WorldWideScience

Sample records for nonperturbative string theory

  1. Non-perturbative Nekrasov partition function from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I., E-mail: ignatios.antoniadis@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Florakis, I., E-mail: florakis@mppmu.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Hohenegger, S., E-mail: stefan.hohenegger@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Narain, K.S., E-mail: narain@ictp.trieste.it [High Energy Section, The Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11-34014 Trieste (Italy); Zein Assi, A., E-mail: zeinassi@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Centre de Physique Théorique (UMR CNRS 7644), Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-15

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T{sup 2} and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background.

  2. Non-perturbative String Theory from Water Waves

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  3. Non-perturbative Thermodynamics in Matrix String Theory

    CERN Document Server

    Peñalba, J P

    1999-01-01

    A study of the thermodynamics in IIA Matrix String Theory is presented. The free string limit is calculated and seen to exactly reproduce the usual result. When energies are enough to excite non-perturbative objects like D-particles and specially membranes, the situation changes because they add a large number of degrees of freedom that do not appear at low energies. There seems to be a negative specific heat (even in the Microcanonical Ensemble) that moves the asymptotic temperature to zero. Besides, the mechanism of interaction and attachment of open strings to D-particles and D-membranes is analyzed. A first approach to type IIB Matrix String is carried out: its spectrum is found in the (2+1)-SYM and used to calculate an SL(2,Z) invariant partition function.

  4. Topological string theory, modularity and non-perturbative physics

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marco

    2011-09-15

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in

  5. Complex curves and non-perturbative effects in c=1 string theory

    CERN Document Server

    Alexandrov, S

    2004-01-01

    We investigate a complex curve in the $c=1$ string theory which provides a geometric interpretation for different kinds of D-branes. The curve is constructed for a theory perturbed by a tachyon potential using its matrix model formulation. The perturbation removes the degeneracy of the non-perturbed curve and allows to identify its singularities with ZZ branes. Also, using the constructed curve, we find non-perturbative corrections to the free energy and elucidate their CFT origin.

  6. Time-dependent backgrounds of 2D string theory: Non-perturbative effects

    CERN Document Server

    Alexandrov, S Yu; Alexandrov, Sergei Yu.; Kostov, Ivan K.

    2005-01-01

    We study the non-perturbative corrections (NPC) to the partition function of a compactified 2D string theory in a time-dependent background generated by a tachyon source. The sine-Liouville deformation of the theory is a particular case of such a background. We calculate the leading as well as the subleading NPC using the dual description of the string theory as matrix quantum mechanics. As in the minimal string theories, the NPC are classified by the double points of a complex curve. We calculate them by two different methods: by solving Toda equation and by evaluating the quasiclassical fermion wave functions. We show that the result can be expressed in terms of correlation functions of the bosonic field associated with the tachyon source and identify the leading and the subleading corrections as the contributions from the one-point (disk) and two-point (annulus) correlation functions.

  7. Toward A Nonperturbative Topological String

    CERN Document Server

    Neitzke, A

    2005-01-01

    We discuss three examples of nonperturbative phenomena in the topological string. First, we consider the computation of amplitudes in N = 4 super Yang-Mills theory using the B model topological string as proposed by Witten. We give an argument suggesting that the computations using connected or disconnected D-instantons of the B model are in fact equivalent. Second, we formulate a conjecture that the squared modulus of the open topological string partition function can be defined nonperturbatively as the partition function of a mixed ensemble of BPS states in d = 4. This conjecture is an extension of a recent proposal for the closed topological string. In a particular example involving a non-compact Calabi- Yau threefold, we show that the conjecture passes some basic checks, and that the square of the open topological string amplitude has a natural interpretation in terms of 2-dimensional Yang-Mills theory, again generalizing known results for the closed string case. Third, we discuss an action for an abel...

  8. Non-Perturbative Effects in 2-D String Theory or Beyond the Liouville Wall

    CERN Document Server

    Brustein, Ram

    1997-01-01

    We discuss continuous and discrete sectors in the collective field theory of $d=1$ matrix models. A canonical Lorentz invariant field theory extension of collective field theory is presented and its classical solutions in Euclidean and Minkowski space are found. We show that the discrete, low density, sector of collective field theory includes single eigenvalue Euclidean instantons which tunnel between different vacua of the extended theory. We further show that these ``stringy" instantons induce non-perturbative effective operators of strength $e^{-{1\\over g}}$ in the extended theory. The relationship of the world sheet description of string theory and Liouville theory to the effective space-time theory is explained. We also comment on the role of the discrete, low density, sector of collective field theory in that framework.

  9. Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models

    CERN Document Server

    Pasquetti, Sara

    2010-01-01

    We address the nonperturbative structure of topological strings and c=1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern-Simons matrix models, together with their holographic duals, the c=1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonp...

  10. Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zheng [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.

  11. Non-perturbative black holes in Type-IIA String Theory vs. the No-Hair conjecture

    CERN Document Server

    Bueno, Pablo

    2013-01-01

    We obtain the first black hole solution to Type-IIA String Theory compactified on an arbitrary self-mirror Calabi Yau manifold in the presence of non-perturbative quantum corrections. Remarkably enough, the solution involves multivalued functions, which could lead to a violation of the No-Hair conjecture. We discuss how String Theory forbids such secenario. However the possibility still remains open in the context of four-dimensional ungauged Supergravity.

  12. Non-perturbative monodromies in N=2 heterotic string vacua

    CERN Document Server

    Lópes-Cardoso, G; Mohaupt, T; Cardoso, Gabriel Lopes; Lust, Dieter; Mohaupt, Thomas

    1995-01-01

    We address non-perturbative effects and duality symmetries in N=2 heterotic string theories in four dimensions. Specifically, we consider how each of the four lines of enhanced gauge symmetries in the perturbative moduli space of N=2 T_2 compactifications is split into 2 lines where monopoles and dyons become massless. This amounts to considering non-perturbative effects originating from enhanced gauge symmetries at the microscopic string level. We show that the perturbative and non-perturbative monodromies consistently lead to the results of Seiberg-Witten upon identication of a consistent truncation procedure from local to rigid N=2 supersymmetry.

  13. Perturbative String Theories

    CERN Document Server

    Ooguri, H; Ooguri, Hirosi; Yin, Zheng

    1996-01-01

    These lecture notes are based on a course on string theories given by Hirosi Ooguri in the first week of TASI 96 Summer School at Boulder, Colorado. It is an introductory course designed to provide students with minimum knowledge before they attend more advanced courses on non-perturbative aspects of string theories in the School. The course consists of five lectures: 1. Bosonic String, 2. Toroidal Compactifications, 3. Superstrings, 4. Heterotic Strings, and 5. Orbifold Compactifications.

  14. Non-perturbative effects and the refined topological string

    CERN Document Server

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-01-01

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P1xP1, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  15. Non-perturbative effects and the refined topological string

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  16. Non-Perturbative Topological Strings And Conformal Blocks

    CERN Document Server

    Cheng, Miranda C N; Vafa, Cumrun

    2010-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.

  17. Non-perturbative topological strings and conformal blocks

    Science.gov (United States)

    Cheng, Miranda C. N.; Dijkgraaf, Robbert; Vafa, Cumrun

    2011-09-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.

  18. Nonperturbative corrections to 4D string theory effective actions from SL(2,Z) duality and supersymmetry.

    Science.gov (United States)

    Robles-Llana, Daniel; Rocek, Martin; Saueressig, Frank; Theis, Ulrich; Vandoren, Stefan

    2007-05-25

    We find the D(-1)- and D1-brane instanton contributions to the hypermultiplet moduli space of type IIB string compactifications on Calabi-Yau threefolds. These combine with known perturbative and world sheet instanton corrections into a single modular invariant function that determines the hypermultiplet low-energy effective action.

  19. Some exact results in four-dimensional non-perturbative string theory

    NARCIS (Netherlands)

    Robles-Llana, D.; Rocek, M.; Saueressig, Frank; Theis, U.; Vandoren, S.

    2007-01-01

    We find the D(−1) and D1-brane instanton contributions to the hypermultiplet moduli space of type IIB string compactifications on Calabi–Yau threefolds. These combine with known perturbative and worldsheet instanton corrections into a single modular invariant function that determines the hypermultip

  20. Instantons in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, DE-14476 Potsdam (Germany)

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  1. String theory

    OpenAIRE

    Marino Beiras, Marcos

    2001-01-01

    We give an overview of the relations between matrix models and string theory, focusing on topological string theory and the Dijkgraaf--Vafa correspondence. We discuss applications of this correspondence and its generalizations to supersymmetric gauge theory, enumerative geometry and mirror symmetry. We also present a brief overview of matrix quantum mechanical models in superstring theory.

  2. Geometric transition in Non-perturbative Topological string

    CERN Document Server

    Sugimoto, Yuji

    2016-01-01

    We study a geometric transition in non-perturbative topological string. We consider two cases. One is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the closed topological string on the resolved conifold. The other is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the open topological string on the resolved conifold with a toric A-brane. We find that, in both cases, the geometric transition can be applied for the non-perturbative topological string. We also find the corrections of the value of K\\"ahler parameters at which the geometric transition occurs.

  3. Supersymmetry and String Theory

    Science.gov (United States)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.

  4. Holomorphic couplings in non-perturbative string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis Marco

    2011-06-15

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)

  5. Why string theory?

    CERN Document Server

    Conlon, Joseph

    2016-01-01

    Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.

  6. Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2

    CERN Document Server

    Couso-Santamaría, Ricardo; Schiappa, Ricardo; Vonk, Marcel

    2015-01-01

    The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local CP2 toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by Z_3 symmetry, alongside another action related to the Kahler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomal...

  7. String theory for dummies

    CERN Document Server

    Zimmerman Jones, Andrew

    2010-01-01

    Making Everything Easier!. String Theory for Dummies. Learn:. The basic concepts of this controversial theory;. How string theory builds on physics concepts;. The different viewpoints in the field;. String theory's physical implications. Andrew Zimmerman Jones. Physics Guide, About.com. with Daniel Robbins, PhD in Physics. Your plain-English guide to this complex scientific theory. String theory is one of the most complicated sciences being explored today. Not to worry though! This informative guide clearly explains the basics of this hot topic, discusses the theory's hypotheses and prediction

  8. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  9. String Theory, Unification and Quantum Gravity

    CERN Document Server

    Stelle, K S

    2012-01-01

    An overview is given of the way in which the unification program of particle physics has evolved into the proposal of superstring theory as a prime candidate for unifying quantum gravity with the other forces and particles of nature. A key concern with quantum gravity has been the problem of ultraviolet divergences, which is naturally solved in string theory by replacing particles with spatially extended states as the fundamental excitations. String theory turns out, however, to contain many more extended-object states than just strings. Combining all this into an integrated picture, called M-theory, requires recognition of the r\\^ole played by a web of nonperturbative duality symmetries suggested by the nonlinear structures of the field-theoretic supergravity limits of string theory.

  10. Exact Quantization Conditions, Toric Calabi-Yau and Nonperturbative Topological String

    CERN Document Server

    Sun, Kaiwen; Huang, Min-xin

    2016-01-01

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Marino conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus $g$, the NS quantization scheme leads to $g$ quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant $\\hbar$ and can be derived from the Lockhart-Vafa partition function of nonperturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Marino, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least $g$ nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact ...

  11. Universality and string theory

    Science.gov (United States)

    Bachlechner, Thomas Christian

    The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.

  12. Non-Perturbative Theory of Dispersion Interactions

    CERN Document Server

    Boström, M; Persson, C; Parsons, D F; Buhmann, S Y; Brevik, I; Sernelius, Bo E

    2015-01-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  13. Matrix string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    Via compactification on a circle, the matrix mode] of M-theory proposed by Banks et a]. suggests a concrete identification between the large N limit of two-dimensional N = 8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  14. Matrix string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, Universtity of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

    1997-09-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al. suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states. (orig.).

  15. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  16. String Theory Rocks!

    CERN Multimedia

    2008-01-01

    String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.

  17. Birth of String Theory

    CERN Document Server

    Itoyama, H

    2016-01-01

    This is a brief summary of an introductory lecture for students and scholars in general given by the author at Nambu Memorial Symposium which was held at Osaka City University on September 29, 2015. We review the invention of string theory by Professor Yoichiro Nambu following the discovery of the Veneziano amplitude. We also discuss Professor Nambu's proposal on string theory in the Schild gauge in 1976 which is related to the matrix model of Yang-Mills type.

  18. String theory meets QCD

    CERN Document Server

    Evans, N

    2003-01-01

    String theory began life in the late 1960s as an attempt to understand the properties of nuclear matter such as protons and neutrons. Although it was not successful it has since developed a life of its own as a possible theory of everything - with the potential to incorporate quantum gravity as well as the other forces of nature. However, in a remarkable about face in the last five years, it has now been discovered that string theory and the standard theory of nuclear matter - QCD - might in fact describe the same physics. This is an exciting development that was the centre of discussion at a major workshop in Seattle in February. After spending 30 years as a possible theory of everything, string theory is returning to its roots to describe the interactions of quarks and gluons. (U.K.)

  19. Effective String Theory Simplified

    CERN Document Server

    Hellerman, Simeon; Maltz, Jonathan; Swanson, Ian

    2014-01-01

    In this set of notes we simplify the formulation of the Poincar\\'e invariant effective string theory in D dimensions by adding an intrinsic metric and embedding its dynamics into the Polyakov formalism. We apply this formalism to classify operators order by order in the inverse physical length of the string, in a fully gauge-invariant framework. We use this classification to discuss universality and nonuniversalty of observables up to and including next-to-next-to-leading order in the long string expansion.

  20. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  1. Interacting Strings in Matrix String Theory

    OpenAIRE

    Bonelli, G.

    1998-01-01

    It is here explained how the Green-Schwarz superstring theory arises from Matrix String Theory. This is obtained as the strong YM-coupling limit of the theory expanded around its BPS instantonic configurations, via the identification of the interacting string diagram with the spectral curve of the relevant configuration. Both the GS action and the perturbative weight $g_s^{-\\chi}$, where $\\chi$ is the Euler characteristic of the world-sheet surface and $g_s$ the string coupling, are obtained.

  2. Non-perturbative equivalences among large Nc gauge theories with adjoint and bifundamental matter fields

    Science.gov (United States)

    Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.

    2003-12-01

    We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.

  3. Towards Nonperturbation Theory of Emergent Gravity

    CERN Document Server

    Kar, Supriya

    2016-01-01

    We investigate an emergent gravity in $(4+1)$ dimensions underlying a geometric torsion ${\\cal H}_3$ in $1.5$ order formulation. We show that an emergent pair-symmetric $4$th order curvature tensor underlying a NS field theory governs a torsion free geometry and is identified as the Riemann type tensor. Interestingly a pair anti-symmetric $4$th order tensor is shown to incorporate a dynamical correction underlying a ${\\cal H}_3$ gauge potential and is identified with a non-perturbative correction. The non-perturbative term in the emergent action is shown to be described by a $U(1)$ gauge invariant ${\\cal F}_4$ in a second order theory underlying an onshell ${\\cal H}_3$ in a first order. A complete emergent theory is elegantly described with an axion, and hence a quintessence, coupling to the Riemann type geometries. The curvatures are appropriately worked out to obtain a $12D$ emergent $F$ theory. Further investigation reveals that a pair of $(M{\\bar M})_{10}$-brane are created across an event horizon. We obt...

  4. International conference on string theory

    CERN Document Server

    2016-01-01

    The Strings conference is an annual event that brings the entire string theory community together. Since the 1980s, it has grown to be the largest and most important conference in the field. The aim is to review recent developments in string theory and to stimulate scientific exchanges among the participants. This is the second Strings conference organised in Beijing, after Strings 2006. Following the tradition, besides scientific talks, the conference will also include some public lectures open to a general audience.

  5. Supercritical N = 2 string theory

    CERN Document Server

    Hellerman, Simeon

    2007-01-01

    The N=2 string is examined in dimensions above the critical dimension (D=4) in a linear dilaton background. We demonstrate that string states in this background propagate in a single physical time dimension, as opposed to two such dimensions present when the dilaton gradient vanishes in D=4. We also find exact solutions describing dynamical dimensional reduction and transitions from N=2 string theory to bosonic string theory via closed-string tachyon condensation.

  6. Closed String Amplitudes from Gauge Fixed String Field Theory

    OpenAIRE

    Drukker, Nadav

    2002-01-01

    Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.

  7. Closed String Amplitudes from Gauge Fixed String Field Theory

    OpenAIRE

    Drukker, Nadav

    2002-01-01

    Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.

  8. A Nonperturbative Regulator for Chiral Gauge Theories

    CERN Document Server

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  9. The Birth of String Theory

    Science.gov (United States)

    Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-04-01

    Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in

  10. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  11. Nonperturbative aspects of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Schleifenbaum, Wolfgang

    2008-07-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  12. Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string

    Science.gov (United States)

    Sun, Kaiwen; Wang, Xin; Huang, Min-xin

    2017-01-01

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant h and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved C^3/Z_5 orbifold and several SU( N ) geometries. We also give a proof for some models at ħ = 2π /k.

  13. Baby universes in string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun

    2006-03-01

    We argue that the holographic description of four-dimensional Bogomol’nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS2×S2 but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e-N) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawking wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.

  14. Baby Universes in String Theory

    CERN Document Server

    Dijkgraaf, R; Ooguri, H; Vafa, C; Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun

    2005-01-01

    We argue that the holographic description of four-dimensional BPS black holes naturally includes multi-center solutions. This suggests that the holographic dual to the gauge theory is not a single AdS_2 times S^2 but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e^{-N}) non-perturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave-function of the multi-center black holes gets mapped to the Hartle-Hawking wave-function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.

  15. F-theory duals of nonperturbative heterotic E$_{8}$ x E$_{8}$ vacua in six dimensions

    CERN Document Server

    Candelas, Philip; Rajesh, G; Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan

    1997-01-01

    We present a systematic way of generating F-theory models dual to nonperturbative vacua of heterotic E8xE8 strings compactified on K3, using hypersurfaces in toric varieties. We find a distinction between models with point-like instantons and models with extra tensor multiplets, which is clearly visible in the dual polyhedra of the corresponding Calabi-Yau threefolds on the F-theory side. We conjecture that the point-like instantons signal the appearance of nonperturbative gauge groups in the heterotic models, independent of the distribution of instantons or the presence of tensor multiplets.

  16. Inflationary string theory?

    Indian Academy of Sciences (India)

    C P Burgess

    2004-12-01

    The inflationary paradigm provides a robust description of the peculiar initial conditions which are required for the success of the hot Big Bang model of cosmology, as well as of the recent precision measurements of temperature fluctuations within the cosmic microwave background. Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it has (so far) proven to be a hunt for a fairly elusive quarry. This article summarizes some of the recent efforts along these lines, and draws some speculative conclusions as to what the difficulty in finding inflation might mean.

  17. Sequestering in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-04-04

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.

  18. Bethe/Gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings

    Science.gov (United States)

    Sciarappa, Antonio

    2016-10-01

    Bethe/Gauge correspondence as it is usually stated is ill-defined in five dimensions and needs a "non-perturbative" completion; a related problem also appears in three dimensions. It has been suggested that this problem, probably due to incompleteness of Omega background regularization in odd dimension, may be solved if we consider gauge theory on compact S 5 and S 3 geometries. We will develop this idea further by giving a full Bethe/Gauge correspondence dictionary on S 5 and S 3 focussing mainly on the eigenfunctions of (open and closed) relativistic 2-particle Toda chain and its quantized spectral curve: these are most properly written in terms of non-perturbatively completed NS open topological strings. A key ingredient is Faddeev's modular double structure which is naturally implemented by the S 5 and S 3 geometries.

  19. Bethe/Gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings

    CERN Document Server

    Sciarappa, Antonio

    2016-01-01

    Bethe/Gauge correspondence as it is usually stated is ill-defined in five dimensions and needs a "non-perturbative" completion; a related problem also appears in three dimensions. It has been suggested that this problem, probably due to incompleteness of Omega background regularization in odd dimension, may be solved if we consider gauge theory on compact $S^5$ and $S^3$ geometries. We will develop this idea further by giving a full Bethe/Gauge correspondence dictionary on $S^5$ and $S^3$ focussing mainly on the eigenfunctions of (open and closed) relativistic 2-particle Toda chain and its quantized spectral curve: these are most properly written in terms of non-perturbatively completed NS open topological strings. A key ingredient is Faddeev's modular double structure which is naturally implemented by the $S^5$ and $S^3$ geometries.

  20. Exploring String Theory Backgrounds

    CERN Document Server

    Williams, B P

    2004-01-01

    This thesis examines phenomenological and theoretical questions by exploring string theoretic backgrounds. Part I focuses on cosmology. First we propose that the induced metric along a brane moving through a curved bulk may be interpreted as the cosmology of the brane universe, providing a resolution to the apparent cosmological singularity on the brane. We then look at various decay channels of the certain meta-stable de Sitter vacua and show that there exist NS5-brane meditated decays which are much faster than decays to decompactification. Part II discusses a new class of nongeometric vacua in string theory. These backgrounds may be described locally as T2 fibrations. By enlarging the monodromy group of the fiber to include perturbative stringy duality symmetries we are able to explicitly construct nongeometric backgrounds.

  1. Axions in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  2. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  3. Comments on Exact Quantization Conditions and Non-Perturbative Topological Strings

    CERN Document Server

    Hatsuda, Yasuyuki

    2015-01-01

    We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.

  4. Nonperturbative studies of quantum field theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Volkholz, J.

    2007-11-16

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted

  5. Nonperturbative Solution of Yukawa Theory and Gauge Theories

    Science.gov (United States)

    Hiller, John R.

    2004-11-01

    Recent progress in the nonperturbative solution of (3+1)-dimensional Yukawa theory and quantum electrodynamics (QED) and (1+1)-dimensional super Yang-Mills (SYM) theory will be summarized. The work on Yukawa theory has been extended to include two-boson contributions to the dressed fermion state and has inspired similar work on QED, where Feynman gauge has been found surprisingly convenient. In both cases, the theories are regulated in the ultraviolet by the inclusion of Pauli-Villars particles. For SYM theory, new high-resolution calculations of spectra have been used to obtain thermodynamic functions and improved results for a stress-energy correlator.

  6. Light-like tachyon condensation in Open String Field Theory

    CERN Document Server

    Hellerman, Simeon

    2008-01-01

    We use open string field theory to study the dynamics of unstable branes in the bosonic string theory, in the background of a generic linear dilaton. We find a simple exact solution describing a dynamical interpolation between the perturbative vacuum and the recently discovered nonperturbative tachyon vacuum. In our solution, the open string tachyon increases exponentially along a null direction, after which nonlinearities set in and cause the solution to asymptote to a static state. In particular, the wild oscillations of the open string fields which plague the time-like rolling tachyon solution are entirely absent. Our model thus represents the first example proving that the true tachyon vacuum of open string field theory can be realized as the endpoint of a dynamical transition from the perturbative vacuum.

  7. D-branes and Non-Perturbative Quantum Field Theory: Stringy Instantons and Strongly Coupled Spintronics

    CERN Document Server

    Musso, Daniele

    2012-01-01

    The non-perturbative dynamics of quantum field theories is studied using theoretical tools inspired by string formalism. Two main lines are developed: the analysis of stringy instantons in a class of four-dimensional N=2 gauge theories and the holographic study of the minimal model for a strongly coupled unbalanced superconductor. The field theory instanton calculus admits a natural and efficient description in terms of D-brane models. In addition, the string viewpoint offers the possibility of generalizing the ordinary instanton configurations. Even though such generalized, or stringy, instantons would be absent in a purely field-theoretical, low-energy treatment, we demonstrate that they do alter the IR effective description of the brane dynamics by introducing contributions related to the string scale. In the first part of this thesis we compute explicitly the stringy instanton corrections to the effective prepotential in a class of quiver gauge theories. In the second part of the thesis, we present a deta...

  8. Testing string theory at LHC?

    CERN Document Server

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  9. Soft theorems from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Di Vecchia, Paolo [The Niels Bohr Institute, University of Copenhagen (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Complesso Universitario di Monte S. Angelo, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden)

    2016-04-15

    Soft behaviour of closed string amplitudes involving dilatons, gravitons and anti-symmetric tensors, is studied in the framework of bosonic string theory. The leading double soft limit of gluons is analysed as well, starting from scattering amplitudes computed in the open bosonic string. Field theory expressions are then obtained by sending the string tension to infinity. The presented results have been derived in the papers of Ref [1]. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Academic Training: String Theory

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 6, 7, 8, 9 and 10 June from 11.00 to 12.00 hrs - Auditorium, bldg. 500 on 6, 7, 8 & 10 June, TH Auditorium, bldg. 4, 3rd floor on 9 June String Theory by C. Johnson / Univ. of Southern California, USA ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

  11. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  12. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert;

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...

  13. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...

  14. Basic Concepts of String Theory

    CERN Document Server

    Blumenhagen, Ralph; Theisen, Stefan

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  15. Basic concepts of string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Luest, Dieter [Muenchen Univ. (Germany). Arnold-Sommerfeld Zentrum fuer Theoretische Physik; Theisen, Stefan [Albert-Einstein-Institut (Max-Planck Institut fuer Gravitationsphysik), Golm (Germany)

    2013-07-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  16. Postmodern string theory stochastic formulation

    CERN Document Server

    Aurilia, A

    1994-01-01

    In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or ...

  17. Nonassociative gravity in string theory?

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, R [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Plauschinn, E, E-mail: ralph.blumenhagen@mpp.mpg.d, E-mail: e.plauschinn@uu.n [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)

    2011-01-07

    In an on-shell conformal field theory approach, we find indications of a three-bracket structure for target space coordinates in general closed string backgrounds. This generalizes the appearance of noncommutative gauge theories for open strings in two-form backgrounds to a putative noncommutative/nonassociative gravity theory for closed strings probing curved backgrounds with non-vanishing three-form flux. Several aspects and consequences of the three-bracket structure are discussed and a new type of generalized uncertainty principle is proposed.

