be used for estimating emissions of trace gasses and aerosol particles (including black carbon) from biomass burning in Northern Eurasia for the period of 2002-2011.

  14. Automated Identification of Coronal Holes from Synoptic EUV Maps

    Science.gov (United States)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  15. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  16. Influence of hole imperfection on jet cross flow interaction

    International Nuclear Information System (INIS)

    Jovanovic, M.B.; Lange, H.C. de; Steenhoven, A.A. van

    2006-01-01

    The influence of a small hole geometry variation on the jet cross flow interaction is investigated experimentally using particle image velocimetry and liquid crystal thermography. The flow characteristics correspond to film cooling in gas turbines. A production imperfection is represented with the small variation of the hole geometry. The experiments were conducted without and with the hole imperfection at three velocity ratios. If the imperfection is absent, the flow field is stable and clockwise vortices are detected downstream. The imperfection blocks the hole, accelerates the jet and changes the formation of large vortical structures. It produces the additional windward vortices, which influence the flow field and enhance the inflow of the cross-stream towards the cooled surface. The imperfection reduces the film cooling effectiveness

  17. Assessing bed net damage: comparisons of three measurement methods for estimating the size, shape, and distribution of holes on bed nets.

    Science.gov (United States)

    Vanden Eng, Jodi L; Mathanga, Don P; Landman, Keren; Mwandama, Dyson; Minta, Anna A; Shah, Monica; Sutcliffe, James; Chisaka, Joseph; Lindblade, Kim A; Steinhardt, Laura

    2017-10-10

    Measuring the physical condition of long-lasting insecticidal nets (LLINs) under field conditions is of great importance for malaria control programmes to guide decisions on how frequently to replace LLINs. Current guidelines by the World Health Organization Pesticide Evaluation Scheme (WHOPES) propose a proportionate hole index (pHI) for assessing LLIN condition by counting the number of holes the size of a thumb, fist, head, and larger than a head. However, this method does not account for irregular hole shapes or exact hole sizes which could result in inaccurate decisions about when to replace LLINs. LLINs were collected during a 2013 health facility-based malaria case control study in Machinga District, Malawi. To evaluate the accuracy of the pHI, the physical condition of 277 LLINs was estimated by the WHOPES method and then compared with two more thorough measurement methods: image analysis of digital photographs of each LLIN side; and for 10 nets, ruler measurements of the length, width, and location of each hole. Total hole counts and areas per net were estimated by each method, and detailed results of hole shapes and composite pictures of hole locations were generated using image analysis. The WHOPES method and image analysis resulted in similar estimates of total hole counts, each with a median of 10 (inter-quartile range (IQR) 4-24 and 4-23, respectively; p = 0.004); however, estimated hole areas were significantly larger using the WHOPES method (median 162 cm 2 , IQR 28-793) than image analysis (median 13 cm 2 , IQR 3-101; p holes than image analysis did (p = 0.002) in 10 LLINs; however, total hole area was not significantly different (p = 0.16). Most holes were not circular but roughly 2-5 times longer in one direction. The lower quarter of LLIN sides was found to have the most holes. The WHOPES method overestimated total hole area, likely because holes are elongated rather than circular, suggesting further adjustments to the pHI formula may be

  18. Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar

    International Nuclear Information System (INIS)

    James, Oliver; Tunzelmann, Eugénie von; Franklin, Paul; Thorne, Kip S

    2015-01-01

    Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about

  19. Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar

    Science.gov (United States)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-03-01

    Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about

  20. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  1. Black Hole Sign: Novel Imaging Marker That Predicts Hematoma Growth in Patients With Intracerebral Hemorrhage.

    Science.gov (United States)

    Li, Qi; Zhang, Gang; Xiong, Xin; Wang, Xing-Chen; Yang, Wen-Song; Li, Ke-Wei; Wei, Xiao; Xie, Peng

    2016-07-01

    Early hematoma growth is a devastating neurological complication after intracerebral hemorrhage. We aim to report and evaluate the usefulness of computed tomography (CT) black hole sign in predicting hematoma growth in patients with intracerebral hemorrhage. Patients with intracerebral hemorrhage were screened for the presence of CT black hole sign on admission head CT performed within 6 hours after onset of symptoms. The black hole sign was defined as hypoattenuatting area encapsulated within the hyperattenuating hematoma with a clearly defined border. The sensitivity, specificity, and positive and negative predictive values of CT black hole sign in predicting hematoma expansion were calculated. Logistic regression analyses were used to assess the presence of the black hole sign and early hematoma growth. A total of 206 patients were enrolled. Black hole sign was found in 30 (14.6%) of 206 patients on the baseline CT scan. The black hole sign was more common in patients with hematoma growth (31.9%) than those without hematoma growth (5.8%; Phole sign in predicting early hematoma growth were 31.9%, 94.1%, 73.3%, and 73.2%, respectively. The time-to-admission CT scan, baseline hematoma volume, and the presence of black hole sign on admission CT independently predict hematoma growth in multivariate model. The CT black hole sign could be used as a simple and easy-to-use predictor for early hematoma growth in patients with intracerebral hemorrhage. © 2016 American Heart Association, Inc.

  2. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar

  3. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  4. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.

    Science.gov (United States)

    Avital, Shlomo; Brumfeld, Vlad; Malkin, Shmuel

    2006-07-01

    To get an insight to the mechanism of the zeaxanthin-dependent non-photochemical quenching in photosystem II of photosynthesis, we probed the interaction of some xanthophylls with excited chlorophyll-a by trapping both pigments in micelles of triton X-100. Optimal distribution of pigments among micelles was obtained by proper control of the micelle concentration, using formamide in the reaction mixture, which varies the micellar aggregation number over three orders of magnitude. The optimal reaction mixture was obtained around 40% (v/v) formamide in 0.2-0.4% (v/v) triton X-100 in water. Zeaxanthin in the micellar solution exhibited initially absorption and circular dichroism spectral features corresponding to a J-type aggregate. The spectrum was transformed over time (half-time values vary-an average characteristic figure is roughly 20 min) to give features representing an H-type aggregate. The isosbestic point in the series of spectral curves favors the supposition of a rather simple reaction between two pure J and H-types dimeric species. Violaxanthin exhibited immediately stable spectral features corresponding to a mixture of J-type and more predominately H-type dimers. Lutein, neoxanthin and beta-carotene did not show any aggregated spectral forms in micelles. The spectral features in micelles were compared to spectra in aqueous acetone, where the assignment to various aggregated types was established previously. The specific tendency of zeaxanthin to form the J-type dimer (or aggregate) could be important for its function in photosynthesis. The abilities of five carotenoids (zeaxanthin, violaxanthin, lutein, neoxanthin and beta-carotene) to quench chlorophyll-a fluorescence were compared. Zeaxanthin, in its two micellar dimeric forms, and beta-carotene were comparable good quenchers of chlorophyll-a fluorescence. Violaxanthin was a much weaker quencher, if at all. Lutein and neoxanthin rather enhanced the fluorescence. The implications to non-photochemical

  5. Gravitational lensing of transient neutrino sources by black holes

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina)], E-mail: eiroa@iafe.uba.ar; Romero, Gustavo E. [Instituto Argentino de Radioastronomia (IAR-CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina)], E-mail: romero@iar-conicet.gov.ar

    2008-06-05

    In this work we study gravitational lensing of neutrinos by Schwarzschild black holes. In particular, we analyze the case of a neutrino transient source associated with a gamma-ray burst lensed by a supermassive black hole located at the center of an interposed galaxy. We show that the primary and secondary images have an angular separation beyond the resolution of forthcoming km-scale detectors, but the signals from each image have time delays between them that in most cases are longer than the typical duration of the intrinsic events. In this way, the signal from different images can be detected as separate events coming from the very same location in the sky. This would render an event that otherwise might have had a low signal-to-noise ratio a clear detection, since the probability of a repetition of a signal from the same direction is negligible. The relativistic images are so faint and proximate that are beyond the sensitivity and resolution of the next-generation instruments.

  6. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    Science.gov (United States)

    McCluskey, Christina S.

    addition to LRT of mineral dust. The chemical compositions of INP were probed directly via TEM imaging. Single particle analyses of residual INP showed that they comprised various C-containing particle types, but with a higher abundance of mineral and metal oxide containing INP in emissions from flaming phase combustion. Fractal soot was found as an INP type comprising up to 60% of collected INP in young smoke emissions from the Georgia prescribed burns. In a series of laboratory combustion experiments, the use of a new instrumental set up, pairing the CFDC with a single particle soot photometer, revealed up to a 60% decrease in active INP after the removal of refractory black carbon from smoke aerosol emitted from a highly flaming burn of wiregrass, supporting that soot particles serve as INP in fire emissions. The presence of soil minerals was clearly evident in TEM images of samples taken during the wildfires in addition to tarballs, carbon balls most commonly associated with aged smoke plumes. These results demonstrate that the ice nucleating particles observed in the wildfires were influenced by other factors not represented in the smoke emitted from the laboratory or prescribed burns. Finally, an INP parameterization was developed based on the temperature dependent relationship between nINP and n500nm, following methods used by previous studies. This parameterization is likely only representative of the Hewlett and High Park wildfires due to the apparent impact of non-biomass-burning aerosol. However, all wildfires are typically associated with vigorous localized convection and arid soils, required for the lofting of the soils and dusts similar to these wildfires. It will be useful to compare future wildfires in various regions to the proposed parameterization. (Abstract shortened by UMI.)

  7. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  8. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  9. Effects of burn location and investigator on burn depth in a porcine model.

    Science.gov (United States)

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (Plocations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  11. More Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  12. Mapping burned areas and burn severity patterns across the Mediterranean region

    Science.gov (United States)

    Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

    2010-05-01

    addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.

  13. Black Holes Have Simple Feeding Habits

    Science.gov (United States)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  14. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  15. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  16. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  17. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

    Science.gov (United States)

    Pinnola, Alberta; Dall'Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-09-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.

  18. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    Science.gov (United States)

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  20. Assessing the predictive capability of optical imaging techniques, Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI), to the gold standard of clinical assessment in a controlled animal model

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Baldado, M.; Burmeister, D. M.; Christy, R. J.; Bernal, N.; Durkin, A. J.

    2018-02-01

    The current standard for assessment of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Accurate early assessment of burn severity is critical for dictating the course of wound management. Complicating matters is the fact that burn wounds are often large and can have multiple regions that vary in severity. In order to manage the treatment more effectively, a tool that can provide spatially resolved information related to mapping burn severity could aid clinicians when making decisions. Several new technologies focus on burn care in an attempt to help clinicians objectively determine burn severity. By quantifying perfusion, laser speckle imaging (LSI) has had success in categorizing burn wound severity at earlier time points than clinical assessment alone. Additionally, spatial frequency domain imaging (SFDI) is a new technique that can quantify the tissue structural damage associated with burns to achieve earlier categorization of burn severity. Here we compared the performance of a commercial LSI device (PeriCam PSI, Perimed Inc.), a SFDI device (Reflect RSTM, Modulated Imaging Inc.) and conventional clinical assessment in a controlled (porcine) model of graded burn wound severity over the course of 28 days. Specifically we focused on the ability of each system to predict the spatial heterogeneity of the healed wound at 28 days, based on the images at an early time point. Spatial heterogeneity was defined by clinical assessment of distinct regions of healing on day 28. Across six pigs, 96 burn wounds (3 cm diameter) were created. Clinical assessment at day 28 indicated that 39 had appeared to heal in a heterogeneous manner. Clinical observation at day 1 found 35 / 39 (90%) to be spatially heterogeneous in terms of burn severity. The LSI system was able to detect spatial heterogeneity of burn severity in 14 / 39 (36%) cases on day 1 and 23 / 39 cases (59%) on day 7. By contrast the SFDI system was able to

  1. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  2. Analysis and Assessment of the Spatial and Temporal Distribution of Burned Areas in the Amazon Forest

    Directory of Open Access Journals (Sweden)

    Francielle da Silva Cardozo

    2014-08-01

    Full Text Available The objective of this study was to analyze the spatial and temporal distribution of burned areas in Rondônia State, Brazil during the years 2000 to 2011 and evaluate the burned area maps. A Linear Spectral Mixture Model (LSMM was applied to MODIS surface reflectance images to originate the burned areas maps, which were validated with TM/Landsat 5 and ETM+/Landsat 7 images and field data acquired in August 2013. The validation presented a correlation ranging from 67% to 96% with an average value of 86%. The lower correlation values are related to the distinct spatial resolutions of the MODIS and TM/ETM+ sensors because small burn scars are not detected in MODIS images and higher spatial correlations are related to the presence of large fires, which are better identified in MODIS, increasing the accuracy of the mapping methodology. In addition, the 12-year burned area maps of Rondônia indicate that fires, as a general pattern, occur in areas that have already been converted to some land use, such as vegetal extraction, large animal livestock areas or diversified permanent crops. Furthermore, during the analyzed period, land use conversion associated with climatic events significantly influenced the occurrence of fire in Rondônia and amplified its impacts.

  3. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    Science.gov (United States)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  4. Observing the Peripheral Burning of Cigarettes by an Infrared Technique

    Directory of Open Access Journals (Sweden)

    Liu C

    2014-12-01

    Full Text Available A modern infrared camera was used to observe the peripheral burning of cigarettes during puffing and smouldering. The computer-controlled infrared system captured thermal images with recording rates up to 50 Hz at 8-bit (256-colour resolution. The response time was less than 0.04 s at ca. 780 °C. The overall performance of the system was superior to most infrared systems used in previously reported investigations. The combined capacity allowed us to capture some faster, smaller high-temperature burning events on the periphery of a cigarette during puffing, which was first described by Egertion et al. in 1963 using an X-ray method. These transient burning events were caused by tobacco shreds near the coal surface experiencing the maximum air influx. The temperature of these transient burning events could be ca. 200 to 250 °C higher than the average peripheral temperature of the cigarette. The likelihood of these high-temperature burning events occurring during smouldering was significantly less. Some other details of the cigarette's combustion were also observed with improved simplicity and clarity.

  5. En face spectral domain optical coherence tomography analysis of lamellar macular holes.

    Science.gov (United States)

    Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J

    2014-07-01

    To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.

  6. Strong deflection gravitational lensing by a modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2017-05-15

    A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)

  7. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  8. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  9. Satisfaction with life after burn: A Burn Model System National Database Study.

    Science.gov (United States)

    Goverman, J; Mathews, K; Nadler, D; Henderson, E; McMullen, K; Herndon, D; Meyer, W; Fauerbach, J A; Wiechman, S; Carrougher, G; Ryan, C M; Schneider, J C

    2016-08-01

    While mortality rates after burn are low, physical and psychosocial impairments are common. Clinical research is focusing on reducing morbidity and optimizing quality of life. This study examines self-reported Satisfaction With Life Scale scores in a longitudinal, multicenter cohort of survivors of major burns. Risk factors associated with Satisfaction With Life Scale scores are identified. Data from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) Burn Model System (BMS) database for burn survivors greater than 9 years of age, from 1994 to 2014, were analyzed. Demographic and medical data were collected on each subject. The primary outcome measures were the individual items and total Satisfaction With Life Scale (SWLS) scores at time of hospital discharge (pre-burn recall period) and 6, 12, and 24 months after burn. The SWLS is a validated 5-item instrument with items rated on a 1-7 Likert scale. The differences in scores over time were determined and scores for burn survivors were also compared to a non-burn, healthy population. Step-wise regression analysis was performed to determine predictors of SWLS scores at different time intervals. The SWLS was completed at time of discharge (1129 patients), 6 months after burn (1231 patients), 12 months after burn (1123 patients), and 24 months after burn (959 patients). There were no statistically significant differences between these groups in terms of medical or injury demographics. The majority of the population was Caucasian (62.9%) and male (72.6%), with a mean TBSA burned of 22.3%. Mean total SWLS scores for burn survivors were unchanged and significantly below that of a non-burn population at all examined time points after burn. Although the mean SWLS score was unchanged over time, a large number of subjects demonstrated improvement or decrement of at least one SWLS category. Gender, TBSA burned, LOS, and school status were associated with SWLS scores at 6 months

  10. Clinico-morphological correlations in the categorization of holes between the ventricles

    Directory of Open Access Journals (Sweden)

    Friedman Brad

    2010-01-01

    Full Text Available Controversy still exists in the categorization of holes between the ventricles, although they are the most common congenital cardiac malformation. Advanced imaging techniques such as three-dimensional echocardiography and computed tomographic angiography offer superb anatomical details of these defects. In this review, we have sought to collate the features highlighted in different categorizations and identify their similarities, but also emphasize their differences. We hope that an analysis of this type, now achievable during life, using advanced imaging, might lead to the appearance of a unified system for diagnosis and description of holes between the ventricles.

  11. Burning issues

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy

  12. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  15. Chandra Discovers Light Echo from the Milky Way's Black Hole

    Science.gov (United States)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  16. Satisfaction With Appearance Scale-SWAP: Adaptation and validation for Brazilian burn victims.

    Science.gov (United States)

    Caltran, Marina P; Freitas, Noélle O; Dantas, Rosana A S; Farina, Jayme Adriano; Rossi, Lidia A

    2016-09-01

    Methodological study that aimed to adapt the Satisfaction with Appearance Scale (SWAP) into Brazilian Portuguese language and to assess the validity, the reliability and the dimensionality of the adapted version in a sample of Brazilian burn victims. We carried out the adaptation process according to the international literature. Construct validity was assessed by correlating the adapted version of SWAP scores with depression (Beck Depression Index), self-esteem (Rosenberg Self-Esteem Scale), health-related quality of Life (Short Form Health Survey-36) and health status of burn victims (Burn Specific Health Scale-Revised), and with gender, total body surface area burned, and visibility of the scars. We tested dimensionality using Exploratory Factor Analysis (EFA) and the reliability by means of Cronbach's alpha. Participants were 106 adult burned patients. The correlations between the Brazilian version of the SWAP scores and the correlated construct measures varied from moderate to strong (r=.30-.77). The participants who perceived their burn sequelae was visible reported being more dissatisfied with their body image than the participants who answered that their scars would not be visible (preliable for use with Brazilian burn victims. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  17. Time reversal for ultrasonic transcranial surgery and echographic imaging

    Science.gov (United States)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  18. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  19. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    Science.gov (United States)

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  20. Burning mouth syndrome: Evaluation of clinical and laboratory findings.

    Science.gov (United States)

    Halac, Gulistan; Tekturk, Pinar; Eroglu, Saliha; Cikrikcioglu, Mehmet Ali; Cimendur, Ozlem; Kilic, Elif; Asil, Talip

    2016-07-30

    Burning mouth syndrome is a chronic and persistent painful condition characterized by burning sensation in the oral mucosa. We investigated the etiological factors of patients presented with the history of burning in the mouth who admitted our outpatient clinics over the 8-years period and who had no underlying identifiable local factors. We also tried to determine their demographic and clinical characteristics. Our aim was to investigate the association between burning mouth and psychiatric disorders such as depression and anxiety, chronic diseases like diabetes mellitus (DM) and other laboratory studies in patients complaining of solely burning in the mouth. The study included patients with the history of burning in mouth who presented in our outpatient clinic between 2005 and 2012. They were evaluated by a neurologist, a psychiatrist, an internist, and a dentist. Complete blood counts, biochemical analysis and cranial magnetic resonance imaging (MRI) were performed for all patients. A total of 26 (22 (84%) females, 4 (15%) males; mean age 55.9 years) patients were enrolled in this study. Five (19.2%) of the patients had depression, 2 (7.7%) had anxiety disorder, 2 (7.7%) had diabetes mellitus, 8 (30%) had B12 vitamin deficiency, 3 (11.5%) had decreased ferritin levels in blood, and 1 (3.8%) had folic acid deficiency. Cranial MRI of all patients were normal. Nine patients (34.6%) had no etiological causes. A multidisciplinary approach in the management of burning mouth and establishment of common criteria for the diagnosis would provide insight into the underlying pathophysiological mechanism.

  1. Evaluation of long term health-related quality of life in extensive burns: a 12-year experience in a burn center.

    Science.gov (United States)

    Xie, Bing; Xiao, Shi-chu; Zhu, Shi-hui; Xia, Zhao-fan

    2012-05-01

    We sought to evaluate the long term health-related quality of life (HRQOL) in patients survived severely extensive burn and identify their clinical predicting factors correlated with HRQOL. A cross-sectional study was conducted in 20 patients survived more than 2 years with extensive burn involving ≥70% total body surface area (TBSA) between 1997 and 2009 in a burn center in Shanghai. Short Form-36 Medical Outcomes Survey (SF-36), Brief Version of Burn Specific Health Scale (BSHS-B) and Michigan Hand Outcome Questionnaire (MHQ) were used for the present evaluation. SF-36 scores were compared with a healthy Chinese population, and linear correlation analysis was performed to screen the clinical relating factors predicting physical and mental component summary (PCS and MCS) scores from SF-36. HRQOL scores from SF-36 were significantly lower in the domains of physical functioning, role limitations due to physical problems, pain, social functioning and role limitations due to emotional problems compared with population norms. Multiple linear regression analysis demonstrated that only return to work (RTW) predicted improved PCS. While age at injury, facial burns, skin grafting and length of hospital stay were correlated with MCS. Work, body image and heat sensitivity obtained the lowest BSHS-B scores in all 9 domains. Improvements of HRQOL could still be seen in BSHS-B scores in domains of simple abilities, hand function, work and affect even after a quite long interval between burns and testing. Hand function of extensive burn patients obtained relatively poor MHQ scores, especially in those without RTW. Patients with extensive burns have a poorer quality of life compared with that of general population. Relatively poor physical and psychological problems still exist even after a long period. Meanwhile, a trend of gradual improvements was noted. This information will aid clinicians in decision-making of comprehensive systematic regimens for long term rehabilitation

  2. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  3. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  4. Black Holes Lead Galaxy Growth, New Research Shows

    Science.gov (United States)

    2009-01-01

    Astronomers may have solved a cosmic chicken-and-egg problem -- the question of which formed first in the early Universe -- galaxies or the supermassive black holes seen at their cores. "It looks like the black holes came first. The evidence is piling up," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO). Carilli outlined the conclusions from recent research done by an international team studying conditions in the first billion years of the Universe's history in a lecture presented to the American Astronomical Society's meeting in Long Beach, California. Gas in Distant Galaxy VLA image (right) of gas in young galaxy seen as it was when the Universe was only 870 million years old. CREDIT: NRAO/AUI/NSF, SDSS Full-size JPEG, 323 KB PDF file, 180 KB Galaxy image, no annotation, JPEG 21 KB Earlier studies of galaxies and their central black holes in the nearby Universe revealed an intriguing linkage between the masses of the black holes and of the central "bulges" of stars and gas in the galaxies. The ratio of the black hole and the bulge mass is nearly the same for a wide range of galactic sizes and ages. For central black holes from a few million to many billions of times the mass of our Sun, the black hole's mass is about one one-thousandth of the mass of the surrounding galactic bulge. "This constant ratio indicates that the black hole and the bulge affect each others' growth in some sort of interactive relationship," said Dominik Riechers, of Caltech. "The big question has been whether one grows before the other or if they grow together, maintaining their mass ratio throughout the entire process." In the past few years, scientists have used the National Science Foundation's Very Large Array radio telescope and the Plateau de Bure Interferometer in France to peer far back in the 13.7 billion-year history of the Universe, to the dawn of the first galaxies. "We finally have been able to measure black-hole and bulge masses in several galaxies seen

  5. Deepest X-Rays Ever Reveal universe Teeming With Black Holes

    Science.gov (United States)

    2001-03-01

    For the first time, astronomers believe they have proof black holes of all sizes once ruled the universe. NASA's Chandra X-ray Observatory provided the deepest X-ray images ever recorded, and those pictures deliver a novel look at the past 12 billion years of black holes. Two independent teams of astronomers today presented images that contain the faintest X-ray sources ever detected, which include an abundance of active super massive black holes. "The Chandra data show us that giant black holes were much more active in the past than at present," said Riccardo Giacconi, of Johns Hopkins University and Associated Universities, Inc., Washington, DC. The exposure is known as "Chandra Deep Field South" since it is located in the Southern Hemisphere constellation of Fornax. "In this million-second image, we also detect relatively faint X-ray emission from galaxies, groups, and clusters of galaxies". The images, known as Chandra Deep Fields, were obtained during many long exposures over the course of more than a year. Data from the Chandra Deep Field South will be placed in a public archive for scientists beginning today. "For the first time, we are able to use X-rays to look back to a time when normal galaxies were several billion years younger," said Ann Hornschemeier, Pennsylvania State University, University Park. The group’s 500,000-second exposure included the Hubble Deep Field North, allowing scientists the opportunity to combine the power of Chandra and the Hubble Space Telescope, two of NASA's Great Observatories. The Penn State team recently acquired an additional 500,000 seconds of data, creating another one-million-second Chandra Deep Field, located in the constellation of Ursa Major. Chandra Deep Field North/Hubble Deep Field North Press Image and Caption The images are called Chandra Deep Fields because they are comparable to the famous Hubble Deep Field in being able to see further and fainter objects than any image of the universe taken at X

  6. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  7. The StarDate Black Hole Encyclopedia Website blackholes.stardate.org

    Science.gov (United States)

    Gebhardt, Karl; Benningfield, D.; Preston, S.

    2013-01-01

    The StarDate Black Hole Encyclopedia website was developed over the past seven years to provide an extensive but easy-to-read resource for the public and students. A Spanish-language version, Enciclopedia de agujeros negros, is also available at blackholes.radiouniverso.org. Evaluation shows that the sites are used by the public, students, and astronomy professionals, and the site is among the top references in most web searches for individual black holes. The site comprises seven major subsections: Basics, Directory, Research, History, Pop Culture, News, and Resources. The Basics section introduces black holes, explains how they are discovered and studied, and covers their basis in the theory of gravity. This section also includes a six-minute video introduction, “Black Holes: Stranger than Fiction.” The Directory section contains extensive descriptions of more than 80 well-known stellar, intermediate, and supermassive black holes as well as images and vital statistics of each. The Research section takes a look at three NSF-funded projects, including the work of Andrea Ghez, Karl Gebhardt and Jenny Greene, and the LIGO project. The History section provides a timeline of black holes from Isaac Newton to the present. Some of the best and worst roles played by black holes in films, TV shows, and books are included in the Pop Culture section (and pop culture references and images are sprinkled through the rest of the site). An archive of news reports about black holes is available in the News section, which provides links to the original stories or press releases. And the Resources section offers FAQs, articles from StarDate magazine and radio programs, activities for students that are tied to national standards, a glossary, and a reading list of books and websites. We have conducted both quantitative and qualitative evaluation on the black hole websites. This material is based upon work supported by the National Science Foundation under Grant No. 0935841. Any

  8. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  9. Relationship between coronal holes and high speed streams at L1: arrival times, durations, and intensities

    Science.gov (United States)

    Luo, B.; Bu, X.; Liu, S.; Gong, J.

    2017-12-01

    Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.

  10. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W

    Science.gov (United States)

    Pinnola, Alberta; Dall’Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-01-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  11. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  12. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  13. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  14. Strong deflection lensing by charged black holes in scalar-tensor gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2014-11-15

    We examine a class of charged black holes in scalar-tensor gravity as gravitational lenses. We find the deflection angle in the strong deflection limit, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to the Reissner-Norstroem spacetime and we analyze the observational aspects in the case of the Galactic supermassive black hole. (orig.)

  15. Correlation between choroidal thickness and macular hole

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    2018-01-01

    Full Text Available AIM:To explore the correlation between choroidal thickness and macular hole, and to provide a theoretical basis for diagnosis and treatment of macular hole. METHODS: This study included 40 cases of monocular idiopathic macular hole patients who were treated in ophthalmology of our hospital from June 2015 to June 2016 and 40 cases of healthy people. Sicked eyes of idiopathic macular hole patients(40 eyeswere set as the Group A, uninjured side eyes(40 eyeswere set as the Group B, eyes of 40 cases of healthy people(40 normal eyeswere set as the Group C. Choroidal thickness of macular fovea, macular fovea 1mm, 3mm at 9 points, 4 directions in the upper, lower, nasal and temporal regions were measured through coherent optical tomography of enhanced deep imaging(enhanced depth image optical coherence tomography, EDI-OCT. They were recorded as SFCT, SCT1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm, and correlation analysis between SFCT and age was analyzed. RESULTS: Average SFCT of Group A, B had no significant difference, data of the Group C was significantly higher than those of the Group A, B, there was statistical significance(P1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm of the Group A, B had no significant difference(P>0.05, and choroidal thickness at each point of the Group C was significantly higher than that of Group A and B, there was statistical significance(Pr=-0.065, P=0.148; r=-0.057, P=0.658, SFCT of the Group C was negatively correlated with age(r=-0.343, P=0.041. CONCLUSION: The pathogenesis of idiopathic macular hole may be related to the sharp decrease of choroidal thickness, choroidal thickness of uninjured side eyes reduces more sharply than normal population and choroidal vascular metabolism reduces may be pathogenic.

  16. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  17. Bacterial infections in burn patients at a burn hospital in Iran.

    Science.gov (United States)

    Ekrami, Alireza; Kalantar, Enayat

    2007-12-01

    The major challenge for a burn team is nosocomial infection in burn patients, which is known to cause over 50% of burn deaths. Most studies on infection in burn patients focus on burn wound infection, whereas other nosocomial infections in these patients are not well described. We undertook this study to determine three types of nosocomial infections viz., burn wound infection, urinary tract infection, and blood stream infection in burn patients in a burn hospital in Iran. During the one year period (May 2003 to April 2004), 182 patients were included in this study. Blood, urine and wound biopsy samples were taken 7 and 14 days after admission to Taleghani Burn hospital. Isolation and identification of microorganisms was done using the standard procedure. Disk diffusion test were performed for all the isolates for antimicrobial susceptibility. Of the 182 patients, 140 (76.9%) acquired at least one type of infection of the 140, 116 patients (82.8%) were culture positive on day 7 while 24 (17.2%) on 14 days after admission. Primary wound infection was most common (72.5%), followed by blood stream (18.6%) and urinary tract infections (8.9 %). The microorganisms causing infections were Pseudomonas aeruginosa (37.5%), Staphylococcus aureus (20.2%), and Acinetobacter baumanni (10.4%). Among these isolates P. aeruginosa was found to be 100 per cent resistant to amikacin, gentamicin , carbenicillin, ciprofloxacin, tobramycin and ceftazidime; 58 per cent of S. aureus and 60 per cent of coagulase negative Staphylococcus were methicillin resistant. High prevalence of nosocomial infections and the presence of multidrug resistant bacteria, and methicillin resistant S. aureus in patients at Taleghani Burn Hospital suggest continuous surveillance of burn infections and develop strategies for antimicrobial resistance control and treatment of infectious complications.

  18. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    Science.gov (United States)

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Multiflash X ray with Image Detanglement for Single Image Isolation

    Science.gov (United States)

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  20. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  1. Black Holes Are The Rhythm at The Heart of Galaxies

    Science.gov (United States)

    2008-11-01

    The powerful black holes at the center of massive galaxies and galaxy clusters act as hearts to the systems, pumping energy out at regular intervals to regulate the growth of the black holes themselves, as well as star formation, according to new data from NASA's Chandra X-Ray Observatory. People Who Read This Also Read... Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago A New Way To Weigh Giant Black Holes Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers Scientists from the University of Michigan, the Max-Planck Institute for Extraterrestrial Physics in Germany, the University of Maryland, Baltimore County (UMBC), the Harvard-Smithsonian Center for Astrophysics and Jacobs University in Germany contributed to the results. The gravitational pull of black holes is so strong that not even light can escape from them. Supermassive black holes with masses of more than a billion suns have been detected at the center of large galaxies. The material falling on the black holes causes sporadic or isolated bursts of energy, by which black holes are capable of influencing the fate of their host galaxies. The insight gained by this new research shows that black holes can pump energy in a gentler and rhythmic fashion, rather then violently. The scientists observed and simulated how the black hole at the center of elliptical galaxy M84 dependably sends bubbles of hot plasma into space, heating up interstellar space. This heat is believed to slow both the formation of new stars and the growth of the black hole itself, helping the galaxy remain stable. Interstellar gases only coalesce into new stars when the gas is cool enough. The heating is more efficient at the sites where it is most needed, the scientists say. Alexis Finoguenov, of UMBC and the Max-Planck Institute for Extraterrestrial Physics in Germany, compares the central black hole to a heart muscle. "Just like our hearts periodically pump our

  2. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  3. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  4. Recovery and Lithologic Analysis of Sediment from Hole UT-GOM2-1-H002, Green Canyon 955, Northern Gulf of Mexico

    Science.gov (United States)

    Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.

    2017-12-01

    In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within

  5. Early assessment and identification of posttraumatic stress disorder, satisfaction with appearance and coping in patients with burns.

    Science.gov (United States)

    Dahl, Oili; Wickman, Marie; Björnhagen, Viveca; Friberg, Mona; Wengström, Yvonne

    2016-12-01

    The first year after severe burn is a psychologically challenging period for the patient. Patients may still struggle with burn-related physical and psychological problems such as posttraumatic stress disorder (PTSD) and body image dissatisfaction (BID). This study investigates the presence of PTSD, BID and coping, at three, six and twelve months after discharge for early identification of patients in need of focused support during rehabilitation. Fifty-two adult patients with different degrees of burns were followed at three, six and twelve months after discharge and 36 patients completed all assessment points. A standardized clinical protocol was used for systematic assessment of PTSD (IES-R), BID (SWAP-Swe) and Coping (CBQ). The follow-up included an intervention with a burn nurse as a complement to the existing program. Approximately half of the patients had a risk of developing PTSD three months after discharge from hospital, and body image dissatisfaction was found to potentially predict risk of PTSD during follow-up. The findings suggest that it is important to include patients with less extensive burns in follow-up as this group is at risk of development of PTSD. Using standardized questionnaires in early follow-up along with assessment of body image dissatisfaction may facilitate detection of psychological problems. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  7. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  8. Ocriplasmin for treatment of stage 2 macular holes: early clinical results.