  18. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  19. Nonperturbative type IIB model building in the F-theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Jurke, Benjamin Helmut Friedrich

    2011-02-28

    This dissertation is concerned with the topic of non-perturbative string theory, which is generally considered to be the most promising approach to a consistent description of quantum gravity. The five known 10-dimensional perturbative string theories are all interconnected by numerous dualities, such that an underlying non-perturbative 11-dimensional theory, called M-theory, is postulated. Due to several technical obstacles, little is known about the fundamental objects in this theory. There exists an alternative non-perturbative description to type IIB string theory, namely F-theory. Here the SL(2;Z) self-duality of IIB theory is geometrized in the form of an elliptic fibration over the space-time. Moreover, higher-dimensional objects like 7-branes are included via singularities into the geometric picture. This formally elegant description, however, requires significant technical effort for the construction of suitable compactification geometries, as many different aspects necessarily have to be dealt with at the same time. On the other hand, the generation of essential GUT building blocks like certain Yukawa couplings or spinor representations is easier compared to perturbative string theory. The goal of this study is therefore to formulate a unified theory within the framework of F-theory, that satisfies basic phenomenological constraints. Within this thesis, at first E3-brane instantons in type IIB string theory - 4-dimensional objects that are entirely wrapped around the invisible dimensions of space-time - are matched with M5-branes in F-theory. Such objects are of great importance in the generation of critical Yukawa couplings or the stabilization of the free parameters of a theory. Certain properties of M5-branes then allow to derive a new criterion for E3-branes to contribute to the superpotential. In the aftermath of this analysis, several compactification geometries are constructed and checked for basic properties that are relevant for semi

  20. Tachyon Condensation In String Field Theory

    CERN Document Server

    Möller, N

    2003-01-01

    In this thesis, we present some results that strongly support Sen's conjectures on tachyon condensation on a bosonic D-brane. Our main tool of analysis is level truncated open bosonic string field theory. We use level truncation to check that the energy difference between the local maximum and the local minimum of the open bosonic tachyon effective potential is equal to the tension of a space-filling D-brane (Sen's first conjecture). Our results prove this equality within a precision of about 0.1%. We then construct lump solutions of open bosonic string field theory, which are conjectured by Sen (third conjecture) to be D-branes of lower dimensions. We check that indeed the tensions of lumps of codimension one and two, coincide with the tensions of the respective D- branes within a precision of a few percent. We also give evidence for Sen's second conjecture; that in the nonperturbative tachyon vacuum all open string degrees of freedom must disappear. We show that this is guaranteed if we can write the identi...

  1. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  2. Gauge Mediation in String Theory

    OpenAIRE

    Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka

    2007-01-01

    We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.

  3. Charting the landscape of supercritical string theory.

    Science.gov (United States)

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  4. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday

    2003-07-10

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  5. Tachyon - Dilaton driven Inflation as an alpha' - non-perturbative solution in First Quantized String Cosmology

    CERN Document Server

    Kostouki, Anna

    2009-01-01

    Applying a novel non-perturbative functional method framework to a two-dimensional bosonic sigma model with tachyon, dilaton and graviton backgrounds we construct exact (non perturbative in the Regge slope) inflationary solutions, consistent with world-sheet Weyl Invariance. The mechanism for inflation entails a (partial) "alignment" between tachyon and dilaton backgrounds in the solution space. Some cosmological solutions which contain inflationary eras for a short period and interpolate between flat universes in the far past and far future are also discussed. These solutions are characterized by the absence of cosmological horizons, and therefore have well-defined scattering amplitudes. This makes them compatible with a perturbative string framework, and therefore it is these solutions that we consider as self-consistent in our approach. Within the context of the interpolating solutions, string production at the end of inflation (preheating) may also be studied. The advantage of our method is that the solut...

  6. Dynamical String Tension in String Theory with Spacetime Weyl Invariance

    CERN Document Server

    Bars, Itzhak; Turok, Neil

    2014-01-01

    The fundamental string length, which is an essential part of string theory, explicitly breaks scale invariance. However, in field theory we demonstrated recently that the gravitational constant, which is directly related to the string length, can be promoted to a dynamical field if the standard model coupled to gravity (SM+GR) is lifted to a locally scale (Weyl) invariant theory. The higher gauge symmetry reveals previously unknown field patches whose inclusion turn the classically conformally invariant SM+GR into a geodesically complete theory with new cosmological and possibly further physical consequences. In this paper this concept is extended to string theory by showing how it can be Weyl lifted with a local scale symmetry acting on target space background fields. In this process the string tension (fundamental string length) is promoted to a dynamical field, in agreement with the parallel developments in field theory. We then propose a string theory in a geodesically complete cosmological stringy backgr...

  7. Pre-String Theory

    CERN Document Server

    Frampton, Paul H

    2015-01-01

    In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2105.

  8. Arithmetic and Hyperbolic Structures in String Theory

    CERN Document Server

    Persson, Daniel

    2010-01-01

    This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arit...

  9. Ghost Structure and Closed Strings in Vacuum String Field Theory

    CERN Document Server

    Gaiotto, D; Sen, A; Zwiebach, B; Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton

    2001-01-01

    We complete the construction of vacuum string field theory by proposing a canonical choice of ghost kinetic term -- a local insertion of the ghost field at the string midpoint with an infinite normalization. This choice, supported by level expansion studies in the Siegel gauge, allows a simple analytic treatment of the ghost sector of the string field equations. As a result, solutions are just projectors, such as the sliver, of an auxiliary CFT built by combining the matter part with a twisted version of the ghost conformal theory. Level expansion experiments lead to surprising new projectors -- butterfly surface states, whose analytical expressions are obtained. With the help of a suitable open-closed string vertex we define open-string gauge invariant operators parametrized by on-shell closed string states. We use regulated vacuum string field theory to sketch how pure closed string amplitudes on surfaces without boundaries arise as correlators of such gauge invariant operators.

  10. Tadpole Resummations in String Theory

    CERN Document Server

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in "wrong" vacua. In this letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from ...

  11. Calabi-Yau compactification of type II string theories

    CERN Document Server

    Banerjee, Sibasish

    2016-01-01

    Superstring theories are the most promising theories for unified description of all fundamental interactions including gravity. However, these theories are formulated consistently only in 10 spacetime dimensions. Therefore, to connect to the observable world, it is required to compactify 6 out of those 10 dimensions in a suitable fashion. In this thesis, we mainly consider compactifications of type II string theories on Calabi-Yau threefolds. As a consequence, the resulting four dimensional theories preserve $\\mathcal{N}=2$ supersymmetry. In these cases the metrics on the moduli spaces of the matter multiplets, vector and hypermultiplets, completely determine the low energy theories. Whereas the former are very well understood by now, the complete description of hypermultiplets is more complicated. In fact, hypermultiplets receive both perturbative and non-perturbative corrections. The thesis mainly pertains to the understanding of the non-perturbative corrections. Our findings for the hypermultiplets rely on...

  12. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...

  13. Planckian Axions in String Theory

    OpenAIRE

    Bachlechner, Thomas; Long, Cody; McAllister, Liam

    2014-01-01

    We argue that super-Planckian diameters of axion fundamental domains can naturally arise in Calabi-Yau compactifications of string theory. In a theory with $N$ axions $\\theta^i$, the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form $-\\piN$ constraints, while for $P=N$ the diameter is further enhanced by eigenvector delocalization to $N^{3/2}f_N$. We directly verify our results in explicit Calabi-Yau compactifications of type IIB string t...

  14. Combinatorics, observables, and String Theory

    CERN Document Server

    Gregori, Andrea

    2011-01-01

    We investigate the most general phase space of configurations, consisting of all possible ways of assigning elementary attributes, ``energies'', to elementary positions, ``cells''. We discuss how this space possesses structures that can be approximated by a quantum-relativistic physical scenario. In particular, we discuss how the Heisenberg's Uncertainty Principle and a universe with a three-dimensional space arise, and what kind of mechanics rules it. String Theory shows up as a complete representation of this structure in terms of time-dependent fields and particles. Within this context, owing to the uniqueness of the underlying mathematical structure it represents, one can also prove the uniqueness of string theory.

  15. Bell's Inequalities, Superquantum Correlations, and String Theory

    Directory of Open Access Journals (Sweden)

    Lay Nam Chang

    2011-01-01

    We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.

  16. Nonperturbative Yukawa theory at finite density and temperature

    CERN Document Server

    Fraga, Eduardo S; Pinto, Marcus Benghi

    2009-01-01

    In-medium Yukawa theory is part of the thermodynamics of the Standard Model of particle physics and is one of the main building blocks of most effective field theories of fermionic systems. By computing its pressure we investigate the nonperturbative thermodynamics at finite temperature and density using the optimized perturbation theory (OPT) framework. Our calculations are valid for arbitrary fermion and scalar masses, temperature, chemical potential, and not restricted to weak coupling. The model is considered in the presence as well as in the absence of condensates. Comparison with nonperturbative results shows that second order perturbation theory (PT) fails in the first case but performs rather well when condensates are absent, even at high-temperature regimes.

  17. On Science, pseudoscience and String theory

    CERN Document Server

    Chaudhuri, Asis Kumar

    2016-01-01

    The article discusses the demarcation problem; how to distinguish between science and pseudoscience. It then examines the string theory under various demarcation criteria to conclude that string theory cannot be considered as science.

  18. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  19. String theory in the bathtub

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The presence of the surrounding medium makes their dynamics dramatically different from those of ordinary string-like objects propagating in empty space, leading to quite peculiar phenomena, observed in experiments and simulations. I will argue that the effective theory provides an optimal theoretical framework to understand such phenomena, and to make precise quantitative predictions about them.

  20. Localized gravity in string theory.

    Science.gov (United States)

    Karch, A; Randall, L

    2001-08-06

    We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.

  1. Backgrounds in Boundary String Field Theory

    CERN Document Server

    Baumgartl, M

    2009-01-01

    We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.

  2. Covariant Calculus for Effective String Theories

    OpenAIRE

    Dass, N. D. Hari; Matlock, Peter

    2007-01-01

    A covariant calculus for the construction of effective string theories is developed. Effective string theory, describing quantum string-like excitations in arbitrary dimension, has in the past been constructed using the principles of conformal field theory, but not in a systematic way. Using the freedom of choice of field definition, a particular field definition is made in a systematic way to allow an explicit construction of effective string theories with manifest exact conformal symmetry. ...

  3. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  4. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  5. [Mathematics and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, A.; Yau, Shing-Tung.

    1993-01-01

    Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.

  6. String theory in target space

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Hansen, Tobias [II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, D- 22761 Hamburg (Germany)

    2014-06-10

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  7. String theory in target space

    CERN Document Server

    Boels, Rutger H

    2014-01-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincare invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main condition...

  8. String theory in target space

    Science.gov (United States)

    Boels, Rutger H.; Hansen, Tobias

    2014-06-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  9. String theory to the rescue

    CERN Document Server

    Polchinski, Joseph

    2015-01-01

    The search for a theory of quantum gravity faces two great challenges: the incredibly small scales of the Planck length and time, and the possibility that the observed constants of nature are in part the result of random processes. A priori, one might have expected these to be insuperable obstacles. However, clues from observed physics, and the discovery of string theory, raise the hope that the unification of quantum mechanics and general relativity is within reach.

  10. Charting the landscape of supercritical string theory

    CERN Document Server

    Hellerman, Simeon

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions (via dimension quenching) and different amounts of worldsheet supersymmetry (via c-duality). These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions, and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c-duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories. We describe some of these networks in detail and discuss general consistency constraints on the types of transitions that arise in this framework.

  11. Nonperturbative Results for Yang-Mills Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco; Schechter, Joseph

    2010-01-01

    of the coupling constant, g. First it is noted, using dimensional analysis, that physical quantities behave smoothly as one travels from one side of the pole to the other. Then it is argued that the form of the integrated beta function g(μ), where μ is the mass scale, determines the mass gap of the theory...

  12. Toric Geometry and String Theory

    CERN Document Server

    Bouchard, Vincent

    2006-01-01

    In this thesis we probe various interactions between toric geometry and string theory. First, the notion of a top was introduced by Candelas and Font as a useful tool to investigate string dualities. These objects torically encode the local geometry of a degeneration of an elliptic fibration. We classify all tops and give a prescription for assigning an affine, possibly twisted Kac-Moody algebra to any such top. Tops related to twisted Kac-Moody algebras can be used to construct string compactifications with reduced rank of the gauge group. Secondly, we compute all loop closed and open topological string amplitudes on orientifolds of toric Calabi-Yau threefolds, by using geometric transitions involving SO/Sp Chern-Simons theory, localization on the moduli space of holomorphic maps with involution, and the topological vertex. In particular, we count Klein bottles and projective planes with any number of handles in some Calabi-Yau orientifolds. We determine the BPS structure of the amplitudes, and illustrate ou...

  13. Exact Thresholds and Instanton Effects in String Theory

    CERN Document Server

    Obers, N A

    2001-01-01

    In this lecture we summarize some recent work on the understanding of instanton effects in string theories with 16 supersymmetries. In particular, we consider F^4 couplings using the duality between the heterotic string on T^4 and type IIA on K_3 at an orbifold point, as well as higher and lower dimensional versions of this string-string duality. At the perturbative level a non-trivial test of the duality, requiring several miraculous identities, is presented by matching a purely one-loop heterotic amplitude to a purely tree-level type II result. A wide variety of non-perturbative effects is shown to occur in this setting, including D-brane instantons for type IIA on K_3 x S^1 and NS5-brane instantons for type IIA on K_3 x T^2. Moreover, the analysis of the three-dimensional case, which possesses a non-perturbative SO(8,24,Z) U-duality, reveals the presence of Kaluza-Klein 5-brane instanton effects, both on the heterotic and the type II side.

  14. String Field Theory Solution for Any Open String Background

    CERN Document Server

    Erler, Theodore

    2014-01-01

    We present an exact solution of open bosonic string field theory which can be used to describe any time-independent open string background. The solution generalizes an earlier construction of Kiermaier, Okawa, and Soler, and assumes the existence of boundary condition changing operators with nonsingular OPEs and vanishing conformal dimension. Our main observation is that boundary condition changing operators of this kind can describe nearly any open string background provided the background shift is accompanied by a timelike Wilson line of sufficient strength. As an application we analyze the tachyon lump describing the formation of a D$(p-1)$-brane in the string field theory of a D$p$-brane, for generic compactification radius. This not only provides a proof of Sen's second conjecture, but also gives explicit examples of higher energy solutions, confirming analytically that string field theory can "reverse" the direction of the worldsheet RG flow. We also find multiple D-brane solutions, demonstrating that s...

  15. String Theory and Unification

    CERN Document Server

    Frampton, Paul H

    2004-01-01

    The use of the AdS/CFT correspondence to arrive at quiver gauge field theories is discussed. An abelian orbifold with the finite group $Z_{p}$ can give rise to a nonsupersymmetric $G = U(N)^p$ gauge theory with chiral fermions and complex scalars in different bi-fundamental representations of $G$. The precision measurements at the $Z$ resonance suggest the values $p = 12$ and $N = 3$, and a unifications scale $M_U \\sim 4$ TeV. Dedicated to the 65th birthday of Pran Nath.

  16. Supersymmetry Constraints and String Theory on K3

    CERN Document Server

    Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi

    2015-01-01

    We study supervertices in six dimensional (2,0) supergravity theories, and derive supersymmetry non-renormalization conditions on the 4- and 6-derivative four-point couplings of tensor multiplets. As an application, we obtain exact non-perturbative results of such effective couplings in type IIB string theory compactified on K3 surface, extending previous work on type II/heterotic duality. The weak coupling limit thereof, in particular, gives certain integrated four-point functions of half-BPS operators in the nonlinear sigma model on K3 surface, that depend nontrivially on the moduli, and capture worldsheet instanton contributions.

  17. Statistical Inference and String Theory

    CERN Document Server

    Heckman, Jonathan J

    2013-01-01

    In this note we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a non-linear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring com...

  18. Introduction to bosonic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)

  19. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Sumit R Das

    2007-07-01

    In general relativity space-like or null singularities are common: they imply that `time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches.

  20. Hyperconifold transitions, mirror symmetry, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rhys, E-mail: daviesr@maths.ox.ac.uk [Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB (United Kingdom)

    2011-09-01

    Multiply-connected Calabi-Yau threefolds are of particular interest for both string theorists and mathematicians. Recently it was pointed out that one of the generic degenerations of these spaces (occurring at codimension one in moduli space) is an isolated singularity which is a finite cyclic quotient of the conifold; these were called hyperconifolds. It was also shown that if the order of the quotient group is even, such singular varieties have projective crepant resolutions, which are therefore smooth Calabi-Yau manifolds. The resulting topological transitions were called hyperconifold transitions, and change the fundamental group as well as the Hodge numbers. Here Batyrev's construction of Calabi-Yau hypersurfaces in toric fourfolds is used to demonstrate that certain compact examples containing the remaining hyperconifolds - the Z{sub 3} and Z{sub 5} cases - also have Calabi-Yau resolutions. The mirrors of the resulting transitions are studied and it is found, surprisingly, that they are ordinary conifold transitions. These are the first examples of conifold transitions with mirrors which are more exotic extremal transitions. The new hyperconifold transitions are also used to construct a small number of new Calabi-Yau manifolds, with small Hodge numbers and fundamental group Z{sub 3} or Z{sub 5}. Finally, it is demonstrated that a hyperconifold is a physically sensible background in Type IIB string theory. In analogy to the conifold case, non-perturbative dynamics smooth the physical moduli space, such that hyperconifold transitions correspond to non-singular processes in the full theory.

  1. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  2. String theory as a Lilliputian world

    Science.gov (United States)

    Ambjørn, J.; Makeenko, Y.

    2016-05-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  3. String theory as a Lilliputian world

    CERN Document Server

    Ambjorn, Jan

    2016-01-01

    Lattice regularizations of the bosonic string allow no tachyons. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  4. String theory as a Lilliputian world

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    2016-05-01

    Full Text Available Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  5. Nonperturbative theory of exciton-phonon resonances in semiconductor absorption

    Science.gov (United States)

    Hannewald, K.; Bobbert, P. A.

    2005-09-01

    We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and usefulness of our approach with respect to practical applications for semiconductors is demonstrated.

  6. String Theory at LHC Using Top Quarks From String Balls

    CERN Document Server

    Nayak, Gouranga C

    2009-01-01

    According to string theory, string ball is a highly excited long string which decays to standard model particles at the Hagedorn temperature with thermal spectrum. If there are extra dimensions, the string scale can be ~TeV, and we should produce string balls at CERN LHC. In this paper we study top quark production from string balls at LHC and compare with the parton fusion results at NNLO using pQCD. We find significant top quark production from string balls at LHC which is comparable to standard model NNLO results. We also find that d\\sigma/dp_T of top quarks from string balls does not decrease significantly with increase in p_T, whereas it deceases sharply in case of standard model NNLO scenario. Hence, in the absence of black hole production at LHC, an enhancement in top quark cross section and its abnormal p_T distribution can be a signature of TeV scale string physics at LHC.

  7. An overview of progress in string theory

    Indian Academy of Sciences (India)

    Jnanadeva Maharana

    2000-04-01

    There has been many interesting developments in string theory in last couple of years. The purpose of this article is to present a brief account of the progress made in string theory. The two invited talks by S R Das and S Mukhi in this volume contain more detailed accounts of our understanding of black hole physics and the intimate connections between string theory and gauge theories.

  8. String Theory: Big Problem for Small Size

    Science.gov (United States)

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  9. String Theory: Big Problem for Small Size

    Science.gov (United States)

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  10. Bit-string scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  11. Inflation from string field theory

    CERN Document Server

    Koshelev, Alexey S; Moniz, Paulo Vargas

    2016-01-01

    In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.

  12. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  13. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  14. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  15. Introduction to the relativistic string theory

    CERN Document Server

    Barbashov, B M

    1990-01-01

    This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the "cosmic" strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), th

  16. Advances in Inflation in String Theory

    CERN Document Server

    Baumann, Daniel

    2009-01-01

    We provide a pedagogical overview of inflation in string theory. Our theme is the sensitivity of inflation to Planck-scale physics, which we argue provides both the primary motivation and the central theoretical challenge for the subject. We illustrate these issues through two case studies of inflationary scenarios in string theory: warped D-brane inflation and axion monodromy inflation. Finally, we indicate how future observations can test scenarios of inflation in string theory.

  17. Split Supersymmetry in String Theory

    CERN Document Server

    Antoniadis, Ignatios

    2006-01-01

    Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  18. Accidental Inflation in String Theory

    CERN Document Server

    Linde, Andrei

    2007-01-01

    We show that inflation in type IIB string theory driven by the volume modulus can be realized in the context of the racetrack-based Kallosh-Linde model (KL) of moduli stabilization. Inflation here arises through the volume modulus slow-rolling down from a flat hill-top or inflection point of the scalar potential. This situation can be quite generic in the landscape, where by uplifting one of the two adjacent minima one can turn the barrier either to a flat saddle point or to an inflection point supporting eternal inflation. The resulting spectral index is tunable in the range of 0.93 - phi or not.

  19. Planckian Axions in String Theory

    CERN Document Server

    Bachlechner, Thomas C; McAllister, Liam

    2014-01-01

    We argue that super-Planckian diameters of axion fundamental domains can naturally arise in Calabi-Yau compactifications of string theory. In a theory with $N$ axions $\\theta^i$, the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form $-\\pi\\sqrt{N}$. This result is robust in the presence of $P>N$ constraints, while for $P=N$ the diameter is further enhanced by eigenvector delocalization to $N^{3/2}f_N$. We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with $h^{1,1}=51$ where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys $f_N \\approx 0.013 M_{pl}$. The random matrix analysis then predicts, and we exhibit, axion diameters $>M_{pl}$ for the precise vacuum parameters found in [1]. Our results provide a framework for achieving large-field axion inflation in well-understood flux vacua.

  20. Planckian axions in string theory

    Science.gov (United States)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2015-12-01

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form - π √{N} . This result is robust in the presence of P > N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys f N ≈ 0.013 M pl. The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [1]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  1. A novel string field theory solving string theory by liberating left and right movers

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Holger B. [Niels Bohr Institute, University of Copenhagen,17 Belgdamsvej, DK 2100 (Denmark); Ninomiya, Masao [Okayama Institute for Quantum Physics,Kyoyama 1-9-1 Kita-ku, Okayama-city 700-0015 (Japan)

    2014-05-08

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X{sub L}{sup μ}(τ+σ) and X{sub R}{sup μ}(τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model.

  2. String Theory as a Higher Spin Theory

    CERN Document Server

    Gaberdiel, Matthias R

    2015-01-01

    The symmetries of string theory on ${\\rm AdS}_3 \\times {\\rm S}^3 \\times \\mathbb{T}^4$ at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called `minimal' representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.

  3. Hagedorn Behavior of Little String Theories

    CERN Document Server

    Harmark, T

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals.

  4. A Novel String Field Theory Solving String Theory by Liberating Left and Right Mover

    CERN Document Server

    Nielsen, Holger B

    2012-01-01

    We put forward ideas to a novel string field theory based on making some "objects" that essentially describe "liberated" left- and right- mover fields $X^{\\mu}_{L}(\\tau + \\sigma)$ and $X^{\\mu}_{R}(\\tau - \\sigma)$ on the string. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. An interesting detail is that we have to dispense of a species doubler caused by the discretization we introduced in our string field theory of the string right- and left- mover variables. We finally suggest how to obtain the Veneziano amplitude in our model.

  5. Lifshitz solutions in supergravity and string theory

    CERN Document Server

    Gregory, Ruth; Tasinato, Gianmassimo; Zavala, Ivonne

    2010-01-01

    We derive Lifshitz configurations in string theory for general dynamical exponents z \\geq 1. We begin by obtaining simple Li x Omega solutions to supergravities in diverse dimensions, with Omega a compact constant curvature manifold. Then we uplift the solutions to ten dimensions, providing configurations that correspond to warped compactifications in Type II string theory.

  6. Perturbation theory and nonperturbative effects: A happy marriage ?

    Science.gov (United States)

    Chýla, J.

    1992-03-01

    Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.

  7. Planckian axions in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-12-09

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ{sup i}, the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −π√N. This result is robust in the presence of P>N constraints, while for P=N the diameter is further enhanced by eigenvector delocalization to N{sup 3/2}f{sub N}. We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h{sup 1,1}=51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1, the largest metric eigenvalue obeys f{sub N}≈0.013M{sub pl}. The random matrix analysis then predicts, and we exhibit, axion diameters ≈M{sub pl} for the precise vacuum parameters found in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  8. Integrable Models, SUSY Gauge Theories, and String Theory

    CERN Document Server

    Nam, S

    1996-01-01

    We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Vario us integrable models ranging from Toda lattices, Calogero models, spinning tops, and spin chains are re lated to the quantum moduli space of vacua of N=2 SUSY gauge theories. In particular, SU(3) gauge t heories with two flavors of massless quarks in the fundamental representation can be related to the spec tral curve of the Goryachev-Chaplygin top, which is a Nahm's equation in disguise. This can be generaliz ed to the cases with massive quarks, and N_f = 0,1,2, where a system with seven dimensional phas e space has the relevant hyperelliptic curve appear in the Painlevé test. To understand the stringy o rigin of the integrability of these theories we obtain exact nonperturbative point particle limit of ty pe II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of SU(2) QCD w ith N_f =1 hypermultiplet.

  9. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  10. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  11. Big Numbers in String Theory

    CERN Document Server

    Schellekens, A N

    2016-01-01

    This paper contains some personal reflections on several computational contributions to what is now known as the "String Theory Landscape". It consists of two parts. The first part concerns the origin of big numbers, and especially the number $10^{1500}$ that appeared in work on the covariant lattice construction (with W. Lerche and D. Luest). This part contains some new results. I correct a huge but inconsequential error, discuss some more accurate estimates, and compare with the counting for free fermion constructions. In particular I prove that the latter only provide an exponentially small fraction of all even self-dual lattices for large lattice dimensions. The second part of the paper concerns dealing with big numbers, and contains some lessons learned from various vacuum scanning projects.

  12. Advances in String Theory in Curved Backgrounds A Synthesis Report

    CERN Document Server

    Sánchez, N G

    2003-01-01

    A synthetic report of the advances in the study of classical and quantum string dynamics in curved backgrounds is provided, namely: the new feature of multistring solutions; the effect of a cosmological constant and of spacial curvature on classical and quantum strings; classical splitting of fundamental strings;the general string evolution in constant curvature spacetimes;the conformal invariant effects;strings on plane waves, shock waves and spacetime singularities and its spectrum. New developments in string gravity and string cosmology are reported: string driven cosmology and its predictions;the primordial gravitation wave background; non-singular string cosmologies from exact conformal field theories;QFT, string temperature and the string phase of de Sitter space; the string phase of black holes;new dual relation between QFT regimes and string regimes and the 'QFT/String Tango'; new coherent string states and minimal uncertainty principle in string theory

  13. Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.

    Science.gov (United States)

    Cherman, Aleksey; Dorigoni, Daniele; Dunne, Gerald V; Ünsal, Mithat

    2014-01-17

    We explain the physical role of nonperturbative saddle points of path integrals in theories without instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM). Standard topological arguments based on homotopy considerations suggest no role for nonperturbative saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative physics, predicts the existence of several types of nonperturbative saddles associated with features of the large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new nonperturbative "fracton" saddle point field configurations, and suggest a quantum interpretation of previously discovered "uniton" unstable classical solutions. The fractons lead to a semiclassical realization of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap of the PCM.

  14. Integrable Structure in SUSY Gauge Theories, and String Duality

    CERN Document Server

    Nam, S

    1996-01-01

    There is a close relation between duality in $N=2$ SUSY gauge theories and integrable models. In particular, the quantum moduli space of vacua of $N=2$ SUSY $SU(3)$ gauge theories coupled to two flavors of massless quarks in the fundamental representation can be related to the spectral curve of the Goryachev-Chaplygin top. Generalizing this to the cases with {\\it massive} quarks, and $N_f = 0,1,2$, we find a corresponding integrable system in seven dimensional phase space where a hyperelliptic curve appears in the Painlevé test. To understand the stringy origin of the integrability of these theories we obtain exact nonperturbative point particle limit of type II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of $SU(2)$ QCD with $N_f =1$ hypermultiplet.