    Science.gov (United States)

    Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba

    2014-01-01

    To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.

  9. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  10. On an image reconstruction method for ECT

    Science.gov (United States)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  11. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  12. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  13. Two-year follow-up of outcomes related to scarring and distress in children with severe burns.

    Science.gov (United States)

    Wurzer, Paul; Forbes, Abigail A; Hundeshagen, Gabriel; Andersen, Clark R; Epperson, Kathryn M; Meyer, Walter J; Kamolz, Lars P; Branski, Ludwik K; Suman, Oscar E; Herndon, David N; Finnerty, Celeste C

    2017-08-01

    We assessed the perception of scarring and distress by pediatric burn survivors with burns covering more than one-third of total body surface area (TBSA) for up to 2 years post-burn. Children with severe burns were admitted to our hospital between 2004 and 2012, and consented to this IRB-approved-study. Subjects completed at least one Scars Problems and/or Distress questionnaire between discharge and 24 months post burn. Outcomes were modeled with generalized estimating equations or using mixed linear models. Significance was accepted at p body areas over time (p self-conscious with respect to their body image even 2 years after burn injury. Implications for Rehabilitation According to self-assessment questionnaires, severely burned children perceive significant improvements in scarring and distress during the first 2 years post burn. Significant improvements were seen in reduction of pain, itching, sleeping disturbances, tightness, range of motion, and strength (p body areas. The rehabilitation team should provide access to wigs or other aids to pediatric burn survivors to address these needs.

  14. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2011-03-01

    Full Text Available Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onslow Bight region of North Carolina, we examined how the constraints and priorities for burning in the longleaf pine (Pinus palustris ecosystem differed among three stakeholder groups: prescribed burn practitioners from agencies, practitioners from private companies, and nonpractitioners. Stakeholder groups did not differ in their perceptions of constraints to burning, and development near potentially burned sites was the most important constraint identified. The top criteria used by stakeholders to decide where to burn were the time since a site was last burned, and a site's ecosystem health, with preference given to recently burned sites in good health. Differences among stakeholder groups almost always pertained to perceptions of the nonecological impacts of burning. Prescribed burning priorities of the two groups of practitioners, and particularly practitioners from private companies, tended to be most influenced by nonecological impacts, especially through deprioritization of sites that have not been burned recently or are in the wildland-urban interface (WUI. Our results highlight the difficulty of burning these sites, despite widespread laws in the southeast U.S. that limit liability of prescribed burn practitioners. To avoid ecosystem degradation on sites that are challenging to burn, particularly those in the WUI, conservation partnerships can facilitate demonstration projects involving public and private burn practitioners on those sites. In summary

  15. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  16. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  17. Winds of Change: How Black Holes May Shape Galaxies

    Science.gov (United States)

    2010-03-01

    New observations from NASA's Chandra X-ray Observatory provide evidence for powerful winds blowing away from the vicinity of a supermassive black hole in a nearby galaxy. This discovery indicates that "average" supermassive black holes may play an important role in the evolution of the galaxies in which they reside. For years, astronomers have known that a supermassive black hole grows in parallel with its host galaxy. And, it has long been suspected that material blown away from a black hole - as opposed to the fraction of material that falls into it -- alters the evolution of its host galaxy. A key question is whether such "black hole blowback" typically delivers enough power to have a significant impact. Powerful relativistic jets shot away from the biggest supermassive black holes in large, central galaxies in clusters like Perseus are seen to shape their host galaxies, but these are rare. What about less powerful, less focused galaxy-scale winds that should be much more common? "We're more interested here in seeing what an "average"-sized supermassive black hole can do to its galaxy, not the few, really big ones in the biggest galaxies," said Dan Evans of the Massachusetts Institute of Technology who presented these results at the High Energy Astrophysics Division of the American Astronomical Society meeting in Kona, Hawaii. Evans and his colleagues used Chandra for five days to observe NGC 1068, one of the nearest and brightest galaxies containing a rapidly growing supermassive black hole. This black hole is only about twice as massive as the one in the center of our Galaxy, which is considered to be a rather ordinary size. The X-ray images and spectra obtained using Chandra's High Energy Transmission Grating Spectrometer (HETGS) showed that a strong wind is being driven away from the center of NGC 1068 at a rate of about a million miles per hour. This wind is likely generated as surrounding gas is accelerated and heated as it swirls toward the black hole. A

  18. Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients

    Science.gov (United States)

    2015-03-06

    ceruloplasmin; ferroxidase; iron status; oxidant stress; burn; trauma 1. Introduction Iron is an essential element for life that facilitates...899–906. 45. Shakespeare , P.G. Studies on the serum levels of iron, copper and zinc and the urinary excretion of zinc after burn injury. Burns Incl

  19. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  20. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    Data from the Solar Dynamics Observatory (SDO) were used to look for triggers of jets in a coronal hole. It has been proposed that bright points affiliated with the jets are caused by either random collisions between magnetic elements or by magnetic flux emerging from the photosphere; either of which can give rise to magnetic reconnection. Images from the 193AA filter of the Atmospheric Imaging Assembly (AIA) were searched to identify and locate jets. Changes in the line-of-sight magnetic field prior to the time of the jet were sought in data from the Helioseismic Magnetic Imager (HMI). In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was close to disk center. Of the 15 that we studied 6 were shown to have an increase of the parameter B2 (where B is the line-of-sight component of the magnetic field), within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  1. An efficient hole-filling method based on depth map in 3D view generation

    Science.gov (United States)

    Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.

  2. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  3. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    had good evidence until now," said co-author Paul Martini, also of OSU. "This can help solve a couple of mysteries about galaxy clusters." One mystery is why there are so many blue, star-forming galaxies in young, distant clusters and fewer in nearby, older clusters. AGN are believed to expel or destroy cool gas in their host galaxy through powerful eruptions from the black hole. This may stifle star formation and the blue, massive stars will then gradually die off, leaving behind only the old, redder stars. This process takes about a billion years or more to take place, so a dearth of star-forming galaxies is only noticeable for older clusters. The process that sets the temperature of the hot gas in clusters when they form is also an open question. These new results suggest that even more AGN may have been present when most clusters were forming about ten billion years ago. Early heating of a cluster by large numbers of AGN can have a significant, long-lasting effect on the structure of a cluster by "puffing up" the gas. "In a few nearby clusters we've seen evidence for huge eruptions generated by supermassive black holes. But this is sedate compared to what might be going on in younger clusters," said Eastman. These results appeared in the July 20th issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. Burn Wise

    Science.gov (United States)

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  5. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  6. CLINICAL STUDY OF ELECTRICAL BURNS AMONG ALL BURNS CASES- 3 YEARS’ EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Nagabathula Durga Prasad

    2017-08-01

    Full Text Available BACKGROUND With the advances in technology, electrical injuries are becoming more common and are the leading cause of work-related traumatic death. One third of all electrical traumas and most high-voltage injuries are job related and more than 50% of these injuries result from power line contact. The management of the major burn injury represents a significant challenge to every member of the burns team. Most of electrical burns present with gangrene of toes and limbs with eschar over body parts. Their presentation is mostly due to contact with high-voltage electricity at their work places. MATERIALS AND METHODS A retrospective study was made to study the clinico-social profile of patients suffering electric burns admitted into Department of General Surgery. RESULTS 92 cases were evaluated and studied. Majority of patients developed gangrene of limbs and toes. Amputations and skin grafting was done. Most patients who suffered electric burns were males of age group 21 to 40 years. All cases are accidental and mostly occurred at work places. Most electric burns are high-voltage based and caused deep burns. Major complications like acute renal failure and septicaemia were encountered. Most of them suffered 16 to 30% burns. Most commonly isolated organism from wounds is pseudomonas. Most of them suffered a hospital stay of 1 to 2 months. CONCLUSION Electric burns are a burden to the society. Prevention is the best way to deal with them. Electricity-based employees have to be trained properly regarding safety measures to be taken. General education of public regarding safety measures can prevent electrical burn injuries.

  7. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  8. Outcomes of burns in the elderly: revised estimates from the Birmingham Burn Centre.

    Science.gov (United States)

    Wearn, Christopher; Hardwicke, Joseph; Kitsios, Andreas; Siddons, Victoria; Nightingale, Peter; Moiemen, Naiem

    2015-09-01

    Outcomes after burn have continued to improve over the last 70 years in all age groups including the elderly. However, concerns have been raised that survival gains have not been to the same magnitude in elderly patients compared to younger age groups. The aims of this study were to analyze the recent outcomes of elderly burn injured patients admitted to the Birmingham Burn Centre, compare data with a historical cohort and published data from other burn centres worldwide. A retrospective review was conducted of all patients ≥65 years of age, admitted to our centre with cutaneous burns, between 2004 and 2012. Data was compared to a previously published historical cohort (1999-2003). 228 patients were included. The observed mortality for the study group was 14.9%. The median age of the study group was 79 years, the male to female ratio was 1:1 and median Total Body Surface Area (TBSA) burned was 5%. The incidence of inhalation injury was 13%. Median length of stay per TBSA burned for survivors was 2.4 days/% TBSA. Mortality has improved in all burn size groups, but differences were highly statistically significant in the medium burn size group (10-20% TBSA, p≤0.001). Burn outcomes in the elderly have improved over the last decade. This reduction has been impacted by a reduction in overall injury severity but is also likely due to general improvements in burn care, improved infrastructure, implementation of clinical guidelines and increased multi-disciplinary support, including Geriatric physicians. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  9. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  10. Wound management and outcome of 595 electrical burns in a major burn center.

    Science.gov (United States)

    Li, Haisheng; Tan, Jianglin; Zhou, Junyi; Yuan, Zhiqiang; Zhang, Jiaping; Peng, Yizhi; Wu, Jun; Luo, Gaoxing

    2017-06-15

    Electrical burns are important causes of trauma worldwide. This study aims to analyze the clinical characteristics, wound management, and outcome of electric burns. This retrospective study was performed at the Institute of Burn Research of the Third Military Medical University during 2013-2015. Data including the demographics, injury patterns, wound treatment, and outcomes were collected and analyzed. A total of 595 electrical burn patients (93.8% males) were included. The average age was 37.3 ± 14.6 y, and most patients (73.5%) were aged 19∼50 years. Most patients (67.2%) were injured in work-related circumstances. The mean total body surface area was 8.8 ± 11.8% and most wounds (63.5%) were full-thickness burns. Operation times of high-voltage burns and current burns were higher than those of low-voltage burns and arc burns, respectively. Of the 375 operated patients, 83.2% (n = 312) underwent skin autografting and 49.3% (n = 185) required skin flap coverage. Common types of skin flaps were adjacent (50.3%), random (42.2%), and pedicle (35.7%). Amputation was performed in 107 cases (18.0%) and concentrated on the hands (43.9%) and upper limbs (39.3%). The mean length of stay was 42.9 ± 46.3 d and only one death occurred (0.2%). Current burns and higher numbers of operations were major risk factors for amputation and length of stay, respectively. Electrical burns mainly affected adult males with occupational exposures in China. Skin autografts and various skin flaps were commonly used for electric burn wound management. More standardized and effective strategies of treatment and prevention are still needed to decrease amputation rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R.

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity. PMID:26630486

  12. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    Full Text Available Energy-dependent (qE non-photochemical quenching (NPQ thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS. The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  13. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  14. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  15. Assessment of burn-specific health-related quality of life and patient scar status following burn.

    Science.gov (United States)

    Oh, Hyunjin; Boo, Sunjoo

    2017-11-01

    This study assessed patient-perceived levels of scar assessment and burn-specific quality of life (QOL) in Korean burn patients admitted to burn care centers and identified differences in scar assessment and QOL based on various patient characteristics. A cross-sectional descriptive study using anonymous paper-based survey methods was conducted with 100 burn patients from three burn centers specializing in burn care in South Korea. Mean subject age was 44.5 years old, and 69% of the subjects were men. The overall mean QOL was 2.91 out of 5. QOL was lowest for the work subdomain (2.25±1.45) followed by the treatment regimen subdomain (2.32±1.16). The subjects' mean total scar assessment score was 35.51 out of 60, and subjects were most unsatisfied with scar color. Subjects with low income, flame-source burns, severe burns, visible scars, and scars on face or hand reported significantly lower QOL. Subjects with severe burn degree and burn range perceived their burn scar condition to be worse than that of others. The results show that burn subjects experience the most difficulties with their work and the treatment regimen. Subjects with severe burn and visible scarring have a reduced QOL and a poor scar status. Scar management intervention may improve QOL of burn patients especially those with severe burn and visible scars. Further studies are warranted to evaluate the relationship between scar assessment and QOL. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  16. Accurate characterisation of hole size and location by projected fringe profilometry

    Science.gov (United States)

    Wu, Yuxiang; Dantanarayana, Harshana G.; Yue, Huimin; Huntley, Jonathan M.

    2018-06-01

    The ability to accurately estimate the location and geometry of holes is often required in the field of quality control and automated assembly. Projected fringe profilometry is a potentially attractive technique on account of being non-contacting, of lower cost, and orders of magnitude faster than the traditional coordinate measuring machine. However, we demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is identified based on the finite size of the imaging system’s point spread function and the resulting bias produced near to sample discontinuities in geometry and reflectivity. A mathematical model is proposed, from which a post-processing compensation algorithm is developed to suppress such errors around the holes. The algorithm includes a robust and accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. The proposed algorithm was found to reduce significantly the measurement artefacts near the hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of magnitude, to a few tens of µm for hole radii in the range 2–15 mm, compared to those from the uncompensated measurements.

  17. Epidemiology, etiology and outcomes of burn patients in a Referral Burn Hospital, Tehran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Soltan Dallal

    2016-08-01

    Full Text Available Background: Burns and its complications are regarded as a major problem in the society. Skin injuries resulted from ultraviolet radiation, radioactivity, electricity or chemicals as well as respiratory damage from smoke inhalation are considered burns. This study aimed to determine the epidemiology and outcome of burn patients admitted to Motahari Hospital, Tehran, Iran. Methods: Two hundred patients with second-degree burns admitted to Motahari Referral Center of Burn in Tehran, Iran. They were studied during a period of 12 months from May 2012 to May 2013. During the first week of treatment swabs were collected from the burn wounds after cleaning the site with sterile normal saline. Samples were inoculated in blood agar and McConkey agar, then incubation at 37 C for 48 hours. Identification was carried out according to standard conventional biochemical tests. Treatment continued up to epithelial formation and wound healing. Results of microbial culture for each patient was recorded. Healing time of the burn wounds in patients was recorded in log books. Chi-square test and SPSS Software v.19 (IBM, NY, USA were used for data analysis. Results: Our findings indicate that the most causes of burns are hot liquids in 57% of cases and flammable liquid in 21% of cases. The most cases of burns were found to be in the range of 21 to 30 percent with 17.5% and 7% in male and female respectively. Gram-negative bacteria were dominated in 85.7% and among them pseudomonas spp. with 37.5% were the most common cause of infected burns, followed by Enterobacter, Escherichia coli, Staphylococcus aureus, Acinetobacter and Klebsiella spp. Conclusion: The results of this study showed that the most cause of burns in both sex is hot liquid. Men were more expose to burn than women and this might be due to the fact that men are involved in more dangerous jobs than female. Pseudomonas aeruginosa was the most common organism encountered in burn infection.

  18. Bifurcation from stable holes to replicating holes in vibrated dense suspensions.

    Science.gov (United States)

    Ebata, H; Sano, M

    2013-11-01

    In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.

  19. Stable micron-scale holes are a general feature of canonical holins.

    Science.gov (United States)

    Savva, Christos G; Dewey, Jill S; Moussa, Samir H; To, Kam H; Holzenburg, Andreas; Young, Ry

    2014-01-01

    At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S(21) 68. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism. © 2013 John Wiley & Sons Ltd.