  15. On Dimer Models and Closed String Theories

    OpenAIRE

    Sarkar, Tapobrata

    2007-01-01

    We study some aspects of the recently discovered connection between dimer models and D-brane gauge theories. We argue that dimer models are also naturally related to closed string theories on non compact orbifolds of $\\BC^2$ and $\\BC^3$, via their twisted sector R charges, and show that perfect matchings in dimer models correspond to twisted sector states in the closed string theory. We also use this formalism to study the combinatorics of some unstable orbifolds of $\\BC^2$.

  16. The (Super)String Theories' Problems

    CERN Document Server

    Naboulsi, R

    2003-01-01

    (Super)String theories are theoretical ideas that go beyond the standard model of particle and high energy physics and show promise for unifying all forces in nature including the gravitational one. In this unification a prominent role is played by the duality symmetries which relate different theories. I present a review of these developements and discuss their problems and possible impact in low-energy physics. We explain and discuss some ideas concerning string field theories from noncommutative geometry.

  17. Goedel universe from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shou-Long; Wei, Hao [Beijing Institute of Technology, School of Physics, Beijing (China); Feng, Xing-Hui; Lue, H. [Beijing Normal University, Department of Physics, Center for Advanced Quantum Studies, Beijing (China)

    2017-05-15

    The Goedel universe is a direct product of a line and a three-dimensional spacetime we call G{sub α}. In this paper, we show that the Goedel metrics can arise as exact solutions in Einstein-Maxwell-Axion, Einstein-Proca-Axion, or Freedman-Schwarz gauged supergravity theories. The last option allows us to embed the Goedel universe in string theory. The ten-dimensional spacetime is a direct product of a line and the nine-dimensional one of an S{sup 3} x S{sup 3} bundle over G{sub α}, and it can be interpreted as some decoupling limit of the rotating D1/D5/D5 intersection. For some appropriate parameter choice, the nine-dimensional metric becomes an AdS{sub 3} x S{sup 3} bundle over squashed 3-sphere. We also study the properties of the Goedel black holes that are constructed from the double Wick rotations of the Goedel metrics. (orig.)

  18. Academic Training: String Theory for Pedestrians

    CERN Multimedia

    2007-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 29, 30, 31 January 2007, from 11:00 to 12:00 Main Auditorium, bldg. 500 on 29 and 30 January, TH Auditorium, Bldg 4, 3-006, on 31 January String Theory for Pedestrians B. ZWIEBACH, MIT, Cambridge, USA In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future. I will begin with the main concepts of the classical theory and the application to the study of cosmic superstrings. Then I will turn to the quantum theory and discuss applications to the investigation of hadronic spectra and the recently discovered quark-gluon plasma. I will conclude with a sketch of string models of particle physics and showing some avenues that may lead to a complete formulation of string theory.

  19. Applications Of Nonclassical Geometry To String Theory

    CERN Document Server

    Zunger, Y

    2003-01-01

    String theory is built on a foundation of geometry. This thesis examines several applications of geometry beyond the classical Riemannian geometry of curved surfaces. The first part considers the use of extended spaces with internal dimensions to each point (“twistors”) to probe systems with a great deal of symmetry but complicated dynamics. These systems are of critical interest in understanding holographic phenomena in string theory and the origins of entropy. We develop a twistor formulation of coset spaces and use this to write simplified actions for particles and strings on anti-de Sitter space, which are easier to quantize than the ordinary (highly nonlinear) actions. In the second part, we consider two aspects of noncommutative geometry, a generalization of ordinary geometry where points are “fuzzed out” and functions of space become noncommuting operators. We first examine strings with one endpoint on a D-brane in a background magnetic field. (Strings with both ...

  20. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  1. String Theory of the Regge Intercept

    CERN Document Server

    Hellerman, Simeon

    2013-01-01

    Using the Polchinski-Strominger effective string theory in covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order $J^0$ contribution to the mass-squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in $D\\geq 5$, the order $J^0$ term in the mass-squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincare invariance and the absence of other infinite-range excitations on the string worldvolume, beyond the Nambu-Goldstone bosons.

  2. On Supersymmetry Breaking in String Theory and its Realization in Brane Worlds

    CERN Document Server

    Mayr, Peter

    2001-01-01

    We use string duality to describe instanton induced spontaneous supersymmetry breaking in string compactifications with additional background fields. Dynamical supersymmetry breaking by space-time instantons in the heterotic string theory is mapped to a tree level breaking in the type II string which can be explicitly calculated by geometric methods. It is argued that the instanton corrections resurrect the no-go theorem on partial supersymmetry breaking. The point particle limit describes the non-perturbative scalar potential of a SYM theory localized on a hypersurface of space-time. The N=0 vacuum displays condensation of magnetic monopoles and confinement. The supersymmetry breaking scale is determined by $M_{str}$, which can be in the TeV range, and the geometry transverse to the gauge theory.

  3. Natural Quintessence in String Theory

    CERN Document Server

    Cicoli, Michele; Tasinato, Gianmassimo

    2012-01-01

    We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than- Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass)^4, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppre...

  4. The Unraveling of String Theory

    Institute of Scientific and Technical Information of China (English)

    Michael; D.Lemonick; 李海龙

    2006-01-01

    自上世纪七八十年代产生以来,玄理论(string theory)一直被视为能够融合相对论和量子理论(例如前者认为宇宙是不可分割的连续体,后者认为宇宙由非连续的微粒构成)的首选,是物理学最热门的理念。现在,由于日趋复杂且缺乏有力的证据,这一理论的有效性和可验证性开始受到越来越多专家的质疑。新近出版的两本著作更是将玄理论比做“皇帝的新装”;而玄理论要走出困境唯有依靠实证检验。我们期待着玄理论能够早日得到验证。

  5. Introduction to string and superstring theory II

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  6. Professor Nambu, String Theory and Moonshine Phenomenon

    CERN Document Server

    Eguchi, Tohru

    2016-01-01

    I first recall the last occasion of meeting the late Professor Yoichiro Nambu in a hospital in Osaka. I then present a brief introduction to the moonshine phenomenon in string theory which is under recent investigations.

  7. Supersymmetric black holes in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, T. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL (United Kingdom)

    2007-05-15

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation with the topological string, mainly from the supergravity perspective. We summarize the state of art and discuss various open questions and problems. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Nonperturbative theory of weak pre- and post-selected measurements

    CERN Document Server

    Kofman, Abraham G; Nori, Franco

    2011-01-01

    This paper starts with a review of the topic of strong and weak pre- and post-selected (PPS) measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov-Albert-Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the mea...

  9. Topological String Theory Revisited I: The Stage

    CERN Document Server

    Jia, Bei

    2016-01-01

    In these expository notes we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten for superstring perturbation theory in arXiv:1209.5461. We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.

  10. Modern String Theory and Particle Physics

    OpenAIRE

    Cvetic, M.

    2015-01-01

    String theory, as the prime candidate for quantum unification of particle physics and gravity, sheds light on important fundamental questions such as the microscopic structure of black holes and the geometric origin of particle physics. We review these developments such as the introduction of extended objects - Dirichlet branes - and highlight the important geometric role of these objects in deriving particle physics from string theory. We also highlight recent progress made in deriving partic...

  11. String theory and the scientific method

    CERN Document Server

    Dawid, Richard

    2013-01-01

    String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.

  12. Black Holes in Supergravity with Applications to String Theory

    CERN Document Server

    Shahbazi, C S

    2013-01-01

    This thesis is devoted to the study of black hole solutions in ungauged four-dimensional extended Supergravity. We characterize the most general spherically symmetric and static black-hole solution of ungauged Supergravity, and use the result to study the hidden conformal symmetries of Supergravity black holes, obtaining the full Virasoro algebra of the dual conformal field theory. We obtain also all the supersymmetric black-hole metrics of all extended Supergravities using the properties of the groups of Type E7. We introduce the H-F.G.K. formalism, which simplifies the construction of non-supersymmetric black-hole solutions in N=2 Supergravity, and apply it to a class of theories corresponding to Type-IIA String Theory compactified on a Calabi-Yau threefold. As a result we obtain the so-called "quantum" black holes, which only exist when certain quantum corrections (perturbative or non-perturbative, depending on the solution) are included in the prepotential. For the case of non-perturbative black holes, we...

  13. On-shell recursion in string theory

    Science.gov (United States)

    Boels, Rutger H.; Marmiroli, Daniele; Obers, Niels A.

    2010-10-01

    We prove that all open string theory disc amplitudes in a flat background obey Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations, up to a possible reality condition on a kinematic invariant. Arguments that the same holds for tree level closed string amplitudes are given as well. Non-adjacent BCFW-shifts are related to adjacent shifts through monodromy relations for which we provide a novel CFT based derivation. All possible recursion relations are related by old-fashioned string duality. The field theory limit of the analysis for amplitudes involving gluons is explicitly shown to be smooth for both the bosonic string as well as the superstring. In addition to a proof a less rigorous but more powerful argument based on the underlying CFT is presented which suggests that the technique may extend to a much more general setting in string theory. This is illustrated by a discussion of the open string in a constant B-field background and the closed string on the level of the sphere.

  14. String theory and relativistic heavy ion collisions

    Science.gov (United States)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  15. Hadronic density of states from string theory.

    Science.gov (United States)

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  16. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    Science.gov (United States)

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  17. Strings, Conformal Field Theory And Noncommutative Geometry

    CERN Document Server

    Matsubara, K

    2004-01-01

    This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open s...

  18. Searching for a Connection Between Matroid Theory and String Theory

    CERN Document Server

    Nieto, J A

    2004-01-01

    We make a number of observations about matter-ghost string phase, which may eventually lead to a formal connection between matroid theory and string theory. In particular, in order to take advantage of the already established connection between matroid theory and Chern-Simons theory, we propose a generalization of string theory in terms of some kind of Kahler metric. We show that this generalization is closely related to the Kahler-Chern-Simons action due to Nair and Schiff. We also add new information about the relationship between matroid theory, D=11 supergravity and Chern-Simons formalism.

  19. String Theory, Cosmology And Brany Geometry

    CERN Document Server

    Pokotilov, A

    2005-01-01

    Motivated by cosmological applications in this thesis we describe several string theory based models of the early Universe. The major property of these models is that they lead to inflationary-like expansion for early times. The interaction properties of fundamental strings, leading to the velocity dependent potentials are used to describe this accelerating expansion rate. Other types of extended objects such as fivebranes dual to fundamental strings are shown to lead to the similar cosmological implications. Our findings are consistent with recent astronomical observations of an accelerated expansion of the Universe and predict an asymptotically constant late time expansion rate.

  20. The NMSSM and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Ramos-Sanchez, Saul

    2009-12-15

    We study the possibility of constructing the NMSSM from the heterotic string. String derived NMSSMs are much more rare than MSSMs due to the extra requirement that there exist a light singlet which couples to the Higgs pairs. They share the common feature that the singlet self-interactions are typically suppressed, leading to either the ''decoupling'' or to the Peccei-Quinn limit of the NMSSM. In the latter case, the spectrum contains a light pseudoscalar which may be relevant to the MSSM fine-tuning problem.We provide a Z{sub 6} heterotic orbifold example of the NMSSM with approximate Peccei-Quinn symmetry, whose origin lies in the string selection rules combined with our choice of the vacuum configuration. (orig.)

  1. Higher Gauge Theory with String 2-Groups

    CERN Document Server

    Demessie, Getachew Alemu

    2016-01-01

    We give a complete and explicit description of the kinematical data of higher gauge theory on principal 2-bundles with the string 2-group model of Schommer-Pries as structure 2-group. We start with a self-contained review of the weak 2-category Bibun of Lie groupoids, bibundles and bibundle morphisms. We then construct categories internal to Bibun, which allow us to define principal 2-bundles with 2-groups internal to Bibun as structure 2-groups. Using these, we Lie-differentiate the 2-group model of the string group and we obtain the well-known string Lie 2-algebra. Generalizing the differentiation process, we find Maurer-Cartan forms leading us to higher non-abelian Deligne cohomology, encoding the kinematical data of higher gauge theory together with their (finite) gauge symmetries. We end by discussing an example of non-abelian self-dual strings in this setting.

  2. Nonperturbative theory of weak pre- and post-selected measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, Abraham G., E-mail: kofmana@gmail.com; Ashhab, Sahel; Nori, Franco

    2012-11-01

    This paper starts with a brief review of the topic of strong and weak pre- and post-selected (PPS) quantum measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov–Albert–Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the measurement strength. The optimal conditions for weak PPS measurements are obtained in the strongly-nonlinear regime, where the magnitude of the average pointer deflection is equal or close to the maximum. This maximum is independent of the measurement strength, being typically of the order of the pointer uncertainty. In the optimal regime, the small parameter of the theory is comparable to the overlap of the pre- and post-selected states. We show that the amplification coefficient in the weak PPS measurements is generally a product of two qualitatively different factors. The effects of the free system and meter Hamiltonians are discussed. We also estimate the size of the ensemble required for a measurement and identify optimal and efficient meters for weak measurements. Exact solutions are obtained for a certain class of the measured observables. These solutions are used for numerical calculations, the results of which agree with the theory

  3. Topological Defects in the Moduli Sector of String Theory

    CERN Document Server

    Cvetic, M

    1991-01-01

    We point out that the moduli sector of the $(2,2)$ string compactification with its nonperturbatively preserved non-compact symmetries is a fertile framework to study global topological defects, thus providing a natural source for the large scale structure formation. Based on the target space modular invariance of the nonperturbative superpotential of the four-dimensional N=1 supersymmetric string vacua, topologically stable stringy domain walls are found. They are supersymmetric solutions, thus saturating the Bogomolnyi bound. It is also shown that there are moduli sectors that allow for the global monopole-type and texture-type configurations whose radial stability is ensured by higher derivative terms.

  4. The Moduli Space and M(Atrix) Theory of 9d N=1 Backgrounds of M/String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer; /Weizmann Inst. /Stanford U., ITP /SLAC; Komargodski, Zohar; Patir, Assaf; /Weizmann Inst.

    2007-03-21

    We discuss the moduli space of nine dimensional N = 1 supersymmetric compactifications of M theory/string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Moebius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Moebius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2 + 1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.

  5. Blackfolds in supergravity and string theory

    Science.gov (United States)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.

    2011-08-01

    We develop the effective worldvolume theory for the dynamics of black branes with charges of the kind that arise in many supergravities and low-energy limits of string theory. Using this theory, we construct numerous new rotating blackholes with charges and dipoles of D-branes, fundamental strings and other branes. In some instances, the black holes can be dynamically stable close enough to extremality. Some of these black holes, such as those based on the D1-D5-P system, have extremal, non-supersymmetric limits with regular horizons of finite area and a wide variety of horizon topologies and geometries.

  6. Mass Renormalization in String Theory: General States

    CERN Document Server

    Pius, Roji; Sen, Ashoke

    2014-01-01

    In a previous paper we described a procedure for computing the renormalized masses and S-matrix elements in bosonic string theory for a special class of massive states which do not mix with unphysical states under renormalization. In this paper we extend this result to general states in bosonic string theory, and argue that only the squares of renormalized physical masses appear as the locations of the poles of the S-matrix of other physical states. We also discuss generalizations to Neveu-Schwarz sector states in heterotic and superstring theories.

  7. SLAC physicists develop test for string theory

    CERN Multimedia

    Yajnik, Juhi

    2006-01-01

    "Under certain conditions, string theory solves many of the questions wracking the minds of physicists, but until recently it had one major flaw - it could not be tested. SLAC (Stanford Linear Accelerator Center) scientists have found a way to test this revolutionary theory, which posits that there are 10 or 11 dimensions in our universe" (1 page)

  8. Aspects of type $0$ string theory

    CERN Document Server

    Blumenhagen, R; Kumar, A; Lüst, Dieter

    2000-01-01

    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.

  9. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  10. Instanton effects and the landscape of string theory

    Science.gov (United States)

    Halverson, James Heaton

    In this dissertation we study non-perturbative effects in four-dimensional N = 1 compactifications of superstring theory and F-theory, primarily focusing on the importance of instanton corrections to the superpotential. We utilize dualities and limits of F-theory to elucidate the physics of M5-instantons. We study the Pfaffian prefactor via heterotic duality and demonstrate its dependence on seven-brane structure and points of enhanced symmetry. Utilizing anomaly inflow and string junctions, we shed light on the localization and representation theoretic structure of instanton zero modes upon movement in moduli space. We perform a geometric uplift of an instanton in a type IIb GUT to an instanton in F-theory and identify a class of geometries which allow for the determinantion of all uncharged instanton corrections. Utilizing Seiberg-Witten theory, we explain the quantum splitting of certain seven-brane stacks. Motivated by the systematic study of instantons, we study the computability structure of the string theory landscape. We cast the study of fairly generic physical properties into the language of computability theory and show that this amounts to solving systems of diophantine equations. Utilizing the negative solution to Hilbert's 10th problem, we argue that in such systematic studies there may be no algorithm by which one can determine all physical effects. This argument holds for any suitably large class of physical theories, including the landscape. We study a large class of semi-realistic N = 1 quiver gauge theories which can arise in string compactifications. We present many MSSM quivers where the presence of anomalous U (1) symmetries and instanton corrections can account for observed phenomenological hierarchies, including the Yukawa couplings of the MSSM. We propose a new mechanism for obtaining small neutrino masses via an instanton-induced Weinberg operator and systematically study singlet-extended standard models. We discuss constraints on chiral

  11. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander

    2012-06-15

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  12. Tensor modes on the string theory landscape

    CERN Document Server

    Westphal, Alexander

    2012-01-01

    We attempt an estimate for the distribution of the tensor mode fraction $r$ over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  13. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  14. Counting dyons in N = 4 string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    We present a microscopic index formula for the degeneracy of dyons in four-dimensional N = 4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type 11 five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.

  15. Counting dyons in N=4 string theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.

  16. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  17. Butterfly Tachyons in Vacuum String Field Theory

    CERN Document Server

    Matlock, P

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.

  18. Aligned Natural Inflation in String Theory

    CERN Document Server

    Long, Cody; McGuirk, Paul

    2014-01-01

    We propose a scenario for realizing super-Planckian axion decay constants in Calabi-Yau orientifolds of type IIB string theory, leading to large-field inflation. Our construction is a simple embedding in string theory of the mechanism of Kim, Nilles, and Peloso, in which a large effective decay constant arises from alignment of two smaller decay constants. The key ingredient is gaugino condensation on magnetized or multiply-wound D7-branes. We argue that, under very mild assumptions about the topology of the Calabi-Yau, there are controllable points in moduli space with large effective decay constants.

  19. String Theory and Primordial Cosmology

    Science.gov (United States)

    Gasperini, Maurizio

    String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the spacetime singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.

  20. String theory and primordial cosmology

    CERN Document Server

    Gasperini, M

    2014-01-01

    String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher-dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the space-time singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.

  1. Towards a Theory of the QCD String

    CERN Document Server

    CERN. Geneva

    2017-01-01

    I will review recent progress in understanding the dynamics of confining strings in non-supersymmetric gluodynamics in 3 and 4 space time dimensions. I will argue that the present lattice data allows to formulate a non-trivial straw man Ansatz for the worldsheet theory of long confining strings. According to this Ansatz, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. I argue that the Ansatz allows to fix quantum numbers of (almost) all glueball states. I confront the resulting predictions with the properties of approximately 39 lightest glueball states observed on a lattice and find a good agreement.

  2. Instantons, Fluxons and Open Gauge String Theory

    CERN Document Server

    Griguolo, L; Szabó, R J; Griguolo, Luca; Seminara, Domenico; Szabo, Richard J.

    2004-01-01

    We use the exact instanton expansion to illustrate various string characteristics of noncommutative gauge theory in two dimensions. We analyse the spectrum of the model and present some evidence in favour of Hagedorn and fractal behaviours. The decompactification limit of noncommutative torus instantons is shown to map in a very precise way, at both the classical and quantum level, onto fluxon solutions on the noncommutative plane. The weak-coupling singularities of the usual Gross-Taylor string partition function for QCD on the torus are studied in the instanton representation and its double scaling limit, appropriate for the mapping onto noncommutative gauge theory, is shown to be a generating function for the volumes of the principal moduli spaces of holomorphic differentials. The noncommutative deformation of this moduli space geometry is described and appropriate open string interpretations are proposed in terms of the fluxon expansion.

  3. Academic training : String Theory for Pedestrians

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 29, 30, 31 January 2007 from 11.00 to 12.00 hrs Main Auditorium, bldg. 500 on 29 and 30 January TH Auditorium, Bldg 4, 3-006, on 31 January String Theory for Pedestrians B. ZWIEBACH/MIT, Cambridge, USA In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future.  I will begin with the main concepts of the classical theory and the application to the study of cosmic superstrings. Then I will turn  to the quantum theory and discuss applications to the investigation of hadronic spectra and the recently discovered quark-gluon plasma.  I will conclude with a sketch of string models of particle physics and showing some avenues that may lead to a complete formulation of string theory.  

  4. String Theory and Math: Why This Marriage May Last

    CERN Document Server

    Aganagic, Mina

    2015-01-01

    String theory is changing the relationship between mathematics and physics. The central role is played by the phenomenon of duality, which is intrinsic to quantum physics and abundant in string theory.

  5. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  6. High energy reactions and string theory

    CERN Document Server

    Peschanski, R

    2002-01-01

    String theory has long ago been initiated by the quest for a theoretical explanation of the observed high-energy ``Reggeization'' of strong interaction amplitudes. In terms of quantum field theory, it is the so-called ``soft'' regime, where the coupling constant is expected to be large and thus perturbative calculations inadequate. However, since then, no convincing derivation of the link between gauge field theory at strong coupling and string theory has come out. This 35-years-old puzzle is thus still unsolved. We discuss how modern tools like the AdS/CFT correspondence give a new insight on the problem by applying it to two-body elastic and inelastic scattering amplitudes. We obtain a geometrical interpretation of Reggeization and its relation with confinement in gauge theory.

  7. Instantons and cosmologies in string theory

    NARCIS (Netherlands)

    Collinucci, Giulio

    2005-01-01

    This thesis deals with problems in two subdomains of string theory that are a priori unrelated, and in the last chapter, links are established between those two. The first topic of research is that of D-instantons. These are mathematical objects that allow one to compute physical effects that are mi

  8. Instantons and cosmologies in string theory

    NARCIS (Netherlands)

    Collinucci, Giulio

    2005-01-01

    This thesis deals with problems in two subdomains of string theory that are a priori unrelated, and in the last chapter, links are established between those two. The first topic of research is that of D-instantons. These are mathematical objects that allow one to compute physical effects that are

  9. Closed String S-matrix Elements in Open String Field Theory

    CERN Document Server

    Garousi, M R; Garousi, Mohammad R

    2005-01-01

    Using the gauge invariant operators corresponding to on-shell closed string states in open string field theory, we study the tree level S-matrix element of two arbitrary closed string states, and the S-matrix element of one closed string and two open string states. By mapping the world-sheet of the amplitudes to the upper half z-plane, and by evaluating the correlators in the ghost parts, we show that the S-matrix elements are exactly identical to the corresponding disk level S-matrix elements in bosonic string theory.

  10. Closed String S-matrix Elements in Open String Field Theory

    Science.gov (United States)

    Garousi, Mohammad R.; Maktabdaran, G. R.

    2005-03-01

    We study the S-matrix elements of the gauge invariant operators corresponding to on-shell closed strings, in open string field theory. In particular, we calculate the tree level S-matrix element of two arbitrary closed strings, and the S-matrix element of one closed string and two open strings. By mapping the world-sheet of these amplitudes to the upper half z-plane, and by evaluating explicitly the correlators in the ghost part, we show that these S-matrix elements are exactly identical to the corresponding disk level S-matrix elements in perturbative string theory.

  11. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  12. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  13. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  14. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  15. Bordered surfaces, off-shell amplitudes, sewing, and string field theory

    Science.gov (United States)

    Carlip, Steven

    1989-04-01

    These lectures will deal with the current status of the sewing problem. The rationale for this approach is that any nonperturbative string theory must reproduce the Polyakov path integral as a perturbation series. If our experience in ordinary field theory is a guide, and admittedly it may not be, the terms in such a perturbation series, like Feynman diagrams, are likely to be built up from simple vertices and propagators, which can themselves be represented as (off-shell) Polyakov amplitudes. Hence an understanding of how to put together simple components into more complicated world sheet amplitudes is likely to give us much-needed information about the structure of nonperturbative string theory. To understand sewing, we must first understand the building blocks, off-shell Polyakov amplitudes. This is the subject of my first lecture. Next, we will explore the sewing of conformal field theories at a fixed conformal structure, that is, the reconstruction of correlation functions for a fixed surface (Sigma) from those on a pair of surfaces (Sigma)(sub 1) and (Sigma)(sub 2) obtained by cutting (Sigma) along a closed curve. We will then look at the problem of sewing amplitudes, integrals of correlation functions over moduli space. This will necessitate an understanding of how to build the moduli space of a complicated surface from simpler moduli spaces. Finally, we will briefly examine vertices and string field theories.

  16. 3D string theory and Umbral moonshine

    Science.gov (United States)

    Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto

    2017-10-01

    The simplest string theory compactifications to 3D with 16 supercharges—the heterotic string on T 7, and type II strings on K3 × T3 —are related by U-duality, and share a moduli space of vacua parametrized by O(8, 24;{{ Z}}) ~\\backslash ~O(8, 24)~ /~ (O(8) × O(24)) . One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as Γ8, 0 \\oplus Γ0, 24 . Γ0, 24 can be the Leech lattice or any of 23 Niemeier lattices, while Γ8, 0 is the E 8 root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on K3. This may provide a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while preserving the largest possible subgroup of the Umbral group. To illustrate the action of these symmetries on BPS states, we discuss the computation of certain protected four-derivative terms in the effective field theory, and recover facts about the spectrum and symmetry representations of 1/2-BPS states.

  17. String theory as a diffusing system

    CERN Document Server

    Calcagni, Gianluca

    2009-01-01

    Recent results on the effective non-local dynamics of the tachyon mode of open string field theory (OSFT) show that approximate solutions can be constructed which obey the diffusion equation. We argue that this structure is inherited from the full theory, where it admits a background-independent formulation. In fact, all known exact OSFT solutions are superpositions of diffusing surface states. In particular, the diffusion equation is a spacetime manifestation of OSFT gauge symmetries.

  18. Hairy Black Holes in String Theory

    CERN Document Server

    Giddings, Steven B; Polchinski, Joseph; Shenker, S H; Strominger, A; Polchinski, Joseph

    1994-01-01

    Solutions of bosonic string theory are constructed which correspond to four-dimensional black holes with axionic quantum hair. The basic building blocks are the renormalization group flows of the CP1 model with a theta term and the SU(1,1)/U(1) WZW coset conformal field theory. However the solutions are also found to have negative energy excitations, and are accordingly expected to decay to the vacuum.

  19. The birth of string theory

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Cappelli, Andrea; Colomo, Filippo

    tring theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical discussions. This unique book explores the history of the theory's early stages of development, as told by its main...... protagonists. The book journeys from the first version of the theory (the so-called dual resonance model) in the late sixties, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-seventies as a quantum theory...... of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as historians and philosophers...