  20. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    Science.gov (United States)

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  1. The epidemology of burn injuries of children and the importance of modern burn centre

    Directory of Open Access Journals (Sweden)

    Janez Mohar

    2007-01-01

    Full Text Available Background: Burns represent the major percentage of injuries to children. Their incidence level, injury mechanisms and treatment often differ from the burn injuries of adults.Methods: From the medical records of the Department for Plastic and Reconstructive Surgery of the Ljubljana Medical Centre we gathered, analyzed and compared the burn injuries of children up to the age of 15 who were admitted to hospital in the year 2003 to those who were treated as outpatients. Moreover, we compared the burn injuries of hospitalized children at the same department in the years 2003, 1993 and 1983 respectively. We compared their gender, age, the total body surface area of burns, the depth of burns, frequency of the mechanisms of injury, the affected parts of the body and the length and mode of treatment. Finally, we compared our results with the results of similar studies from other burn centres.Results: The number of children treated for burns at the department has declined. In all the years studied, the injured children were younger than 5 and the majority of them were boys. The number of children admitted with substantial total body surface areas of burns was also declining. However, there was an increase in the number of children admitted with burns less than 10 % of their total body surface area. The number of burns treated by surgery slightly increased over the years studied. There was a similar sex and age distribution among the hospitalized children and those treated as outpatients.Conclusions: The number of children hospitalized with burns is in decline. In the years 1983, 1993 and 2003, there was no significant difference in the percentage of children who were treated surgically and those who were treated conservatively (P = 0.247. The Burn Centre at the Department for Plastic and Reconstructive Surgery of the Ljubljana Medical Centre which together with the Burn Department of the Maribor General Hospital covers the population of two million

  2. Pediatric burns: Kids' Inpatient Database vs the National Burn Repository.

    Science.gov (United States)

    Soleimani, Tahereh; Evans, Tyler A; Sood, Rajiv; Hartman, Brett C; Hadad, Ivan; Tholpady, Sunil S

    2016-04-01

    Burn injuries are one of the leading causes of morbidity and mortality in young children. The Kids' Inpatient Database (KID) and National Burn Repository (NBR) are two large national databases that can be used to evaluate outcomes and help quality improvement in burn care. Differences in the design of the KID and NBR could lead to differing results affecting resultant conclusions and quality improvement programs. This study was designed to validate the use of KID for burn epidemiologic studies, as an adjunct to the NBR. Using the KID (2003, 2006, and 2009), a total of 17,300 nonelective burn patients younger than 20 y old were identified. Data from 13,828 similar patients were collected from the NBR. Outcome variables were compared between the two databases. Comparisons revealed similar patient distribution by gender, race, and burn size. Inhalation injury was more common among the NBR patients and was associated with increased mortality. The rates of respiratory failure, wound infection, cellulitis, sepsis, and urinary tract infection were higher in the KID. Multiple regression analysis adjusting for potential confounders demonstrated similar mortality rate but significantly longer length of stay for patients in the NBR. Despite differences in the design and sampling of the KID and NBR, the overall demographic and mortality results are similar. The differences in complication rate and length of stay should be explored by further studies to clarify underlying causes. Investigations into these differences should also better inform strategies to improve burn prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  4. Areas of Polar Coronal Holes from 1996 Through 2010

    Science.gov (United States)

    Webber, Hess S. A.; Karna, N.; Pesnell, W. D.; Kirk, M. S.

    2014-01-01

    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.

  5. New observational constraints on the growth of the first supermassive black holes

    International Nuclear Information System (INIS)

    Treister, E.; Schawinski, K.; Volonteri, M.; Natarajan, P.

    2013-01-01

    We constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Ms observations of the Chandra Deep Field-South, we achieve the most restrictive constraints on total black hole growth in the early universe. We estimate an accreted mass density <1000 M ☉ Mpc –3 at z ∼ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black hole growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive—as yet undetected—host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured, and/or due to black hole mergers as opposed to accretion; or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high-redshift seed formation models.

  6. Improved Survival of Patients With Extensive Burns: Trends in Patient Characteristics and Mortality Among Burn Patients in a Tertiary Care Burn Facility, 2004-2013.

    Science.gov (United States)

    Strassle, Paula D; Williams, Felicia N; Napravnik, Sonia; van Duin, David; Weber, David J; Charles, Anthony; Cairns, Bruce A; Jones, Samuel W

    Classic determinants of burn mortality are age, burn size, and the presence of inhalation injury. Our objective was to describe temporal trends in patient and burn characteristics, inpatient mortality, and the relationship between these characteristics and inpatient mortality over time. All patients aged 18 years or older and admitted with burn injury, including inhalation injury only, between 2004 and 2013 were included. Adjusted Cox proportional hazards regression models were used to estimate the relationship between admit year and inpatient mortality. A total of 5540 patients were admitted between 2004 and 2013. Significant differences in sex, race/ethnicity, burn mechanisms, TBSA, inhalation injury, and inpatient mortality were observed across calendar years. Patients admitted between 2011 and 2013 were more likely to be women, non-Hispanic Caucasian, with smaller burn size, and less likely to have an inhalation injury, in comparison with patients admitted from 2004 to 2010. After controlling for patient demographics, burn mechanisms, and differential lengths of stay, no calendar year trends in inpatient mortality were detected. However, a significant decrease in inpatient mortality was observed among patients with extensive burns (≥75% TBSA) in more recent calendar years. This large, tertiary care referral burn center has maintained low inpatient mortality rates among burn patients over the past 10 years. While observed decreases in mortality during this time are largely due to changes in patient and burn characteristics, survival among patients with extensive burns has improved.

  7. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  8. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  9. HUBBLE provides multiple views of how to feed a black hole

    Science.gov (United States)

    1998-05-01

    Although the cause-and-effect relationships are not yet clear, the views provided by complementary images from two instruments aboard the Hubble Space Telescope are giving astronomers new insights into the powerful forces being exerted in this complex maelstrom. Researchers believe these forces may even have shifted the axis of the massive black hole from its expected orientation. The Hubble wide-field camera visible image of the merged Centaurus A galaxy, also called NGC 5128, shows in sharp clarity a dramatic dark lane of dust girdling the galaxy. Blue clusters of newborn stars are clearly resolved, and silhouettes of dust filaments are interspersed with blazing orange-glowing gas. Located only 10 million light-years away, this peculiar-looking galaxy contains the closest active galactic nucleus to Earth and has long been considered an example of an elliptical galaxy disrupted by a recent collision with a smaller companion spiral galaxy. Using the infrared vision of Hubble, astronomers have penetrated this wall of dust for the first time to see a twisted disk of hot gas swept up in the black hole's gravitational whirlpool. The suspected black hole is so dense it contains the mass of perhaps a billion stars, compacted into a small region of space not much larger than our Solar System. Resolving features as small as seven light-years across, Hubble has shown astronomers that the hot gas disk is tilted in a different direction from the black hole's axis -- like a wobbly wheel around an axle. The black hole's axis is identified by the orientation of a high-speed jet of material, glowing in X-rays and radio frequencies, blasted from the black hole at 1/100th the speed of light. This gas disk presumably fueling the black hole may have formed so recently it is not yet aligned to the black hole's spin axis, or it may simply be influenced more by the galaxy's gravitational tug than by the black hole's. "This black hole is doing its own thing. Aside from receiving fresh

  10. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    Science.gov (United States)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  11. Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes.

    Science.gov (United States)

    Mitjana, Raquel; Tintoré, Mar; Rocca, Maria A; Auger, Cristina; Barkhof, Frederik; Filippi, Massimo; Polman, Chris; Fazekas, Franz; Huerga, Elena; Montalban, Xavier; Rovira, Alex

    2014-10-01

    Non-enhancing black holes (neBHs) are more common in multiple sclerosis (MS) patients with longer disease durations and progressive disease subtypes. Our aim was to analyse the added value of neBHs in patients with clinically isolated syndromes (CISs) for predicting conversion to clinically definite MS (CDMS). Patients were classified based on the presence or absence of neBHs and on the number of Barkhof-Tintoré (B-T) criteria fulfilled. Dissemination in space (DIS) was defined as the presence of at least three of the four B-T criteria. Dissemination in time (DIT)1 was defined by simultaneous presence of enhancing and non-enhancing lesions. DIT2 was defined by simultaneous presence of neBHs and T2 lesions not apparent on T1-weighted images. Focal T2-hyperintense brain lesions were identified in 87.7% of the 520 CIS patients, and 41.4% of them presented at least one neBH. Patients meeting DIS, DIT1, and DIT2 had a significantly higher rate of conversion to CDMS. After adjusting for DIS, only patients who fulfilled DIT1 preserved a significant increase in CDMS conversion. Non-enhancing black holes in CIS patients are associated with a higher risk of conversion to CDMS. However, the predictive value of this finding is lost when added to the DIS criteria. © The Author(s) 2014.

  12. Reasons for Distress Among Burn Survivors at 6, 12, and 24 Months Postdischarge: A Burn Injury Model System Investigation.

    Science.gov (United States)

    Wiechman, Shelley A; McMullen, Kara; Carrougher, Gretchen J; Fauerbach, Jame A; Ryan, Colleen M; Herndon, David N; Holavanahalli, Radha; Gibran, Nicole S; Roaten, Kimberly

    2017-12-16

    To identify important sources of distress among burn survivors at discharge and 6, 12, and 24 months postinjury, and to examine if the distress related to these sources changed over time. Exploratory. Outpatient burn clinics in 4 sites across the country. Participants who met preestablished criteria for having a major burn injury (N=1009) were enrolled in this multisite study. Participants were given a previously developed list of 12 sources of distress among burn survivors and asked to rate on a 10-point Likert-type scale (0=no distress to 10=high distress) how much distress each of the 12 issues was causing them at the time of each follow-up. The Medical Outcomes Study 12-Item Short-Form Health Survey was administered at each time point as a measure of health-related quality of life. The Satisfaction With Appearance Scale was used to understand the relation between sources of distress and body image. Finally, whether a person returned to work was used to determine the effect of sources of distress on returning to employment. It was encouraging that no symptoms were worsening at 2 years. However, financial concerns and long recovery time are 2 of the highest means at all time points. Pain and sleep disturbance had the biggest effect on ability to return to work. These findings can be used to inform burn-specific interventions and to give survivors an understanding of the temporal trajectory for various causes of distress. In particular, it appears that interventions targeted at sleep disturbance and high pain levels can potentially effect distress over financial concerns by allowing a person to return to work more quickly. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field

    Science.gov (United States)

    Golberg, Alexander; Broelsch, G. Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R.; Austen, William G.; Sheridan, Robert L.; Yarmush, Martin L.

    2014-01-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  14. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    Science.gov (United States)

    2011-01-01

    with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA.

  15. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  16. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  17. Covering techniques for severe burn treatment: lessons for radiological burn accidents

    International Nuclear Information System (INIS)

    Carsin, H.; Stephanazzi, J.; Lambert, F.; Curet, P.M.; Gourmelon, P.

    2002-01-01

    Covering techniques for severe burn treatment: lessons for radiological burn accidents. After a severe burn, the injured person is weakened by a risk of infection and a general inflammation. The necrotic tissues have to be removed because they are toxic for the organism. The injured person also needs to be covered by a cutaneous envelope, which has to be done by a treatment centre for burned people. The different techniques are the following: - auto grafts on limited burned areas; - cutaneous substitutes to cover temporary extended burned areas. Among them: natural substitutes like xenografts (pork skin, sheep skin,..) or allografts (human skin), - treated natural substitutes which only maintain the extracellular matrix. Artificial skins belong to this category and allow the development of high quality scars, - cell cultures in the laboratory: multiplying the individual cells and grafting them onto the patient. This technique is not common but allows one to heal severely injured patients. X-ray burns are still a problem. Their characteristics are analysed: intensive, permanent, antalgic resistant pain. They are difficult to compare with heat burns. In spite of a small number of known cases, we can give some comments and guidance on radio necrosis cures: the importance of the patients comfort, of ending the pain, of preventing infection, and nutritional balance. At the level of epidermic inflammation and phlyctena (skin blisters), the treatment may be completed by the use of growth factors. At the level of necrosis, after a temporary cover, an auto graft can be considered only if a healthy basis is guaranteed. The use of cellular cultures in order to obtain harmonious growth factors can be argued. (author)

  18. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  19. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  20. [Combined burn trauma in the array of modern civilian and combat burns].

    Science.gov (United States)

    Ivchenko, E V; Borisov, D N; Golota, A S; Krassiĭ, A B; Rusev, I T

    2015-02-01

    The current article positions the combined burn and non-burn injuries in the general array of civilian and combat burns. For that purpose the official state statistics and scientific medical publications, domestic as well as foreign, have been analyzed. It has been shown that in peace time the combined burn/trauma injuries are infrequent. But the same type of injury becomes routine especially among the civilian population in the conditions of the modern so called "hybrid war". And the medical service should be prepared for it.

  1. Burning mouth disorder

    Directory of Open Access Journals (Sweden)

    Anand Bala

    2012-01-01

    Full Text Available Burning mouth disorder (BMD is a burning or stinging sensation affecting the oral mucosa, lips and/or tongue, in the absence of clinically visible mucosal lesions. There is a strong female predilection, with the age of onset being approximately 50 years. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. The causes of BMD are multifactorial and remain poorly understood. Recently, there has been a resurgence of interest in this disorder with the discovery that the pain of burning mouth syndrome (BMS may be neuropathic in origin and originate both centrally and peripherally. The most common sites of burning are the anterior tongue, anterior hard palate and lower lip, but the distribution of oral sites affected does not appear to affect the natural history of the disorder or the response to treatment BMS may persist for many years. This article provides updated information on BMS and presents a new model, based on taste dysfunction, for its pathogenesis.

  2. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  3. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  4. Survival after burn in a sub-Saharan burn unit: Challenges and opportunities

    Science.gov (United States)

    Tyson, Anna F.; Boschini, Laura P.; Kiser, Michelle M.; Samuel, Jonathan C.; Mjuweni, Steven N.; Cairns, Bruce A.; Charles, Anthony G.

    2013-01-01

    Background Burns are among the most devastating of all injuries and a major global public health crisis, particularly in sub-Saharan Africa. In developed countries, aggressive management of burns continues to lower overall mortality and increase lethal total body surface area (TBSA) at which 50% of patients die (LA50). However, lack of resources and inadequate infrastructure significantly impede such improvements in developing countries. Methods This study is a retrospective analysis of patients admitted to the burn center at Kamuzu Central Hospital in Lilongwe, Malawi between June 2011 and December 2012. We collected information including patient age, gender, date of admission, mechanism of injury, time to presentation to hospital, total body surface area (TBSA) burn, comorbidities, date and type of operative procedures, date of discharge, length of hospital stay, and survival. We then performed bivariate analysis and logistic regression to identify characteristics associated with increased mortality. Results A total of 454 patients were admitted during the study period with a median age of 4 years (range 0.5 months to 79 years). Of these patients, 53% were male. The overall mean TBSA was 18.5%, and average TBSA increased with age—17% for 0–18 year olds, 24% for 19–60 year olds, and 41% for patients over 60 years old. Scald and flame burns were the commonest mechanisms, 52% and 41% respectively, and flame burns were associated with higher mortality. Overall survival in this population was 82%; however survival reduced with increasing age categories (84% in patients 0–18 years old, 79% in patients 19–60 years old, and 36% in patients older than 60 years). TBSA remained the strongest predictor of mortality after adjusting for age and mechanism of burn. The LA50 for this population was 39% TBSA. Discussion Our data reiterate that burn in Malawi is largely a pediatric disease and that the high burn mortality and relatively low LA50 have modestly improved

  5. Study on the Gap Flow Simulation in EDM Small Hole Machining with Ti Alloy

    Directory of Open Access Journals (Sweden)

    Shengfang Zhang

    2017-01-01

    Full Text Available In electrical discharge machining (EDM process, the debris removed from electrode material strongly affects the machining efficiency and accuracy, especially for the deep small hole machining process. In case of Ti alloy, the debris movement and removal process in gap flow between electrodes for small hole EDM process is studied in this paper. Based on the solid-liquid two-phase flow equation, the mathematical model on the gap flow field with flushing and self-adaptive disturbation is developed. In our 3D simulation process, the count of debris increases with number of EDM discharge cycles, and the disturbation generated by the movement of self-adaptive tool in the gap flow is considered. The methods of smoothing and remeshing are also applied in the modeling process to enable a movable tool. Under different depth, flushing velocity, and tool diameter, the distribution of velocity field, pressure field of gap flow, and debris movement are analyzed. The statistical study of debris distribution under different machining conditions is also carried out. Finally, a series of experiments are conducted on a self-made machine to verify the 3D simulation model. The experiment results show the burn mark at hole bottom and the tapered wall, which corresponds well with the simulating conclusion.

  6. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    Science.gov (United States)

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    International Nuclear Information System (INIS)

    Bogdán, Ákos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-01-01

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9 +3.8 –2.3 % and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ∼0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are ≈5.1σ and ≈3.4σ outliers from the M . -M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which ∼> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  8. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  9. XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations

    Directory of Open Access Journals (Sweden)

    Supar Khairi

    2017-01-01

    Full Text Available Joint efficiency is the key to composite structures assembly design, good structures response is dependent upon multi-holes behavior as subjected to remote loading. Current benchmarking work were following experimental testing series taken from literature on multi-holes problem. Eleven multi-hole configurations were investigated with various pitch and gage distance of staggered holes and non-staggered holes (single-row holes. Various failure modes were exhibited, most staggered holes demonstrates staggered crack path but non-staggered holes series displayed crack path along net-section plane. Stress distribution were carried out and good agreement were exhibited in experimental observation as reported in the respective literature. Consequently, strength prediction work were carried out under quasi-static loading, most showed discrepancy between 8% -31%, better prediction were exhibited in thicker and non-staggered holes plate combinations.

  10. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring

    International Nuclear Information System (INIS)

    Talbert, Robert J; Holan, Scott H; Viator, John A

    2007-01-01

    Discriminating viable from thermally coagulated blood in a burn wound can be used to profile burn depth, thus aiding the removal of necrotic tissue. In this study, we used a two-wavelength photoacoustic imaging method to discriminate coagulated and non-coagulated blood in a dermal burn phantom. Differences in the optical absorption spectra of coagulated and non-coagulated blood produce different values of the ratio of peak photoacoustic amplitude at 543 and 633 nm. The absorption values obtained from spectroscopic measurements indicate that the ratio of photoacoustic pressure for 543 and 633 nm for non-coagulated blood was 15.7:1 and 1.6:1 for coagulated blood. Using planar blood layers, we found the photoacoustic ratios to be 13.5:1 and 1.6:1, respectively. Using the differences in the ratios of coagulated and non-coagulated blood, we propose a scheme using statistical classification analysis to identify the different blood samples. Based upon these distinctly different ratios, we identified the planar blood samples with an error rate of 0%. Using a burn phantom with cylindrical vessels containing coagulated and non-coagulated blood, we achieved an error rate of 11.4%. These results have shown that photoacoustic imaging could prove to be a valuable tool in the diagnosis of burns

  11. Foot burns: epidemiology and management.

    Science.gov (United States)

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  12. Experimental Visualization of the Flow Structure for Jet in Crossflow with a Curved Hole Passage

    Directory of Open Access Journals (Sweden)

    Jun Yu Liang

    2012-01-01

    Full Text Available The objective of this paper is to investigate the influence of a hole curvature on the flow structure and characteristics downstream of JICF (jet in cross-Flow by means of smoke visualization and particle image velocimetry (PIV. The experiment was performed in a low speed wind tunnel with Reynolds numbers of about 480 and 1000, based on the hole diameter and main flow speed. Two geometries were tested: a circular hole with 90° curvature and a circular straight hole for comparison, under blowing ratios 0.5 and 1.0. The measurements were done in the symmetric plane and four cross-sections. The results show that the curved hole could decrease the mixing behavior of jet flow with the main flow as the hole leading edge also increases the chance of transportingthecoolant to the wall surface and the transverse coverage. The curved hole shows a high potential to increase the cooling effectiveness once it is applied to the turbine blades.

  13. Microbiological Monitoring and Proteolytic Study of Clinical Samples From Burned and Burned Wounded Patients

    International Nuclear Information System (INIS)

    Toema, M.A.; El-Bazza, Z.E.; El-Hifnawi, H.N.; Abd-El-Hakim, E.E.

    2013-01-01

    In this study, clinical samples were collected from 100 patients admitted to Burn and Plastic Surgery Department, Faculty of Medicine, Ain Shams University, Egypt, over a period of 12 months. The proteolytic activity of 110 clinical samples taken from surfaces swabs which taken from burned and burned wounded patients with different ages and gender was examined. Screening for the proteolytic activity produced by pathogenic bacteria isolated from burned and burned wounded patients was evaluated as gram positive Bacilli and gram negative bacilli showed high proteolytic activity (46.4%) while 17.9% showed no activity. The isolated bacteria proved to have proteolytic activity were classified into high, moderate and weak. The pathogenic bacteria isolated from burned and burned wounded patients and showing proteolytic activity were identified as Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Bacillus megaterium, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella ozaeanae, Klebsiella oxytoca, Klebsiella pneumoniae and Pseudomonas fluoresces.

  14. Burned area detection based on Landsat time series in savannas of southern Burkina Faso

    Science.gov (United States)

    Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.

    2018-02-01

    West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.

  15. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  16. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, Peter R [Arizona State Univ., Tempe, AZ (United States)

    2016-04-01

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensional (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.

  17. Epidemiology of burns throughout the World. Part II: intentional burns in adults.

    Science.gov (United States)

    Peck, Michael D

    2012-08-01

    A significant number of burns and deaths from fire are intentionally wrought. Rates of intentional burns are unevenly distributed throughout the world; India has a particularly high rate in young women whereas in Europe rates are higher in men in mid-life. Data from hospitalized burn patients worldwide reveal incidence rates for assault by fire and scalds ranging from 3% to 10%. The average proportion of the body surface area burned in an assault by fire or scalds is approximately 20%. In different parts of the world, attempted burning of others or oneself can be attributed to different motives. Circumstances under which assaults occur fall largely into the categories of interpersonal conflict, including spousal abuse, elder abuse, or interactions over contentious business transactions. Contributing social factors to assaults by burning include drug and alcohol abuse, non-constructive use of leisure time, non-participation in religious and community activities, unstable relationships, and extramarital affairs. Although the incidence of self-mutilation and suicide attempts by burning are relatively low, deliberate self-harm carries a significant risk of death, with an overall mortality rate of 65% worldwide. In those who resort to self-immolation, circumstantial themes reflect domestic discord, family dysfunction, and the social ramifications of unemployment. Preventing injurious burn-related violence requires a multifaceted approach, including legislation and enforcement, education, and advocacy. Better standardized assessment tools are needed to screen for risks of abuse and for psychiatric disorders in perpetrators. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. [Injection Pressure Evaluation of the New Venous Catheter with Side Holes for Contrast-enhanced CT/MRI].

    Science.gov (United States)

    Fukuda, Junya; Arai, Keisuke; Miyazawa, Hitomi; Kobayashi, Kyouko; Nakamura, Junpei; Suto, Takayuki; Tsushima, Yoshito

    2018-01-01

    The simulation study was conducted for the new venous catheter with side holes of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) to evaluate the infusion pressure on four contrast media and several injection speeds. All infusion pressure of the new venous catheter with side holes were less than 15 kg/cm 2 as limitation of extension tube and also reduced the infusion pressure by 15% at the maximum compared to the catheter with single hole. The results suggest that the new venous catheter with side holes can reduce the infusion pressure by power injection of contrast-enhanced CT and MRI.

  19. Burning mouth syndrome

    OpenAIRE

    K A Kamala; S Sankethguddad; S G Sujith; Praveena Tantradi

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to different...

  20. Adult survivors' lived experience of burns and post-burn health: A qualitative analysis.

    Science.gov (United States)

    Abrams, Thereasa E; Ogletree, Roberta J; Ratnapradipa, Dhitinut; Neumeister, Michael W

    2016-02-01

    The individual implications of major burns are likely to affect the full spectrum of patients' physical, emotional, psychological, social, environmental, spiritual and vocational health. Yet, not all of the post-burn health implications are inevitably negative. Utilizing a qualitative approach, this heuristic phenomenological study explores the experiences and perceptions early (ages 18-35) and midlife (ages 36-64) adults providing insight for how participants perceived their burns in relationship to their post-burn health. Participants were interviewed using semi-structured interview questions framed around seven domains of health. Interview recordings were transcribed verbatim then coded line by line, identifying dominant categories related to health. Categories were analyzed identifying shared themes among the study sample. Participants were Caucasian, seven males and one female. Mean age at time of interviews was 54.38 and 42.38 at time of burns. Mean time since burns occurred was 9.38 years with a minimum of (20%) total body surface area (TBSA) burns. Qualitative content analysis rendered three emergent health-related categories and associated themes that represented shared meanings within the participant sample. The category of "Physical Health" reflected the theme physical limitations, pain and sensitivity to temperature. Within the category of "Intellectual Health" were themes of insight, goal setting and self-efficacy, optimism and humor and within "Emotional Health" were the themes empathy and gratitude. By exploring subjective experiences and perceptions of health shared through dialog with experienced burned persons, there are opportunities to develop a more complete picture of how holistic health may be affected by major burns that in turn could support future long-term rehabilitative trajectories of early and midlife adult burn patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Black holes will break up solitons and white holes may destroy them

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Susanto, Hadi

    2017-01-01

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  2. Black holes will break up solitons and white holes may destroy them

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ (United Kingdom)

    2017-06-15

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  3. Burn-related factors affecting anxiety, depression and self-esteem in burn patients: an exploratory study.

    Science.gov (United States)

    Jain, M; Khadilkar, N; De Sousa, A

    2017-03-31

    Burns are physically, psychologically and economically challenging injuries, and the factors leading to them are many and under-studied. The aim of the current study was to assess level of anxiety, depression and self-esteem in burn patients, and look at various burn-related variables that affect them. This cross-sectional study included 100 patients with burn injuries admitted to a tertiary care private hospital in an urban metropolis in India. The patients were assessed for anxiety, depression and self-esteem using the Hamilton anxiety rating scale, Hamilton depression rating scale and Rosenberg self-esteem scale respectively. Assessment was carried out within 2-8 weeks of injury following medical stabilization. The data was tabulated and statistically analyzed. The study sample was predominantly male (54%), married (69%), with a mean age of 34.1 ± 10.8 years. Accidental burns (94%) were the most common modality of injury. The majority (46%) suffered burns involving 20-59% total body surface area (TBSA), and facial burns were present (57%). No significant association was found between TBSA and anxiety, depression or self-esteem, and the same was true for facial burns. Deep burns, however, were significantly associated with anxiety (p=0.03) and depression (p=0.0002). High rates of anxiety and depression are associated with burn injuries and related to burn depth. Adjustment and recovery in these patients depends on various other factors like the patient's psychological status, nature/extent of the injury and ensuing medical care. Further research is warranted to reveal the magnitude and predictors of psychological problems in burn patients.

  4. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  5. Recent shift from forest to savanna burning in the Amazon Basin observed by satellite

    International Nuclear Information System (INIS)

    Ten Hoeve, J E; Jacobson, M Z; Remer, L A; Correia, A L

    2012-01-01

    The numbers of fires detected on forest, savanna and transition lands during the 2002–10 biomass burning seasons in Amazonia are shown using fire count data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). The ratio of forest fires to savanna fires has varied substantially over the study period, with a maximum ratio of 0.65:1 in 2005 and a minimum ratio of 0.27:1 in 2009, with the four lowest years occurring in 2007–10. The burning during the droughts of 2007 and 2010 is attributed to a higher number of savanna fires relative to the drought of 2005. A decrease in the regional mean single scattering albedo of biomass burning aerosols, consistent with the shift from forest to savanna burning, is also shown. During the severe drought of 2010, forest fire detections were lower in many areas compared with 2005, even though the drought was more severe in 2010. This result suggests that improved fire management practices, including stricter burning regulations as well as lower deforestation burning, may have reduced forest fires in 2010 relative to 2005 in some areas of the Amazon Basin. (letter)

  6. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  7. Aquacel(®) Ag dressing versus Acticoat™ dressing in partial thickness burns: a prospective, randomized, controlled study in 100 patients. Part 1: burn wound healing.

    Science.gov (United States)

    Verbelen, Jozef; Hoeksema, Henk; Heyneman, Alexander; Pirayesh, Ali; Monstrey, Stan

    2014-05-01

    Studies comparing contemporary silver dressings in burns are scarce. In a prospective, randomized, controlled study, counting 50 patients/research group, we compared two frequently used silver dressings, Acticoat™ and Aquacel(®) Ag, in the management of partial thickness burns with a predicted healing time between 7 and 21 days as assessed by laser Doppler imaging between 48 and 72h after burn. Variables investigated were related to baseline research group characteristics, wound healing, bacteriology, economics, nurse, and patient experience. Both research groups were comparably composed taking into account gender, age and burn characteristics. Similar results were obtained as to healing time and bacterial control with both silver dressings. A statistically significant difference in favor of the Aquacel(®) Ag dressing was found for average ease of use (p<0.001), average ease of application (p=0.001), patient pain (p<0.001), patient comfort with the dressing (p=0.017), silver staining (p<0.001), and cost effectiveness (p<0.001). Both silver dressings resulted in comparable healing times and bacterial control but the Aquacel(®) Ag dressing significantly increased comfort for patients as well as nurses and was significantly more cost-effective than the Acticoat™ dressing for the given indication. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  8. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  9. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  10. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  11. How Often do Giant Black Holes Become Hyperactive?

    Science.gov (United States)

    2010-12-01

    A new study from NASA's Chandra X-ray Observatory tells scientists how often the biggest black holes have been active over the last few billion years. This discovery clarifies how supermassive black holes grow and could have implications for how the giant black hole at the center of the Milky Way will behave in the future. Most galaxies, including our own, are thought to contain supermassive black holes at their centers, with masses ranging from millions to billions of times the mass of the Sun. For reasons not entirely understood, astronomers have found that these black holes exhibit a wide variety of activity levels: from dormant to just lethargic to practically hyper. The most lively supermassive black holes produce what are called "active galactic nuclei," or AGN, by pulling in large quantities of gas. This gas is heated as it falls in and glows brightly in X-ray light. "We've found that only about one percent of galaxies with masses similar to the Milky Way contain supermassive black holes in their most active phase," said Daryl Haggard of the University of Washington in Seattle, WA, and Northwestern University in Evanston, IL, who led the study. "Trying to figure out how many of these black holes are active at any time is important for understanding how black holes grow within galaxies and how this growth is affected by their environment." This study involves a survey called the Chandra Multiwavelength Project, or ChaMP, which covers 30 square degrees on the sky, the largest sky area of any Chandra survey to date. Combining Chandra's X-ray images with optical images from the Sloan Digital Sky Survey, about 100,000 galaxies were analyzed. Out of those, about 1,600 were X-ray bright, signaling possible AGN activity. Only galaxies out to 1.6 billion light years from Earth could be meaningfully compared to the Milky Way, although galaxies as far away as 6.3 billion light years were also studied. Primarily isolated or "field" galaxies were included, not galaxies

  12. Treatment of Palm Burns in Children

    OpenAIRE

    Argirova, M.; Hadzhiyski, O.

    2005-01-01

    The timing and methods of treatment of palm burns in children vary widely. From January 2002 to November 2004, 492 children with burns - 125 of them with hand burns or other body burns - were hospitalized and treated at the N.I. Pirogov Clinic for Burns and Plastic Surgery in Bulgaria. Fifty-four children (for a total of 73 burned hands) presented isolated palm burns.Twenty-two hands were operated on. In this review we present the incidence, causes, treatment methods, functional results, and ...

  13. Etiology of Burn Injuries Among 0-6 Aged Children in One University Hospital Burn Unit, Bursa, Turkey

    Directory of Open Access Journals (Sweden)

    Neriman Akansel

    2013-01-01

    Full Text Available Background; Children whose verbal communications are not fully developed are the ones at risk for burn injuries. Causes of burn injuries vary among different age groups and scald injuries are the common cause of burn injuries among children. The majority of burns result from contact with thermal agents such as flame, hot surfaces, or hot liquids.Aim: The aim of this study was to determine etiologic factors of the burn injured children Methods: Data were collected for burn injured children treated in Uludag University Medical Hospital Burn Unit between January 2001 – December 2008. Patients’ demographic variables, etiology of burn injury, TBSA(total body surface area, degree of the burn injury, duration of hospitalization was detected from medical records of the hospitalized patients.Results: The mean age of the children was 2.5±1.5 (median=2. Although 4.6 % of burned patients were under one year of age, most of the children (67.8% were between 1-3 years. All of the patients were burned as a result of accident and house environment was the place where the burn incident occurred. Burn injuries occurredmostly during summer (29.9% and spring (28.7%. Scald injuries (75.3% were mostly seen burn injury types all among other burn injuries.Conclusions: Lack of supervision and observation are usually the most common causes of burn injuries in children. Statistical differences were found among age groups according to their burn etiology (p<0.05. An effect of TBSA on patient survival was statistically significant (p<0.000 and also statistically significant results were seen among age groups according to their TBSA’s (p<0.005.

  14. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  15. MRI induced second-degree burn in a patient with extremely large uterine leiomyomas: A case report

    International Nuclear Information System (INIS)

    Lee, Chul Min; Kang, Bo Kyeong; Song, Soon Young; Koh, Byung Hee; Choi, Joong Sub; Lee, Won Moo

    2015-01-01

    Burns and thermal injuries related with magnetic resonance imaging (MRI) are rare. Previous literature indicates that medical devices with cable, cosmetics or tattoo are known as risk factors for burns and thermal injuries. However, there is no report of MRI-related burns in Korea. Herein, we reported a case of deep second degree burn after MRI in a 38-year-old female patient with multiple uterine leiomyomas including some that were large and degenerated. The large uterine leiomyoma-induced protruded anterior abdominal wall in direct contact with the body coil during MRI was suspected as the cause of injury, by retrospective analysis. Therefore, awareness of MRI related thermal injury is necessary to prevent this hazard, together with extreme care during MRI

  16. MRI induced second-degree burn in a patient with extremely large uterine leiomyomas: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Kang, Bo Kyeong; Song, Soon Young; Koh, Byung Hee; Choi, Joong Sub; Lee, Won Moo [Hanyang University Medical Center, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    Burns and thermal injuries related with magnetic resonance imaging (MRI) are rare. Previous literature indicates that medical devices with cable, cosmetics or tattoo are known as risk factors for burns and thermal injuries. However, there is no report of MRI-related burns in Korea. Herein, we reported a case of deep second degree burn after MRI in a 38-year-old female patient with multiple uterine leiomyomas including some that were large and degenerated. The large uterine leiomyoma-induced protruded anterior abdominal wall in direct contact with the body coil during MRI was suspected as the cause of injury, by retrospective analysis. Therefore, awareness of MRI related thermal injury is necessary to prevent this hazard, together with extreme care during MRI.