  20. Coulomb string tension, asymptotic string tension, and the gluon chain

    Science.gov (United States)

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  1. Nonlocal String Theories on AdS{sub 3} x S{sup 3} and Stable Non-Supersymmetric Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2002-01-16

    We exhibit a simple class of exactly marginal ''double-trace'' deformations of two dimensional CFTs which have AdS{sub 3} duals, in which the deformation is given by a product of left and right-moving U(1) currents. In this special case the deformation on AdS{sub 3} is generated by a local boundary term in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the deformation is non-local in six dimensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due to the simplicity of the deformation we can explicitly make computations in the non-local string theory and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the deformation on closed strings and on D-branes. The examples we analyze include a supersymmetry-breaking but exactly marginal ''double-trace'' deformation, which is dual to a string theory in which no destabilizing tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We explain how this cancellation works on the gravity side in string perturbation theory, and also non-perturbatively at leading order in the deformation parameter. We also discuss possible flat space limits of our construction.

  2. Gauge/string duality in confining theories

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2006-07-03

    This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Gauge/String Duality in Confining Theories

    CERN Document Server

    Edelstein, J D; Edelstein, Jose D.; Portugues, Ruben

    2006-01-01

    This is the content of a set of lectures given at the XIII Jorge Andre Swieca Summer School on Particles and Fields, held in Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity.

  4. String amplitudes: from field theories to number theory

    CERN Document Server

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  5. Non-perturbative quantum geometry III

    Science.gov (United States)

    Krefl, Daniel

    2016-08-01

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.

  6. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-01-01

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  7. 3D String Theory and Umbral Moonshine

    CERN Document Server

    Kachru, Shamit; Volpato, Roberto

    2016-01-01

    The simplest string theory compactifications to 3D with 16 supercharges -- the heterotic string on $T^7$, and type II strings on $K3 \\times T^3$ -- are related by U-duality, and share a moduli space of vacua parametrized by $O(8,24; \\mathbb{Z}) \\backslash O(8,24) / (O(8) \\times O(24))$. One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as $\\Gamma^{8,0} \\oplus \\Gamma^{0,24}$. $\\Gamma^{0,24}$ can be the Leech lattice or any of 23 Niemeier lattices, while $\\Gamma^{8,0}$ is the $E_8$ root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on $K3$. This provides a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while p...

  8. Background Dependent Lorentz Violation from String Theory

    CERN Document Server

    Li, Tianjun

    2011-01-01

    We revisit Lorentz violations in the Type IIB string theory with D3-branes and D7-branes. We study the relativistic particle velosities in details, and show that there exist both subluminal and superluminal particle propagations. In particular, the additional contributions to the particle velosity \\delta v\\equiv (v-c)/c from string theory is proportional to both the particle energy and the D3-brane number density, and is inversely proportional to the string scale. Thus, we can realize the background dependent Lorentz violation naturally by varying the D3-brane number density in space time. To explain the superluminal neutrino propagations in the OPERA and MINOS experiments, we obtain the string scale should be around 10^5 GeV. With very tiny D3-brane number density at the interstellar scale, we can also explain the time delays for the high energy photons compared to the low energy photons in the MAGIC, HESS, and FERMI experiments simultaneously. Interestingly, we can automatically satisfy all the stringent co...

  9. Boundary Operators in Effective String Theory

    CERN Document Server

    Hellerman, Simeon

    2016-01-01

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or "dressing" operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance ...

  10. Conformal field theory, boundary conditions and applications to string theory

    OpenAIRE

    Schweigert, C.; Fuchs, J.; Walcher, J.

    2000-01-01

    This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.

  11. Baby Universes and String Theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun

    The description of 4D BPS black holes in terms of branes wrapped on various cycles in a Calabi-Yau space gives us the opportunity to study various issues in quantum gravity in a definite way by means of the worldvolume theory of the branes. In the particular example discussed here, there is a simple worldvolume description in terms of 2D Yang-Mills theory. The latter is an exactly solvable system of free fermions in one dimension. The exact answer for the free energy of this system can be written in a way that suggests an interpretation in terms of contributions from multiple (baby) universes.

  12. A Short Review of Time Dependent Solutions and Space-like Singularities in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: micha.berkooz@weizmann.ac.il; Reichmann, Dori [Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: dor.reichmann@weizmann.ac.il

    2007-09-15

    These lecture notes provide a short review of the status of time dependent backgrounds in String theory, and in particular those that contain space-like singularities. Despite considerable efforts, we do not have yet a full and compelling picture of such backgrounds. We review some of the various attempts to understand these singularities via generalizations of the BKL dynamics, using worldsheet methods and using non-perturbative tools such as the AdS/CFT correspondence and M(atrix) theory. These lecture notes are based on talks given at Cargese 06 and the dead-sea conference 06.

  13. A Short Review of Time Dependent Solutions and Space-like Singularities in String Theory

    CERN Document Server

    Berkooz, Micha

    2007-01-01

    These lecture notes provide a short review of the status of time dependent backgrounds in String theory, and in particular those that contain space-like singularities. Despite considerable efforts, we do not have yet a full and compelling picture of such backgrounds. We review some of the various attempts to understand these singularities via generalizations of the BKL dynamics, using worldsheet methods and using non-perturbative tools such as the AdS/CFT correspondence and M(atrix) theory. These lecture notes are based on talks given at Cargese 06 and the dead-sea conference 06.

  14. Colliding Plane Waves in String Theory

    CERN Document Server

    Chen, B; Furuta, K; Lin, F L; Chen, Bin; Chu, Chong-Sun; Furuta, Ko; Lin, Feng-Li

    2004-01-01

    We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.

  15. String theory of the Omega deformation

    CERN Document Server

    Hellerman, Simeon; Reffert, Susanne

    2011-01-01

    In this article, we want to turn on real masses for the fields in the effective low energy gauge theory describing the motion of a stack of D2-branes. We do so by placing the D2-branes into the T-dual of a fluxbrane background. We furthermore show that the fluxbrane background is the string theory realization of an Omega-deformation of flat space in the directions transverse to the branes where the deformation parameters satisfy epsilon_1 = - epsilon_2. This Omega-deformation therefore serves to give real masses to the chiral fields of the gauge theory.

  16. Higher-Spin Geometry and String Theory

    CERN Document Server

    Francia, D

    2006-01-01

    The theory of freely-propagating massless higher spins is usually formulated via gauge fields and parameters subject to trace constraints. We summarize a proposal allowing to forego them by introducing only a pair of additional fields in the Lagrangians. In this setting, external currents satisfy usual Noether-like conservation laws, the field equations can be nicely related to those emerging from Open String Field Theory in the low-tension limit, and if the additional fields are eliminated without reintroducing the constraints a geometric, non-local description of the theory manifests itself.

  17. p-adic string theories provide lattice Discretization to the ordinary string worldsheet.

    Science.gov (United States)

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  18. Counting dyons in N=4 string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics and Computer Science; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, Universtity of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)]|[Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    1997-01-27

    We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states. (orig.).

  19. From twistor string theory to recursion relations

    Science.gov (United States)

    Spradlin, Marcus; Volovich, Anastasia

    2009-10-01

    Witten’s twistor string theory gives rise to an enigmatic formula known as the “connected prescription” for tree-level Yang-Mills scattering amplitudes. We derive a link representation for the connected prescription by Fourier transforming it to mixed coordinates in terms of both twistor and dual twistor variables. We show that it can be related to other representations of amplitudes by applying the global residue theorem to deform the contour of integration. For six and seven particles we demonstrate explicitly that certain contour deformations rewrite the connected prescription as the Britto-Cachazo-Feng-Witten representation, thereby establishing a concrete link between Witten’s twistor string theory and the dual formulation for the S matrix of the N=4 SYM recently proposed by Arkani-Hamed Other choices of integration contour also give rise to “intermediate prescriptions.” We expect a similar though more intricate structure for more general amplitudes.

  20. String theory realizations of the nilpotent goldstino

    Science.gov (United States)

    Kallosh, Renata; Quevedo, Fernando; Uranga, Angel M.

    2015-12-01

    We describe in detail how the spectrum of a single anti-D3-brane in four-dimensional orientifolded IIB string models reproduces precisely the field content of a nilpotent chiral superfield with the only physical component corresponding to the fermionic goldstino. In particular we explicitly consider a single anti-D3-brane on top of an O3-plane in warped throats, induced by (2, 1) fluxes. More general systems including several anti-branes and other orientifold planes are also discussed. This provides further evidence to the claim that non-linearly realized supersymmetry due to the presence of antibranes in string theory can be described by supersymmetric theories including nilpotent superfields. Implications to the KKLT and related scenarios of de Sitter moduli stabilization, to cosmology and to the structure of soft SUSY-breaking terms are briefly discussed.

  1. String theory realizations of the nilpotent goldstino

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata [Department of Physics and SITP, Stanford University, Stanford, CA 94305 (United States); Quevedo, Fernando [ICTP, Strada Costiera 11, 34151 Trieste (Italy); DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Uranga, Angel M. [Instituto de Física Teórica UAM-CSIC, c/ Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2015-12-09

    We describe in detail how the spectrum of a single anti-D3-brane in four-dimensional orientifolded IIB string models reproduces precisely the field content of a nilpotent chiral superfield with the only physical component corresponding to the fermionic goldstino. In particular we explicitly consider a single anti-D3-brane on top of an O3-plane in warped throats, induced by (2,1) fluxes. More general systems including several anti-branes and other orientifold planes are also discussed. This provides further evidence to the claim that non-linearly realized supersymmetry due to the presence of antibranes in string theory can be described by supersymmetric theories including nilpotent superfields. Implications to the KKLT and related scenarios of de Sitter moduli stabilization, to cosmology and to the structure of soft SUSY-breaking terms are briefly discussed.

  2. Entanglement in a two-dimensional string theory

    CERN Document Server

    Donnelly, William

    2016-01-01

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider entanglement entropy in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large $N$. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space, giving a precise state-counting interpretation to the entropy, including its leading $O(N^2)$ piece. In the process we reinterpret the sphere partition function as a thermal ensemble of of open strings whose endpoints are anchored to an object at the entangling surface that we call an E-brane.

  3. Baby universes and string theory

    NARCIS (Netherlands)

    Dijkgraaf, R.H.; Gopakumar, R.; Ooguri, H.; Vafa, C.

    2006-01-01

    The description of 4D BPS black holes in terms of branes wrapped on various cycles in a Calabi-Yau space gives us the opportunity to study various issues in quantum gravity in a definite way by means of the worldvolume theory of the branes. In the particular example discussed here, there is a simple

  4. Baby universes in string theory

    NARCIS (Netherlands)

    Dijkgraaf, R.H.; Gopakumar, R.; Ooguri, H.; Vafa, C.

    2006-01-01

    We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS(2) x S-2 but a coherent ensemble of them. We verify this in a particular

  5. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)

    YANGFu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in lib into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  6. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Fu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in IIB into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  7. 2-D gravisolitons in string theory

    OpenAIRE

    Bakas, I.

    1996-01-01

    Several gravitational string backgrounds can be interpreted as 2-dim soliton solutions of reduced axion-dilaton gravity. They include black-hole and worm-hole solutions as well as cosmological models with an exact conformal field theory description. We illustrate the use of gravisolitons for the particular example of Nappi-Witten universe which is thus "created" from flat space by soliton dressing. We also make some general comments about the status of gravisolitons in comparison to soliton s...

  8. New QCD results from string theory

    CERN Document Server

    Bern, Z; Kosower, D A

    1993-01-01

    We discuss new results in QCD obtained with string-based methods. These methods were originally derived from superstring theory and are significantly more efficient than conventional Feynman rules. This technology was a key ingredient in the first calculation of the one-loop five-gluon amplitude. We also present a conjecture for a particular one-loop helicity amplitude with an arbitrary number of external gluons.

  9. Entropy, String Theory, and our World

    OpenAIRE

    Gregori, Andrea

    2002-01-01

    We investigate the consequences of two assumptions for String (or M) Theory, namely that: 1) all coordinates are compact and bound by the horizon of observation, 2) the ``dynamics'' of compactification is determined by the ``second law of thermodynamics'', i.e. the principle of entropy. We discuss how this leads to a phenomenologically consistent scenario for our world, both at the elementary particle's and at the cosmological level, without any fine tuning or further ``ad hoc'' constraint.

  10. Topological Structure in ${\\hat c}=1$ Fermionic String Theory

    OpenAIRE

    Hirano, Shinji; Ishikawa, Hiroshi

    1994-01-01

    $\\chat=1$ fermionic string theory, which is considered as a fermionic string theory in two dimension, is shown to decompose into two mutually independent parts, one of which can be viewed as a topological model and the other is irrelevant for the theory. The physical contents of the theory is largely governed by this topological structure, and the discrete physical spectrum of $\\chat=1$ string theory is naturally explained as the physical spectrum of the topological model. This topological st...

  11. Probing black holes in non-perturbative gauge theory

    CERN Document Server

    Iizuka, N; Lifschytz, G; Lowe, D A; Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2002-01-01

    We use a 0-brane to probe a ten-dimensional near-extremal black hole with N units of 0-brane charge. We work directly in the dual strongly-coupled quantum mechanics, using mean-field methods to describe the black hole background non-perturbatively. We obtain the distribution of W boson masses, and find a clear separation between light and heavy degrees of freedom. To localize the probe we introduce a resolving time and integrate out the heavy modes. After a non-trivial change of coordinates, the effective potential for the probe agrees with supergravity expectations. We compute the entropy of the probe, and find that the stretched horizon of the black hole arises dynamically in the quantum mechanics, as thermal restoration of unbroken U(N+1) gauge symmetry. Our analysis of the quantum mechanics predicts a correct relation between the horizon radius and entropy of a black hole.

  12. Investigations And Techniques In Nonperturbative Quantum Field Theory

    CERN Document Server

    Sprague, K B

    1999-01-01

    In Part I, the contributions of the dimension-3 fermion- antifermion and dimension-4 gluon vacuum-condensates to the electromagnetic (em) vertex of a condensing fermion are investigated. These nonperturbative contributions to the em vertex are modeled after perturbative calculations involving the exchange of a single virtual photon between incoming and outgoing fermions. Perturbative contributions to the anomalous magnetic moment of a QED fermion are calculated in terms of vertex correction structure functions evaluated at zero-momentum transfer. The QCD fermion-antifermion and gluon condensate contributions to the em vertex are found analogously using fermion, photon, and gluon propagators, thereby determining the corresponding contributions to the anomalous magnetic moment of a fermion in a vacuum that allows such condensation to occur. Such a correspondence is drawn through the adaptation of techniques used in QCD sum-rule applications. In Part II we exp...

  13. Tensor Constructions of Open String Theories; 1, Foundations

    CERN Document Server

    Gaberdiel, M R; Gaberdiel, Matthias R.; Zwiebach, Barton

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A_\\infty algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a spacetime interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group.

  14. Differential geometry of groups in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1{vert bar}1). The quantum group GL{sub q}(1{vert bar}1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL{sub q}(1{vert bar}1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S{sup 1})/S{sup 1}. We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs.

  15. Large N Dualities In Topological String Theory

    CERN Document Server

    Okuda, T

    2005-01-01

    We investigate the phenomenon of large N duality in topological string theory from three different perspectives: worldsheets, matrix models, and melting crystals. In the first part, we utilize the technique of mirror symmetry to generalize the worldsheet derivation of the duality, originally given by Ooguri and Vafa for the A- model on the conifold, to the A-model on more general geometries. We also explain how the Landau-Ginzburg models can be used to perform the worldsheet derivation of the B-model large N dualities. In the second part, we consider a class of A-model large N dualities where the open string theory reduces through the Chern-Simons theory on a lens space to a matrix model. We compute and compare the matrix model spectral curve and the Calabi-Yau geometry mirror to the closed string geometry, confirming the predictions of the duality. Finally in the third part, we propose a crystal model that describes the A-model on the resolved conifold. This is a generalization of the crystal for C3. We also...

  16. Models in theory building: the case of early string theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Elena [Department of Philosophy, Florence (Italy)

    2013-07-01

    The history of the origins and first steps of string theory, from Veneziano's formulation of his famous scattering amplitude in 1968 to the 'first string revolution' in 1984, provides rich material for discussing traditional issues in the philosophy of science. This paper focusses on the initial phase of this history, that is the making of early string theory out of the 'dual theory of strong interactions' motivated by the aim of finding a viable theory of hadrons in the framework of the so-called S-matrix theory of the Sixties: from the first two models proposed (the Dual Resonance Model and the Shapiro-Virasoro Model) to all the subsequent endeavours to extend and complete the theory, including its string interpretation. As is the aim of this paper to show, by representing an exemplary illustration of the building of a scientific theory out of tentative and partial models this is a particularly fruitful case study for the current philosophical discussion on how to characterize a scientific model, a scientific theory, and the relation between models and theories.

  17. Remarks on quiver gauge theories from open topological string theory

    CERN Document Server

    Carqueville, Nils

    2009-01-01

    We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials.

  18. Massive IIA string theory and Matrix theory compactification

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. E-mail: lowe@het.brown.edu; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-09-08

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization.

  19. Gapless superconductivity and string theory

    CERN Document Server

    Khlebnikov, S

    2014-01-01

    Coexistence of superconducting and normal components in nanowires at currents below the critical (a "mixed" state) would have important consequences for the nature and range of potential applications of these systems. From the theoretical perspective, it represents a genuine interaction effect, not seen in the mean-field theory. Here we consider properties of such a state in the gravity dual of a strongly coupled superconductor constructed from D3 and D5 branes. We find numerically uniform gapless solutions containing both components but argue that they are unstable against phase separation, as their free energies are not convex. We speculate on the possible nature of the resulting non-uniform sate ("emulsion") and draw analogies between that state and the familiar mixed state of a type II superconductor in a magnetic field.

  20. Black hole entropy from non-perturbative gauge theory

    CERN Document Server

    Kabat, D; Lowe, D A; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2001-01-01

    We present the details of a mean-field approximation scheme for the quantum mechanics of N D0-branes at finite temperature. The approximation can be applied at strong 't Hooft coupling. We find that the resulting entropy is in good agreement with the Bekenstein-Hawking entropy of a ten-dimensional non-extremal black hole with 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena, Sonnenschein and Yankielowicz. We discuss ways of resolving the black hole horizon, and also study the spectrum of single-string excitations within the quantum mechanics.

  1. Inverse of the String Theory KLT Kernel

    CERN Document Server

    Mizera, Sebastian

    2016-01-01

    The field theory Kawai-Lewellen-Tye (KLT) kernel, which relates scattering amplitudes of gravitons and gluons, turns out to be the inverse of a matrix whose components are bi-adjoint scalar partial amplitudes. In this note we propose an analogous construction for the string theory KLT kernel. We present simple diagrammatic rules for the computation of the $\\alpha'$-corrected bi-adjoint scalar amplitudes that are exact in $\\alpha'$. We find compact expressions in terms of graphs, where the standard Feynman propagators $1/p^2$ are replaced by either $1/\\sin (\\pi \\alpha' p^2)$ or $1/\\tan (\\pi \\alpha' p^2)$, which is determined by a recursive procedure.

  2. String Theory on Parallelizable PP-Waves

    Energy Technology Data Exchange (ETDEWEB)

    Sadri, Darius J

    2003-05-05

    The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their {alpha}{prime} exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behavior under T-duality are studied. In addition, we consider BPS Dp-branes, and show that these Dp-branes can be classified in terms of the locations of their world volumes with respect to the background H-field.

  3. String Theory on Parallelizable PP-waves

    CERN Document Server

    Sadri, D; Sadri, Darius; Sheikh-Jabbari, Mohammad M.

    2003-01-01

    The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their $\\alpha^\\prime$ exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behaviour under T-duality are studied. In addition, we consider...

  4. From Type II string theory toward BSM/dark sector physics

    Science.gov (United States)

    Honecker, Gabriele

    2016-11-01

    Four-dimensional compactifications of string theory provide a controlled set of possible gauge representations accounting for BSM particles and dark sector components. In this review, constraints from perturbative Type II string compactifications in the geometric regime are discussed in detail and then compared to results from heterotic string compactifications and nonperturbative/nongeometric corners. As a prominent example, an open string realization of the QCD axion is presented. The status of deriving the associated low-energy effective action in four dimensions is discussed and open avenues of major phenomenological importance are highlighted. As examples, a mechanism of closed string moduli stabilization by D-brane backreaction as well as one-loop threshold corrections to the gauge couplings and balancing a low string scale Mstring with unisotropic compact dimensions are discussed together with implications on potential future new physics observations. For illustrative purposes, an explicit example of a globally consistent D6-brane model with MSSM-like spectrum on T6/(ℤ 2 × ℤ6 × Ωℛ) is presented.

  5. String theory, cosmology and varying constants

    Science.gov (United States)

    Damour, Thibault

    In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

  6. String theory, cosmology and varying constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2002-01-01

    In string theory the coupling ``constants'' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universa...

  7. Topological String Theory and Enumerative Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. S

    2003-05-19

    In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of study. The main problems addressed are as follows: In considering the Hurwitz enumeration problem of branched covers of compact connected Riemann surfaces, we completely solve the problem in the case of simple Hurwitz numbers. In addition, utilizing the connection between Hurwitz numbers and Hodge integrals, we derive a generating function for the latter on the moduli space {bar M}{sub g,2} of 2-pointed, genus-g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture regarding semisimple Frobenius structures and Gromov-Witten invariants, both of which are closely related to topological field theories; we consider the case of a complex projective line P{sup 1} as a specific example and verify his conjecture at low genera. In the last chapter, we demonstrate that certain topological open string amplitudes can be computed via relative stable morphisms in the algebraic category.

  8. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  9. Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on Torus Bundles

    CERN Document Server

    Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J

    2006-01-01

    We study the relations between two-dimensional Yang-Mills theory on the torus, topological string theory on a Calabi-Yau threefold whose local geometry is the sum of two line bundles over the torus, and Chern-Simons theory on torus bundles. The chiral partition function of the Yang-Mills gauge theory in the large N limit is shown to coincide with the topological string amplitude computed by topological vertex techniques. We use Yang-Mills theory as an efficient tool for the computation of Gromov-Witten invariants and derive explicitly their relation with Hurwitz numbers of the torus. We calculate the Gopakumar-Vafa invariants, whose integrality gives a non-trivial confirmation of the conjectured nonperturbative relation between two-dimensional Yang-Mills theory and topological string theory. We also demonstrate how the gauge theory leads to a simple combinatorial solution for the Donaldson-Thomas theory of the Calabi-Yau background. We match the instanton representation of Yang-Mills theory on the torus with ...

  10. Matrix string theory, contact terms, and superstring field theory

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos

    2003-01-01

    In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...

  11. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    OpenAIRE

    Lee, Taejin

    2017-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field...

  12. Boundary String Field Theory at One-loop

    CERN Document Server

    Lee, T; Yang, Y; Lee, Taejin; Yang, Yi

    2001-01-01

    We apply the boundary string field theory (BSFT) to a unstable D-brane system to study the open-closed string duality at one loop in the presence of the tachyon condensation. The partition function at one-loop level is calculated by using both open and closed string channels. We find that the results from two different channels coincide, thus the open-closed string duality holds even off-shell.

  13. Investigations in gauge theories, topological solitons and string theories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This is the Final Report on a supported research project on theoretical particle physics entitled ``Investigations in Gauge Theories, Topological Solitons and String Theories.`` The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies.

  14. PhD Thesis: String theory in the early universe

    CERN Document Server

    Gwyn, Rhiannon

    2009-01-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in ...

  15. 2-D gravisolitons in string theory

    CERN Document Server

    Bakas, Ioannis

    1996-01-01

    Several gravitational string backgrounds can be interpreted as 2-dim soliton solutions of reduced axion-dilaton gravity. They include black-hole and worm-hole solutions as well as cosmological models with an exact conformal field theory description. We illustrate the use of gravisolitons for the particular example of Nappi-Witten universe which is thus "created" from flat space by soliton dressing. We also make some general comments about the status of gravisolitons in comparison to soliton solutions of other 2-dim integrable systems without gravity. (Contribution to the proceedings of the 2nd International Sakharov Conference, Moscow)

  16. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  17. String Theory and an Accelerating Universe

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2001-01-01

    An accelerating Universe can be accommodated naturally within non-critical string theory, in which scattering is described by a superscattering matrix \\$ that does not factorize as a product of $S$- and $S^\\dagger$-matrix elements and time evolution is described by a modified Liouville equation characteristic of open quantum-mechanical systems. We describe briefly alternative representations in terms of the stochastic Ito and Fokker-Planck equations. The link between the vacuum energy and the departure from criticality is stressed. We give an explicit example in which non-marginal \\$tring couplings cause a departure from criticality, and the corresponding cosmological vacuum energy relaxes to zero \\`a la quintessence.

  18. Spacetime foam in twistor string theory

    CERN Document Server

    Hartnoll, S A; Hartnoll, Sean A.; Policastro, Giuseppe

    2004-01-01

    We show how a Kahler spacetime foam in four dimensional conformal (super)gravity may be mapped to twistor spaces carrying the D1 brane charge of the B model topological string theory. The spacetime foam is obtained by blowing up an arbitrary number of points in $\\C^2$ and can be interpreted as a sum over gravitational instantons. Some twistor spaces for blowups of $\\C^2$ are known explicitly. In these cases we write down a meromorphic volume form and suggest a relation to a holomorphic superform on a corresponding super Calabi-Yau manifold.

  19. A matrix model from string field theory

    Science.gov (United States)

    Zeze, Syoji

    2016-09-01

    We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  20. Time-dependent Backgrounds Of String Theory

    CERN Document Server

    Maloney, A D

    2003-01-01

    This thesis is devoted to the study of time-dependent backgrounds in string theory. The first chapter contains a brief, non-technical introduction to the subject. In the second chapter quantum field theory in d-dimensional de Sitter space is studied, with an emphasis on the dS/CFT correspondence. We study a one-parameter family of dS-invariant vacua; this bulk vacuum dependence is dual to a deformation of the boundary CFT by a marginal operator. In odd spacetime dimensions the state with no particles on I- has no particles on I+ , implying the absence of particle production. In Kerr-dS, a thermal density matrix is found by tracing over causally inaccessible modes. Assuming Cardy's formula, the microscopic entropy of such a thermal state in the boundary CFT precisely equals the Bekenstein-Hawking value. Next, we construct de Sitter vacua of supercritical string theories in D > 10 dimensions. Compactifying D − 4 of these dimensions on a carefully constructed asymmetric orientifold projects out t...

  1. Fermionic ghosts in Moyal string field theory

    Science.gov (United States)

    Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka

    2003-07-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.

  2. Fermionic Ghosts in Moyal String Field Theory

    CERN Document Server

    Bars, Itzhak; Matsuo, Y

    2003-01-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been us...