  17. Outcomes important to burns patients during scar management and how they compare to the concepts captured in burn-specific patient reported outcome measures.

    Science.gov (United States)

    Jones, Laura L; Calvert, Melanie; Moiemen, Naiem; Deeks, Jonathan J; Bishop, Jonathan; Kinghorn, Philip; Mathers, Jonathan

    2017-12-01

    Pressure garment therapy (PGT) is an established treatment for the prevention and treatment of hypertrophic scarring; however, there is limited evidence for its effectiveness. Burn survivors often experience multiple issues many of which are not adequately captured in current PGT trial measures. To assess the effectiveness of PGT it is important to understand what outcomes matter to patients and to consider whether patient-reported outcome measures (PROMs) can be used to ascertain the effect of treatments on patients' health-related quality of life. This study aimed to (a) understand the priorities and perspectives of adult burns patients and the parents of burns patients who have experienced PGT via in-depth qualitative data, and (b) compare these with the concepts captured within burn-specific PROMs. We undertook 40 semi-structured interviews with adults and parents of paediatric and adolescent burns patients who had experienced PGT to explore their priorities and perspectives on scar management. Interviews were audio-recorded, transcribed and thematically analysed. The outcomes interpreted within the interview data were then mapped against the concepts captured within burn-specific PROMs currently in the literature. Eight core outcome domains were identified as important to adult patients and parents: (1) scar characteristics and appearance, (2) movement and function, (3) scar sensation, (4) psychological distress, adjustments and a sense of normality, (5) body image and confidence, (6) engagement in activities, (7) impact on relationships, and (8) treatment burden. The outcome domains presented reflect a complex holistic patient experience of scar management and treatments such as PGT. Some currently available PROMs do capture the concepts described here, although none assess psychological adjustments and attainment of a sense of normality following burn injury. The routine use of PROMs that represent patient experience and their relative contribution to trial

  18. Robert Burns and the Re-making of National Memory in Contemporary Scotland

    Directory of Open Access Journals (Sweden)

    Josephine Dougal

    2012-05-01

    Full Text Available Robert Burns, the eighteenth-century Scottish poet and song writer, continues to maintain a substantial cultural ‘afterlife’ in the twenty first century, both within Scotland and beyond. Achieving cult status in the nineteenth century, the power of Burns as a popular cultural icon remains undiminished. Where the appropriation of Burns as national icon in the nineteenth century was made manifest in statuary, commemorative objects, and painted portraits, the twenty-first century has been marked by the proliferation of the image of Burns in new forms and technologies, with Burns as product and brand logo, museum and heritage attraction, and tourism industry selling point. This recent flourishing of interest and engagement raises questions about why and how an eighteenth-century poet continues to be the object of such extensive cultural elaboration at this time. In approaching this question, some fruitful lines of enquiry are being suggested in recent discussions that have looked at the nineteenth-century Burns as a ‘mobilizing agent in collective memory production’ (Rigney 2011, 81. One such appraisal points to how the construction of Burns in the nineteenth century as an iconic figure of Scottish cultural memory has the potential to ‘be resignified as necessary in subsequent chronological and geographical sites’ (Davis 2010, 14. It is this potential for the resignification of Burns as a symbolic site for the nation’s memory that this paper explores. In pointing to Burns’ representation in a variety of popular forms and in public discourse, the paper examines how a writer comes to be invested and reinvested as the voice and persona of the nation.

  19. Deployment and evaluation of a dual-sensor autofocusing method for on-machine measurement of patterns of small holes on freeform surfaces.

    Science.gov (United States)

    Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.

  20. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  1. Incidence and characteristics of chemical burns.

    Science.gov (United States)

    Koh, Dong-Hee; Lee, Sang-Gil; Kim, Hwan-Cheol

    2017-05-01

    Chemical burns can lead to serious health outcomes. Previous studies about chemical burns have been performed based on burn center data so these studies have provided limited information about the incidence of chemical burns at the national level. The aim of this study was to evaluate the incidence and characteristics of chemical burns using nationwide databases. A cohort representing the Korean population, which was established using a national health insurance database, and a nationwide workers' compensation database were used to evaluate the incidence and characteristics of chemical burns. Characteristics of the affected body region, depth of burns, industry, task, and causative agents were analyzed from two databases. The incidence of chemical burns was calculated according to employment status. The most common regions involving chemical burns with hospital visits were the skin followed by the eyes. For skin lesions, the hands and wrists were the most commonly affected regions. Second degree burns were the most common in terms of depth of skin lesions. The hospital visit incidence was 1.96 per 10,000 person-year in the general population. The compensated chemical burns incidence was 0.17 per 10,000 person-year. Employees and the self-employed showed a significantly increased risk of chemical burns undergoing hospital visits compared to their dependents. Chemical burns on the skin and eyes are almost equally prevalent. The working environment was associated with increased risk of chemical burns. Our results may aid in estimating the size of the problem and prioritizing prevention of chemical burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  2. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  3. Black Hole Sign Predicts Poor Outcome in Patients with Intracerebral Hemorrhage.

    Science.gov (United States)

    Li, Qi; Yang, Wen-Song; Chen, Sheng-Li; Lv, Fu-Rong; Lv, Fa-Jin; Hu, Xi; Zhu, Dan; Cao, Du; Wang, Xing-Chen; Li, Rui; Yuan, Liang; Qin, Xin-Yue; Xie, Peng

    2018-01-01

    In spontaneous intracerebral hemorrhage (ICH), black hole sign has been proposed as a promising imaging marker that predicts hematoma expansion in patients with ICH. The aim of our study was to investigate whether admission CT black hole sign predicts hematoma growth in patients with ICH. From July 2011 till February 2016, patients with spontaneous ICH who underwent baseline CT scan within 6 h of symptoms onset and follow-up CT scan were recruited into the study. The presence of black hole sign on admission non-enhanced CT was independently assessed by 2 readers. The functional outcome was assessed using the modified Rankin Scale (mRS) at 90 days. Univariate and multivariable logistic regression analyses were performed to assess the association between the presence of the black hole sign and functional outcome. A total of 225 patients (67.6% male, mean age 60.3 years) were included in our study. Black hole sign was identified in 32 of 225 (14.2%) patients on admission CT scan. The multivariate logistic regression analysis demonstrated that age, intraventricular hemorrhage, baseline ICH volume, admission Glasgow Coma Scale score, and presence of black hole sign on baseline CT independently predict poor functional outcome at 90 days. There are significantly more patients with a poor functional outcome (defined as mRS ≥4) among patients with black hole sign than those without (84.4 vs. 32.1%, p black hole sign independently predicts poor outcome in patients with ICH. Early identification of black hole sign is useful in prognostic stratification and may serve as a potential therapeutic target for anti-expansion clinical trials. © 2018 S. Karger AG, Basel.

  4. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  5. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  6. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  7. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    Science.gov (United States)

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  8. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  9. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  10. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  11. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  12. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    . Using Chandra, Miller and his team provided crucial evidence for the role of magnetic forces in the black hole accretion process. The X-ray spectrum, the number of X-rays at different energies, showed that the speed and density of the wind from J1655's disk corresponded to computer simulation predictions for magnetically-driven winds. The spectral fingerprint also ruled out the two other major competing theories to winds driven by magnetic fields. "In 1973, theorists came up with the idea that magnetic fields could drive the generation of light by gas falling onto black holes," said co-author John Raymond of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Now, over 30 years later, we finally may have convincing evidence." Evidence for Wind in the GRO J1655-40 Spectrum Evidence for Wind in the GRO J1655-40 Spectrum This deeper understanding of how black holes accrete matter also teaches astronomers about other properties of black holes, including how they grow. "Just as a doctor wants to understand the causes of an illness and not merely the symptoms, astronomers try to understand what causes phenomena they see in the Universe," said co-author Danny Steeghs also of the Harvard-Smithsonian Center for Astrophysics. "By understanding what makes material release energy as it falls onto black holes, we may also learn how matter falls onto other important objects." In addition to accretion disks around black holes, magnetic fields may play an important role in disks detected around young sun-like stars where planets are forming, as well as ultra-dense objects called neutron stars. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  13. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  14. Third degree skin burns caused by a MRI conditional electrocardiographic monitoring system

    Directory of Open Access Journals (Sweden)

    Brix L

    2016-10-01

    Full Text Available Two unusual cases of third degree skin burns are reported using MRI approved electrocardiographic leads. This is very uncommon as it is most often the electrodes which are the source of heat related issues. Both patients were sedated due to pain related issues of their lower spine. The burns were caused by a combination of using a 3 Tesla MRI scanner and the inability to cry out during scanning. We would like to bring forward a message that even when using MRI conditional equipment, clinical staff must be extremely careful in order to secure safe image acquisition using MRI.

  15. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  16. Treatment of secondary burn wound progression in contact burns-a systematic review of experimental approaches.

    Science.gov (United States)

    Schmauss, Daniel; Rezaeian, Farid; Finck, Tom; Machens, Hans-Guenther; Wettstein, Reto; Harder, Yves

    2015-01-01

    After a burn injury, superficial partial-thickness burn wounds may progress to deep partial-thickness or full-thickness burn wounds, if kept untreated. This phenomenon is called secondary burn wound progression or conversion. Burn wound depth is an important determinant of patient morbidity and mortality. Therefore, reduction or even the prevention of secondary burn wound progression is one goal of the acute care of burned patients. The objective of this study was to review preclinical approaches evaluating therapies to reduce burn wound progression. A systematic review of experimental approaches in animals that aim at reducing or preventing secondary burn wound progression was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) guidelines. The selected references consist of all the peer-reviewed studies performed in vivo in animals and review articles published in English, German, Italian, Spanish, or French language relevant to the topic of secondary burn wound progression. We searched MEDLINE, Cochrane Library, and Google Scholar including all the articles published from the beginning of notations to the present. The search was conducted between May 3, 2012 and December 26, 2013. We included 29 experimental studies in this review, investigating agents that maintain or increase local perfusion conditions, as well as agents that exhibit an anti-coagulatory, an anti-inflammatory, or an anti-apoptotic property. Warm water, simvastatin, EPO, or cerium nitrate may represent particularly promising approaches for the translation into clinical use in the near future. This review demonstrates promising experimental approaches that might reduce secondary burn wound progression. Nevertheless, a translation into clinical application needs to confirm the results compiled in experimental animal studies.

  17. Search for Binary Black Hole Candidates from the VLBI Images of ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We have searched the core-jet pairs in the VLBI scales (< 1 kpc), from several VLBI catalogues, and found out 5 possible Binary Black Hole (BBH) candidates. We present here the search results and analyse the candidates preliminarily. We plan to study with multi-band VLBI observation. We also plan to ...

  18. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    Science.gov (United States)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  19. Effect of glatiramer acetate three-times weekly on the evolution of new, active multiple sclerosis lesions into T1-hypointense "black holes": a post hoc magnetic resonance imaging analysis.

    Science.gov (United States)

    Zivadinov, Robert; Dwyer, Michael; Barkay, Hadas; Steinerman, Joshua R; Knappertz, Volker; Khan, Omar

    2015-03-01

    Conversion of active lesions to black holes has been associated with disability progression in subjects with relapsing-remitting multiple sclerosis (RRMS) and represents a complementary approach to evaluating clinical efficacy. The objective of this study was to assess the conversion of new active magnetic resonance imaging (MRI) lesions, identified 6 months after initiating treatment with glatiramer acetate 40 mg/mL three-times weekly (GA40) or placebo, to T1-hypointense black holes in subjects with RRMS. Subjects received GA40 (n = 943) or placebo (n = 461) for 12 months. MRI was obtained at baseline and Months 6 and 12. New lesions were defined as either gadolinium-enhancing T1 or new T2 lesions at Month 6 that were not present at baseline. The adjusted mean numbers of new active lesions at Month 6 converting to black holes at Month 12 were analyzed using a negative binomial model; adjusted proportions of new active lesions at Month 6 converting to black holes at Month 12 were analyzed using a logistic regression model. Of 1,292 subjects with complete MRI data, 433 (50.3 %) GA-treated and 247 (57.2 %) placebo-treated subjects developed new lesions at Month 6. Compared with placebo, GA40 significantly reduced the mean number (0.31 versus 0.45; P = .0258) and proportion (15.8 versus 19.6 %; P = .006) of new lesions converting to black holes. GA significantly reduced conversion of new active lesions to black holes, highlighting the ability of GA40 to prevent tissue damage in RRMS.

  20. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  1. Reliability enhancement through optimal burn-in

    Science.gov (United States)

    Kuo, W.

    1984-06-01

    A numerical reliability and cost model is defined for production line burn-in tests of electronic components. The necessity of burn-in is governed by upper and lower bounds: burn-in is mandatory for operation-critical or nonreparable component; no burn-in is needed when failure effects are insignificant or easily repairable. The model considers electronic systems in terms of a series of components connected by a single black box. The infant mortality rate is described with a Weibull distribution. Performance reaches a steady state after burn-in, and the cost of burn-in is a linear function for each component. A minimum cost is calculated among the costs and total time of burn-in, shop repair, and field repair, with attention given to possible losses in future sales from inadequate burn-in testing.

  2. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... in 2018! Learn More For Loved Ones A burn injury doesn't just impact the survivor. Families ... to support longterm recovery, improve the quality of burn care, and prevent burn injury. Explore articles on ...

  3. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  4. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  5. Is location of burns related to outcome? A comparison between burns on extremities and burns on head and/or trunk in patients with low to intermediate TBSA in a burn center in The Netherlands.

    Science.gov (United States)

    Menger, Tirsa; Krijnen, Pieta; Tuinebreijer, Willem E; Breederveld, Roelf S

    2014-01-01

    In the literature no study was found about the effect of location of burns on outcome. The objective of this retrospective study was to investigate the effect of location on outcome parameters of 371 patients, admitted to our burn center from January 2009 to December 2011. The patients were included in the study if more than 80% of the burn(s) was localized either on the extremities or on the head and/or trunk. Two groups of TBSA were elaborated, low: 0 to 5% and intermediate: 5 to 15%. Two-hundred ninety-two patients (78.7%) had a low TBSA (burns on the head and/or trunk were more often admitted to the intensive care unit, mostly as a result of suspected inhalation injury (6.2 vs 0.9%; P = .008). More complications were seen in the intermediate TBSA group. In this study no difference in outcome was found between burns on the head and/or trunk or on extremities. The patients with burns on the head and/or trunk group are more frequently admitted to intensive care.

  6. Burn Wise Educational Materials for Businesses

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  7. The treatment of extensively burned patents and β irradiational injury skin burn patients with irradiated pigskin

    International Nuclear Information System (INIS)

    Tang Zhongyi; Lu Xingan; Jing Ling; Qi Qiang

    1994-01-01

    Obvious therapeutic effects achieved by the covering of irradiation sterilized pigskin on burn wounds, escarectomized 3rd degree burn wounds β injured burns are discussed. The article also describes the manufacture processes of irradiated pigskins and the selection of surgical treatments of various burns. 5 refs., 1 tab., 4 figs

  8. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  9. Assault by burning in Jordan

    Science.gov (United States)

    Haddadin, W.

    2012-01-01

    Summary Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

  10. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    Science.gov (United States)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  11. Silicon Burning. II. Quasi-Equilibrium and Explosive Burning

    International Nuclear Information System (INIS)

    Hix, W.R.; Thielemann, F.

    1999-01-01

    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, we now turn our attention to explosive silicon burning. Previous authors have shown that for material that is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories, incomplete burning, normal freezeout, and α-rich freezeout, with the outcome depending on the temperature, density, and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3x10 9 K, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout, and particularly for α-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium. copyright copyright 1999. The American Astronomical Society

  12. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  13. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  14. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    Science.gov (United States)

    2002-11-01

    For the first time, scientists have proof two supermassive black holes exist together in the same galaxy, thanks to data from NASA's Chandra X-ray Observatory. These black holes are orbiting each other and will merge several hundred million years from now, to create an even larger black hole resulting in a catastrophic event that will unleash intense radiation and gravitational waves. The Chandra image reveals that the nucleus of an extraordinarily bright galaxy, known as NGC 6240, contains not one, but two giant black holes, actively accreting material from their surroundings. This discovery shows that massive black holes can grow through mergers in the centers of galaxies, and that these enigmatic events will be detectable with future space-borne gravitational wave observatories. "The breakthrough came with Chandra's ability to clearly distinguish the two nuclei, and measure the details of the X-radiation from each nucleus," said Guenther Hasinger, of the Max Planck Institute for Extraterrestrial Physics in Germany, a coauthor of an upcoming Astrophysical Journal Letters paper describing the research. "These cosmic fingerprints revealed features characteristic of supermassive black holes -- an excess of high-energy photons from gas swirling around a black hole, and X-rays from fluorescing iron atoms in gas near black holes," he said. Previous X-ray observatories had shown that the central region produces X-rays, while radio, infrared and optical observations had detected two bright nuclei, but the nature of this region remained a mystery. Astronomers did not know the location of the X-ray source, or the nature of the two bright nuclei. "With Chandra, we hoped to determine which one, if either, of the nuclei was an active supermassive black hole," said Stefanie Komossa, also of the Max Planck Institute, lead author of the paper on NGC 6240. "Much to our surprise, we found that both were active black holes!" At a distance of about 400 million light years, NGC 6240

  15. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  16. Burns (For Parents)

    Science.gov (United States)

    ... small, and have sensitive skin that needs extra protection. Although some minor burns aren't cause for concern and can ... burns, the mildest of the three, are limited to the top layer of skin: Signs ... pain, and minor swelling. The skin is dry without blisters. Healing ...

  17. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Towards more efficient burn care: Identifying factors associated with good quality of life post-burn.

    Science.gov (United States)

    Finlay, V; Phillips, M; Allison, G T; Wood, F M; Ching, D; Wicaksono, D; Plowman, S; Hendrie, D; Edgar, D W

    2015-11-01

    As minor burn patients constitute the vast majority of a developed nation case-mix, streamlining care for this group can promote efficiency from a service-wide perspective. This study tested the hypothesis that a predictive nomogram model that estimates likelihood of good long-term quality of life (QoL) post-burn is a valid way to optimise patient selection and risk management when applying a streamlined model of care. A sample of 224 burn patients managed by the Burn Service of Western Australia who provided both short and long-term outcomes was used to estimate the probability of achieving a good QoL defined as 150 out of a possible 160 points on the Burn Specific Health Scale-Brief (BSHS-B) at least six months from injury. A multivariate logistic regression analysis produced a predictive model provisioned as a nomogram for clinical application. A second, independent cohort of consecutive patients (n=106) was used to validate the predictive merit of the nomogram. Male gender (p=0.02), conservative management (p=0.03), upper limb burn (p=0.04) and high BSHS-B score within one month of burn (pburns were excluded due to loss to follow up. For clinicians managing comparable burn populations, the BSWA burns nomogram is an effective tool to assist the selection of patients to a streamlined care pathway with the aim of improving efficiency of service delivery. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  19. Effect of Electrical Discharge Machining on Stress Concentration in Titanium Alloy Holes.

    Science.gov (United States)

    Hsu, Wei-Hsuan; Chien, Wan-Ting

    2016-11-24

    Titanium alloys have several advantages, such as a high strength-to-weight ratio. However, the machinability of titanium alloys is not as good as its mechanical properties. Many machining processes have been used to fabricate titanium alloys. Among these machining processes, electrical discharge machining (EDM) has the advantage of processing efficiency. EDM is based on thermoelectric energy between a workpiece and an electrode. A pulse discharge occurs in a small gap between the workpiece and electrode. Then, the material from the workpiece is removed through melting and vaporization. However, defects such as cracks and notches are often detected at the boundary of holes fabricated using EDM and the irregular profile of EDM holes reduces product quality. In this study, an innovative method was proposed to estimate the effect of EDM parameters on the surface quality of the holes. The method combining the finite element method and image processing can rapidly evaluate the stress concentration factor of a workpiece. The stress concentration factor was assumed as an index of EDM process performance for estimating the surface quality of EDM holes. In EDM manufacturing processes, Ti-6Al-4V was used as an experimental material and, as process parameters, pulse current and pulse on-time were taken into account. The results showed that finite element simulations can effectively analyze stress concentration in EDM holes. Using high energy during EDM leads to poor hole quality, and the stress concentration factor of a workpiece is correlated to hole quality. The maximum stress concentration factor for an EDM hole was more than four times that for the same diameter of the undamaged hole.

  20. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  1. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.

    Science.gov (United States)

    van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p burned (p  0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. © 2012 by the Wound Healing Society.

  2. Lawn mower-related burns.

    Science.gov (United States)

    Still, J; Orlet, H; Law, E; Gertler, C

    2000-01-01

    Lawn mower-related injuries are fairly common and are usually caused by the mower blades. Burns may also be associated with the use of power lawn mowers. We describe 27 lawn mower-related burn injuries of 24 male patients and 3 female patients. Three of the patients with burn injuries were children. Burn sizes ranged from 1% to 99% of the total body surface area (mean, 18.1%). Two of the patients died. The hospital stay ranged from 1 day to 45 days. Twenty-six injuries involved gasoline, which is frequently associated with refueling accidents. Safety measures should involve keeping children away from lawn mowers that are being used. The proper use and storage of gasoline is stressed.

  3. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  4. Experiments on the breakup of drop-impact crowns by Marangoni holes

    KAUST Repository

    Aljedaani, Abdulrahman Barakat

    2018-04-04

    We investigate experimentally the breakup of the Edgerton crown due to Marangoni instability when a highly viscous drop impacts on a thin film of lower-viscosity liquid, which also has different surface tension than the drop liquid. The presence of this low-viscosity film modifies the boundary condition, giving effective slip to the drop along the solid substrate. This allows the high-viscosity drop to form a regular bowl-shaped crown, which rises vertically away from the solid and subsequently breaks up through the formation of a multitude of Marangoni holes. Previous experiments have proposed that the breakup of the crown results from a spray of fine droplets ejected from the thin low-viscosity film on the solid, e.g. Thoroddsen et al. (J. Fluid Mech., vol. 557, 2006, pp. 63–72). These droplets can hit the inner side of the crown forming spots with lower surface tension, which drives a thinning patch leading to the hole formation. We test the validity of this assumption with close-up imaging to identify individual spray droplets, to show how they hit the crown and their lower surface tension drive the hole formation. The experiments indicate that every Marangoni-driven patch/hole is promoted by the impact of such a microdroplet. Surprisingly, in experiments with pools of higher surface tension, we also see hole formation. Here the Marangoni stress changes direction and the hole formation looks qualitatively different, with holes and ruptures forming in a repeatable fashion at the centre of each spray droplet impact. Impacts onto films of the same liquid, or onto an immiscible liquid, do not in general form holes. We furthermore characterize the effects of drop viscosity and substrate-film thickness on the overall evolution of the crown. We also measure the three characteristic velocities associated with the hole formation: i.e. the Marangoni-driven growth of the thinning patches, the rupture speed of the resulting thin films inside these patches and finally the

  5. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  6. Knowledge of childhood burn risks and burn first aid: Cool Runnings.

    Science.gov (United States)

    Burgess, Jacqueline D; Watt, Kerrianne A; Kimble, Roy M; Cameron, Cate M

    2018-01-31

    The high incidence of hot beverage scalds among young children has not changed in the past 15 years, but preventive campaigns have been scarce. A novel approach was used to engage mothers of young children in an app-based hot beverage scald prevention campaign 'Cool Runnings'. This paper provides baseline data for this randomised controlled trial (RCT). Queensland-based mothers aged 18+ years with at least one child aged 5-12 months were recruited via social media to Cool Runnings, which is a two-group, parallel, single-blinded RCT. In total, 498 participants from across Queensland completed the baseline questionnaire. The most common source of burn first aid information was the internet (79%). One-third (33%) correctly identified hot beverage scalds as the leading cause of childhood burns, 43% knew the age group most at risk. While 94% reported they would cool a burn with water, only 10% reported the recommended 20min duration. After adjusting for all relevant variables, there were two independent predictors of adequate burn first aid knowledge: first aid training in the past year (OR=3.32; 95% CI 1.8 to 6.1) and smoking status (OR=0.17; 95% CI 0.04 to 0.7). In this study, mothers of young children were largely unaware how frequently hot beverage scalds occur and the age group most susceptible to them. Inadequate burn first aid knowledge is prevalent across mothers of young children; there is an urgent and compelling need to improve burn first aid knowledge in this group. Given the high incidence of hot beverages scalds in children aged 6-24 months, it is important to target future burn prevention/first aid campaigns at parents of young children. ACTRN12616000019404; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Burn-out

    OpenAIRE

    Patricia van Echtelt

    2014-01-01

    Deze publicatie is alleen elektronisch verkrijgbaar (downloaden van deze site) Burn-out (ofwel: emotionele uitputting) komt relatief vaak voor: ongeveer één op de acht werknemers in Nederland heeft er last van. Het wordt dan ook gezien als een serieus maatschappelijk probleem dat beleidsmatig aandacht vergt. Dit rapport presenteert de resultaten van twee specifieke analyses over burn-out. Ten eerste gaan we na wat het effect is van emotionele uitputting op de loopbaan van werknemers. Ten twee...

  8. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  9. Determination of plasma parameters from soft X-ray images for coronal holes /open magnetic field configurations/ and coronal large-scale structures /extended closed-field configurations/

    Science.gov (United States)

    Maxson, C. W.; Vaiana, G. S.

    1977-01-01

    In connection with high-quality solar soft X-ray images the 'quiet' features of the inner corona have been separated into two sharply different components, including the strongly reduced emission areas or coronal holes (CH) and the extended regions of looplike emission features or large-scale structures (LSS). Particular central meridian passage observations of the prominent CH1 on August 21, 1973, are selected for a quantitative study. Histogram photographic density distributions for full-disk images at other central meridian passages of CH 1 are also presented, and the techniques of converting low photographic density data to deposited energy are discussed, with particular emphasis on the problems associated with the CH data.

  10. Outpatient presentations to burn centers: data from the Burns Registry of Australia and New Zealand outpatient pilot project.

    Science.gov (United States)

    Gabbe, Belinda J; Watterson, Dina M; Singer, Yvonne; Darton, Anne

    2015-05-01

    Most studies about burn injury focus on admitted cases. To compare outpatient and inpatient presentations at burn centers in Australia to inform the establishment of a repository for outpatient burn injury. Data for sequential outpatient presentations were collected at seven burn centers in Australia between December 2010 and May 2011 and compared with inpatient admissions from these centers recorded by the Burns Registry of Australia and New Zealand for the corresponding period. There were 788 outpatient and 360 inpatient presentations. Pediatric outpatients included more children burns (39% vs 24%). Adult outpatients included fewer males (58% vs 73%) and intentional injuries (3.3% vs 10%), and more scald (46% vs 30%) and contact burns (24% vs 13%). All pediatric, and 98% of adult, outpatient presentations involved a %TBSAburns presenting to burn centers differed to inpatient admission data, particularly with respect to etiology and burn severity, highlighting the importance of the need for outpatient data to enhance burn injury surveillance and inform prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  11. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  12. Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gußmann, Alexander, E-mail: alexander.gussmann@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany)

    2016-12-15

    We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.

  13. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  14. Community integration after burn injuries.

    Science.gov (United States)

    Esselman, P C; Ptacek, J T; Kowalske, K; Cromes, G F; deLateur, B J; Engrav, L H

    2001-01-01

    Evaluation of community integration is a meaningful outcome criterion after major burn injury. The Community Integration Questionnaire (CIQ) was administered to 463 individuals with major burn injuries. The CIQ results in Total, Home Integration, Social Integration, and Productivity scores. The purposes of this study were to determine change in CIQ scores over time and what burn injury and demographic factors predict CIQ scores. The CIQ scores did not change significantly from 6 to 12 to 24 months postburn injury. Home integration scores were best predicted by sex and living situation; Social Integration scores by marital status; and Productivity scores by functional outcome, burn severity, age, and preburn work factors. The data demonstrate that individuals with burn injuries have significant difficulties with community integration due to burn and nonburn related factors. CIQ scores did not improve over time but improvement may have occurred before the initial 6-month postburn injury follow-up in this study.

  15. Burning and radiance properties of red phosphorus in Magnesium/PTFE/Viton (MTV)-based compositions

    Science.gov (United States)

    Li, Jie; Chen, Xian; Wang, Yanli; Shi, Yuanliang; Shang, Junteng

    2017-09-01

    Red phosphorus (RP) a highly efficient smoke-producing agent. In this study different contents of RP are added into the Magnesium/PTFE/Viton (MTV)-based composition, with the aim of investigating the influence of RP on the burning and radiance properties of MTV-based composition by using a high-temperature differential thermobalance method, a Fourier Transform Infrared (FTIR) remote-sensing spectrometer, a FTIR Spectrometer and a far-infrared thermal imager. The results show that RP improves the initial reaction temperature and reduces the mass burning rate by 0.1-0.17 g·s-1 (34-59%). The addition of RP has no obvious effect on the burning temperature and far-infrared radiation brightness, but the radiating area raises substantially (by 141%), and thus improves the radiation intensity (by 155%).

  16. Is there a threshold age and burn size associated with poor outcomes in the elderly after burn injury?

    Science.gov (United States)

    Jeschke, Marc G; Pinto, Ruxandra; Costford, Sheila R.; Amini-Nik, Saeid

    2016-01-01

    Elderly burn care represents a vast challenge. The elderly are one of the most susceptible populations to burn injuries, but also one of the fastest growing demographics, indicating a substantial increase in patient numbers in the near future. Despite the need and importance of elderly burn care, survival of elderly burn patients is poor. Additionally, little is known about the responses of elderly patients after burn. One central question that has not been answered is what age defines an elderly patient. The current study was conducted to determine whether there is a cut-off age for elderly burn patients that is correlated with an increased risk for mortality and to determine the burn size in modern burn care that is associated with increased mortality. To answer these questions, we applied appropriate statistical analyses to the Ross Tilley Burn Centre and the Inflammatory and Host Response to Injury databases. We could not find a clear cut-off age that differentiates or predicts between survival and death. Risk of death increased linearly with increasing age. Additionally, we found that the LD50 decreases from 45% total body surface area (TBSA) to 25% TBSA from the age of 55 years to the age of 70 years, indicating that even small burns lead to poor outcome in the elderly. We therefore concluded that age is not an ideal to predictor of burn outcome, but we strongly suggest that burn care providers be aware that if an elderly patient sustains even a 25% TBSA burn, the risk of mortality is 50% despite the implementation of modern protocolized burn care. PMID:26803373

  17. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  18. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  19. [Influence of three-level collaboration network of pediatric burns treatment in Anhui province on treatment effects of burn children].

    Science.gov (United States)

    Xia, Z G; Zhou, X L; Kong, W C; Li, X Z; Song, J H; Fang, L S; Hu, D L; Cai, C; Tang, Y Z; Yu, Y X; Wang, C H; Xu, Q L

    2018-03-20

    Objective: To explore the influence of three-level collaboration network of pediatric burns in Anhui province on treatment effects of burn children. Methods: The data of medical records of pediatric burn children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the First Affiliated Hospital of Anhui Medical University from January 2014 to December 2015 and January 2016 to September 2017 (before and after establishing three-level collaboration network of pediatric burns treatment) were analyzed: percentage of transferred burn children to hospitalized burn children in corresponding period, gender, age, burn degree, treatment method, treatment result, occurrence and treatment result of shock, and operative and non-operative treatment time and cost. Rehabilitation result of burn children transferred back to local hospitals in 2016 and 2017. Data were processed with t test, chi-square test, Mann-Whitney U test, and Fisher's exact test. Results: (1) Percentage of burn children transferred from January 2014 to December 2015 was 34.3% (291/848) of the total number of hospitalized burn children in the same period of time, which was close to 30.4% (210/691) of burn children transferred from January 2016 to September 2017 ( χ (2)=2.672, P >0.05). (2) Gender, age, burn degree, and treatment method of burn children transferred from the two periods of time were close ( χ (2)=3.382, Z =-1.917, -1.911, χ (2)=3.133, P >0.05). (3) Cure rates of children with mild, moderate, and severe burns transferred from January 2016 to September 2017 were significantly higher than those of burn children transferred from January 2014 to December 2015 ( χ (2)=11.777, 6.948, 4.310, P burns transferred from the two periods of time were close ( χ (2)=1.181, P >0.05). (4) Children with mild and moderate burns transferred from the two periods of time were with no shock. The incidence of shock of children with severe burns transferred from January 2014 to December 2015 was 6

  20. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  1. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  2. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    Science.gov (United States)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  3. A rare case of failed healing in previously burned skin after a secondary burns.

    Science.gov (United States)

    Goldie, Stephen J; Parsons, Shaun; Menezes, Hana; Ives, Andrew; Cleland, Heather

    2017-01-01

    Patients presenting with large surface area burns are common in our practice; however, patients with a secondary large burn on pre-existing burn scars and grafts are rare and not reported. We report on an unusual case of a patient sustaining a secondary large burn to areas previously injured by a burn from a different mechanism. We discuss the potential implications when managing a case like this and suggest potential biological reasons why the skin may behave differently. Our patient was a 33-year-old man who presented with a 5% TBSA burn on skin scarred by a previous 40% total body surface area (TBSA) burn and skin grafts. Initially assessed as superficial partial thickness in depth, the wounds were treated conservatively with dressings; however, they failed to heal and became infected requiring surgical management. Burns sustained in areas of previous burn scars and grafts may behave differently to normal patterns of healing, requiring more aggressive management and surgical intervention at an early stage.