  3. String theories with deformed energy momentum relations, and a possible non-tachyonic bosonic string

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Smolin, Lee

    2004-01-01

    We consider a prescription for introducing deformed dispersion relations in the bosonic string action. We find that in a subset of such theories it remains true that the embedding coordinates propagate linearly on the worldsheet. While both the string modes and the center of mass propagate with deformed dispersion relations, the speed of light remains energy independent. We consider the canonical quantization of these strings, and find that it is possible to choose theories so that ghost modes still decouple, as usual. However the Virasoro algebra now exhibits an energy dependent central charge. We also find that there are examples where the tachyon is eliminated from the spectrum of the free bosonic string.

  4. Duality symmetric string and M-theory

    Science.gov (United States)

    Berman, David S.; Thompson, Daniel C.

    2015-03-01

    We review recent developments in duality symmetric string theory. We begin with the world-sheet doubled formalism which describes strings in an extended spacetime with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk-Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an En(n) U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extended space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk-Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.

  5. An Inflationary Model in String Theory

    CERN Document Server

    Iizuka, N; Iizuka, Norihiro; Trivedi, Sandip P.

    2004-01-01

    We construct a model of inflation in string theory after carefully taking into account moduli stabilization. The setting is a warped compactification of Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton is the position of a D3-brane in the internal space. By suitably adjusting fluxes and the location of symmetrically placed anti-D3-branes, we show that at a point of enhanced symmetry, the inflaton potential V can have a broad maximum, satisfying the condition V''/V << 1 in Planck units. On starting close to the top of this potential the slow-roll conditions can be met. Observational constraints impose significant restrictions. As a first pass we show that these can be satisfied and determine the important scales in the compactification to within an order of magnitude. One robust feature is that the scale of inflation is low, H = O(10^{10}) GeV. Removing the observational constraints makes it much easier to construct a slow-roll inflationary model. Generalizations and conseque...

  6. Quantum gravity, effective fields and string theory

    CERN Document Server

    Bjerrum-Bohr, N E J

    2004-01-01

    We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...

  7. Three Instanton Computations In Gauge Theory And String Theory

    CERN Document Server

    Beasley, C E

    2005-01-01

    We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi- fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relie...

  8. Recent Developments in D=2 String Field Theory

    Science.gov (United States)

    Kaku, Michio

    This review article is dedicated to the memory of Robert Marshak, who was a colleague and friend for the past 20 years. Prof. Marshak was an inspiration for all who knew him, especially at CCNY, both for this vision and insight into the fundamental interactions of matter, but also for his concern for social issues. Not only was Prof. Marshak the president of our college in a crucial time in its history, he was also a productive member of our high energy group. It will be hard to replace someone who could combine his many interests so well. He will be sorely missed. We review the recent developments in constructing string field theory in two-dimensions. We analyze the bewildering number of string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. We will analyze discrete states, the w(∞) symmetry, and correlation functions in terms of these different string field theories. We will also comment on the relationship between these various field theories, which is still not well understood. (This article is a shortened version of a longer article to appear in the International Journal of Modern Physics.) These string field theories include: • free fermion field theory • collective string field theory • temporal gauge string field theory • non-polynomial string field theory

  9. Reconnection of Colliding Cosmic Strings

    CERN Document Server

    Hanany, A; Hanany, Amihay; Hashimoto, Koji

    2005-01-01

    For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex...

  10. The Dimension of Decompactified Spacetime from String Theory

    OpenAIRE

    Cleaver, Gerald B.

    1994-01-01

    The implications of string theory for understanding the dimension of decompactified spacetime are discussed. Results from a computer model designed to simulate expansion of the early universe during the string dominated phase are presented. This model focuses on the effects of string winding modes on inflation and is based on the theory of random walks. We demonstrate that our decompactified four-dimensional spacetime can be explained by the proper choice of initial conditions.

  11. GUT relations from string theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Tatar, Radu [Division of Theoretical Physics, Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX (United Kingdom); Watari, Taizan [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwa-no-ha 5-1-5, 277-8592 (Japan)], E-mail: watari@hep-th.phys.s.u-tokyo.ac.jp

    2009-03-21

    Wilson line on a non-simply connected manifold is a nice way to break SU(5) unified symmetry, and to solve the doublet-triplet splitting problem. This mechanism also requires, however, that the two Higgs doublets are strictly vector-like under all underlying gauge symmetries, and consequently there is a limit in a class of modes and their phenomenology for which the Wilson line can be used. An alternative is to turn on a non-flat line bundle in the U(1){sub Y} direction on an internal manifold, which does not have to be non-simply connected. The U(1){sub Y} gauge field has to remain in the massless spectrum, and its coupling has to satisfy the GUT relation. In string theory compactifications, however, it is not that easy to satisfy these conditions in a natural way; we call it U(1){sub Y} problem. In this article, we explain how the problem is solved in some parts of moduli space of string theory compactifications. Two major ingredients are an extra strongly coupled U(1) gauge field and parametrically large volume for compactification, which is also essential in accounting for the hierarchy between the Planck scale and the GUT scale. Heterotic M-theory vacua and F-theory vacua are discussed. This article also shows that the toroidal orbifold GUT approach using discrete Wilson lines corresponds to the non-flat line-bundle breaking above when orbifold singularities are blown up. Thus, the orbifold GUT approach also suffers from the U(1){sub Y} problem, and this article shows how to fix it.

  12. String Interactions in c=1 Matrix Model

    CERN Document Server

    De Boer, J; Verlinde, E; Yee, J T; Boer, Jan de; Sinkovics, Annamaria; Verlinde, Erik; Yee, Jung-Tay

    2004-01-01

    We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to study string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.

  13. De Sitter universes and the emerging landscape in string theory

    Indian Academy of Sciences (India)

    Sandip P Trivedi

    2004-10-01

    We discuss a recent proposal to construct de Sitter vacua in string theory. It is based on flux compactifications in string theory where all the moduli are stabilised and supersymmetry is broken with control. The resulting picture is that of a complicated landscape with many vacua of widely varying values for the cosmological constant.

  14. Pre-inflationary clues from String Theory?

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, N. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 JAPAN (Japan); Sagnotti, A., E-mail: kitazawa@phys.se.tmu.ac.jp, E-mail: sagnotti@sns.it [Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, Pisa, 56126 (Italy)

    2014-04-01

    ''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.

  15. M theory through the looking glass: Tachyon condensation in the E8 heterotic string

    Science.gov (United States)

    Hořava, Petr; Keeler, Cynthia A.

    2008-03-01

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing—connecting the two E8 boundaries by a throat—are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E8 gauge group and a singlet tachyon. We then use world sheet methods to study the tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of Rξ gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.

  16. Gauge theory renormalizations from the open bosonic string

    CERN Document Server

    Di Vecchia, P; Magnea, L; Marotta, R; Di Vecchia, P; Lerda, A; Magnea, L; Marotta, R

    1995-01-01

    We present a unified point of view on the different methods available in the literature to extract gauge theory renormalization constants from the low-energy limit of string theory. The Bern-Kosower method, based on an off-shell continuation of string theory amplitudes, and the construction of low-energy string theory effective actions for gauge particles, can both be understood in terms of strings interacting with background gauge fields, and thus reproduce, in the low-energy limit, the field theory results of the background field method. We present in particular a consistent off-shell continuation of the one-loop gluon amplitudes in the open bosonic string that reproduces exactly the results of the background field method in the Feynman gauge.

  17. 6d strings from new chiral gauge theories

    CERN Document Server

    Kim, Hee-Cheol; Park, Jaemo

    2016-01-01

    We study the 6d $\\mathcal{N}=(1,0)$ superconformal field theory with smallest non-Higgsable gauge symmetry $SU(3)$. In particular, we propose new 2d gauge theory descriptions of its self-dual strings in the tensor branch. We use our gauge theories to compute the elliptic genera of the self-dual strings, which completely agree with the partial data known from topological strings. We further study the strings of the $(E_6,E_6)$ conformal matter by generalizing our 2d gauge theories. We also show that anomalies of all our gauge theories agree with the self-dual string anomalies computed by inflows from 6d.

  18. A sufficient condition for de Sitter vacua in type IIB string theory

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-07-15

    We derive a sufficient condition for realizing meta-stable de Sitter vacua with small positive cosmological constant within type IIB string theory flux compactifications with spontaneously broken supersymmetry. There are a number of 'lamp post' constructions of de Sitter vacua in type IIB string theory and supergravity. We show that one of them - the method of 'Kaehler uplifting' by F-terms from an interplay between non-perturbative effects and the leading {alpha}'-correction - allows for a more general parametric understanding of the existence of de Sitter vacua. The result is a condition on the values of the flux induced superpotential and the topological data of the Calabi-Yau compactification, which guarantees the existence of a meta-stable de Sitter vacuum if met. Our analysis explicitly includes the stabilization of all moduli, i.e. the Kaehler, dilaton and complex structure moduli, by the interplay of the leading perturbative and non-perturbative effects at parametrically large volume. (orig.)

  19. Non-perturbative selection rules in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-09-29

    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.

  20. What prevents gravitational collapse in string theory?

    CERN Document Server

    Mathur, Samir D

    2016-01-01

    It is conventionally believed that if a ball of matter of mass $M$ has a radius close to $2GM$ then it must collapse to a black hole. But string theory microstates (fuzzballs) have no horizon or singularity, and they do {\\it not} collapse. We consider two simple examples from classical gravity to illustrate how this violation of our intuition happens. In each case the `matter' arises from an extra compact dimension, but the topology of this extra dimension is not trivial. The pressure and density of this matter diverge at various points, but this is only an artifact of dimensional reduction; thus we bypass results like Buchadahl's theorem. Such microstates give the entropy of black holes, so these topologically nontrivial constructions dominate the state space of quantum gravity.

  1. A smoothly bouncing universe from String Theory

    CERN Document Server

    Cheung, Yeuk-Kwan E; Li, Shuyi; Li, Yunxuan; Zhu, Yiqing

    2016-01-01

    We report a stable bounce universe with a scale invariant spectrum of density perturbations from a string-based model with coupled scalar and tachyon fields. This model is free of ghosts and cosmic singularity, and does not violate the null energy condition. We analyse the parameter space for a successful single bounce to arrive at a radiation dominated universe that is compatible with CMB data. We show that this bounce universe model is a viable alternative to inflation, by showing that it can naturally produce enough e-foldings--in the pre-bounce contractional phase as well in the post bounce expanding phase--to solve the flatness problem, the horizon problem and the homogeneity problem of the Big Bang theory, resulting in the observed universe of current size.

  2. A Note on Flux Induced Superpotentials in String Theory

    CERN Document Server

    Becker, M; Becker, Melanie; Constantin, Dragos

    2003-01-01

    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.

  3. M-Theory Through the Looking Glass: Tachyon Condensation in the E_8 Heterotic String

    CERN Document Server

    Horava, Petr

    2007-01-01

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to study the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamic...

  4. Instanton-monopole correspondence from M-branes on S1 and little string theory

    Science.gov (United States)

    Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2016-03-01

    We study Bogomol'nyi-Prasad-Sommerfield (BPS) excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds XN with manifest S L (2 ,Z )×S L (2 ,Z ) modular symmetry. They admit two dual gauge theory descriptions. For both, the nonperturbative partition function can be written as an expansion of the topological string partition function of XN with respect to either of the two modular parameters. We analyze the resulting BPS-counting functions in detail and find that they can be fully constructed as linear combinations of the BPS-counting functions of M5-M2-brane configurations with noncompact transverse directions. For certain M2-brane configurations, we also find that the free energies in the two dual theories agree with each other, which points to a new correspondence between instanton and monopole configurations. These results are also a manifestation of T-duality between type IIa and IIb little string theories.

  5. Born reciprocity in string theory and the nature of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St., N, Ontario N2L 2Y5, Waterloo (Canada); Leigh, Robert G., E-mail: rgleigh@uiuc.edu [Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801 (United States); Minic, Djordje, E-mail: dminic@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-03-07

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  6. Non-static local string in Brans–Dicke theory

    Indian Academy of Sciences (India)

    A A Sen

    2000-09-01

    A recent investigation showed that a local gauge string with a phenomenological energy momentum tensor, as prescribed by Vilenkin, is inconsistent in Brans–Dicke theory. In this work it has been shown that such a string is indeed consistent if one introduces time dependences in the metric. A set of solutions of full non-linear Einstein’s equations for the interior region of such a string are presented.

  7. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  8. Matrix Models of 2D String Theory in Non--trivial Backgrounds

    OpenAIRE

    Koetsier, Arnaud

    2005-01-01

    After a brief review of critical string theory in trivial backgrounds we begin with introduction to strings in non--trivial backgrounds and noncritical string theory. In particular, we relate the latter to critical string theory in a linear dilaton background. We then show how a black hole background arises from 2D string theory and discuss some of its properties. A time--dependant tachyon background is constructed by perturbing the CFT describing string theory in a linear dilaton background....

  9. Higher-dimensional gauge theories from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Tomasiello, Alessandro [Dipartimento di Fisica, Universita di Milano-Bicocca, Milano (Italy); INFN, Sezione di Milano-Bicocca, Milano (Italy)

    2016-04-15

    We review some recent developments regarding supersymmetric field theories in six and five dimensions. In particular, we will describe the classification of supersymmetric six-dimensional theories with a holographic IIA dual; they are ''linear quivers'' consisting of chains of many SU (or SO/Sp) gauge groups connected by hypermultiplets and tensor multiplets. We will also describe the wider classification of supersymmetric six-dimensional theories that can be engineered in F-theory; these are also chains, but they include exceptional gauge groups and copies of a more exotic ''E-string'' theory with a single tensor and E{sub 8} flavor symmetry. Finally we discuss some properties of these theories under compactification to lower dimensions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. String organization of field theories duality and gauge invariance

    CERN Document Server

    Feng, Y J; Feng, Y J; Lam, C S

    1994-01-01

    String theories should reduce to ordinary four-dimensional field theories at low energies. Yet the formulation of the two are so different that such a connection, if it exists, is not immediately obvious. With the Schwinger proper-time representation, and the spinor helicity technique, it has been shown that field theories can indeed be written in a string-like manner, thus resulting in simplifications in practical calculations, and providing novel insights into gauge and gravitational theories. This paper continues the study of string organization of field theories by focusing on the question of local duality. It is shown that a single expression for the sum of many diagrams can indeed be written for QED, thereby simulating the duality property in strings. The relation between a single diagram and the dual sum is somewhat analogous to the relation between a old- fashioned perturbation diagram and a Feynman diagram. Dual expressions are particularly significant for gauge theories because they are gauge invari...

  11. Ambitwistor Strings: Worldsheet Approaches to perturbative Quantum Field Theories

    CERN Document Server

    Geyer, Yvonne

    2016-01-01

    Tree-level scattering amplitudes in massless theories not only exhibit a simplicity entirely unexpected from Feynman diagrams, but also an underlying structure remarkably reminiscent of worldsheet theory correlators. These features can be explained by ambitwistor strings - two-dimensional chiral conformal field theories in an auxiliary target space, the complexified phase space of null geodesics. The aim of this thesis is to explore the ambitwistor string approach to understand these structures in amplitudes, and thereby provide a new angle on quantum field theories. The first part of the thesis provides a user-friendly introduction to ambitwistor strings, as well as a condensed overview over the literature and some novel results. Emphasising the study of tree-level amplitudes, we then explore the wide-ranging impact of ambitwistor strings for an extensive family of massless theories, and discuss the duality between asymptotic symmetries and the low energy behaviour of a theory from the point of view of the w...

  12. Non-vanishing Superpotentials in Heterotic String Theory and Discrete Torsion

    CERN Document Server

    Buchbinder, Evgeny I

    2016-01-01

    We study the non-perturbative superpotential in E_8 x E_8 heterotic string theory on a non-simply connected Calabi-Yau manifold X, as well as on its simply connected covering space \\tilde{X}. The superpotential is induced by the string wrapping holomorphic, isolated, genus 0 curves. According to the residue theorem of Beasley and Witten, the non-perturbative superpotential must vanish in a large class of heterotic vacua because the contributions from curves in the same homology class cancel each other. We point out, however, that in certain cases the curves treated in the residue theorem as lying in the same homology class, can actually have different area with respect to the physical Kahler form and can be in different homology classes. In these cases, the residue theorem is not directly applicable and the structure of the superpotential is more subtle. We show, in a specific example, that the superpotential is non-zero both on \\tilde{X} and on X. On the non-simply connected manifold X, we explicitly compute...

  13. Non-vanishing superpotentials in heterotic string theory and discrete torsion

    Science.gov (United States)

    Buchbinder, Evgeny I.; Ovrut, Burt A.

    2017-01-01

    We study the non-perturbative superpotential in E 8 × E 8 heterotic string theory on a non-simply connected Calabi-Yau manifold X, as well as on its simply connected covering space tilde{X} . The superpotential is induced by the string wrapping holomorphic, isolated, genus 0 curves. According to the residue theorem of Beasley and Witten, the non-perturbative superpotential must vanish in a large class of heterotic vacua because the contributions from curves in the same homology class cancel each other. We point out, however, that in certain cases the curves treated in the residue theorem as lying in the same homology class, can actually have different area with respect to the physical Kahler form and can be in different homology classes. In these cases, the residue theorem is not directly applicable and the structure of the superpotential is more subtle. We show, in a specific example, that the superpotential is non-zero both on tilde{X} and on X. On the non-simply connected manifold X, we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus 0 curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and, hence, do not cancel each other.

  14. The Breakdown of String Perturbation Theory for Many External Particles

    CERN Document Server

    Ghosh, Sudip

    2016-01-01

    We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.

  15. PhD Thesis: String theory in the early universe

    Science.gov (United States)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  16. Breakdown of String Perturbation Theory for Many External Particles.

    Science.gov (United States)

    Ghosh, Sudip; Raju, Suvrat

    2017-03-31

    We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.

  17. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    F Rahaman; S Chakraborty; S Das; M Hossain; J Bera

    2003-03-01

    In this paper, a study on string theory has been done in five-dimensional space-time based on Lyra geometry. Also a polynomial relation between the two scale factors is assumed. The equations of state for strings have been used for different solutions.

  18. Model of Polyakov duality: String field theory Hamiltonians from Yang-Mills theories

    Science.gov (United States)

    Periwal, Vipul

    2000-08-01

    Polyakov has conjectured that Yang-Mills theory should be equivalent to a noncritical string theory. I point out, based on the work of Marchesini, Ishibashi, Kawai and collaborators, and Jevicki and Rodrigues, that the loop operator of the Yang-Mills theory is the temporal gauge string field theory Hamiltonian of a noncritical string theory. The consistency condition of the string interpretation is the zig-zag symmetry emphasized by Polyakov. I explicitly show how this works for the one-plaquette model, providing a consistent direct string interpretation of the unitary matrix model for the first time.

  19. Holography And Related Topics In String Theory

    CERN Document Server

    Thompson, D M

    2005-01-01

    This thesis covers research into the holographic entropy bound, the D-brane descent relations, and properties of AdS2 solutions in supersymmetric and nonsupersymmetric string theories. The first chapter introduces these topics and the connections between them. In chapter two, the holographic Bousso bound is studied and its modification due to quantum effects is presented. The Bousso bound requires that one quarter the area of a closed codimension two spacelike surface exceeds the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum effects such as Hawking radiation. It is proposed that, at the quantum level, the bound be modified by adding to the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is proven in a two-dimensional large-N dilaton gravity theory. On the topic of D-branes, chapter three introduces the descent relations among branes of different dimensionality and stability. The descent relations re...

  20. String Theory on Elliptic Curve Orientifolds and KR-Theory

    Science.gov (United States)

    Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan

    2015-04-01

    We analyze the brane content and charges in all of the orientifold string theories on space-times of the form , where E is an elliptic curve with holomorphic or anti-holomorphic involution. Many of these theories involve "twistings" coming from the B-field and/or sign choices on the orientifold planes. A description of these theories from the point of view of algebraic geometry, using the Legendre normal form, naturally divides them into three groupings. The physical theories within each grouping are related to one another via sequences of T-dualities. Our approach agrees with both previous topological calculations of twisted KR-theory and known physics arguments, and explains how the twistings originate from both a mathematical and a physical perspective.

  1. Higher Spins as Rolling Tachyons in Open String Field Theory

    CERN Document Server

    Polyakov, Dimitri

    2016-01-01

    We find a simple analytic solution in open string field theory which, in the on-shell limit, generates a tower of higher spin vertex operators in bosonic string theory. The solution is related to irregular off-shell vertex operators for Gaiotto states. The wavefunctions for the irregular vertex operators are described by equations following from the cubic effective action for generalized rolling tachyons, indicating that the evolution from flat to collective higher-spin background in string field theory occurs according to cosmological pattern. We discuss the relation between nonlocalities of the rolling tachyon action and those of higher spin interactions.

  2. Multiloop Noncommutative Open String Theory and their QFT limit

    CERN Document Server

    Chu, C S; Chu, Chong-Sun; Russo, Rodolfo

    2001-01-01

    The multiloop amplitudes for open bosonic string in presence of a constant B-field are derived from first principles. The basic ingredients of the construction are the commutation relations for the string modes and the Reggeon vertex describing the interaction among three generic string states. The modifications due to the presence of the B-field affect non--trivially only the zero modes. This makes it possible to write in a simple and elegant way the general expression for multiloop string amplitudes in presence of a constant B-field. The field theory limit of these string amplitudes is also considered. We show that it reproduces exactly the Feynman diagrams of noncommutative field theories. Issues of UV/IR are briefly discussed.

  3. Exact Chern-Simons / Topological String duality

    CERN Document Server

    Krefl, Daniel

    2015-01-01

    We invoke universal Chern-Simons theory to analytically calculate the exact free energy of the refined topological string on the resolved conifold. In the unrefined limit we reproduce non-perturbative corrections for the resolved conifold found elsewhere in the literature, thereby providing strong evidence that the Chern-Simons / topological string duality is exact, and in particular holds at arbitrary N as well. In the refined case, the non-perturbative corrections we find are novel and appear to be non-trivial. We show that non-perturbatively special treatment is needed for rational valued deformation parameter. Above results are also extend to refined Chern-Simons with orthogonal groups.

  4. Effective Actions, Radii and Electromagnetic Polarizabilities of Hadrons in QCD String Theory

    CERN Document Server

    Kruglov, S I

    2001-01-01

    A nonperturbative approach to QCD describing confinement and chiral symmetry breaking is discussed. It is based on the path integral representation of Green's function of quarks and leads to the QCD string theory. The effective actions for mesons and baryons in the external uniform static electromagnetic fields are obtained. The area law of the Wilson loop integral, the approximation of the Nambu-Goto straight-line string, and the asymmetric quark-diquark structure of nucleons are used to simplify the problem. The spin-orbit and spin-spin interactions of quarks are treated as a perturbation. Using the virial theorem we estimate the mean radii of hadrons in terms of the string tension and the Airy function zeros. On the basis of the perturbation theory in small external electromagnetic fields we derive the electromagnetic polarizabilities of nucleons. The electric and diamagnetic polarizabilities of a proton are $\\bar{\\alpha}_p= 10\\times 10^{-4} fm^3$, $\\beta_p^{dia}=-8\\times 10^{-4} fm^3$ and for a neutron we...

  5. String Theory Origin of Constrained Multiplets

    CERN Document Server

    Kallosh, Renata; Wrase, Timm

    2016-01-01

    We study the non-linearly realized spontaneously broken supersymmetry of the (anti-)D3-brane action in type IIB string theory. The worldvolume fields are one vector $A_\\mu$, three complex scalars $\\phi^i$ and four 4d fermions $\\lambda^0$, $\\lambda^i$. These transform, in addition to the more familiar N=4 linear supersymmetry, also under 16 spontaneously broken, non-linearly realized supersymmetries. We argue that the worldvolume fields can be packaged into the following constrained 4d non-linear N=1 multiplets: four chiral multiplets $S$, $Y^i$ that satisfy $S^2=SY^i=0$ and contain the worldvolume fermions $\\lambda^0$ and $\\lambda^i$; and four chiral multiplets $W_\\alpha$, $H^i$ that satisfy $S W_\\alpha=0$ and $S \\bar D_{\\dot \\alpha} \\bar H^{\\bar \\imath}=0$ and contain the vector $A_\\mu$ and the scalars $\\phi^i$. We also discuss how placing an anti-D3-brane on top of intersecting O7-planes can lead to an orthogonal multiplet $\\Phi$ that satisfies $S(\\Phi-\\bar \\Phi)=0$, which is particularly interesting for in...

  6. Pre - Inflationary Clues from String Theory ?

    CERN Document Server

    Kitazawa, N

    2014-01-01

    "Brane supersymmetry breaking" occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly compatible with an almost scale inva...

  7. Massive neutral particles on heterotic string theory

    CERN Document Server

    Olivares, Marco

    2013-01-01

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter $\\alpha$, is studied in detail across this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of elliptic $\\wp$-Weierstra{\\ss} function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. \\textbf{61} 7, (1993) 650 - 651) we obtain the correction to the angle of advance of perihelion to first order in $\\alpha$, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields to an {\\it heterotic solar charge} $Q_{\\odot}\\simeq 0.728\\,[\\textrm{Km}]= 0.493\\, M_{\\odot}$. Therefore, in addition with the study on null geodesics performed by Fernando (Phys. Rev. D {\\bf 85}, (2012) ...

  8. Does HM mechanism work in string theory?

    CERN Document Server

    Sepehri, Alireza; Zomorrodian, Mohammad Ebrahim

    2012-01-01

    The correspondence principle offered a unique opportunity to test the Horowitz and Maldacena mechanism at correspondence point "the centre of mass energies around $(M_{s}/(g_{s})^{2})$". First by using Horowitz and Maldacena proposal, the black hole final state for closed strings is studied and the entropy of these states is calculated.Then, to consider the closed string states, a copy of the original Hilbert space is constructed with a set of operators of creation/anihilation that have the same commutation properties as the original ones. The total Hilbert space is the tensor product of the two spaces $H_{right}\\otimes H_{left}$, where in this case $H_{left/right}$ denotes the physical quantum states space of the closed string .It is shown that closed string states can be represented by a maximally entangled two-mode squeezed state of the left and right spaces of closed string. Also, the entropy for these string states is calculated.It is found that black hole entropy matches the closed string entropy at tra...

  9. Professor Nambu, string theory, and the moonshine phenomenon

    Science.gov (United States)

    Eguchi, Tohru

    2016-11-01

    I first recall the last occasion I met the late Professor Yoichiro Nambu, in a hospital in Osaka. I then present a brief introduction to a moonshine phenomenon in string theory that have recently come under investigation.

  10. Dynamical Cobordisms in General Relativity and String Theory

    CERN Document Server

    Hellerman, Simeon

    2010-01-01

    We describe a class of time-dependent solutions in string- or M-theory that are exact with respect to alpha-prime and curvature corrections and interpolate in physical space between regions in which the low energy physics is well-approximated by different string theories and string compactifications. The regions are connected by expanding "domain walls" but are not separated by causal horizons, and physical excitations can propagate between them. As specific examples we construct solutions that interpolate between oriented and unoriented string theories, and also between type II and heterotic theories. Our solutions can be weakly curved and under perturbative control everywhere and can asymptote to supersymmetric at late times.

  11. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  12. Nonperturbative calculation of the shear viscosity in hot $\\phi^{4}$ theory in real time

    CERN Document Server

    Wang, E; Wang, Enke; Heinz, Ulrich

    1999-01-01

    Starting from the Kubo formula we calculate the shear viscosity in hot phi**4 theory nonperturbatively by resumming ladders with a real-time version of the Bethe-Salpeter equation at finite temperature. In the weak coupling limit, the generalized Fluctuation-Dissipation Theorem is shown to decouple the Bethe-Salpeter equations for the different real-time components of the 4-point function. The resulting scalar integral equation is identical with the one obtained by Jeon using diagrammatic ``cutting rules'' in the Imaginary Time Formalism.

  13. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  14. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  15. String theory in curved space-time

    CERN Document Server

    Viswanathan, K S

    1997-01-01

    Intrinsic and extrinsic geometric properties of string world sheets in curved space-time background are explored. In our formulation, the only dynamical degrees of freedom of the string are its immersion coordinates. Classical equation of motion and the space-time energy-momentum tensor of the string are obtained. The equations of motion for the extrinsic curvature action are second order for the scalar mean curvature of the world sheet. 1-loop divergent terms are calculated using the background field method. Asymptotic freedom of the extrinsic curvature coupling is established.

  16. Minimal String Theory and the Douglas Equation

    Science.gov (United States)

    Belavin, A. A.; Belavin, V. A.

    We use the connection between the Frobenius manifold and the Douglas string equation to further investigate Minimal Liouville gravity. We search for a solution of the Douglas string equation and simultaneously a proper transformation from the KdV to the Liouville frame which ensures the fulfilment of the conformal and fusion selection rules. We find that the desired solution of the string equation has an explicit and simple form in the flat coordinates on the Frobenius manifold in the general case of (p,q) Minimal Liouville gravity.

  17. Non-perturbative studies of N = 2 conformal quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.K.; Dell' Aquila, E.; John, R.R. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai (India); Billo, M.; Frau, M.; Lerda, A. [Universita di Torino, Dipartimento di Fisica (Italy); I.N.F.N., Sezione di Torino (Italy)

    2015-05-01

    We study N = 2 super-conformal field theories in four dimensions that correspond to mass-deformed linear quivers with n gauge groups and (bi-)fundamental matter. We describe them using Seiberg-Witten curves obtained from an M-theory construction and via the AGT correspondence. We take particular care in obtaining the detailed relation between the parameters appearing in these descriptions and the physical quantities of the quiver gauge theories. This precise map allows us to efficiently reconstruct the non-perturbative prepotential that encodes the effective IR properties of these theories. We give explicit expressions in the cases n = 1, 2, also in the presence of an Ω-background in the Nekrasov-Shatashvili limit. All our results are successfully checked against those of the direct microscopic evaluation of the prepotential a la Nekrasov using localization methods. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Matrix theory interpretation of discrete light cone quantization string worldsheets

    Science.gov (United States)

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  19. Four-dimensional heterotic strings and conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Luest, D.; Theisen, S.; Zoupanos, G.

    1988-01-25

    The techniques of (super) conformal field theory are applied to 4-dimensional heterotic string theories. We discuss certain aspects of 4-dimensional strings in the framework of the bosonic lattice approach such as the realization of superconformal symmetry, character valued partition functions, construction of vertex operators and ghost picture changing. As an application we compute all possible 3- and 4-point tree amplitudes of the massless fields and derive from them the low energy effective action of the massless modes. Some effects for the massless spectrum due to one-loop string effects are also mentioned.

  20. COSMOS- e'-GTachyon from string theory

    Science.gov (United States)

    Choudhury, Sayantan; Panda, Sudhakar

    2016-05-01

    In this article, our prime objective is to study the inflationary paradigm in the context of the generalized tachyon (GTachyon) living on the world volume of a non-BPS string theory. The tachyon action is considered here is modified compared to the original action. One can quantify the amount of the modification via a power q instead of 1 / 2 in the effective action. Using this set-up we study inflation by various types of tachyonic potentials, using which we constrain the index q within, 1/2tachyon M_s, from the recent Planck 2015 and Planck+BICEP2/Keck Array joint data. We explicitly study the inflationary consequences from single field, assisted field and multi-field tachyon set-ups. Specifically for the single field and assisted field cases we derive the results in the quasi-de Sitter background in which we will utilize the details of cosmological perturbations and quantum fluctuations. Also we derive the expressions for all inflationary observables using any arbitrary vacuum and the Bunch-Davies vacuum. For the single field and the assisted field cases we derive the inflationary flow equations, new sets of consistency relations. Also we derive the field excursion formula for the tachyon, which shows that assisted inflation is on the safe side compared to the single field case to validate the effective field theory framework. Further we study the features of the CMB angular power spectrum from TT, TE and EE correlations from scalar fluctuations within the allowed range of q for each of the potentials from the single field set-up. We also put constraints from the temperature anisotropy and polarization spectra, which shows that our analysis is consistent with the Planck 2015 data. Finally, using the δ N formalism we derive the expressions for inflationary observables in the context of multi-field tachyons.

  1. Non-critical string, Liouville theory and geometric bootstrap hypothesis

    CERN Document Server

    Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew

    2003-01-01

    Basing on the standard construction of critical string amplitudes we analyze properties of the longitudinal sector of the non-critical Nambu-Goto string. We demonstrate that it cannot be described by standard (in the sense of BPZ) conformal field theory. As an alternative we propose a new version of the geometric approach to Liouville theory and formulate its basic consistency condition - the geometric bootstrap equation.

  2. Phenomenology and cosmology of weakly coupled string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.

    1998-05-18

    The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.

  3. Noncommutative string theory, the R-matrix, and Hopf algebras

    Science.gov (United States)

    Watts, P.

    2000-02-01

    Motivated by the form of the noncommutative /*-product in a system of open strings and Dp-branes with constant nonzero Neveu-Schwarz 2-form, we define a deformed multiplication operation on a quasitriangular Hopf algebra in terms of its R-matrix, and comment on some of its properties. We show that the noncommutative string theory /*-product is a particular example of this multiplication, and comment on other possible Hopf algebraic properties which may underlie the theory.

  4. Towards a Theory of the QCD String

    CERN Document Server

    Dubovsky, Sergei

    2015-01-01

    We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field - the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to $Q=\\sqrt{7\\over 16\\pi}\\approx 0.37$. We argue that this model is a member of a larger family of relativistic non-critical integrable string models. This family includes and extends conventional non-critical strings described by the linear dilaton CFT. Intriguingly, recent lattice data in $SU(3)$ and $SU(5)$ gluodynamics reveals the presence of a massive pseudoscalar axion on the worldsheet of confining flux tubes. The value of the corresponding coupling, as determined from the lattice data, is equal to $Q_L\\approx0.38\\pm0.04$.

  5. Towards a theory of the QCD string

    Energy Technology Data Exchange (ETDEWEB)

    Dubovsky, Sergei [Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington place, New York, NY 10003 (United States); Gorbenko, Victor [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-02-03

    We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field — the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to Q=√((7/(16π)))≈0.37. We argue that this model is a member of a larger family of relativistic non-critical integrable string models. This family includes and extends conventional non-critical strings described by the linear dilaton CFT. Intriguingly, recent lattice data in SU(3) and SU(5) gluodynamics reveals the presence of a massive pseudoscalar axion on the worldsheet of confining flux tubes. The value of the corresponding coupling, as determined from the lattice data, is equal to Q{sub L}≈0.38±0.04.

  6. Non-perturbative QCD: renormalization, O(a)-improvement and matching to Heavy Quark Effective Theory

    CERN Document Server

    Sommer, R

    2006-01-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice.

  7. 3rd UK-QFT Meeting: Non-Perturbative Quantum Field Theory and Quantum Gravity

    CERN Document Server

    2014-01-01

    The meeting aims to bringing together Students, Postdoctoral Researchers and Senior Scientists to discuss recent trends in advanced Quantum Field Theory and Quantum Gravity. The format of the meeting is a series of informal talks to allow for discussion and the exchange of ideas amongst participants. We plan for up to 8 slots for short presentations depending on demand and one final longer seminar given by Frank Saueressig (Mainz). This is the third meeting of its kind and details on the previous two can be found on the following: 1st UK-QFT Meeting: Non-perturbative aspects in field theory (KCL) 2nd UK-QFT Meeting: Advances in quantum field theory and gravity (Sussex)

  8. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  9. Confining strings in supersymmetric theories with Higgs branches

    Science.gov (United States)

    Shifman, M.; Tallarita, Gianni; Yung, Alexei

    2015-03-01

    We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches, strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L . We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N =1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula, the dependence of tension on the string length is logarithmic, and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung analytic expression.

  10. Confining Strings in Supersymmetric Theories with Higgs Branches

    CERN Document Server

    Shifman, Mikhail; Yung, Alexei

    2014-01-01

    We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L. We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N=1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula the dependence of tension on the string length is logarithmic and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung an...

  11. Survey of mathematical foundations of QFT and perturbative string theory

    NARCIS (Netherlands)

    Sati, H.; Schreiber, U.|info:eu-repo/dai/nl/326056998

    2011-01-01

    Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and

  12. Survey of mathematical foundations of QFT and perturbative string theory

    NARCIS (Netherlands)

    Sati, H.; Schreiber, U.

    2011-01-01

    Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and Perturba

  13. E8 Gauge Theory and Gerbes in String Theory

    CERN Document Server

    Sati, H

    2006-01-01

    The reduction of the E8 gauge theory to ten dimensions leads to a loop group, which in relation to twisted K-theory has a Dixmier-Douady class identified with the Neveu-Schwarz H-field. We give an interpretation of the degree two part of the eta-form by comparing the adiabatic limit of the eta invariant with the one loop term in type IIA. More generally, starting with a G-bundle, the comparison for manifolds with String Structure identifies G with E8 and the representation as the adjoint, due to an interesting appearance of the dual Coxeter number. This makes possible a description in terms of a generalized WZW model at the critical level. We also discuss the relation to the index gerbe, the possibility of obtaining such bundles from loop space, and the symmetry breaking to finite-dimensional bundles. We discuss the implications of this and we give several proposals.

  14. Width of the confining string in Yang-Mills theory.

    Science.gov (United States)

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  15. A course on noncommutative geometry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2014-09-11

    In this pedagogical mini course the basics of the derivation of the noncommutative structures appearing in string theory are reviewed. First we discuss the well established appearance of the noncommutative Moyal-Weyl star-product in the correlation functions of open string vertex operators on a magnetized D-brane. Second, we will review the most recent attempts to generalize these concepts to the closed string moving in a nongeometric flux background. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Perturbative Quantum Field Theory in the String-Inspired Formalism

    CERN Document Server

    Schubert, C

    2001-01-01

    We review the status and present range of applications of the ``string-inspired'' approach to perturbative quantum field theory. This formalism offers the possibility of computing effective actions and S-matrix elements in a way which is similar in spirit to string perturbation theory, and bypasses much of the apparatus of standard second-quantized field theory. Its development was initiated by Bern and Kosower, originally with the aim of simplifying the calculation of scattering amplitudes in quantum chromodynamics and quantum gravity. We give a short account of the original derivation of the Bern-Kosower rules from string theory. Strassler's alternative approach in terms of first-quantized particle path integrals is then used to generalize the formalism to more general field theories, and, in the abelian case, also to higher loop orders. A considerable number of sample calculations are presented in detail, with an emphasis on quantum electrodynamics.

  17. Deconfinement and the Hagedorn transition in string theory.

    Science.gov (United States)

    Chaudhuri, S

    2001-03-05

    We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)

  18. Regge behavior saves String Theory from causality violations

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2015-01-01

    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters $b \\le l_s$ (the string-length parameter) with $l_s \\gg R_p$ (the characteristic scale of the D$p$-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory - and in particular its Regge behavior - is taken into account.

  19. Regge behavior saves string theory from causality violations

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Giuseppe, D'Appollonio; Russo, Rodolfo

    2015-01-01

    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b....... Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account....... ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the Dp-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector...

  20. Regge behavior saves string theory from causality violations

    Energy Technology Data Exchange (ETDEWEB)

    D’Appollonio, Giuseppe [Dipartimento di Fisica, Università di Cagliari andINFN, Sezione di Cagliari,Cittadella Universitaria, Monserrato, 09042 (Italy); Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, Copenhagen, DK-2100 (Denmark); Nordita, KTH Royal Institute of Technology andStockholm University, Roslagstullsbacken 23, Stockholm, SE-10691 (Sweden); Russo, Rodolfo [Queen Mary University of London,Mile End Road, London, E1 4NS United Kingdom (United Kingdom); Veneziano, Gabriele [Collège de France,11 place M. Berthelot, Paris, 75005 (France); Theory Division, CERN,Geneva 23, CH-1211 (Switzerland)

    2015-05-27

    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. http://arxiv.org/abs/1407.5597. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b≤l{sub s} (the string-length parameter) with l{sub s}≫R{sub p} (the characteristic scale of the Dp-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account.

  1. Constraining de Sitter Space in String Theory.

    Science.gov (United States)

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep

    2015-08-14

    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.

  2. Regularization of identity based solution in string field theory

    Science.gov (United States)

    Zeze, Syoji

    2010-10-01

    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.

  3. Regularization of identity based solution in string field theory

    CERN Document Server

    Zeze, Syoji

    2010-01-01

    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.

  4. The Phantom Term in Open String Field Theory

    CERN Document Server

    Erler, Theodore

    2012-01-01

    We show that given any two classical solutions in open string field theory and a singular gauge transformation relating them, it is possible to write the second solution as a gauge transformation of the first plus a singular, projector-like state which describes the shift in the open string background between the two solutions. This is the "phantom term." We give some applications in the computation of gauge invariant observables.

  5. Physical degrees of freedom in 2-D string field theories

    CERN Document Server

    Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki

    1992-01-01

    States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.

  6. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  7. World Sheet Dynamics of Effective String Theory and the Gribov Ambiguity in QCD

    Science.gov (United States)

    Cooper, Patrick

    This PhD thesis consists of a collection of results pertaining to effective string theory and quantum chromodynamics. A bijection is proven between manifestly ISO(1, p) x SO(D - p - 1) actions whose gapless degrees of freedom consist of Goldstone fields realizing the coset ISO(1, D - 1)/ISO(1, p) x SO(D - p - 1) non-linearly, and effective actions describing p + 1 dimensional surfaces embedded in a D dimensional Minkowskian target space. Continuing with effective strings, an interesting UV complete, albeit acausal theory is analyzed whose low energy effective action has a 'wrong sign' leading irrelevant operator. The constraints integrability puts on branon scattering is also catalogued in various dimensions, and in the presence of goldstini non-linearly realizing target space supersymmetry. An interesting hidden supersymmetry is discovered, for Green-Schwarz-like actions with an arbitrary coefficient preceding the Wess-Zumino term. Lastly, with regards to QCD, techniques from the program initiated by Vladimir Gribov in 1978 to investigate the effects of a non-perturbative residual gauge ambiguity are refined and applied to the Gribov-Zwanziger confinement scenario, showing an enhanced ghost propagator and divergent color coulomb potential. I then provide a careful analysis of how to correctly implement periodic boundary conditions in the finite temperature theory, which naively would be contradictory with the Maggiore-Schaden shift which is crucial to using familiar BRST cohomology techniques to define the subset of physical states of the Hilbert space.

  8. Anatomy of zero-norm states in string theory

    Science.gov (United States)

    Chan, Chuan-Tsung; Lee, Jen-Chi; Yi-Yang

    2005-04-01

    We calculate and identify the counterparts of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone Del Giudice Di Vecchia Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin (BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive σ-model approach of string theory. The high-energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high-energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross.

  9. Kinetics and thermodynamics of electron transfer in Debye solvents: an analytical and nonperturbative reduced density matrix theory.

    Science.gov (United States)

    Han, Ping; Xu, Rui-Xue; Li, Baiqing; Xu, Jian; Cui, Ping; Mo, Yan; Yan, Yijing

    2006-06-15

    A nonperturbative electron transfer rate theory is developed on the basis of reduced density matrix dynamics, which can be evaluated readily for the Debye solvent model without further approximation. Not only does it recover for reaction rates the celebrated Marcus' inversion and Kramers' turnover behaviors, but the present theory also predicts reaction thermodynamics, such as equilibrium Gibbs free energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. Moreover, a continued fraction Green's function formalism is also constructed, which can be used together with the Dyson equation technique for efficient evaluation of nonperturbative reduced density matrix dynamics.

  10. Deriving Veneziano Model in a Novel String Field Theory Solving String Theory by Liberating Right and Left Movers

    CERN Document Server

    Nielsen, Holger B

    2014-01-01

    Bosonic string theory with the possibility for an arbitrary number of strings - i.e. a string ?eld theory - is formulated by a Hilbert space (a Fock space), which is just that for massless noninteracting scalars. We earlier presented this novel type of string ?eld theory, but now we show that it leads to scattering just given by the Veneziano model amplitude. Generalization to strings with fermion modes would presumably be rather easy. It is characteristic for our formulation /model that: 1) We have thrown away some null set of information compared to usual string ?eld theory, 2)Formulated in terms of our \\objects" (= the non-interacting scalars) there is no interaction and essentially no time development(Heisenberg picture), 3) so that the S-matrix is in our Hilbert space given as the unit matrix, S=1, and 4) the Veneziano scattering amplitude appear as the overlap between the initial and the ?nal state described in terms of the \\objects". 5) The integration in the Euler beta function making up the Veneziano...

  11. An Infinite Dimensional Symmetry Algebra in String Theory

    CERN Document Server

    Evans, Mark; Nanopoulos, Dimitri V.; Evans, Mark; Giannakis, Ioannis

    1994-01-01

    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\\it weighted tensor algebra}, and, while it appears to be a distant cousin of the $W$-algebras, it has not, to our knowledge, appeared in the literature before.

  12. Excitation Spectra In Nongravitational Theories Marginal Stability, String Webs, Bound States In Gauge Theories And Hot Little Strings

    CERN Document Server

    Narayan, K S

    2002-01-01

    In this thesis, we discuss two topics—marginal stability in gauge theories and little string theories at the Hagedorn temperature. The spectrum of stable supersymmetric charged particle states can change discontinuously as we change the vacuum on the Coulomb branch of four dimensional gauge theories with extended supersymmetry. This discontinuous change manifests itself via the decay of some of these states which become marginally unstable across certain submanifolds in the Coulomb branch. We describe how this decay process can be studied through semiclassical field configurations, purely within the low energy effective action on the Coulomb branch, even at strong coupling. We then describe how these semiclassical field configurations naturally give rise to and generalize the string web description of these supersyrnmetric states found in D-brane constructions for some gauge theories. After a brief study of string web interactions in theories with sixteen supercharges, we move on to study the supers...

  13. Matrix models, topological strings, and supersymmetric gauge theories

    Science.gov (United States)

    Dijkgraaf, Robbert; Vafa, Cumrun

    2002-11-01

    We show that B-model topological strings on local Calabi-Yau threefolds are large- N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover ( p, q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.

  14. Gauge invariant actions for string models

    Energy Technology Data Exchange (ETDEWEB)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.

  15. Replica trick and string winding

    Science.gov (United States)

    Prudenziati, Andrea; Trancanelli, Diego

    2017-07-01

    We apply the replica trick to compute the entropy of a cylinder amplitude in string theory. We focus on the contribution from nonperturbative winding modes and impose tadpole cancellation to understand the correct prescription for integrating over moduli. Choosing the entangling surface to cut longitudinally over the whole length of the cylinder, we obtain an answer that is interpreted as the entropy of a density matrix. We recast this result in target space language, in both the open and closed string picture.

  16. A unifying theory The universe on a string

    CERN Multimedia

    Greene, Brian

    2006-01-01

    Seventy-five years ago, Albert Einstein completed his unified field theory; but, as had happened before and would happen again, Einstein had to go bak to the drawing board. Much progress have been inspired, with the most recent advances coming from an approach called string theory. (1,5 page)

  17. Killing(-Yano) Tensors in String Theory

    CERN Document Server

    Chervonyi, Yuri

    2015-01-01

    We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.

  18. Non-Perturbative Self-Consistent Model in SU(N Gauge Field Theory

    Directory of Open Access Journals (Sweden)

    Koshelkin A.V.

    2012-06-01

    Full Text Available Non-perturbative quasi-classical model in a gauge theory with the Yang-Mills (YM field is developed. The self-consistent solutions of the Dirac equation in the SU(N gauge field, which is in the eikonal approximation, and the Yang-Mills (YM equations containing the external fermion current are solved. It shown that the developed model has the self-consistent solutions of the Dirac and Yang-Mills equations at N ≥ 3. In this way, the solutions take place provided that the fermion and gauge fields exist simultaneously, so that the fermion current completely compensates the current generated by the gauge field due to self-interaction of it.

  19. Wilson Loops in Open String Theory

    Science.gov (United States)

    Shiraishi, Kiyoshi

    Wilson loop elements on torus are introduced into the partition function of open strings as Polyakov’s path integral at one-loop level. Mass spectra from compactification and expected symmetry breaking are illustrated by choosing the correct weight for the contributions from annulus and Möbius strip. We show that Jacobi’s imaginary transformation connects the mass spectra with the Wilson loops. The application to thermopartition function and cosmological implications are briefly discussed.

  20. Wilson Loops in Open String Theory

    CERN Document Server

    Shiraishi, Kiyoshi

    2012-01-01

    Wilson loop elements on torus are introduced into the partition function of open strings as Polyakov's path integral at one-loop level. Mass spectra from compactification and expected symmetry breaking are illustrated by choosing the correct weight for the contributions from annulus and M\\"obius strip. We show that Jacobi's imaginary transformation connects the mass spectra with the Wilson loops. The application to thermopartition function and cosmological implications are briefly discussed.

  1. M-theory and a Topological String Duality

    CERN Document Server

    Dijkgraaf, R; Verlinde, E; Dijkgraaf, Robbert; Vafa, Cumrun; Verlinde, Erik

    2006-01-01

    We show how the topological string partition function, which is known to capture the degeneracies of a gas of BPS spinning M2-branes in M-theory compactified to 5 dimensions, is related to a 4-dimensional D-brane system that consists of single D6-brane bound to lower-dimensional branes. This system is described by a topologically twisted U(1) gauge theory, that has been conjecturally identified with quantum foam models and topological strings. This also explains, assuming the identification of Donaldson-Thomas invariants with this U(1) gauge theory, the conjectural relation between DT invariants and topological strings. Our results provide further mathematical evidence for the recently found connection between 4d and 5d black holes.

  2. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamenta...

  3. Instability of black strings in third-order Lovelock theories

    CERN Document Server

    Giacomini, Alex; Lagos, Marcela; Oliva, Julio; Vera, Aldo

    2016-01-01

    We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D=9 which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As it is the case in General Relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in General Relativity, Gauss-Bonnet and third-order Lovelock theories, and show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian and the maximum exponential growth in time of the perturbation is the largest in General Relativity and it decreases with the number of curvatures involved in the Lagrangian

  4. Thermodynamic Geometry and Extremal Black Holes in String Theory

    CERN Document Server

    Sarkar, Tapobrata; Tiwari, Bhupendra Nath

    2008-01-01

    We study a generalisation of thermodynamic geometry to degenerate quantum ground states at zero temperatures exemplified by charged extremal black holes in type II string theories. Several examples of extremal charged black holes with non degenerate thermodynamic geometries and finite but non zero state space scalar curvatures are established. These include black holes described by D1-D5-P and D2-D6-NS5-P brane systems and also two charged small black holes in Type II string theories. We also explore the modifications to the state space geometry and the scalar curvature due to the higher derivative contributions and string loop corrections as well as an exact entropy expression from quantum information theory. Our construction describes state space geometries arising out of a possible limiting thermodynamic characterisation of degenerate quantum ground states at zero temperatures.

  5. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  6. Mirage Models Confront the LHC: I. Kahler-Stabilized Heterotic String Theory

    CERN Document Server

    Kaufman, Bryan L; Gaillard, Mary K

    2013-01-01

    We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric, will be considered first. This model is highly constrained and therefore predictive. We find that much of the reasonable parameter space afforded to the model -- representing the strong dynamics of a presumed gaugino condensation in the hidden sector -- is now observationally disfavored by the LHC results. Most of the theoretically-motivated parameter space that remains can be probed with data that has already been collected, and most of the remainder will be definitively explored within the first year of operation at center of mass energy of 13 TeV. Expected signatures for a number of benchmark points are discussed. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, a...

  7. On perturbative field theory and twistor string theory

    CERN Document Server

    Bedford, James

    2007-01-01

    It is well-known that perturbative calculations in field theory can lead to far simpler answers than the Feynman diagram approach might suggest. In some cases scattering amplitudes can be constructed for processes with any desired number of external legs yielding compact expressions which are inaccessible from the point of view of conventional perturbation theory. In this thesis we discuss some attempts to address the nature of this underlying simplicity and then use the results to calculate some previously unknown amplitudes of interest. Witten's twistor string theory is introduced and the CSW rules at tree-level and one-loop are described. We use these techniques to calculate the one-loop gluonic MHV amplitudes in N=1 super-Yang-Mills as a verification of their validity and then proceed to evaluate the general MHV amplitudes in pure Yang-Mills with a scalar running in the loop. This latter amplitude is a new result in QCD. In addition to this, we review some recent on-shell recursion relations for tree-leve...

  8. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-10-21

    The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2{pi}, and while this is briefly mentioned in the text

  9. A class of exact classical solutions to string theory.

    Science.gov (United States)

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  10. Anomalous reparametrizations and butterfly states in string field theory

    CERN Document Server

    Schnabl, M

    2003-01-01

    The reparametrization symmetries of Witten's vertex in ordinary or vacuum string field theories can be used to extract useful information about classical solutions of the equations of motion corresponding to D-branes. It follows, that the vacuum string field theory in general has to be regularized. For the regularization recently considered by Gaiotto et al., we show that the identities we derive, are so constraining, that among all surface states they uniquely select the simplest butterfly projector discovered numerically by those authors. The reparametrization symmetries are also used to give a simple proof that the butterfly states and their generalizations are indeed projectors.

  11. Quasilocal Energy for Static Charged Black Holes in String Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-Liang; JING Ji-Liang; WANG Yong-Jiu

    2001-01-01

    The Brown-York quasilocal energies of some static charged dilaton black holes are calculated, and then the validity of Martinez's conjecture is explored in string theory. It is shown that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the conjecture that the Brown-York quasilocal energy at the outer horizon of black hole reduces to twice of its irreducible mass is still applicable for the static charged black holes in string theory. The result is different from Bose-Naing's one.``

  12. Some Computations in Background Independent Open-String Field Theory

    CERN Document Server

    Witten, Edward

    1993-01-01

    Recently, background independent open-string field theory has been formally defined in the space of all two-dimensional world-sheet theories. In this paper, to make the construction more concrete, I compute the action for an off-shell tachyon field of a certain simple type. From the computation it emerges that, although the string field action does not coincide with the world-sheet (matter) partition function in general, these functions do coincide on shell. This can be demonstrated in general, as long as matter and ghosts are decoupled.

  13. On Natural Inflation and Moduli Stabilisation in String Theory

    CERN Document Server

    Palti, Eran

    2015-01-01

    Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. T...

  14. Closed tachyon solitons in type II string theory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Etxebarria, Inaki [Max Planck Institute for Physics, Munich (Germany); Montero, Miguel [Instituto de Fisica Teorica IFT-UAM/CSIC, C/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid (Spain); Departamento de Fisica Teorica, Universidad Autonoma de Madrid (Spain); Uranga, Angel M. [Instituto de Fisica Teorica IFT-UAM/CSIC, C/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid (Spain)

    2015-09-15

    Type II theories can be described as the endpoint of closed string tachyon condensation in certain orbifolds of supercritical type 0 theories. In this paper, we study solitons of this closed string tachyon and analyze the nature of the resulting defects in critical type II theories. The solitons are classified by the real K-theory groups KO of bundles associated to pairs of supercritical dimensions. For real codimension 4 and 8, corresponding to KO(S{sup 4}) = Z and KO(S{sup 8}) = Z, the defects correspond to a gravitational instanton and a fundamental string, respectively. We apply these ideas to reinterpret the worldsheet GLSM, regarded as a supercritical theory on the ambient toric space with closed tachyon condensation onto the CY hypersurface, and use it to describe charged solitons under discrete isometries. We also suggest the possible applications of supercritical strings to the physical interpretation of the matrix factorization description of F-theory on singular spaces. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2009-10-29

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  16. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2010-06-15

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  17. Anatomy of Zero-norm States in String Theory

    CERN Document Server

    Chan, C T; Yang, Y; Chan, Chuan-Tsung; Lee, Jen-Chi; Yang, Yi

    2005-01-01

    We identify and calculate the counterparts of zero-norm states in the old covariant first quantised (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone DDF zero-norm states and the off-shell BRST zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attentions are paid to the inter-particle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no ghost conditions and exactly recover two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two typse of zero-norm states in the generalized massive s-model approach of string theory. The high energy limit of these stringy gauge symmetries was recently used to fix the proportionality constants among high energy scattering amplitudes...

  18. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  19. F-theory and the Classification of Little Strings

    CERN Document Server

    Bhardwaj, Lakshya; Heckman, Jonathan J; Morrison, David R; Rudelius, Tom; Vafa, Cumrun

    2015-01-01

    Little string theories (LSTs) are UV complete non-local 6D theories decoupled from gravity in which there is an intrinsic string scale. In this paper we present a systematic approach to the construction of supersymmetric LSTs via the geometric phases of F-theory. Our central result is that all LSTs with more than one tensor multiplet are obtained by a mild extension of 6D superconformal field theories (SCFTs) in which the theory is supplemented by an additional, non-dynamical tensor multiplet, analogous to adding an affine node to an ADE quiver, resulting in a negative semidefinite Dirac pairing. We also show that all 6D SCFTs naturally embed in an LST. Motivated by physical considerations, we show that in geometries where we can verify the presence of two elliptic fibrations, exchanging the roles of these fibrations amounts to T-duality in the 6D theory compactified on a circle.

  20. N =2⋆ from topological amplitudes in string theory

    Science.gov (United States)

    Florakis, Ioannis; Zein Assi, Ahmad

    2016-08-01

    In this paper, we explicitly construct string theory backgrounds that realise the so-called N =2⋆ gauge theory. We prove the consistency of our models by calculating their partition function and obtaining the correct gauge theory spectrum. We further provide arguments in favour of the universality of our construction which covers a wide class of models all of which engineer the same gauge theory. We reproduce the corresponding Nekrasov partition function once the Ω-deformation is included and the appropriate field theory limit taken. This is achieved by calculating the topological amplitudes Fg in the string models. In addition to heterotic and type II constructions, we also realise the mass deformation in type I theory, thus leading to a natural way of uplifting the result to the instanton sector.

  1. String theory and the dark glueball problem

    Science.gov (United States)

    Halverson, James; Nelson, Brent D.; Ruehle, Fabian

    2017-02-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and Δ Neff bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  2. GEOMETRIC CONSTRUCTIONS OF NONGEOMETRIC STRING THEORIES

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon

    2002-09-23

    We advocate a framework for constructing perturbative closed string compactifications which do not have large-radius limits. The idea is to augment the class of vacua which can be described as fibrations by enlarging the monodromy group around the singular fibers to include perturbative stringy duality symmetries. As a controlled laboratory for testing this program, we study in detail six-dimensional (1,0) supersymmetric vacua arising from two-torus fibrations over a two-dimensional base. We also construct some examples of two-torus fibrations over four-dimensional bases, and comment on the extension to other fibrations.

  3. String Theory and the Dark Glueball Problem

    CERN Document Server

    Halverson, James; Ruehle, Fabian

    2016-01-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and $\\Delta N_{\\text{eff}}$ bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  4. String-like dual models for scalar theories

    Science.gov (United States)

    Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob; Damgaard, Poul H.

    2016-12-01

    We show that all tree-level amplitudes in φ p scalar field theory can be represented as the α ' → 0 limit of an SL(2, ℝ)-invariant, string-theory-like dual model integral. These dual models are constructed according to constraints that admit families of solutions. We derive these dual models, and give closed formulae for all tree-level amplitudes of any φ p scalar field theory.

  5. String-Like Dual Models for Scalar Theories

    CERN Document Server

    Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H

    2016-01-01

    We show that all tree-level amplitudes in $\\varphi^p$ scalar field theory can be represented as the $\\alpha'\\to0$ limit of an $SL(2,R)$-invariant, string-theory-like dual model integral. These dual models are constructed according to constraints that admit families of solutions. We derive these dual models, and give closed formulae for all tree-level amplitudes of any $\\varphi^p$ scalar field theory.

  6. On the Evaporation of Black Holes in String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    We show that, in string theory, the quantum evaporation and decay of black holes in two-dimensional target space is related to imaginary parts in higher-genus string amplitudes. These arise from the regularisation of modular infinities due to the sum over world-sheet configurations, that are known to express the instabilities of massive string states in general, and are not thermal in character. The absence of such imaginary parts in the matrix model limit confirms that the latter constitutes the final stage of the evaporation process, at least in perturbation theory. Our arguments appear to be quite generic, related only to the summation over world-sheet surfaces, and hence should also apply to higher-dimensional target spaces.

  7. Strings, branes, and gravity duals of gauge theories

    CERN Document Server

    Lovis, K J

    2002-01-01

    We study the correspondence between certain supersymmetric gauge theories and their dual supergravity descriptions. Using low-energy brane probes of the supergravity geometries we find moduli spaces of vacua, as expected from considering the dual gauge theories. The metrics on these spaces can be put into a form consistent with field theory expectations. This provides a non-trivial check on the supergravity solutions, in addition to strong-coupling predictions for the gauge theories. In the case of N = 2 supersymmetric gauge theory, proposed supergravity duals have previously been shown, using brane probe techniques, to display the 'enhancon mechanism'. In particular, the supergravity geometries correctly reproduce the perturbative behaviour of the gauge theory. We calculate exact non-perturbative results at low-energies using the method of Seiberg and Witten. These correctly reproduce the perturbative results in the supergravity limit, but also make predictions for when the supergravity approximation is not ...

  8. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  9. Grand Unification as a Bridge Between String Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Jogesh C.

    2006-06-09

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  10. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  11. The partition function of 2d string theory

    CERN Document Server

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  12. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  13. Flavor structure in $SO(32)$ heterotic string theory

    CERN Document Server

    Abe, Hiroyuki; Otsuka, Hajime; Takano, Yasufumi; Tatsuishi, Takuya H

    2016-01-01

    We study the flavor structure in $SO(32)$ heterotic string theory on six-dimensional torus with magnetic fluxes. In particular, we focus on models with the flavor symmetries $SU(3)_f$ and $\\Delta(27)$. In both models, we can realize the realistic quark masses and mixing angles.

  14. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  15. Four-qubit entanglement classification from string theory.

    Science.gov (United States)

    Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W

    2010-09-03

    We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.

  16. Conformal higher-spin symmetries in twistor string theory

    Directory of Open Access Journals (Sweden)

    D.V. Uvarov

    2014-12-01

    Full Text Available It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains psl(4|4,R superalgebra. In quantum theory this infinite-dimensional symmetry breaks down to SL(4|4,R one.

  17. Flavor structure in S O (32 ) heterotic string theory

    Science.gov (United States)

    Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime; Takano, Yasufumi; Tatsuishi, Takuya H.

    2016-12-01

    We study the flavor structure in S O (32 ) heterotic string theory on six-dimensional tori with magnetic fluxes. Specifically, we focus on models with the flavor symmetries S U (3 )f and Δ (27 ). In both models, we can realize the realistic quark masses and mixing angles.

  18. Wilson loops and topological phases in closed string theory

    CERN Document Server

    Cartas-Fuentevilla, R

    2004-01-01

    Using covariant phase space formulations for the natural topological invariants associated with the world-surface in closed string theory, we find that certain Wilson loops defined on the world-surface and that preserve topological invariance, correspond to wave functionals for the vacuum state with zero energy. The differences and similarities with the 2-dimensional QED proposed by Schwinger early are discussed.

  19. Grand Unification as a Bridge Between String Theory and Phenomenology

    Science.gov (United States)

    Pati, Jogesh C.

    In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  20. Vacua and inflation in string theory and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus

    2013-07-15

    We study the connection between the early and late accelerated expansion of the universe and string theory. In Part I of this thesis, the observational degeneracy between single field models of inflation with canonical kinetic terms and noncanonical kinetic terms, in particular string theory inspired models, is discussed. The 2-point function observables of a given non-canonical theory and its canonical transform that is obtained by matching the inflationary trajectories in phase space are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of the 3-point function observables (non-Gaussianities), we find degeneracy between non-canonical inflation and canonical inflation with a potential that includes a sum of modulated terms. In Part II, we present explicit examples for de Sitter vacua in type IIB string theory. After deriving a sufficient condition for de Sitter vacua in the Kahler uplifting scenario, we show that a globally consistent de Sitter model can be realized on a certain Calabi-Yau manifold. All geometric moduli are stabilized and all known consistency constraints are fulfilled. The complex structure moduli stabilization by fluxes is studied explicitly for a small number of cycles. Extrapolating to a larger number of flux carrying cycles, we verify statistical studies in the literature which show that, in principle, the string landscape can account for a universe with an extremely small cosmological constant.

  1. What every physicist should know about string theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Edward

    2015-11-15

    Some of nature’s rhymes—the appearance of similar structures in different areas of physics—underlie the way that string theory potentially unifies gravity with the other forces of nature and eliminates the ultraviolet divergences that plague quantum gravity.

  2. Combinatorics, observables, and String Theory: part II

    CERN Document Server

    Gregori, Andrea

    2011-01-01

    We investigate the string configuration that, in the framework of the theoretical scenario introduced in [1], corresponds to the most entropic configuration in the phase space of all the configurations of the universe. This describes a universe with four space-time dimensions, and the physical content is phenomenologically compatible with the experimental observations and measurements. Everything is determined in terms of the age of the universe, with no room for freely-adjustable parameters. We discuss how one obtains the known spectrum of particles and interactions, with massive neutrinos, no Higgs boson, and supersymmetry broken at the Planck scale. Besides the computation of masses and couplings, CKM matrix elements, cosmological constant, expansion parameters of the universe etc..., all resulting, within the degree of the approximation we used, in agreement with the experimental observations, we also discuss how this scenario passes the tests provided by cosmology and the constraints imposed by the physi...

  3. Orientifolds of string theory Melvin backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Angelantonj, Carlo E-mail: carlo.angelantonj@cern.ch; Dudas, Emilian; Mourad, Jihad

    2002-08-19

    We study the dynamics of type I strings on Melvin backgrounds, with a single or multiple twisted two-planes. We construct two inequivalent types of orientifold models that correspond to (non-compact) irrational versions of Scherk-Schwarz type breaking of supersymmetry. In the first class of vacua, D-branes and O-planes are no longer localized in space-time but are smeared along the compact Melvin coordinate with a characteristic profile. On the other hand, the second class of orientifolds involves O-planes and D-branes that are both rotated by an angle proportional to the twist. In case of 'multiple Melvin spaces', some amount of supersymmetry is recovered if the planes are twisted appropriately and part of the original O-planes are transmuted into new ones. The corresponding boundary and crosscap states are determined.

  4. Cosmological solutions in string theory with dilaton self interaction potential

    CERN Document Server

    Mora, C

    2003-01-01

    In this work we present homogeneous and isotropic cosmological solutions for the low energy limit of string theory with a self interacting potential for the scalar field. For a potential that is a linear combination of two exponential, a family of exact solutions are found for the different spatial curvatures. Among this family a non singular accelerating solution for positive curvature is singled out and the violation of the energy conditions for that solution is studied, and also its astrophysical consequences. The string coupling for this solution is finite. (Author)

  5. Dual little strings from F-theory and flop transitions

    Science.gov (United States)

    Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2017-07-01

    A particular two-parameter class of little string theories can be described by M parallel M5-branes probing a transverse affine A N - 1 singularity. We previously discussed the duality between the theories labelled by ( N, M) and ( M, N). In this work, we propose that these two are in fact only part of a larger web of dual theories. We provide evidence that the theories labelled by ( N, M) and (NM/k,k) are dual to each other, where k = gcd( N, M). To argue for this duality, we use a geometric realization of these little string theories in terms of F-theory compactifications on toric, non-compact Calabi-Yau threefolds X N, M which have a double elliptic fibration structure. We show explicitly for a number of examples that X NM/ k, k is part of the extended moduli space of X N, M , i.e. the two are related through symmetry transformations and flop transitions. By working out the full duality map, we provide a simple check at the level of the free energy of little string theories.

  6. Dual Little Strings from F-Theory and Flop Transitions

    CERN Document Server

    Hohenegger, Stefan; Rey, Soo-Jong

    2016-01-01

    A particular two-parameter class of little string theories can be described by $M$ parallel M5-branes probing a transverse affine $A_{N-1}$ singularity. We previously discussed the duality between the theories labelled by $(N,M)$ and $(M,N)$. In this work, we propose that these two are in fact only part of a larger web of dual theories. We provide evidence that the theories labelled by $(N,M)$ and $(\\tfrac{NM}{k},k)$ are dual to each other, where $k=\\text{gcd}(N,M)$. To argue for this duality, we use a geometric realization of these little string theories in terms of F-theory compactifications on toric, non-compact Calabi-Yau threefolds $X_{N,M}$ which have a double elliptic fibration structure. We show explicitly for a number of examples that $X_{NM/k,k}$ is part of the extended moduli space of $X_{N,M}$, i.e. the two are related through symmetry transformations and flop transitions. By working out the full duality map, we provide a simple check at the level of the free energy of the little string theories.

  7. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    Science.gov (United States)

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  8. Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-01-21

    We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  9. Background Independence and Duality Invariance in String Theory.

    Science.gov (United States)

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  10. Supersymmetry and string theory beyond the standard model

    CERN Document Server

    Dine, Michael

    2015-01-01

    The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...

  11. Notes on reductions of superstring theory to bosonic string theory

    CERN Document Server

    Ohmori, Kantaro

    2013-01-01

    It is in general very subtle to integrate over the odd moduli of super Riemann surfaces in perturbative superstring computations. We study how these subtleties go away in favorable cases, including the embedding of N=0 string to N=1 string by Berkovits and Vafa, and the relation of the graviphoton amplitude and the topological string amplitude by Antoniadis, Gava, Narain and Taylor and Bershadsky, Cecotti, Ooguri and Vafa. The Poincar\\'e dual of the moduli space of Riemann surfaces in the moduli space of super Riemann surfaces plays an important role.

  12. Application of KBc Subalgebra in String Field Theory

    Science.gov (United States)

    Zeze, S.

    Recently, a classical solution of open cubic string field theory (CSFT) which corresponds to the closed string vacuum is found by Erler and Schnabl. In their work, a very simple subalgebra of open string star algebra --- called K B c subalgebra --- plays a crucial role. In this talk, we demonstrate two applications of the K B c subalgebra. One is evaluation of classical and effective tachyon potential. It turns out that the level expansion in the K B c subalgebra terminates at a certain level, so that analytic evaluation of effective potential is available. The other application is regularization of the identity based solutions. It is demonstrated that the Okawa-Erler-Schnabl type solution naturally includes gauge invariant regularization of identity based solutions.

  13. Topological strings from quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2014-12-15

    We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P{sup 2}, local P{sup 1} x P{sup 1} and local F{sub 1}. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

  14. String theory, scale relativity and the generalized uncertainty principle

    CERN Document Server

    Castro, C

    1995-01-01

    An extension/ modification of the Stringy Heisenberg Uncertainty principle is derived within the framework of the theory of Special Scale-Relativity proposed by Nottale. Based on the fractal structure of two dimensional Quantum Gravity which has attracted considerable interest recently we conjecture that the underlying fundamental principle behind String theory should be based on an extension of Scale Relativity where both dynamics as well as scales are incorporated in the same footing.

  15. Open parabosonic string theory between two parallel Dp-branes

    Energy Technology Data Exchange (ETDEWEB)

    Hamam, D.; Belaloui, N. [Laboratoire de Physique Theorique, Universite de Jijel (Algeria); Laboratoire de Physique Mathematique et Subatomique, Universite Mentouri Constantine (Algeria)

    2012-06-27

    We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.

  16. Recent Progress in String Theory and Gravity/Gauge Theory Duality

    Science.gov (United States)

    van Raamsdonk, Mark

    2003-05-01

    In this talk, I will describe several recent developments in string theory. First, I'll discuss efforts to address the recent observations that the expansion of our universe is accelerating. Using some standard elements of the string theory toolbox (branes, fluxes, and extra dimensions) there has been good progress in constructing string theory models of universes with positive cosmological constant, though these models suggest that this may only be a temporary state of affairs. String theory also provides good reason to study universes with a negative cosmological constant: according to the well-known AdS/CFT conjecture, some of these are equivalent to non-gravitational gauge theories, and this equivalence promises to bring a better understanding both of quantum gravity and of strongly-coupled gauge theories. I will describe an important recent development in this area that permits detailed perturbative calculations on both sides, providing some of the most impressive tests of the correspondence so far.

  17. New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence

    Science.gov (United States)

    Dunne, Gerald V.; Ünsal, Mithat

    2016-10-01

    We present a broad conceptual introduction to some new ideas in nonperturbative quantum field theory (QFT) that have led to progress toward an understanding of quark confinement in gauge theories and, more broadly, toward a nonperturbative continuum definition of QFTs. We first present exact orbifold equivalences of supersymmetric and nonsupersymmetric QFTs in the large-N limit and exact equivalences of large-N theories in infinite volume to large-N theories in finite volume, or even at a single point. We discuss principles by which calculable QFTs are continuously connected to strong-coupling QFTs, allowing understanding of the physics of confinement or the absence thereof. We discuss the role of particular saddle solutions, termed bions, in weak-coupling calculable regimes. The properties of bions motivate an extension of semiclassical methods used to evaluate functional integrals to include families of complex saddles (Picard-Lefschetz theory). This analysis leads us to the resurgence program, which may provide a framework for combining divergent perturbation series with semiclassical instanton and bion/renormalon contributions. This program could provide a nonperturbative definition of the path integral.

  18. Supersymmetric gauge theories from string theory; Theorie de jauge supersymetrique de la theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, St

    2005-12-15

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the

  19. String theory, quantum phase transitions, and the emergent Fermi liquid.

    Science.gov (United States)

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  20. Matrix Models, Topological Strings, and Supersymmetric Gauge Theories

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun

    2002-01-01

    We show that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.

  1. Matrix models, topological strings, and supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert E-mail: rhd@science.uva.nl; Vafa, Cumrun

    2002-11-11

    We show that B-model topological strings on local Calabi-Yau threefolds are large-N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.

  2. Millicharged dark matter in quantum gravity and string theory.

    Science.gov (United States)

    Shiu, Gary; Soler, Pablo; Ye, Fang

    2013-06-14

    We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.

  3. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  4. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  5. String theory and the crisis in particle physics

    CERN Document Server

    Schrör, B

    2006-01-01

    In the first section the history of string theory starting from its S-matrix bootstrap predecessor up to Susskind's recent book is critically reviewed. The aim is to understand its amazing popularity which starkly constrasts its fleeting physical content. A partial answer can be obtained from the hegemonic ideological stance which some of its defenders use to present and defend it. The second section presents many arguments showing that the main tenet of string theory which culminated in the phrase that it represents ``the only game in town'' is untenable. It is based on a wrong view about QFT being a mature theory which (apart from some missing details) already reached its closure.

  6. Interpolating the Coulomb Phase of Little String Theory

    CERN Document Server

    Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi

    2015-01-01

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.

  7. Nonperturbative quantization \\`a la Heisenberg for non-Abelian gauge theories: two-equation approximation

    CERN Document Server

    Dzhunushaliev, Vladimir

    2016-01-01

    The nonperturbative quantization technique \\`{a} la Heisenberg is applied for non-Abelian gauge theories. The operator Yang-Mills equation is written, which on the corresponding averaging gives an infinite set of equations for all Green functions. We split all degrees of freedom into two groups: in the former, we have $A^a_\\mu \\in \\mathcal G \\subset SU(N)$, and in the second group we have coset degrees of freedom $SU(N) / \\mathcal G$. Using such splitting and some assumptions about 2- and 4-point Green functions, we truncate the infinite set of equations to two equations. The first equation is for the gauge fields from the subgroup $\\mathcal G$, and the second equation is for a gluon condensate which is the dispersion of quantum fluctuations of the coset fields. As an example, we obtain a flux tube solution describing longitudinal color electric fields stretched between quark and antiquark located at the $\\pm$ infinities. This solution represents the dual Meissner effect: the electric field is pushed out from...

  8. String cosmological models in the Brans-Dicke theory for five-dimensional space-time

    Institute of Scientific and Technical Information of China (English)

    Koijam Manihar Singh; Kangujam Priyokumar Singh

    2012-01-01

    Five-dimensional space-time string cosmological models generated by a cloud of strings with particles attached to them are studied in the Brans-Dicke theory.We obtain two types of interesting models by taking up the cases of geometric strings (or Nambu strings) and p-strings (Takabayasi strings),and study their different physical and dynamical properties.The roles of the scalar field in getting different phases,such as the inflationary phase and the string-dominated phase,are discussed.An interesting feature obtained here is that in one of the models there is a "bounce" at a particular instant of its evolution.

  9. From string theory to large N QCD

    CERN Document Server

    Mia, Mohammed

    2010-01-01

    We propose the dual gravity of a non conformal gauge theory which has logarithmic running of couplings in the IR but becomes almost conformal in the far UV. The theory has matter in fundamental representation, non-zero temperature and under a cascade of Seiberg dualities, can be described in terms of gauge groups of lower and lower rank. We outline the procedure of holographic renormalization and propose a mechanism to UV complete the gauge theory by modifying the dual geometry at large radial distances. As an example, we construct the brane configuration and sources required to attach a Klebanov-Witten type geometry at large r to a Klebanov- Strassler type geometry at small r. Using the supergravity description for the dual geometry, we compute thermal mass of a fundamental 'quark' in our theory along with drag and diffusion coefficients of the gauge theory plasma. We compute the stress tensor of the gauge theory and formulate the wake a probe leaves behind as it traverses the medium. Transport coefficient s...

  10. Thermo-Field Extension of Open String Field Theory

    CERN Document Server

    Cantcheff, M Botta

    2015-01-01

    We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...

  11. Non-perturbative renormalization of the energy-momentum tensor in SU(3) Yang-Mills theory

    CERN Document Server

    Giusti, Leonardo

    2014-01-01

    We present a strategy for a non-perturbative determination of the finite renormalization constants of the energy-momentum tensor in the SU(3) Yang-Mills theory. The computation is performed by imposing on the lattice suitable Ward Identites at finite temperature in presence of shifted boundary conditions. We show accurate preliminary numerical data for values of the bare coupling g_0^2 ranging for 0 to 1.

  12. Supersymmetric Solutions in Three-Dimensional Heterotic String Theory

    CERN Document Server

    Bakas, Ioannis; Lópes-Cardoso, G; Bakas, Ioannis; Bourdeau, Michele; Cardoso, Gabriel Lopes

    1998-01-01

    We consider the low-energy effective field theory of heterotic string theory compactified on a seven-torus, and we construct electrically charged as well as more general solitonic solutions. These solutions preserve 1/2, 1/4, 1/8 and 1/16 of N=8, D=3 supersymmetry and have Killing spinors which exist due to cancellation of holonomies. The associated space-time line elements do not exhibit the conical structure that often arises in 2+1 dimensional gravity theories.

  13. More exact predictions of SUSYM for string theory

    Science.gov (United States)

    Semenoff, Gordon W.; Zarembo, K.

    2001-11-01

    We compute the coefficients of an infinite family of chiral primary operators in the local operator expansion of a circular Wilson loop in N=4 supersymmetric Yang-Mills theory. The computation sums all planar rainbow Feynman graphs. We argue that radiative corrections from planar graphs with internal vertices cancel in leading orders and we conjecture that they cancel to all orders in perturbation theory. The coefficients are nontrivial functions of the 't Hooft coupling and their strong coupling limits are in exact agreement with those previously computed using the AdS/CFT correspondence. They predict the subleading orders in strong coupling and could in principle be compared with string theory calculations.

  14. Non-topological non-commutativity in string theory

    CERN Document Server

    Guttenberg, Sebastian; Kreuzer, Maximilian; Rashkov, Radoslav

    2007-01-01

    Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topolocial sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born--Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR--fields are also discus...

  15. String theory: results, magic and doubts

    CERN Document Server

    Rabinovici, Eliezer

    2013-01-01

    This talk was given at a special place and on a special occasion for a special audience. It describes the results, magic and doubts that an attempt to construct a theory based on the idea that the basic constituents of matter can also be extended objects has led to. The emphasis is on the spirit behind the ideas.

  16. Higher-Spin Triplet Fields and String Theory

    Directory of Open Access Journals (Sweden)

    D. Sorokin

    2010-01-01

    Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.

  17. Is QCD at small x a string theory?

    CERN Document Server

    Peschanski, R

    1997-01-01

    Using the dipole picture describing the $1/N_C$ limit of QCD at small $x$ and the conformal invariance properties of the BFKL kernel in transverse coordinate space, we show that the 1->p dipole densities can be expressed in terms of dual Shapiro-Virasoro amplitudes B_{2p+2} and their generalization including non-zero conformal spins. We discuss the possibility of an effective closed string theory of interacting QCD dipoles.

  18. Dynamics in Nonlocal Cosmological Models Derived from String Field Theory

    OpenAIRE

    Joukovskaya, Liudmila

    2007-01-01

    A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...

  19. Entropy Corrections for a Charged Black Hole of String Theory*

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra(n)aga

    2011-01-01

    We study the entropy of the Gibbons-Macda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics ve derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.

  20. Closed Bosonic String Field Theory At Quartic Order

    OpenAIRE

    Moeller, Nicolas

    2004-01-01

    We give a complete numerical description of the geometry of the four-point contact interaction of closed bosonic string field theory. Namely, we compute the boundary of the relevant region of the moduli space of the four-punctured spheres, and everywhere in this region we give the local coordinates around each punctures in terms of a Strebel quadratic differential and mapping radii. The numerical methods are explained in details. And the results are translated into fits, which can in principl...

  1. Closed And Open String Theories In Non-critical Backgrounds

    CERN Document Server

    Murthy, S

    2004-01-01

    This thesis is a study of closed and open string theories in low dimensional spacetimes, and the various relations between these theories. In particular, we focus on the theory of the two-dimensional black hole. We first study closed strings in the background of the Euclidean two-dimensional black hole (SL2( R )/U(1)) tensored with flat space, using the duality relating these theories to non-critical superstrings described by the supersymmetric sine-Liouville interaction on the worldsheet. We point out a subtlety in their geometric interpretation, and clarify the symmetry structure of the theories based on the understanding of these theories as near horizon limits of wrapped NS5-branes. In one such example (cigar × R6 ), we use the brave description to understand the enhancement of the global symmetry in the coset theory from U(1) to SO(3) under which the sine-Liouville and cigar interactions are related. In the same example, a worldsheet description of the moduli space R4/Z2 is presented. W...

  2. Topological strings and large $\\mbf N$ phase transitions I: Nonchiral expansion of $\\mbf q$-deformed Yang-Mills theory

    CERN Document Server

    Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J; Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.

    2006-01-01

    We examine the problem of counting bound states of BPS black holes on local Calabi-Yau threefolds which are fibrations over a Riemann surface by computing the partition function of $q$-deformed Yang-Mills theory on the Riemann surface. We study in detail the genus zero case and obtain, at finite $N$, the instanton expansion of the gauge theory. It can be written exactly as the partition function for $U(N)$ Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. The correspondence between two and three dimensional gauge theories is elucidated by an explicit mapping between two-dimensional Yang-Mills instantons and flat connections on the Lens space. In the large $N$ limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces exactly to the trivial flat connection sector with instanton contributions exponentially suppressed, and the topological string partition function on the resolved conifold ...

  3. Correlators of Ramond-Neveu-Schwarz fields in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Haertl, Daniel

    2011-07-15

    In this thesis we provide calculational tools in order to calculate scattering amplitudes in string theory at tree- and loop-level. In particular, we discuss the calculation of correlation functions consisting of Ramond-Neveu-Schwarz fields in four, six, eight and ten space-time dimensions and calculate the amplitude involving two gauge fields and four gauginos at tree-level. Multi-parton superstring amplitudes are of considerable theoretical interest in the frame-work of a full-fledged superstring theory and of phenomenological interest in describing corrections to four-dimensional scattering processes. The Neveu-Schwarz fermions and Ramond spin fields enter the scattering amplitudes through vertex operators of bosonic and fermionic string states and determine the Lorentz structure of the total amplitude. Due to their interacting nature their correlators cannot be evaluated using Wick's theorem but must be calculated from first principles. At tree-level such correlation functions can be determined by analyzing their Lorentz and singularity structure. In four space-time dimensions we show how to calculate Ramond- Neveu-Schwarz correlators with any number of fields. This method is based on factorizing the expressions into correlators involving only left- or right-handed spin fields and calculating these functions. This factorization property does not hold in higher dimensions. Nevertheless, we are able to calculate certain classes of correlators with arbitrary many fields. Additionally, in eight dimensions we can profit from SO(8) triality to derive further tree-level correlation functions. Ramond-Neveu-Schwarz correlators at loop-level can be evaluated by re-expressing the fermions and spin fields in terms of SO(2) spin system operators. Using this method we present expressions for all correlators up to six-point level and show in addition results for certain classes of correlators with any number of fields. Our findings hold for string scattering at arbitrary

  4. String Field Theory from Quantum Gravity

    CERN Document Server

    Crane, Louis

    2012-01-01

    Recent work on neutrino oscillations suggests that the three generations of fermions in the standard model are related by representations of the finite group A(4), the group of symmetries of the tetrahedron. Motivated by this, we explore models which extend the EPRL model for quantum gravity by coupling it to a bosonic quantum field of representations of A(4). This coupling is possible because the representation category of A(4) is a module category over the representation categories used to construct the EPRL model. The vertex operators which interchange vacua in the resulting quantum field theory reproduce the bosons and fermions of the standard model, up to issues of symmetry breaking which we do not resolve. We are led to the hypothesis that physical particles in nature represent vacuum changing operators on a sea of invisible excitations which are only observable in the A(4) representation labels which govern the horizontal symmetry revealed in neutrino oscillations. The quantum field theory of the A(4) ...

  5. Integrable Scalar Cosmologies I. Foundations and links with String Theory

    Science.gov (United States)

    Fré, P.; Sagnotti, A.; Sorin, A. S.

    2013-12-01

    potential, although the corresponding solutions have a long history [19,20]. Possible imprints on the low-ℓ tail of the CMB power spectrum were then discussed in [21], while an analysis of the mechanism near the initial singularity was recently presented in [22]; The eventual collapse in a Big Crunch of systems of this type whenever the scalar tends to settle at a negative extremum of the potential V(ϕ). This was expected: it reflects the fact that AdS has no spatially flat metrics, or that negative extrema are non-admissible fixed points for the corresponding dynamical systems. The fields hi associated with the Cartan generators of the Lie algebra of G, whose number equals the rank r of the coset and whose kinetic terms, determined by the invariant metric of G/H, are canonical up to an overall constant; The axions bI associated with the roots of the Lie algebra of G, whose kinetic terms depend instead on both the Cartan fields hi and the bI. Can the integrable models that we have identified be realized within conventional gauged Supergravity, and for what choices of fluxes? This proviso is important, since some of the simplest potentials in our list do appear, albeit in versions where SUSY is non-linearly realized. Can integrable potentials provide interesting insights on inflationary scenarios behind the slow-roll regime, in addition to those encoded by the single-exponential potential, the simplest member of the set, that already revealed the existence of the climbing phenomenon? How much can one learn from integrable potentials about Cosmology with similar non-integrable potentials? The first question is perhaps the most difficult one, but it is also particularly interesting since a proper understanding of the issue will encode low-energy manifestations of non-perturbative string effects present in these contexts even with supersymmetry broken at high scales. It will be dealt with in detail elsewhere [27].The second question has encouraging answers. There are indeed

  6. Topological strings and large N phase transitions I: Nonchiral expansion of q-deformed Yang-Mills theory

    Science.gov (United States)

    Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.

    2006-01-01

    We examine the problem of counting bound states of BPS black holes on local Calabi-Yau threefolds which are fibrations over a Riemann surface by computing the partition function of q-deformed Yang-Mills theory on the Riemann surface. We study in detail the genus zero case and obtain, at finite N, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. The correspondence between two and three dimensional gauge theories is elucidated by an explicit mapping between two-dimensional Yang-Mills instantons and flat connections on the Lens space. In the large N limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces exactly to the trivial flat connection sector with instanton contributions exponentially suppressed, and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point all non-trivial vacua contribute, instantons are enhanced and the theory appears to undergo a phase transition into a strong coupling regime. We rederive these results by performing a saddle-point approximation to the exact partition function. We obtain a q-deformed version of the Douglas-Kazakov equation for two-dimensional Yang-Mills theory on the sphere, whose one-cut solution below the transition point reproduces the resolved conifold geometry. Above the critical point we propose a two-cut solution that should reproduce the chiral-antichiral dynamics found for black holes on the Calabi-Yau threefold and the Gross-Taylor string in the undeformed limit. The transition from the strong coupling phase to the weak coupling phase appears to be of third order.

  7. Light and compressed gluinos at the LHC via string theory

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); University of Rome ' ' La Sapienza' ' , Department of Physics, Rome (Italy); INFN, Sezione di Roma (Italy)

    2017-05-15

    In this article, we show that making global fits of string theory model parameters to data is an interesting mechanism for probing, mapping and forecasting connections of the theory to real world physics. We considered a large volume scenario (LVS) with D3-brane matter fields and supersymmetry breaking. A global fit of the parameters to low-energy data shows that the set of LVS models are associated with light gluinos which are quasi-degenerate with the neutralinos and charginos they can promptly decay into, and thus they are possibly hidden to current LHC gluino search strategies. (orig.)

  8. Towards axionic Starobinsky-like inflation in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-06-01

    Full Text Available It is shown that Starobinsky-like potentials can be realized in non-geometric flux compactifications of string theory, where the inflaton involves an axion whose shift symmetry can protect UV-corrections to the scalar potential. For that purpose we evaluate the backreacted, uplifted F-term axion-monodromy potential, which interpolates between a quadratic and a Starobinsky-like form. Limitations due to the requirements of having a controlled approximation of the UV theory and of realizing single-field inflation are discussed.

  9. Towards axionic Starobinsky-like inflation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph, E-mail: blumenha@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Font, Anamaría, E-mail: anamaria.font@physik.lmu.de [Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael, E-mail: mfuchs@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik, E-mail: erik.plauschinn@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-06-30

    It is shown that Starobinsky-like potentials can be realized in non-geometric flux compactifications of string theory, where the inflaton involves an axion whose shift symmetry can protect UV-corrections to the scalar potential. For that purpose we evaluate the backreacted, uplifted F-term axion-monodromy potential, which interpolates between a quadratic and a Starobinsky-like form. Limitations due to the requirements of having a controlled approximation of the UV theory and of realizing single-field inflation are discussed.

  10. String theory triplets and higher-spin curvatures

    CERN Document Server

    Francia, Dario

    2010-01-01

    Unconstrained local Lagrangians for higher-spin gauge theories are bound to involve auxiliary fields, whose integration in the partition function generates geometric, effective actions expressed in terms of curvatures. When applied to the triplets, emerging from the tensionless limit of open string field theory, the same procedure yields interesting alternative forms of geometric Lagrangians, whose rather simple pattern is essentially the same for bosons and fermions. This shows that higher-spin curvatures might play a role in the dynamics, regardless of whether the Fronsdal-Labastida constraints are assumed or not.

  11. String theory triplets and higher-spin curvatures

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Dario, E-mail: francia@apc.univ-paris7.f [AstroParticule et Cosmologie (APC), Universite Paris VII - Campus Paris Rive Gauche, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France)

    2010-06-07

    Unconstrained local Lagrangians for higher-spin gauge theories are bound to involve auxiliary fields, whose integration in the partition function generates geometric, effective actions expressed in terms of curvatures. When applied to the triplets, emerging from the tensionless limit of open string field theory, the same procedure yields interesting alternative forms of geometric Lagrangians, expressible for both bosons and fermions as squares of field-strengths. This shows that higher-spin curvatures might play a role in the dynamics, regardless of whether the Fronsdal-Labastida constraints are assumed or forgone.

  12. String theory and pre-big bang cosmology

    Science.gov (United States)

    Gasperini, M.; Veneziano, G.

    2016-09-01

    In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a "blue" spectral index with a peak in the GHz frequency range. That means, phenomenologically, a very small contribution to a primordial B-mode in the CMB polarization, and the possibility of a large enough stochastic background of gravitational waves to be measurable by present or future gravitational wave detectors.

  13. Our String Field Theory Liberating Left and Right Movers as Constituent "Objects"

    CERN Document Server

    Nielsen, Holger B

    2012-01-01

    We review the idea of our earlier proposed string field theory \\cite{early1,early2,ourappear}, which makes the second quantized string theory appear as described by one or two types of stationary - so called - "objects" for string theories respectively with and without open strings. It may be better to look on our string field theory as a {\\em solution} of a second quantized string theory, in which we have decided to ignore, how strings are topologically hanging together. Rather we satisfy ourselves with realizing solely the information contained in the knowledge of, through which points in space time passes a string. In the formulation of the string field theory, in which we have rewritten the systems of strings into a system of what we call "objects", the scattering of strings take place without any of the "fundamental" "objects" (technically "even objects") changing. They are only {\\em exchanged} instead. A route to extract from our formalism the vertex of the Veneziano model theory is sketched, and thus i...

  14. Aspects of Moduli Stabilization in Type IIB String Theory

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-01-01

    Full Text Available We review moduli stabilization in type IIB string theory compactification with fluxes. We focus on KKLT and Large Volume Scenario (LVS. We show that the predicted soft SUSY breaking terms in KKLT model are not phenomenological viable. In LVS, the following result for scalar mass, gaugino mass, and trilinear term is obtained: m0=m1/2=-A0=m3/2, which may account for Higgs mass limit if m3/2~O(1.5 TeV. However, in this case, the relic abundance of the lightest neutralino cannot be consistent with the measured limits. We also study the cosmological consequences of moduli stabilization in both models. In particular, the associated inflation models such as racetrack inflation and Kähler inflation are analyzed. Finally, the problem of moduli destabilization and the effect of string moduli backreaction on the inflation models are discussed.

  15. Lecture notes: string theory and zeta-function

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: toppan@cbpf.br

    2001-11-01

    These lecture notes are based on a revised and LaTexed version of the Master thesis defended at ISAS. The research part being omitted, they included a review of the bosonic closed string a la Polyakov and of the one-loop background field method of quantisation defined through the zeta-function. In an appendix some basic features of the Riemann zeta-function are also reviewed. The pedagogical aspects of the material here presented are particularly emphasized. These notes are used, together with the Scherk's article in Rev. Mod. Phys. and the first volume of the Polchinski book, for the mini-course on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-Witten two-volumes book is also used for consultative purposes. (author)

  16. Aspects of moduli stabilization in type IIB string theory

    CERN Document Server

    Khalil, Shaaban; Nassar, Ali

    2015-01-01

    We review moduli stabilization in type IIB string theory compactification with fluxes. We focus on the KKLT and Large Volume Scenario (LVS). We show that the predicted soft SUSY breaking terms in KKLT model are not phenomenological viable. In LVS, the following result for scalar mass, gaugino mass, and trilinear term is obtained: $m_0 =m_{1/2}= - A_0=m_{3/2}$, which may account for Higgs mass limit if $m_{3/2} \\sim {\\cal O}(1.5)$ TeV. However, in this case the relic abundance of the lightest neutralino can not be consistent with the measured limits. We also study the cosmological consequences of moduli stabilization in both models. In particular, the associated inflation models such as racetrack inflation and K\\"ahler inflation are analyzed. Finally the problem of moduli destabilization and the effect of string moduli backreaction on the inflation models are discussed.

  17. String-motivated one-loop amplitudes in gauge theories with half-maximal supersymmetry

    Science.gov (United States)

    Berg, Marcus; Buchberger, Igor; Schlotterer, Oliver

    2017-07-01

    We compute one-loop amplitudes in six-dimensional Yang-Mills theory with half-maximal supersymmetry from first principles: imposing gauge invariance and locality on an ansatz made from string-theory inspired kinematic building blocks yields unique expressions for the 3- and 4-point amplitudes. We check that the results are reproduced in the field-theory limit α ' → 0 of string amplitudes in K3 orbifolds, using simplifications made in a companion string-theory paper [1].

  18. Classical hair in string theory; 1, general formulation

    CERN Document Server

    Larsen, F; Larsen, Finn; Wilczek, Frank

    1996-01-01

    We discuss why classical hair is desirable for the description of black holes, and show that it arises generically in a wide class of field theories involving extra dimensions. We develop the canonical formalism for theories with the matter content that arises in string theory. General covariance and duality are used to determine the form of surface terms. We derive an effective theory (reduced Hamiltonian) for the hair in terms of horizon variables. Solution of the constraints expresses these variables in terms of hair accessible to an observer at infinity. We exhibit some general properties of the resulting theory, including a formal identification of the temperature and entropy. The Cveti\\v{c}-Youm dyon is described in some detail, as an important example.

  19. Duality covariant type IIB supersymmetry and nonperturbative consequences

    CERN Document Server

    Bars, Itzhak

    1997-01-01

    Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U-duality, which controls the non-perturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet fivebranes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the non-perturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal blackholes constructed from D-1-branes and D-5-branes. In the latter case the non-perturbative coupling dependence of the BPS mass and metric is comput...

  20. Stable Non-Supersymmetric Throats in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC /Santa Barbara, KITP; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.

  1. New dualities from orientifold transitions Part II: string theory

    Science.gov (United States)

    García-Etxebarria, Iñaki; Heidenreich, Ben; Wrase, Timm

    2013-10-01

    We present a string theoretical description, given in terms of branes and orientifolds wrapping vanishing cycles, of the dual pairs of gauge theories analyzed in [1]. Based on the resulting construction we argue that the duality that we observe in field theory is inherited from S-duality of type IIB string theory. We analyze in detail the complex cone over the zeroth del Pezzo surface and discuss an infinite family of orbifolds of flat space. For the del Pezzo case we describe the system in terms of large volume objects, and show that in this language the duality can be understood from the strongly coupled behavior of the O7+ plane, which we analyze using simple F-theory considerations. For all cases we also give a different argument based on the existence of appropriate torsional components of the 3-form flux lattice. Along the way we clarify some aspects of the description of orientifolds in the derived category of coherent sheaves, and in particular we discuss the important role played by exotic orientifolds — ordinary orientifolds composed with auto-equivalences of the category — when describing orientifolds of ordinary quiver gauge theories.

  2. Non-perturbative Heavy Quark Effective Theory: An application to semi-leptonic B-decays

    CERN Document Server

    Della Morte, Michele; Simma, Hubert; Sommer, Rainer

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m_h.

  3. Unoriented Minimal Type 0 Strings

    CERN Document Server

    Carlisle, J E; Carlisle, James E; Johnson, Clifford V

    2004-01-01

    We define a family of string equations with perturbative expansions that admit an interpretation as an unoriented minimal string theory with background D-branes and R-R fluxes. The theory also has a well-defined non-perturbative sector and we expect it to have a continuum interpretation as an orientifold projection of the non-critical type~0A string for \\hat{c}=0, the (2,4) model. There is a second perturbative region which is consistent with an interpretation in terms of background R-R fluxes. We identify a natural parameter in the formulation that we speculate may have an interpretation as characterizing the contribution of a new type of background D-brane. There is a non-perturbative map to a family of string equations which we expect to be the \\hat{c}=0 type 0B string. The map exchanges D-branes and R-R fluxes. We present the general structure of the string equations for the (2,4k) type 0A models.

  4. The Omega Deformation From String and M-Theory

    CERN Document Server

    Hellerman, Simeon; Reffert, Susanne

    2012-01-01

    We present a string theory construction of Omega-deformed four-dimensional gauge theories with generic values of \\epsilon_1 and \\epsilon_2. Our solution gives an explicit description of the geometry in the core of Nekrasov and Witten's realization of the instanton partition function, far from the asymptotic region of their background. This construction lifts naturally to M-theory and corresponds to an M5-brane wrapped on a Riemann surface with a selfdual flux. Via a 9-11 flip, we finally reinterpret the Omega deformation in terms of non-commutative geometry. Our solution generates all modified couplings of the \\Omega-deformed gauge theory, and also yields a geometric origin for the quantum spectral curve of the associated quantum integrable system.

  5. Counting all dyons in {N} = 4 string theory

    Science.gov (United States)

    Dabholkar, Atish; Gomes, João; Murthy, Sameer

    2011-05-01

    For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I ≡ gcd( Q ∧ P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I = 1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0 , 4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies.

  6. String Representation of the Abelian Higgs Theory and Aharonov-Bohm Effect on the Lattice

    CERN Document Server

    Polikarpov, M I; Zubkov, M A

    1993-01-01

    The partition function of the $4D$ lattice Abelian Higgs theory is represented as the sum over world sheets of Nielsen--Olesen strings. The creation and annihilation operators of the strings are constructed. The topological long--range interaction of the strings and charged particles is shown to exist; it is proportional to the linking number of the string world sheet and particle world trajectory.

  7. Nonperturbative Ambiguities and the Reality of Resurgent Transseries

    CERN Document Server

    Aniceto, Inês

    2013-01-01

    In a wide range of quantum theoretical settings -- from quantum mechanics to quantum field theory, from gauge theory to string theory -- singularities in the complex Borel plane, usually associated to instantons or renormalons, render perturbation theory ill-defined as they give rise to nonperturbative ambiguities. These ambiguities are associated to choices of an integration contour in the resummation of perturbation theory, along (singular) Stokes directions in the complex Borel plane (rendering perturbative expansions non-Borel summable along any Stokes line). More recently, it has been shown that the proper framework to address these issues is that of resurgent analysis and transseries. In this context, the cancelation of all nonperturbative ambiguities is shown to be a consequence of choosing the transseries median resummation as the appropriate family of unambiguous real solutions along the coupling-constant real axis. While the median resummation is easily implemented for one-parameter transseries, onc...

  8. T-Duality Transformation and Universal Structure of Non-Critical String Field Theory

    CERN Document Server

    Asatani, T; Okawa, Y; Sugino, F; Yoneya, T; Asatani, Takashi; Kuroki, Tsunehide; Okawa, Yuji; Sugino, Fumihiko; Yoneya, Tamiaki

    1996-01-01

    We discuss a T-duality transformation for the c=1/2 matrix model for the purpose of studying duality transformations in a possible toy example of nonperturbative frameworks of string theory. Our approach is to first investigate the scaling limit of the Schwinger-Dyson equations and the stochastic Hamiltonian in terms of the dual variables and then compare the results with those using the original spin variables. It is shown that the c=1/2 model in the scaling limit is T-duality symmetric in the sphere approximation. The duality symmetry is however violated when the higher-genus effects are taken into account, owing to the existence of global Z_2 vector fields corresponding to nontrivial homology cycles. Some universal properties of the stochastic Hamiltonians which play an important role in discussing the scaling limit and have been discussed in a previous work by the last two authors are refined in both the original and dual formulations. We also report a number of new explicit results for various amplitudes...

  9. Instanton-Monopole Correspondence from M-Branes on $\\mathbb{S}^1$ and Little String Theory

    CERN Document Server

    Hohenegger, Stefan; Rey, Soo-Jong

    2015-01-01

    We study BPS excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds $X_N$ with manifest $SL(2,\\mathbb{Z})\\times SL(2,\\mathbb{Z})$ modular symmetry. They admit two dual gauge theory descriptions. For both, the non-perturbative partition function can be written as an expansion of the topological string partition function of $X_N$ with respect to either of the two modular parameters. We analyze the resulting BPS counting functions in detail and find that they can be fully constructed as linear combinations of the BPS counting functions of M5-M2-brane configurations with non-compact transverse directions. For certain M2-brane configurations, we also find that the free energies in the two dual theories agree with each other, which points to a new correspondence between instanton and monopole configurations. These results are also a ...

  10. 1+1 dimensional compactifications of string theory.

    Science.gov (United States)

    Goheer, Naureen; Kleban, Matthew; Susskind, Leonard

    2004-05-14

    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.

  11. Towards universal axion inflation and reheating in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2014-09-01

    Full Text Available The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles.

  12. Towards universal axion inflation and reheating in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2014-09-07

    The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles.

  13. Newtonian Forms for Dilaton Spacetimes in String Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Rong-Jia; JING Ji-Liang

    2004-01-01

    @@ We show that the Newtonian forms for the motion of particles in mechanics and for light in geometrical optics can be extend to the Gibbons-Meada and the Garfinkle-Horne dilaton spacetimes in string theory. As an example,we study the bending of the light rays, the perihelion advance of planet, and the radar echo delay in the dilaton spacetimes. The results show that the gravitational effects arising from the dilaton can be observed provided that the dilaton is large enough.

  14. Stationary Charged Scalar Clouds around Black Holes in String Theory

    CERN Document Server

    Bernard, Canisius

    2016-01-01

    It was reported that Kerr-Newman black holes can support linear charged scalar field in their exterior regions. This stationary massive charged scalar field can form a bound-state and these bound-states are called stationary scalar clouds. In this paper, we study that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near and far region solutions of the radial part of Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solution in the low energy limit of heterotic string field theory namely the GMGHS black holes.

  15. Stationary charged scalar clouds around black holes in string theory

    Science.gov (United States)

    Bernard, Canisius

    2016-10-01

    It was reported that Kerr-Newman black holes can support linear charged scalar fields in their exterior regions. These stationary massive charged scalar fields can form bound states, which are called stationary scalar clouds. In this paper, we show that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near- and far-region solutions of the radial part of the Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solutions in the low-energy limit of heterotic string field theory, namely, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holes.

  16. New solutions with accelerated expansion in string theory

    Science.gov (United States)

    Dodelson, Matthew; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo

    2014-12-01

    We present concrete solutions with accelerated expansion in string theory, requiring a small, tractable list of stress energy sources. We explain how this construction (and others in progress) evades previous no go theorems for simple accelerating solutions. Our solutions respect an approximate scaling symmetry and realize discrete sequences of values for the equation of state, including one with an accumulation point at w = -1 and another accumulating near w = -1 /3 from below. In another class of models, a density of defects generates scaling solutions with accelerated expansion. We briefly discuss potential applications to dark energy phenomenology, and to holography for cosmology.

  17. Exploring the web of heterotic string theories using anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian

    2013-07-15

    We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.

  18. Flat coordinates for Saito Frobenius manifolds and String theory

    CERN Document Server

    Belavin, Alexander; Kononov, Yakov

    2015-01-01

    It was shown in \\cite{DVV} for $2d$ topological Conformal field theory (TCFT) \\cite{EY,W} and more recently in \\cite{BSZ}-\\cite{BB2} for the non-critical String theory \\cite{P}-\\cite{BAlZ} that a number of models of these two types can be exactly solved using their connection with the Frobenius manifold (FM) structure introduced by Dubrovin\\cite{Dub}. More precisely these models are connected with a special case of FMs, so called Saito Frobenius manifolds (SFM)\\cite{Saito} (originally called Flat structure together with the Flat coordinate system), which arise on the space of the versal deformations of the isolated Singularities after choosing of a suitabe so-called Primitive form, and which also arises on the quotient spaces by reflection groups. In this paper we explore the connection of the models of TCFT and non-critical String theory with SFM. The crucial point for obtaining an explicit expression for the correlators is finding the flat coordinates of SFMs as functions of the parameters of the deformed s...

  19. Diffractive Vector Meson Photoproduction from Dual String Theory

    CERN Document Server

    Freund, Peter G O

    2008-01-01

    We study diffractive vector meson photoproduction using string theory via AdS/CFT. The large $s$ behavior of the cross sections for the scattering of the vector meson $V$ on a proton is dominated by the soft Pomeron, $\\sigma_V\\sim s^{2\\epsilon-2\\alpha'_P/B}$, where from the string theory model of \\cite{nastase2}, $\\epsilon$ is approximately 1/7 below 10 GeV, and 1/11 for higher, but still sub-Froissart, energies. This is due to the production of black holes in the dual gravity. In $\\phi$-photoproduction the mesonic Regge poles do not contribute, so that we deal with a pure Pomeron contribution. This allows for an experimental test. At the gauge theory "Planck scale" of about 1-2 GeV, the ratios of the soft Pomeron contributions to the photoproduction cross-sections of different vector mesons involve not only the obvious quark model factors, but also the Boltzmann factors $e^{-4 M_V/T_0}$, with $T_0$ the temperature of the dual black hole. The presence of these factors is confirmed in the experimental data for...

  20. Grand Unification as a Bridge Between String Theory and Phenomenology

    CERN Document Server

    Pati, J C

    2006-01-01

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)$_L \\times$ SU(2)$_R \\times$ SU(4)$^c$ or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in $\\mu \\to e\\gamma$, $\\tau \\to\\mu\\gamma$, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we ...