  4. Evaluation of a Mathematical Model for Digital Image Enhancement.

    Science.gov (United States)

    Geha, Hassem; Nasseh, Ibrahim; Noujeim, Marcel

    2015-01-01

    The purpose of this study is to compare the detected number of holes on a stepwedge on images resulting from the application of the 5th degree polynomial model compared to the images resulting from the application of linear enhancement. Material and Methods : A 10-step aluminum step wedge with holes randomly drilled on each step was exposed with three different kVp and five exposure times per kVp on a Schick33(®) sensor. The images were enhanced by brightness/contrast adjustment, histogram equalization and with the 5th degree polynomial model and compared to the original non-enhanced images by six observers in two separate readings. Results : There was no significant difference between the readers and between the first and second reading. There was a significant three-factor interaction among Method, Exposure time, and kVp in detecting holes. The overall pattern was: "Poly" results in the highest counts, "Original" in the lowest counts, with "B/C" and "Equalized" intermediate. Conclusion : The 5th degree polynomial model showed more holes when compared to the other modalities.

  5. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  6. MAXIM: The Blackhole Imager

    Science.gov (United States)

    Gendreau, Keith; Cash, Webster; Gorenstein, Paul; Windt, David; Kaaret, Phil; Reynolds, Chris

    2004-01-01

    The Beyond Einstein Program in NASA's Office of Space Science Structure and Evolution of the Universe theme spells out the top level scientific requirements for a Black Hole Imager in its strategic plan. The MAXIM mission will provide better than one tenth of a microarcsecond imaging in the X-ray band in order to satisfy these requirements. We will overview the driving requirements to achieve these goals and ultimately resolve the event horizon of a supermassive black hole. We will present the current status of this effort that includes a study of a baseline design as well as two alternative approaches.

  7. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  8. The application of FORMOSAT-2 high-temporal- and high-spatial resolution imagery for monitoring open straw burning and carbon emission detection

    Directory of Open Access Journals (Sweden)

    C.-C. Liu

    2013-03-01

    Full Text Available Rice is produced in more than 95 countries worldwide and is a staple food for over half of the world's population. Rice is also a major food crop of Taiwan. There are numerous rice crops planted on the western plains of Taiwan, and, after the harvest season, the left-over straw is often burned on-site. The air pollutants from the burning emissions include CO2, CO, CH4 and other suspended particles, most of these being the greenhouse gases which cause global climate change. In this study FORMOSAT-2 satellite images and ground-truth data from 2008 and 2009 are used to conduct supervised classification and calculate the extent of the straw burning areas. It was found that 10% of the paddies in the study area were burned after harvest during this 2-yr period. On this pro rata basis, we calculated the overall carbon emissions from the burning of the straw. The findings showed that these few farmers produced up to 34 000 tons of carbon emissions in 2008, and 40 000 tons in 2009. The study results indicate that remotely sensed images can be used to efficiently evaluate the important characteristics for carbon emission detection. It also provides quantitative results that are relevant to tracking sources of transport pollution, postharvest burning, and Asian dust in Taiwan.

  9. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  10. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  11. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  12. TIGER Burned Brightly in JAMIC

    Science.gov (United States)

    Olson, Sandra L.; Kashiwagi, Takashi

    2001-01-01

    The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.

  13. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  14. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  15. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  16. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  17. Physical functional outcome assessment of patients with major burns admitted to a UK Burn Intensive Care Unit.

    Science.gov (United States)

    Smailes, Sarah T; Engelsman, Kayleen; Dziewulski, Peter

    2013-02-01

    Determining the discharge outcome of burn patients can be challenging and therefore a validated objective measure of functional independence would assist with this process. We developed the Functional Assessment for Burns (FAB) score to measure burn patients' functional independence. FAB scores were taken on discharge from ICU (FAB 1) and on discharge from inpatient burn care (FAB 2) in 56 patients meeting the American Burn Association criteria for major burn. We retrospectively analysed prospectively collected data to measure the progress of patients' physical functional outcomes and to evaluate the predictive validity of the FAB score for discharge outcome. Mean age was 38.6 years and median burn size 35%. Significant improvements were made in the physical functional outcomes between FAB 1 and FAB 2 scores (pburn patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. Genital burns in the national burn repository: incidence, etiology, and impact on morbidity and mortality.

    Science.gov (United States)

    Harpole, Bethany G; Wibbenmeyer, Lucy A; Erickson, Bradley A

    2014-02-01

    To better characterize national genital burns (GBs) characteristics using a large burn registry. We hypothesized that mortality and morbidity will be higher in patients with GBs. The National Burn Repository, a large North American registry of hospitalized burn patients, was queried for patients with GB. Burn characteristics and mechanism, demographics, mortality, and surgical interventions were retrieved. Outcomes of interest were mortality, hospital-acquired infection (HAI), and surgical intervention on the genitalia. Adjusted odds ratios (aOR) for outcomes were determined with binomial logistic regression controlling for age, total burn surface area, race, length of stay, gender, and inhalation injury presence. GBs were present in 1245 cases of 71,895 burns (1.7%). Patients with GB had significantly greater average total burn surface area, length of stay, and mortality. In patients with GB, surgery of the genitalia was infrequent (10.4%), with the aOR of receiving surgery higher among men (aOR 2.7, P burns (aOR 3.1, P <.002). Presence of a GB increased the odds of HAI (aOR 3.0, P <.0001) and urinary tract infections (aOR 3.4, P <.0001). GB was also an independent predictor of mortality (aOR 1.54) even after adjusting for the increased HAI risk. GBs are rare but associated with higher HAI rates and higher mortality after adjusting for well-established mortality risk factors. Although a cause and effect relationship cannot be established using these registry data, we believe this study suggests the need for special management considerations in GB cases to improve overall outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The Burns Registry of Australia and New Zealand: progressing the evidence base for burn care.

    Science.gov (United States)

    Cleland, Heather; Greenwood, John E; Wood, Fiona M; Read, David J; Wong She, Richard; Maitz, Peter; Castley, Andrew; Vandervord, John G; Simcock, Jeremy; Adams, Christopher D; Gabbe, Belinda J

    2016-03-21

    Analysis of data from the Burns Registry of Australia and New Zealand (BRANZ) to determine the extent of variation between participating units in treatment and in specific outcomes during the first 4 years of its operation. BRANZ, an initiative of the Australian and New Zealand Burn Association, is a clinical quality registry developed in accordance with the Australian Commission on Safety and Quality in Healthcare national operating principles. Patients with burn injury who fulfil pre-defined criteria are transferred to and managed in designated burn units. There are 17 adult and paediatric units in Australia and New Zealand that manage almost all patients with significant burn injury. Twelve of these units treat adult patients. Data on 7184 adult cases were contributed by ten acute adult burn units to the registry between July 2010 and June 2014.Major outcomes: In-hospital mortality, hospital length of stay, skin grafting rates, and rates of admission to intensive care units. Considerable variations in unit profiles (including numbers of patients treated), in treatment and in outcomes were identified. Despite the highly centralised delivery of care to patients with severe or complex burn injury, and the relatively small number of specialist burn units, we found significant variation between units in clinical management and in outcomes. BRANZ data from its first 4 years of operation support its feasibility and the value of further development of the registry. Based on these results, the focus of ongoing research is to improve understanding of the reasons for variations in practice and of their effect on outcomes for patients, and to develop evidence-informed clinical guidelines for burn management in Australia and New Zealand.

  20. Development of the life impact burn recovery evaluation (LIBRE) profile: assessing burn survivors' social participation.

    Science.gov (United States)

    Kazis, Lewis E; Marino, Molly; Ni, Pengsheng; Soley Bori, Marina; Amaya, Flor; Dore, Emily; Ryan, Colleen M; Schneider, Jeff C; Shie, Vivian; Acton, Amy; Jette, Alan M

    2017-10-01

    Measuring the impact burn injuries have on social participation is integral to understanding and improving survivors' quality of life, yet there are no existing instruments that comprehensively measure the social participation of burn survivors. This project aimed to develop the Life Impact Burn Recovery Evaluation Profile (LIBRE), a patient-reported multidimensional assessment for understanding the social participation after burn injuries. 192 questions representing multiple social participation areas were administered to a convenience sample of 601 burn survivors. Exploratory factor analysis and confirmatory factor analysis (CFA) were used to identify the underlying structure of the data. Using item response theory methods, a Graded Response Model was applied for each identified sub-domain. The resultant multidimensional LIBRE Profile can be administered via Computerized Adaptive Testing (CAT) or fixed short forms. The study sample included 54.7% women with a mean age of 44.6 (SD 15.9) years. The average time since burn injury was 15.4 years (0-74 years) and the average total body surface area burned was 40% (1-97%). The CFA indicated acceptable fit statistics (CFI range 0.913-0.977, TLI range 0.904-0.974, RMSEA range 0.06-0.096). The six unidimensional scales were named: relationships with family and friends, social interactions, social activities, work and employment, romantic relationships, and sexual relationships. The marginal reliability of the full item bank and CATs ranged from 0.84 to 0.93, with ceiling effects less than 15% for all scales. The LIBRE Profile is a promising new measure of social participation following a burn injury that enables burn survivors and their care providers to measure social participation.

  1. Accuracy of burn size estimation in patients transferred to adult Burn Units in Sydney, Australia: an audit of 698 patients.

    Science.gov (United States)

    Harish, Varun; Raymond, Andrew P; Issler, Andrea C; Lajevardi, Sepehr S; Chang, Ling-Yun; Maitz, Peter K M; Kennedy, Peter

    2015-02-01

    The purpose of this study was to compare burn size estimation between referring centres and Burn Units in adult patients transferred to Burn Units in Sydney, Australia. A review of all adults transferred to Burn Units in Sydney, Australia between January 2009 and August 2013 was performed. The TBSA estimated by the referring institution was compared with the TBSA measured at the Burns Unit. There were 698 adults transferred to a Burns Unit. Equivalent TBSA estimation between the referring hospital and Burns Unit occurred in 30% of patients. Overestimation occurred at a ratio exceeding 3:1 with respect to underestimation, with the difference between the referring institutions and Burns Unit estimation being statistically significant (Pburn-injured patients as well as in patients transferred more than 48h after the burn (Pburn (Pburns (≥20% TBSA) were found to have more satisfactory burn size estimations compared with less severe injuries (burn size assessment by referring centres. The systemic tendency for overestimation occurs throughout the entire TBSA spectrum, and persists with increasing time after the burn. Underestimation occurs less frequently but rises with increasing time after the burn and with increasing TBSA. Severe burns (≥20% TBSA) are more accurately estimated by the referring hospital. The inaccuracies in burn size assessment have the potential to result in suboptimal treatment and inappropriate referral to specialised Burn Units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  2. Assessing variability and long-term trends in burned area by merging multiple satellite fire products

    Directory of Open Access Journals (Sweden)

    L. Giglio

    2010-03-01

    Full Text Available Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001–2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM Visible and Infrared Scanner (VIRS and the Along-Track Scanning Radiometer (ATSR allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997–2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3 estimates of trace gas and aerosol emissions.

  3. Burns in sub-Saharan Africa: A review.

    Science.gov (United States)

    Nthumba, Peter M

    2016-03-01

    Burns are important preventable causes of morbidity and mortality, with a disproportionate incidence in sub-Saharan Africa. The management of these injuries in sub-Saharan Africa is a challenge because of multiple other competing problems such as infectious diseases (HIV/AIDS, tuberculosis and malaria), terrorist acts and political instability. There is little investment in preventive measures, pre-hospital, in-hospital and post-discharge care of burns, resulting in high numbers of burns, high morbidity and mortality. Lack of data that can be used in legislation and policy formulation is a major hindrance in highlighting the problem of burns in this sub-region. An online search of publications on burns from sub-Saharan countries was performed. A total of 54 publications with 32,862 patients from 14 countries qualified for inclusion in the study. The average age was 15.3 years. Children aged 10 years and below represented over 80% of the burn patient population. Males constituted 55% of those who suffered burns. Scalds were the commonest cause of thermal injuries, accounting for 59% of all burns, while flame burns accounted for 33%. The burn mortality averaged 17%, or the death of one of every five burn victims. These statistics indicate the need for an urgent review of burn policies and related legislation across the sub-Saharan region to help reduce burns, and provide a safe environment for children. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  4. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  5. Management of post burn hand deformities

    Directory of Open Access Journals (Sweden)

    Sabapathy S

    2010-10-01

    Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.

  6. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  7. Burn-center quality improvement: are burn outcomes dependent on admitting facilities and is there a volume-outcome "sweet-spot"?

    Science.gov (United States)

    Hranjec, Tjasa; Turrentine, Florence E; Stukenborg, George; Young, Jeffrey S; Sawyer, Robert G; Calland, James F

    2012-05-01

    Risk factors of mortality in burn patients such as inhalation injury, patient age, and percent of total body surface area (%TBSA) burned have been identified in previous publications. However, little is known about the variability of mortality outcomes between burn centers and whether the admitting facilities or facility volumes can be recognized as predictors of mortality. De-identified data from 87,665 acute burn observations obtained from the National Burn Repository between 2003 and 2007 were used to estimate a multivariable logistic regression model that could predict patient mortality with reference to the admitting burn facility/facility volume, adjusted for differences in age, inhalation injury, %TBSA burned, and an additional factor, percent full thickness burn (%FTB). As previously reported, all three covariates (%TBSA burned, inhalation injury, and age) were found to be highly statistically significant risk factors of mortality in burn patients (P value improve the multivariable model. The treatment/admitting facility was found to be an independent mortality predictor, with certain hospitals having increased odds of death and others showing a protective effect (decreased odds ratio). Hospitals with high burn volumes had the highest risk of mortality. Mortality outcomes of patients with similar risk factors (%TBSA burned, inhalation injury, age, and %FTB) are significantly affected by the treating facility and their admission volumes.

  8. PIV measurements in the near wakes of hollow cylinders with holes

    Science.gov (United States)

    Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin

    2017-05-01

    The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.

  9. Burn-related peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  10. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  11. Creating a social work link to the burn community: a research team goes to burn camp.

    Science.gov (United States)

    Williams, Nancy R; Reeves, Patricia M; Cox, Ellen R; Call, Serena B

    2004-01-01

    Social work faculty and graduate students conducted focus groups with 52 burn-injured adolescents from three burn camps to explore perceptions of their camp experience. Three themes emerged from data analysis that suggest burn camps play an important role in participants' lives. Camp is a place where burn-injured adolescents: (1) feel "normal" and accepted; (2) acquire insight in regard to self and meaning in life; and (3) gain confidence, increase self-esteem, and develop empathy. This project highlights how the use of qualitative research methods with grassroots organizations such as burn camps can serve as a link to greater social work involvement with this community.

  12. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  13. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    Science.gov (United States)

    Adams, Mitzi; Tennant, Allyn; Alexander, Caroline; Sterling, Alphonse; Moore, Ronald; Woolley, Robert

    2016-01-01

    We report on an eruption seen in a very small coronal hole (about 120 arcseconds across), beginning at approximately 19:00 Universal Time on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 angstroms, 304 angstroms, and 94 angstroms, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  14. Current concepts on burn wound conversion – a review of recent advances in understanding the secondary progressions of burns

    Science.gov (United States)

    Salibian, Ara A.; Del Rosario, Angelica Tan; De Almeida Moura Severo, Lucio; Nguyen, Long; Banyard, Derek A.; Toranto, Jason D.; Evans, Gregory R.D.; Widgerow, Alan D.

    2016-01-01

    Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies. PMID:26787127

  15. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  16. Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Directory of Open Access Journals (Sweden)

    Pape Sarah A

    2009-02-01

    Full Text Available Abstract Background Laser-Doppler imaging (LDI of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA, site and cause of burn, day of LDI scan, burn center. It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are

  17. [Burns care following a nuclear incident].

    Science.gov (United States)

    Bargues, L; Donat, N; Jault, P; Leclerc, T

    2010-09-30

    Radiation injuries are usually caused by radioactive isotopes in industry. Detonations of nuclear reactors, the use of military nuclear weapons, and terrorist attacks represent a risk of mass burn casualties. Ionizing radiation creates thermal burns, acute radiation syndrome with pancytopenia, and a delayed cutaneous syndrome. After a latency period, skin symptoms appear and the depth of tissue damages increase with dose exposure. The usual burn resuscitation protocols have to be applied. Care of these victims also requires assessment of the level of radiation, plus decontamination by an experienced team. In nuclear disasters, the priority is to optimize the available resources and reserve treatment to patients with the highest probability of survival. After localized nuclear injury, assessment of burn depth and surgical techniques of skin coverage are the main difficulties in a burn centre. Training in medical facilities and burn centres is necessary in the preparation for management of the different types of burn injuries.

  18. Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)

    International Nuclear Information System (INIS)

    Cavaglia, Marco

    2003-01-01

    If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature

  19. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  20. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    Science.gov (United States)

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect