Nonperturbative Physics in a Magnetic Field
de la Incera, Vivian
2010-01-01
Non-Perturbative Quantum Field Theory has played an important role in the study of phenomena where a fermion condensate can appear under certain physical conditions. The familiar phenomenon of electric superconductivity, the color superconductivity of very dense quark matter, and the chiral symmetry breaking of low energy effective chiral theories are all examples of that sort. Often one is interested in the behavior of these systems in the presence of an external magnetic field. In this talk I will outline the effects of an external magnetic field on theories with either fermion-fermion or fermion-antifermion condensates.
Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.
Cherman, Aleksey; Dorigoni, Daniele; Dunne, Gerald V; Ünsal, Mithat
2014-01-17
We explain the physical role of nonperturbative saddle points of path integrals in theories without instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM). Standard topological arguments based on homotopy considerations suggest no role for nonperturbative saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative physics, predicts the existence of several types of nonperturbative saddles associated with features of the large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new nonperturbative "fracton" saddle point field configurations, and suggest a quantum interpretation of previously discovered "uniton" unstable classical solutions. The fractons lead to a semiclassical realization of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap of the PCM.
Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons
Kim, Ki-Seok; Tanaka, Akihiro
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative
Nonperturbative signatures in pair production for general elliptic polarization fields
Li, Z L; Xie, B S; Shen, B F; Fu, L B; Liu, J
2015-01-01
The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momenta spectra of created pairs depend only on the electric field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number-photon pair creation process is forbid could be used to distinguish the orbital angular momentum of created pairs on the momenta spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.
Musso, Daniele
2012-01-01
The non-perturbative dynamics of quantum field theories is studied using theoretical tools inspired by string formalism. Two main lines are developed: the analysis of stringy instantons in a class of four-dimensional N=2 gauge theories and the holographic study of the minimal model for a strongly coupled unbalanced superconductor. The field theory instanton calculus admits a natural and efficient description in terms of D-brane models. In addition, the string viewpoint offers the possibility of generalizing the ordinary instanton configurations. Even though such generalized, or stringy, instantons would be absent in a purely field-theoretical, low-energy treatment, we demonstrate that they do alter the IR effective description of the brane dynamics by introducing contributions related to the string scale. In the first part of this thesis we compute explicitly the stringy instanton corrections to the effective prepotential in a class of quiver gauge theories. In the second part of the thesis, we present a deta...
Nonperturbative studies of quantum field theories on noncommutative spaces
Energy Technology Data Exchange (ETDEWEB)
Volkholz, J.
2007-11-16
This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted
Investigations And Techniques In Nonperturbative Quantum Field Theory
Sprague, K B
1999-01-01
In Part I, the contributions of the dimension-3 fermion- antifermion
Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.
2003-12-01
We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.
Non-perturbative heterogeneous mean-field approach to epidemic spreading in complex networks
Gomez, Sergio; Moreno, Yamir; Arenas, Alex
2011-01-01
Since roughly a decade ago, network science has focused among others on the problem of how the spreading of diseases depends on structural patterns. Here, we contribute to further advance our understanding of epidemic spreading processes by proposing a non-perturbative formulation of the heterogeneous mean field approach that has been commonly used in the physics literature to deal with this kind of spreading phenomena. The non-perturbative equations we propose have no assumption about the proximity of the system to the epidemic threshold, nor any linear approximation of the dynamics. In particular, we first develop a probabilistic description at the node level of the epidemic propagation for the so-called susceptible-infected-susceptible family of models, and after we derive the corresponding heterogeneous mean-field approach. We propose to use the full extension of the approach instead of pruning the expansion to first order, which leads to a non-perturbative formulation that can be solved by fixed point it...
Nonperturbative Bethe-Heitler pair creation in combined high- and low-frequency laser fields
Augustin, Sven
2014-01-01
The nonperturbative regime of electron-positron pair creation by a relativistic proton beam colliding with a highly intense bichromatic laser field is studied. The laser wave is composed of a strong low-frequency and a weak high-frequency mode, with mutually orthogonal polarization vectors. We show that the presence of the high-frequency field component can strongly enhance the pair-creation rate. Besides, a characteristic influence of the high-frequency mode on the angular and energy distributions of the created particles is demonstrated, both in the nuclear rest frame and the laboratory frame.
Guilleux, Maxime
2016-01-01
Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on the top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O(N) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induc...
Non-Perturbative Self-Consistent Model in SU(N Gauge Field Theory
Directory of Open Access Journals (Sweden)
Koshelkin A.V.
2012-06-01
Full Text Available Non-perturbative quasi-classical model in a gauge theory with the Yang-Mills (YM field is developed. The self-consistent solutions of the Dirac equation in the SU(N gauge field, which is in the eikonal approximation, and the Yang-Mills (YM equations containing the external fermion current are solved. It shown that the developed model has the self-consistent solutions of the Dirac and Yang-Mills equations at N ≥ 3. In this way, the solutions take place provided that the fermion and gauge fields exist simultaneously, so that the fermion current completely compensates the current generated by the gauge field due to self-interaction of it.
3rd UK-QFT Meeting: Non-Perturbative Quantum Field Theory and Quantum Gravity
2014-01-01
The meeting aims to bringing together Students, Postdoctoral Researchers and Senior Scientists to discuss recent trends in advanced Quantum Field Theory and Quantum Gravity. The format of the meeting is a series of informal talks to allow for discussion and the exchange of ideas amongst participants. We plan for up to 8 slots for short presentations depending on demand and one final longer seminar given by Frank Saueressig (Mainz). This is the third meeting of its kind and details on the previous two can be found on the following: 1st UK-QFT Meeting: Non-perturbative aspects in field theory (KCL) 2nd UK-QFT Meeting: Advances in quantum field theory and gravity (Sussex)
Energy Technology Data Exchange (ETDEWEB)
Aydin, A; Stiffell, P B, E-mail: a.aydin@sussex.ac.uk [Centre for Physical Electronics and Quantum Technology, School of Engineering and Design, University of Sussex, Brighton, BN1 9QT (United Kingdom)
2011-06-23
We present results of finite element analysis for simple test structures which demonstrate clearly that the measurement situation is complex. The test structure consists of an open geometry parallel plate capacitor within a screened enclosure. Indeed, the presence of earthed objects, even at considerable distances, is shown to have a significant effect on the field geometry close to the source. These simulations are compared with field measurements made using an ultra-high input impedance sensor, the Electric Potential Sensor. A single experimentally determined calibration factor is all that is required to achieve excellent agreement between experimental measurements and the results of the simulations. Given this, the sensor is capable of mapping accurately, and in a non-perturbative manner, the spatial potential both within and outside of the test structure.
Anisotropic non-perturbative zero modes for passively advected magnetic fields
Lanotte, A
1999-01-01
A first analytical assessment of the role of anisotropic corrections to the isotropic anomalous scaling exponents is given for the $d$-dimensional kinematic dynamo problem in the presence of a mean magnetic field. The velocity advecting the magnetic field changes very rapidly in time and scales with a positive exponent $\\xi$. Inertial-range anisotropic contributions to the scaling exponents of magnetic correlations are associated to zero modes and have been calculated non-perturbatively. For $d=3$, the limits $\\xi\\mapsto 0$ yelds $\\zeta_n=n+ \\xi [(n+2) (2 n^2-7 n-3)]/[2 (3+2 n) (1+2 n)]$ where $n$ is the order in the Legendre polynomial decomposition. Conjectures on the fact that anisotropic components cannot change the isotropic threshold to the dynamo effect are also made.
Lange, C; Hohenleutner, M; Baierl, S; Schubert, O; Edwards, E; Bougeard, D; Woltersdorf, G; Huber, R
2016-01-01
Terahertz near fields of gold metamaterials resonant at a frequency of $0.88\\,\\rm THz$ allow us to enter an extreme limit of non-perturbative ultrafast THz electronics: Fields reaching a ponderomotive energy in the keV range are exploited to drive nondestructive, quasi-static interband tunneling and impact ionization in undoped bulk GaAs, injecting electron-hole plasmas with densities in excess of $10^{19}\\,\\rm cm^{-3}$. This process causes bright luminescence at energies up to $0.5\\,\\rm eV$ above the band gap and induces a complete switch-off of the metamaterial resonance accompanied by self-amplitude modulation of transmitted few-cycle THz transients. Our results pave the way towards highly nonlinear THz optics and optoelectronic nanocircuitry with sub-picosecond switching times.
Guilleux, Maxime; Serreau, Julien
2017-02-01
Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O (N ) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induced dimensional reduction pointed out in previous studies. We show that, as a consequence, the effective potential at the end of the flow is unchanged as compared to the local potential approximation, the main effect of the running anomalous dimension being merely to slow down the flow. We discuss some consequences of these findings.
Tellgren, Erik I; Fliegl, Heike
2013-10-28
In the present study a non-perturbative approach to ab initio calculations of molecules in strong, linearly varying, magnetic fields is developed. The use of London atomic orbitals (LAOs) for non-uniform magnetic fields is discussed and the standard rationale of gauge-origin invariance is generalized to invariance under arbitrary constant shifts of the magnetic vector potential. Our approach is applied to study magnetically induced anapole moments (or toroidal moments) and the related anapole susceptibilities for a test set of chiral and nonchiral molecules. For the first time numerical anapole moments are accessible on an ab initio level of theory. Our results show that the use of London atomic orbitals dramatically improves the basis set convergence also for magnetic properties related to non-uniform magnetic fields, at the cost that the Hellmann-Feynman theorem does not apply for a finite LAO basis set. It is shown that the mixed anapole susceptibility can be related to chirality, since its trace vanishes for an achiral molecule.
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Eichhorn, Astrid
2011-09-06
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension
Kar, Supriya
2016-01-01
We show that the massless form fields, in $(4+1)$-dimensional non-perturbation theory of emergent gravity, become massive in a perturbative phase without Higgs mechanism. In particular an axionic scalar sourced by a non-perturbative dynamical correction is absorbed by the form fields to describe a massive NS field theory on an emergent gravitational pair of $(3{\\bar 3})$-brane. Arguably the novel idea of Higgs mechanism is naturally invoked in an emergent gravity underlying a ${\\rm CFT}_6$. Analysis reveals "gravito-weak" and "electro-weak" phases respectively on a vacuum pair in $(4+1)$ and $(3+1)$-dimensions. It is argued that the massive NS field quanta may govern an emergent graviton on a gravitational $3$-brane.
Smith, Roger J
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Nonequilibrium Dynamics Of Emergent Field Configurations
Howell, R C
2003-01-01
The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synch...
Galilo, Bogdan V
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalysing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions ...
Dunne, Gerald V.; Ünsal, Mithat
2016-10-01
We present a broad conceptual introduction to some new ideas in nonperturbative quantum field theory (QFT) that have led to progress toward an understanding of quark confinement in gauge theories and, more broadly, toward a nonperturbative continuum definition of QFTs. We first present exact orbifold equivalences of supersymmetric and nonsupersymmetric QFTs in the large-N limit and exact equivalences of large-N theories in infinite volume to large-N theories in finite volume, or even at a single point. We discuss principles by which calculable QFTs are continuously connected to strong-coupling QFTs, allowing understanding of the physics of confinement or the absence thereof. We discuss the role of particular saddle solutions, termed bions, in weak-coupling calculable regimes. The properties of bions motivate an extension of semiclassical methods used to evaluate functional integrals to include families of complex saddles (Picard-Lefschetz theory). This analysis leads us to the resurgence program, which may provide a framework for combining divergent perturbation series with semiclassical instanton and bion/renormalon contributions. This program could provide a nonperturbative definition of the path integral.
Bosonic particle-correlated states: A nonperturbative treatment beyond mean field
Jiang, Zhang; Tacla, Alexandre B.; Caves, Carlton M.
2017-08-01
Many useful properties of dilute Bose gases at ultralow temperature are predicted precisely by the (mean-field) product-state Ansatz, in which all particles are in the same quantum state. Yet, in situations where particle-particle correlations become important, the product Ansatz fails. To include correlations nonperturbatively, we consider a new set of states: the particle-correlated state of N =l ×n bosons is derived by symmetrizing the n -fold product of an l -particle quantum state. Quantum correlations of the l -particle state "spread out" to any subset of the N bosons by symmetrization. The particle-correlated states can be simulated efficiently for large N , because their parameter spaces, which depend on l , do not grow with n . Here we formulate and develop in great detail the pure-state case for l =2 , where the many-body state is constructed from a two-particle pure state. These paired wave functions, which we call pair-correlated states (PCS), were introduced by A. J. Leggett [Rev. Mod. Phys. 73, 307 (2001), 10.1103/RevModPhys.73.307] as a particle-number-conserving version of the Bogoliubov approximation. We present an iterative algorithm that solves for the reduced (marginal) density matrices (RDMs), i.e., the correlation functions, associated with PCS in time O (N ) . The RDMs can also be derived from the normalization factor of PCS, which is derived analytically in the large-N limit. To test the efficacy of PCS, we analyze the ground state of the two-site Bose-Hubbard model by minimizing the energy of the PCS state, both in its exact form and in its large-N approximate form, and comparing with the exact ground state. For N =1000 , the relative errors of the ground-state energy for both cases are within 10-5 over the entire parameter region from a single condensate to a Mott insulator. We present numerical results that suggest that PCS might be useful for describing the dynamics in the strongly interacting regime.
The configuration of the Brazilian scientific field
Directory of Open Access Journals (Sweden)
RITA B. BARATA
2014-03-01
Full Text Available This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige, symbolic capital (dominant paradigm, political capital (leadership in S & T policy, and economic capital (resources. Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field.
The configuration of the Brazilian scientific field.
Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L
2014-03-01
This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field.
A high performance field-reversed configuration
Energy Technology Data Exchange (ETDEWEB)
Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); and others
2015-05-15
Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.
C-2-Upgrade Field Reversed Configuration Experiment
Smirnov, Artem
2016-10-01
In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (20 - 40 keV hydrogen, 4 MW total), coupled with electrically-biased plasma guns at the plasma ends, magnetic end plugs, and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses and greatly improved plasma stability. Under such conditions, highly reproducible FRCs with a significant fast-ion population and total plasma temperature of about 1 keV were achieved. The FRC's were macroscopically stable and decayed on characteristic transport time scales of a few milliseconds. In order to sustain an FRC configuration, the C-2 device was upgraded with a new neutral beam injection (NBI) system, which can deliver a total of 10 + MW of hydrogen beam power, by far the largest ever used in a compact toroid plasma experiment. Compared to C-2, the beam energy was lowered to 15 keV and angled injection geometry was adopted to provide better beam coupling to the FRC. The upgraded neutral beams produce a dominant fast ion population that makes a dramatic beneficial impact on the overall plasma performance. Specifically: (1) high-performance, advanced beam-driven FRCs were produced and sustained for times significantly longer (5 + ms) than all characteristic plasma decay times without the beams, (2) the sustainment is fully correlated with neutral beam injection, (3) confinement of fast ions is close to the classical limit, and (4) new, benign collective fast ion effects were observed. Collectively, these accomplishments represent a dramatic advance towards the scientific validation of the FRC-based approach to fusion. This talk will provide a comprehensive overview of the C-2U device and recent experimental advances.
Non-Perturbative Renormalization
Mastropietro, Vieri
2008-01-01
The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi
Instantons and large N an introduction to non-perturbative methods in quantum field theory
Marino, Marcos
2015-01-01
This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.
Chishtie, F A
2002-01-01
Pade approximants (PA) have been widely applied in practically all areas of physics. This thesis focuses on developing PA as tools for both perturbative and non- perturbative quantum field theory (QFT). In perturbative QFT, we systematically estimate higher (unknown) loop terms via the asymptotic formula devised by Samuel et al. This algorithm, generally denoted as the asymptotic Pade approximation procedure (APAP), has greatly enhanced scope when it is applied to renormalization-group-(RG-) invariant quantities. A presently-unknown higher-loop quantity can then be matched with the approximant over the entire momentum region of phenomenological interest. Furthermore, the predicted value of the RG coefficients can be compared with the RG-accessible coefficients (at the higher-loop order), allowing a clearer indication of the accuracy of the predicted RG-inaccessible term. This methodology is applied to hadronic Higgs decay rates (H → bb¯ and H → gg, both within the Standard Model and...
Kalinichenko, Igor; Kazinski, Peter
2014-08-01
The explicit expressions for the one-loop non-perturbative corrections to the gravitational effective action induced by a scalar field on a stationary gravitational background are obtained both at zero and finite temperatures. The perturbative and non-perturbative contributions to the one-loop effective action are explicitly separated. It is proved that, after a suitable renormalization, the perturbative part of the effective action at zero temperature can be expressed in a covariant form solely in terms of the metric and its derivatives. This part coincides with the known large mass expansion of the one-loop effective action. The non-perturbative part of the renormalized one-loop effective action at zero temperature is proved to depend explicitly on the Killing vector defining the vacuum state of quantum fields. This part cannot be expressed in a covariant way through the metric and its derivatives alone. The implications of this result for the structure and symmetries of the effective action for gravity are discussed.
Kalinichenko, I S
2014-01-01
The explicit expressions for the one-loop non-perturbative corrections to the gravitational effective action induced by a scalar field on a stationary gravitational background are obtained both at zero and finite temperatures. The perturbative and non-perturbative contributions to the one-loop effective action are explicitly separated. It is proved that, after a suitable renormalization, the perturbative part of the effective action at zero temperature can be expressed in a covariant form solely in terms of the metric and its derivatives. This part coincides with the known large mass expansion of the one-loop effective action. The non-perturbative part of the renormalized one-loop effective action at zero temperature is proved to depend explicitly on the Killing vector defining the vacuum state of quantum fields. This part cannot be expressed in a covariant way through the metric and its derivatives alone. The implications of this result for the structure and symmetries of the effective action for gravity are...
Tsapalis, Antonios S.
This thesis deals with two topics in lattice field theories. In the first part we discuss aspects of renormalization group flow and non-perturbative improvement of actions for scalar theories regularized on a lattice. We construct a perfect action, an action which is free of lattice artifacts, for a given theory. It is shown how a good approximation to the perfect action-referred to as classically perfect-can be constructed based on a well-defined blocking scheme for the O(3) non-linear σ-model. We study the O(N) non- linear σ-model in the large-N limit and derive analytically its perfect action. This action is applied to the O(3) model on a square lattice. The Wolff cluster algorithm is used to simulate numerically the system. We perform scaling tests and discuss the scaling properties of the large- N inspired perfect action as opposed to the standard and the classically perfect action. In the second part we present a new formulation for a quantum field theory with Abelian gauge symmetry. A Hamiltonian is constructed on a four-dimensional Euclidean space-time lattice which is invariant under local transformations. The model is formulated as a 5- dimensional path integral of discrete variables. We argue that dimensional reduction will allow us to study the behavior of the standard compact U(1) gauge theory in 4-d. Based on the idea of the loop- cluster algorithm for quantum spins, we present the construction of a flux-cluster algorithm for the U(1) quantum link model for the spin-1/2 quantization of the electric flux. It is shown how improved estimators for Wilson loop expectation values can be defined. This is important because the Wilson loops are traditionally used to identify confining and Coulomb phases in gauge theories. Our study indicates that the spin-1/2 U(1) quantum link model is strongly coupled for all bare coupling values we examined. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Energy Technology Data Exchange (ETDEWEB)
Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2016-11-15
A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.
Deng, B. H.; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C.
2016-11-01
A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 1016 m-2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.
Stochastic multi-configurational self-consistent field theory
Thomas, Robert E; Alavi, Ali; Booth, George H
2015-01-01
The multi-configurational self-consistent field theory is considered the standard starting point for almost all multireference approaches required for strongly-correlated molecular problems. The limitation of the approach is generally given by the number of strongly-correlated orbitals in the molecule, as its cost will grow exponentially with this number. We present a new multi-configurational self-consistent field approach, wherein linear determinant coefficients of a multi-configurational wavefunction are optimized via the stochastic full configuration interaction quantum Monte Carlo technique at greatly reduced computational cost, with non-linear orbital rotation parameters updated variationally based on this sampled wavefunction. This extends this approach to strongly-correlated systems with far larger active spaces than it is possible to treat by conventional means. By comparison with this traditional approach, we demonstrate that the introduction of stochastic noise in both the determinant amplitudes an...
Steady state magnetic field configurations for the earth's magnetotail
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Non Abelian TQFT and scattering of self dual field configuration
Gianvittorio, R; Sánchez, J F
1999-01-01
A non-abelian topological quantum field theory describing the scattering of self-dual field configurations over topologically non-trivial Riemann surfaces, arising from the reduction of 4-dim self-dual Yang-Mills fields, is introduced. It is shown that the phase space of the theory can be exactly quantized in terms of the space of holomorphic structures over stable vector bundles of degree zero over Riemann surfaces. The Dirac monopoles are particular static solutions of the field equations. Its relation to topological gravity is discussed.
Configuration resonance in scattering scanning near-field optical microscopy
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A theoretical model is proposed in order to study the configuration resonance in s-SNOM. The electromagnetic coupling between the sample and the probe tip is described with the quasi-electrostatic field theory. This method permits us to analyze the configurational resonance evoked by the interaction between the probe tip and the sample in s-SNOM intuitively.The resonant conditions for a certain system are presented in an explicit form. On the condition of considering the actual size of the sample dipoles and the probe dipole, we discuss the possibility of realizing the configurational resonance for various material samples. The numerical results indicate that the polarizability of the dielectric probe tip is too small to arouse this resonance, whereas, with the surface plasmon resonance emerging on the metallic nanoparticles, the enhanced polarizability of the metallic probe tip ensures the requirements of fulfilling the resonance.
The Impact of Well-Field Configuration on Plume Persistence
Guo, Z.; Brusseau, M.
2013-12-01
It is now recognized that most sites with large groundwater contaminant plumes will require many decades before cleanup will be achieved under current methods and standards. Conceptually, the factors that contribute to plume persistence have long been established, including uncontrolled source zones, dispersed reservoirs of dissolved (present in lower-permeability zones) and sorbed contaminant, and hydraulic-related factors such as non-optimal remedial well-field performance. Of these potential factors, hydraulic phenomena associated with configuration and operation of the well field employed for remedial operations have received minimal attention. The objective of this research is to investigate the influence of well-field configuration on contaminant mass removal and reduction in contaminant mass discharge (CMD). Mathematical modeling, implemented using MODFLOW and MT3D, was conducted to simulate scenarios with different well-field configurations in both homogenous and heterogeneous aquifers. The system was designed such that contaminant was present as only aqueous and sorbed mass (no separate organic-liquid sources). The impacts of several variables on the results are investigated, including pumping rate, layer thickness, and vertical dispersivity. The results are assessed in terms of the relationship between reductions in CMD and reductions in contaminant mass.
Field line mapping and equilibrium reconstructions in new CNT Configuration
Traverso, Peter; Pedersen, Thomas; Brenner, Paul; Sarasola, Xabier; Durand de Gevigney, Benoit
2010-11-01
The Columbia Non-neutral Torus (CNT) has the useful feature of having adjustable coil geometry, creating up to three different stellarators each having a completely new shape to its magnetic surfaces and a different Iota profile. Recently the tilt angle between the two interlocking coils has been changed for the first time on CNT, allowing a study of the new magnetic geometry. In the new configuration field line mapping has been accomplished for multiple current ratios and magnetic fields to confirm the existence of good nested magnetic surfaces. At a specific current ratio a large one-three island chain is created. Plasma parameters have been measured with the new coil configuration, both in cases of a large internal island chain, and in cases without. Full 3D equilibrium reconstructions of potential and density are being performed using a modified version of the existing Poisson-Boltzmann solver. Field line mapping in this configuration will be presented, and a progress report on the equilibrium reconstructions will also be given.
Combining configurational energies and forces for molecular force field optimization
Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.
2017-10-01
While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. Here we propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information is used to optimize a molecular force field by minimizing the statistical distance similarity metric. We illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.
Nonperturbative contributions from complexified solutions in C PN -1 models
Fujimori, Toshiaki; Kamata, Syo; Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke
2016-11-01
We discuss the nonperturbative contributions from real and complex saddle point solutions in the C P1 quantum mechanics with fermionic degrees of freedom, using the Lefschetz thimble formalism beyond the Gaussian approximation. We find bion solutions, which correspond to (complexified) instanton-anti-instanton configurations stabilized in the presence of the fermionic degrees of freedom. By computing the one-loop determinants in the bion backgrounds, we obtain the leading order contributions from both the real and complex bion solutions. To incorporate quasizero modes which become nearly massless in a weak coupling limit, we regard the bion solutions as well-separated instanton-anti-instanton configurations and calculate a complexified quasimoduli integral based on the Lefschetz thimble formalism. The nonperturbative contributions from the real and complex bions are shown to cancel out in the supersymmetric case and give an (expected) ambiguity in the nonsupersymmetric case, which plays a vital role in the resurgent trans-series. For nearly supersymmetric situations, evaluation of the Lefschetz thimble gives results in precise agreement with those of the direct evaluation of the Schrödinger equation. We also perform the same analysis for the sine-Gordon quantum mechanics and point out some important differences showing that the sine-Gordon quantum mechanics does not correctly describe the 1d limit of the C PN -1 field theory of R ×S1.
Two-Fluid Physics and Field Reversed Configurations
Hakim, Ammar
2006-10-01
Fluid models of plasmas are a common tool to study fusion devices. In this talk algorithms for the solution of Two-Fluid plasma equations are presented and applied to the study of Field Reversed Configurations (FRCs). The Two-Fluid model is more general than the often used magnetohydrodynamic (MHD) model. The model takes into account electron inertia, charge separation and the full electromagnetic field equations and allows for separate electron and ion motion. Finite Lamor Radii effects are taken into account by self consistently evolving the anisotropic pressure tensor. The algorithm presented is the high resolution wave propagation scheme. The wave propagation method is based on solutions to the Riemann problem at cell interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic source terms. To preserve the divergence constraints on the electric and magnetic fields the so called perfectly-hyperbolic form of Maxwell equations are used which explicitly incorporate the divergence equations into the time stepping scheme. A detailed study of Field-Reversed Configuration stability and formation is performed. The study is divided into two parts. In the first, FRC stability is studied. The simulation is initialized with various FRC equilibria and perturbed. The growth rates are calculated and compared with MHD results. It is shown that the FRCs are indeed more stable within the Two-Fluid model than the MHD model. In the second part formation of FRCs is studied. In this set of simulations a cylindrical column of plasma is initialized with a uniform axial magnetic field. The field is reversed at the walls. Via the process of magnetic reconnection FRC formation is observed. The effects of Rotating Magnetic Field (RMF) drive on the formation of FRC are also presented. Here, a set of current carrying coils apply a RMF at the plasma boundary, causing a electron flow in the R-Z plane leading to field reversal. The strong azimuthal electron flow causes
Gyrokinetic particle simulation of a field reversed configuration
Energy Technology Data Exchange (ETDEWEB)
Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.; Lin, Z., E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)
2016-01-15
Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.
Hamiltonian description of closed configurations of the vacuum magnetic field
Energy Technology Data Exchange (ETDEWEB)
Skovoroda, A. A., E-mail: skovoroda-aa@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation)
2015-05-15
Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.
Perturbative and nonperturbative renormalization in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)
2010-03-15
We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)
Composite operators in lattice QCD nonperturbative renormalization
Göckeler, M; Oelrich, H; Perlt, H; Petters, D; Rakow, P; Schäfer, A; Schierholz, G; Schiller, A
1999-01-01
We investigate the nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields. These include operators which are relevant to the calculation of moments of hadronic structure functions. The computations are based on Monte Carlo simulations using quenched Wilson fermions.
New Methods in Non-Perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.
Balram, Ajit C.; Dhar, Deepak
2012-03-01
We consider the spherical model on a spider-web graph. This graph is effectively infinite dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determine all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of δ-functions, and all the modes are localized. The fractional number of modes with frequency less than ω varies as exp ( - C/ω) for ω tending to zero, where C is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time t varies as exp ( - C‧t1/3), for large t, where C‧ is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free energy per site at temperature T, near and above the critical temperature Tc, also has an essential singularity of the type exp [ - K(T - Tc)-1/2].
Optimizing the configuration patterns for heterogeneous distributed sensor fields
Wettergren, Thomas A.; Costa, Russell
2012-06-01
When unmanned distributed sensor fields are developed for rapid deployment in hostile areas, the deployment may consist of multiple sensor types. This occurs because of the variations in expected threats and uncertainties about the details of the local environmental conditions. As more detailed information is available at deployment, the quantity and types of sensors are given and fixed, yet the specific pattern for the configuration of their deployment is still variable. We develop a new optimization approach for planning these configurations for this resource constrained sensor application. Our approach takes into account the variety of sensors available and their respective expected performance in the environment, as well as the target uncertainty. Due to the large dimensionality of the design space for this unmanned sensor planning problem, heuristic-based optimizations will provide very sub-optimal solutions and gradient-based methods lack a good quality initialization. Instead, we utilize a robust optimization procedure that combines genetic algorithms with nonlinear programming techniques to create numerical solutions for determining the optimal spatial distribution of sensing effort for each type of sensor. We illustrate the effectiveness of the approach on numerical examples, and also illustrate the qualitative difference in the optimal patterns as a function of the relative numbers of available sensors of each type. We conclude by using the optimization results to discuss the benefits of interspersing the different sensor types, as opposed to creating area sub-segmentations for each type.
Drift-wave stability in the field-reversed configuration
Lau, C. K.; Fulton, D. P.; Holod, I.; Lin, Z.; Binderbauer, M.; Tajima, T.; Schmitz, L.
2017-08-01
Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift-waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects. In the scrape-off layer (SOL), collisionless electrostatic drift-waves in the ion-to-electron-scale are destabilized by electron temperature gradients due to the resonance with locally barely trapped electrons. Collisions can suppress this instability, but a collisional drift-wave instability still exists at realistic pressure gradients. Simulation results are in qualitative agreement with C-2 FRC experiments. In particular, the lack of ion-scale instability in the core is not inconsistent with experimental measurements of a fluctuation spectrum showing a depression at ion-scales. The pressure gradient thresholds for the SOL instability from simulations are also consistent with the critical gradient behavior observed in experiments.
The Einstein field equations for cylindrically symmetric elastic configurations
Energy Technology Data Exchange (ETDEWEB)
Brito, I; Vaz, E G L R [Departamento de Matematica e Aplicacoes, Universidade do Minho, 4800-058 Guimaraes (Portugal); Carot, J, E-mail: ireneb@math.uminho.pt, E-mail: jcarot@uib.cat, E-mail: evaz@math.uminho.pt [Departament de Fisica, Universitat de les Illes Balears, Cra Valdemossa pk 7.5, E-07122 Palma (Spain)
2011-09-22
In the context of relativistic elasticity it is interesting to study axially symmetric space-times due to their significance in modeling neutron stars and other astrophysical systems of interest. To approach this problem, here, a particular class of these space-times is considered. A cylindrically symmetric elastic space-time configuration is studied, where the material metric is taken to be flat. The components of the energy-momentum tensor for elastic matter are written in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-back material metric. The Einstein field equations are presented and a condition confirming the existence of a constitutive function is obtained. This condition leads to special cases, in one of which a new system for the metric functions and an expression for the constitutive function are deduced. The new system depends on a particular function, which builds up the constitutive equation.
Profile stabilization of tilt mode in a Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.
Gyrokinetic simulation of driftwave instability in field-reversed configuration
Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.
2016-05-01
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.
Inhomogeneous field configurations and the electroweak phase transition
Jungnickel, D U; Jungnickel, Dirk-Uwe; Walliser, Dirk
1994-01-01
We investigate the effects of inhomogeneous scalar field configurations on the electroweak phase transition. For this purpose we calculate the leading perturbative correction to the wave function correction term $Z(\\vph,T)$, i.e., the kinetic term in the effective action, for the electroweak Standard Model at finite temperature and the top quark self--mass. Our finding for the fermionic contribution to $Z(\\vph,T)$ is infra--red finite and disagrees with other recent results. In general, neither the order of the phase transition nor the temperature at which it occurs change, once $Z(\\vph,T)$ is included. But a non--vanishing, positive (negative) $Z(\\vph,T)$ enhances (decreases) the critical droplet surface tension and the strength of the phase transition. We find that in the range of parameter space, which allows for a first--order phase transition, the wave function correction term is negative --- indicating a weaker phase transition --- and especially for small field values so large that perturbation theory ...
Exploring the magnetic field configuration in BL Lac using GMVA
Rani, B; Hodgson, J; Koyama, S; Zensus, J A; Fuhrmann, L; Marscher, A P; Jorstad, S G
2016-01-01
The high radio frequency polarization imaging of non-thermal emission from active galactic nuclei (AGN) is a direct way to probe the magnetic field strength and structure in the immediate vicinity of supermassive black holes (SMBHs) and is crucial in testing the jet-launching scenario. To explore the the magnetic field configuration at the base of jets in blazars, we took advantage of the full polarization capabilities of the Global Millimeter VLBI Array (GMVA). With an angular resolution of $\\sim$50 micro-arcseconds ($\\mu$as) at 86 GHz, one could resolve scales up to $\\sim$450 gravitational radii (for a 10$^9$ solar mass black hole at a redshift of 0.1). We present here the preliminary results of our study on the blazar BL~Lac. Our results suggest that on sub-mas scales the core and the central jet of BL Lac are significantly polarized with two distinct regions of polarized intensity. We also noted a great morphological similarity between the 7mm/3mm VLBI images at very similar angular resolution.
On the Nature of Nonperturbative Effects in Stabilized 2D Quantum Gravity
Diego, O; Diego, Oscar; Gonzalez, Jose
1994-01-01
We remark that the weak coupling regime of the stochastic stabilization of 2D quantum gravity has a unique perturbative vacuum, which does not support instanton configurations. By means of Monte Carlo simulations we show that the nonperturbative vacuum is also confined in one potential well. Nonperturbative effects can be assessed in the loop equation. This can be derived from the Ward identities of the stabilized model and is shown to be modified by nonperturbative terms.
Thick Liquid-Walled, Field-Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
Moir, R W; Bulmer, R H; Gulec, K; Fogarty, P; Nelson, B; Ohnishi, M; Rensink, M; Rognlien, T D; Santarious, J F; Sze, D K
2000-09-22
A thick flowing layer of liquid (e.g., flibe--a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit or receiver nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. This surface temperature must be compatible with a practical heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field. Another method of current drive uses small spheromaks injected along the magnetic fields, which additionally provide fueling along with pellet fueling if necessary.
Transport studies in high-performance field reversed configuration plasmas
Gupta, S.; Barnes, D. C.; Dettrick, S. A.; Trask, E.; Tuszewski, M.; Deng, B. H.; Gota, H.; Gupta, D.; Hubbard, K.; Korepanov, S.; Thompson, M. C.; Zhai, K.; Tajima, T.
2016-05-01
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.
Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky
2005-04-13
The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.
Internal magnetic field measurement on C-2 field-reversed configuration plasmas.
Gota, H; Thompson, M C; Knapp, K; Van Drie, A D; Deng, B H; Mendoza, R; Guo, H Y; Tuszewski, M
2012-10-01
A long-lived field-reversed configuration (FRC) plasma has been produced in the C-2 device by dynamically colliding and merging two oppositely directed, highly supersonic compact toroids (CTs). The reversed-field structure of the translated CTs and final merged-FRC state have been directly verified by probing the internal magnetic field structure using a multi-channel magnetic probe array near the midplane of the C-2 confinement chamber. Each of the two translated CTs exhibits significant toroidal fields (B(t)) with opposite helicity, and a relatively large B(t) remains inside the separatrix after merging.
Nonperturbative effects in deformation quantization
Periwal, V
2000-01-01
The Cattaneo-Felder path integral form of the perturbative Kontsevich deformation quantization formula is used to explicitly demonstrate the existence of nonperturbative corrections to na\\"\\i ve deformation quantization.
On the Topology of Configurations of Gauge Fields and Higgs Fields
Chaves, R.
Starting with the topological classification of gauge fields on the sphere (Dirac monopoles) and of Higgs vacuum configurations (through the second homotopy group of the space of vacuum states), the features of minimum energy solutions to gauge theories with spontaneous symmetry breaking and in the presence of singularities (monopoles) are deduced. For each theory, this analysis reveals whether a monopole can exist isolated or must be attached to a massive string and how its flux must be distributed.
Field-reversed configuration maintained by rotating magnetic field with high spatial harmonics.
Inomoto, Michiaki; Kitano, Katsuhisa; Okada, Shigefumi
2007-10-26
Field-reversed configurations (FRCs) driven by rotating magnetic fields (RMFs) with spatial high harmonics have been studied in the metal flux conserver of the FRC injection experiment. The experimental results show that the fundamental RMF component is observed to penetrate the plasma column, while the high harmonics are screened at the plasma edge due to their slower or reversed rotation. This selective penetration of the RMF provides good compatibility of radial and azimuthal force balances; significant radial inward force mostly from the high-harmonic components, and sufficient azimuthal torque solely provided by the fundamental component.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2015-10-01
effects as plasma impact neutral background – Fairly straightforward to model with existing fluid tools (high enough collisionality for Maxwellian ...model – Plasmas can have very complex phase space configurations and self-induced electromagnetic forces. Fundamental multiscale problem since...Approved for public release; distribution unlimited Kinetic ( non - Maxwellian ) Can implement Boltzmann equation multiple ways: • PIC (high
The Nonperturbative Structure of Hadrons
Hobbs, T J
2014-01-01
In this thesis we explore a diverse array of issues that strike at the inherently nonperturbative structure of hadrons at momenta below the QCD confinement scale. In so doing, we mainly seek a better control over the partonic substructure of strongly-interacting matter, especially as this relates to the nonperturbative effects that both motivate and complicate experiments --- particularly DIS; among others, such considerations entail sub-leading corrections in $Q^2$, dynamical higher twist effects, and hadron mass corrections. We also present novel calculations of several examples of flavor symmetry violation, which also originates in the long-distance properties of QCD at low energy. Moreover, we outline a recently developed model, framed as a hadronic effective theory amenable to QCD global analysis, which provides new insights into the possibility of nonperturbative heavy quarks in the nucleon. This model can be extended to the scale of the lighter mesons, and we assess the accessibility of the structure f...
Interpretation of the coronal magnetic field configuration of the Sun
Institute of Scientific and Technical Information of China (English)
Bo Li; Xing Li; Hui Yu
2012-01-01
The origin of the heliospheric magnetic flux on the Sun,and hence the origin of the solar wind,is a topic of hot debate.While the prevailing view is that the solar wind originates from outside the coronal streamer helmets,there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field,it is difficult to unambiguously resolve the conflict between the two scenarios.We present two 2-dimensional,Alfvénic-turbulence-based models of the solar corona and solar wind,one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the Fe ⅩⅢ 10747(A) line,where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints,especially those on the magnetic flux distribution.Interestingly,the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs.In particular,a dome-shaped feature is present in the C2 FOV even for the model without a closed magnetic field.Moreover,both models fit the Ulysses data scaled to 1 AU equally well.We suggest that:1) The pB observations cannot be safely taken as a proxy for the magnetic field topology,as is often implicitly assumed.2) The Ulysses measurements,especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field,do not rule out the ubiquity of open magnetic fields on the Sun.
Energy Technology Data Exchange (ETDEWEB)
Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.
2011-01-05
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
On the number of soft quanta in classical field configurations
Mueck, Wolfgang
2013-01-01
A central point in the large-N portrait of black holes proposed by Dvali and Gomez is the estimate of the number of soft quanta that make up the classical gravitational field. It is shown here that the coherent state formalism provides a way to calculate that number directly. As a consequence, the average energy of the quanta is such that the typical geometric size of the field source can be roughly interpreted as their de Broglie wavelength. The calculation is done for the electromagnetic field and for Newtonian gravity, and it is argued that the number of soft quanta should be unchanged in General Relativity due to the long range nature of gravity.
Vortex configuration in the presence of local magnetic field and locally applied stress
Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena
2017-02-01
Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.
Nonperturbative approach to relativistic quantum communication channels
Landulfo, André G. S.
2016-05-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Interpretation of the coronal magnetic field configuration of the Sun
Li, Bo; Yu, Hui
2012-01-01
The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate.While the prevailing view is that the solar wind originates from outside coronal streamer helmets, there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field, it is difficult to resolve the conflict between the two scenarios without doubt.We present two 2-dimensional, Alfv\\'enic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the FeXIII 10747\\AA\\ line, where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux dis...
Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons
Energy Technology Data Exchange (ETDEWEB)
Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.
2010-06-28
We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________
Electrical modeling of the Reversed Field Pinch configuration
Cavazzana, Roberto
2016-10-01
Starting from the Poynting theorem, a two port equivalent formulation for the Reversed Field Pinch (RFP) is obtained. At first a general formulation applicable to any sort of underlying MHD physics is derived. Then its specialization is discussed, showing that: i) the toroidal field reversal is guided from outside the plasma by the external imposed boundary conditions; ii) the classic textbook RFP derivation with the toroidal flux Φt conserved is only a particular choice among the many possible. Here a parametric force free MHD family of equilibria is used to derive the two port equation of a realistic RFP boundary condition. The key master parameter turns out to be the edge safety factor q (a) = a / R .Bt (a) /Bp (a) , whereas Φt becomes a free variable determined by the RFP self-organization processes. As a by product a correct expression for the resistive component of the toroidal loop voltage is given. The two port model obtained is finally closed by adding the poloidal and toroidal power supply networks and evolved by means of a SPICE simulator. The results enlighten some peculiarities found in the RFP transient operations: RFP startup and formation, pulsed poloidal current drive (PPCD) and oscillating field current drive (OFCD).
The Influence of Magnetic Permeability on the Configuration of Magnetic Field in Helimak Device
Institute of Scientific and Technical Information of China (English)
陈文革; 武松涛
2003-01-01
The Helimak of USA is a plasma physics experimental device designed and builtby CASIPP. Its configuration of magnetic field is of very importance during the operation of thisdevice. In this paper, the influence of magnetic permeability on configuration of magnetic field willbe discussed due to the effect of weld metal in the vacuum vessel of Helimak, and some conclusionis useful for some engineering designs of the fusion experimental device.
Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2010-06-01
Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.
Entanglement and coherence of a three-level atom in Λ configuration interacting with two fields
Institute of Scientific and Technical Information of China (English)
Zhang Jian-Song; Xu Jing-Bo
2009-01-01
We investigate the entanglement of a three-level atom in A configuration interacting with two quantized field modes by using logarithmic negativity. Then, we study the relationship of the atomic coherence and the entanglement between two fields which are initially prepared in vacuum or thermal states. We find that if the two fields are prepared in thermal states, the atomic coherence can induce the entanglement between two thermal fields. However, there is no coherence-induced entanglement between two vacuum fields.
Principal physics of rotating magnetic-field current drive of field reversed configurations
Hoffman, A. L.; Guo, H. Y.; Miller, K. E.; Milroy, R. D.
2006-01-01
After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude Bω at a given frequency ω is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field Bo a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density nm∝Bω/η1/2ω1/2rs, where rs is the FRC separatrix radius and η is an effective weighted plasma resistivity. The plasma total temperature Tt is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I'dia≈2Be/μo, is less than the maximum possible synchronous current, I'sync=⟨ne⟩eωrs2/2. The RMF will self-consistently penetrate a distance δ* governed by the ratio ζ =I'dia/I'sync. Since the FRC is a diamagnetic entity, its peak pressure pm=nmkTt determines its external magnetic field Be≈(2μopm)1/2. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.
A Toy Model for Magnetic Field Configurations in Black Hole Accretion Discs
Institute of Scientific and Technical Information of China (English)
GE Zhao-Jiang; WANG Ding-Xiong; LEI Wei-Hua
2008-01-01
We discuss the feature of the magnetic field configuration arising from double counter oriented electric current-rings in the accretion disc around a Kerr black hole (BH). We discuss the relevant physical quantities corresponding to this configuration: (1) the power and torque transferred by the large-scale magnetic field, (2) the angular momentum and energy fluxes transferred from the BH to the inner disc, (3) the radiation flux from the disc. In addition, we discuss the possibility that the closed magnetic field anchored at the disc probably evolves to the open magnetic field, which is helpful to produce the jet from the disc.
Nonperturbative methods in HZE propagation
Wilson, J. W.; Shavers, M. R.; Badavi, F. F.; Miller, J.; Shinn, J. L.; Costen, R. C.
1994-01-01
An analytical solution to the perturbative multiple collision series of a fragmenting HZE ion beam has limited usefulness since the first collision term has several hundred contributions, the second collision term has tens of thousands of contributions, and each successive collision term progresses to unwieldy computational proportions. Our previous work has revealed the multiple collision terms in the straight-ahead approximation to be simple products of a spatially dependent factor times a linear energy-dependent factor of limited domain and unit normalization. The properties of these forms allow the development of the nonperturbative summation of the series to all orders assuming energy-independent nuclear cross sections as matrix products of a scaled Green's function described herein. This nonperturbative Green's function with multiple scattering correction factors compares well with experiments using 670 MeV/u neon-20 ion beams in thick water targets.
On the Stability of Quasi-Equilibrium Self-Gravitating Configurations in a Tidal Field
Domínguez-Tenreiro, R
2000-01-01
The possibility that quasi-equilibrium self-gravitating galaxy-like configurations exist in a tidal field is analyzed in this paper. More specifically, we address the question of how to predict initial configurations modeling galaxies that are able to survive environmental effects in a dense environment for a Hubble time or so, provided thay dynamical friction is neglected. The initial quasi-equilibrium configurations have been built up taking into account the external tidal field produced by the halo. It modifies the escape velocity field of the configuration, compared with isolated configurations. The survival of the configurations as they orbit inside the halos has been studied through N-body simulations. As a general result, it has been found out that the bulk of the models is conserved along 12.5 Gyears of evolution, and that the low rates of mass losses they experience are consistent with those expected when the adiabatic protection hypothesis is at work. So, solutions for galaxy configurations in tidal...
A Nonperturbative Regulator for Chiral Gauge Theories
Grabowska, Dorota M
2015-01-01
We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.
Non-perturbative Nekrasov partition function from string theory
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I., E-mail: ignatios.antoniadis@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Florakis, I., E-mail: florakis@mppmu.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Hohenegger, S., E-mail: stefan.hohenegger@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Narain, K.S., E-mail: narain@ictp.trieste.it [High Energy Section, The Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11-34014 Trieste (Italy); Zein Assi, A., E-mail: zeinassi@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Centre de Physique Théorique (UMR CNRS 7644), Ecole Polytechnique, 91128 Palaiseau (France)
2014-03-15
We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T{sup 2} and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background.
Pure Gauge Configurations and Tachyon Solutions to String Field Theories Equations of Motion
Aref'eva, I Ya; Grigoryev, D A; Khromov, P N; Maltsev, M V; Medvedev, P B
2009-01-01
In constructions of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motions one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and the NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.
Vortex configuration in the presence of local magnetic field and locally applied stress
Energy Technology Data Exchange (ETDEWEB)
Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il
2017-02-15
Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.
Towards Nonperturbation Theory of Emergent Gravity
Kar, Supriya
2016-01-01
We investigate an emergent gravity in $(4+1)$ dimensions underlying a geometric torsion ${\\cal H}_3$ in $1.5$ order formulation. We show that an emergent pair-symmetric $4$th order curvature tensor underlying a NS field theory governs a torsion free geometry and is identified as the Riemann type tensor. Interestingly a pair anti-symmetric $4$th order tensor is shown to incorporate a dynamical correction underlying a ${\\cal H}_3$ gauge potential and is identified with a non-perturbative correction. The non-perturbative term in the emergent action is shown to be described by a $U(1)$ gauge invariant ${\\cal F}_4$ in a second order theory underlying an onshell ${\\cal H}_3$ in a first order. A complete emergent theory is elegantly described with an axion, and hence a quintessence, coupling to the Riemann type geometries. The curvatures are appropriately worked out to obtain a $12D$ emergent $F$ theory. Further investigation reveals that a pair of $(M{\\bar M})_{10}$-brane are created across an event horizon. We obt...
Nonperturbative Renormalisation of Composite Operators in Lattice QCD
Göckeler, M; Oelrich, H; Perlt, H; Petters, D; Rakow, P; Schäfer, A; Schierholz, G; Schiller, A
1999-01-01
We investigate the nonperturbative renormalisation of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields. These include operators which are relevant to the calculation of moments of hadronic structure functions. The computations are based on Monte Carlo simulations using quenched Wilson fermions.
Relativistic models of magnetars: the twisted-torus magnetic field configuration
Ciolfi, R; Gualtieri, L; Pons, J A
2009-01-01
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.
3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere
Energy Technology Data Exchange (ETDEWEB)
Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2015-10-15
The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.
Nishiyama, Shogo; Hatano, Hirofumi; Kanai, Saori; Kurita, Mikio; Sato, Shuji; Matsunaga, Noriyuki; Nagata, Tetsuya; Nagayama, Takahiro; Kandori, Ryo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Sato, Yaeko; Hough, James H; Sugitani, Koji; Okuda, Haruyuki
2008-01-01
We present a polarimetric map of a 20'x20' area toward the Galactic center. The polarization of point sources has been measured in the J, H, and Ks bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m telescope IRSF. One percent or better accuracy of polarization degree is achieved for sources with J<14.5, H<13.5, and Ks<12.0. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we have obtained a polarization originating from magnetically aligned dust grains at the central region of our Galaxy of at most 1-2 kpc. The distribution of the position angles shows a peak at about 20 deg, nearly parallel to the Galactic plane, suggesting a toroidal magnetic configuration. The derived direction of the magnetic field is in good agreement with that obtained from far-infrared/submillimeter observations, which detect polarized thermal emission from dust in the molecular clouds at the Galactic center. Our results show that by subtracting foreground co...
3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere
Shimizu, T
2015-01-01
The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere, and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconne...
Institute of Scientific and Technical Information of China (English)
Huang Xiao-Jing; He Su-Zhen; Wu Chen-Xu
2006-01-01
This paper shows that the local electric field distribution near the nanostructure metallic surface is obtained by solving the Laplace equation, and furthermore, the configuration of CO molecules adsorbed on a Pt nanoparticle surface is obtained by using Monte Carlo simulation. It is found that the uneven local electric field distribution induced by the nanostructure surface can influence the configuration of carbon monoxide (CO) molecules by a force, which drags the adsorbates to the poles of the nanoparticles. This result, together with our results obtained before, may explain the experimental results that the nanostructure metallic surface can lead to abnormal phenomena such as anti-absorption infrared effects.
Elliptic CY3folds and non-perturbative modular transformation
Energy Technology Data Exchange (ETDEWEB)
Iqbal, Amer [Government College University, Abdus Salam School of Mathematical Sciences, Lahore (Pakistan); Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)
2016-03-15
We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections. (orig.)
Velas, K. M.; Milroy, R. D.
2014-01-01
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure Br, Bθ, and Bz at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.
Toward A Nonperturbative Topological String
Neitzke, A
2005-01-01
We discuss three examples of nonperturbative phenomena in the topological string. First, we consider the computation of amplitudes in N = 4 super Yang-Mills theory using the B model topological string as proposed by Witten. We give an argument suggesting that the computations using connected or disconnected D-instantons of the B model are in fact equivalent. Second, we formulate a conjecture that the squared modulus of the open topological string partition function can be defined nonperturbatively as the partition function of a mixed ensemble of BPS states in d = 4. This conjecture is an extension of a recent proposal for the closed topological string. In a particular example involving a non-compact Calabi- Yau threefold, we show that the conjecture passes some basic checks, and that the square of the open topological string amplitude has a natural interpretation in terms of 2-dimensional Yang-Mills theory, again generalizing known results for the closed string case. Third, we discuss an action for an abel...
Nonperturbative Dynamics Of Reheating After Inflation
Amin, Mustafa A; Kaiser, David I; Karouby, Johanna
2014-01-01
Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries), can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study reheating and discuss potential observational signatures from this fascinating era.
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Effects of magnetic field configuration on rf sputtering for CdS/CdTe solar cells
Energy Technology Data Exchange (ETDEWEB)
Compaan, A.; Shao, M.; Fischer, A.; Grecu, D.; Jayamaha, U.; Contreras-Puente, G.; Bohn, R.G. [Univ. of Toledo, OH (United States)
1996-12-31
The authors report studies of solar cells prepared by rf planar magnetron sputtering in which the films were deposited using magnetic field structures ranging from approximately balanced to strongly unbalanced in the type II configuration. For films grown with the unbalanced configurations, they find much stronger photoluminescence and much better cell performance than for the balanced configuration. The CdTe films show differences in electrical performance depending on magnetic field as well. These effects are interpreted as arising from the enhanced electron and ion bombardment of the film growth interface for the unbalanced magnetrons. Using two unbalanced magnetrons the authors have fabricated an all-rf-sputtered cell with NREL-verified efficiency of 11.6% at air mass 1.5 illumination.
Field configuring events shaping sustainability transitions? The case of solar PV in India
Jolly, Suyash; Raven, R.P.J.M.
2016-01-01
Abstract The sustainability transitions literature has emphasized the analytical challenges in understanding the trade-offs in protecting niche innovations. This paper builds on an emerging body of literature that argues that the concept of field-configuring events (FCE) is useful for understanding
Testing Circuit Models for the Energies of Coronal Magnetic Field Configurations
Wheatland, M S
2003-01-01
Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.
Puhr, M
2016-01-01
We use exactly chiral overlap lattice fermions to investigate the Chiral Separation Effect in quenched QCD at finite density. We employ a recently developed numerical method which allows, for the first time, to address the transport properties of exactly chiral lattice fermions with non-zero chemical potential. Studying the axial current along the external magnetic field, we find a linear dependence consistent with the free fermion result for topologically trivial gauge field configurations. However, for configurations with nontrivial topology in the confinement regime the axial current is strongly suppressed due to contributions of topological modes of the Dirac operator, which suggests that non-perturbative corrections to the Chiral Separation Effect have topological origin.
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Directory of Open Access Journals (Sweden)
Ivan eAlvarez
2015-02-01
Full Text Available Population receptive field (pRF mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous ‘wedge and ring’ stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.
Nonperturbative light-front QCD
Wilson, K G; Harindranath, A; Zhang, W M; Perry, R J; Glazek, S D
1994-01-01
In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for...
Nonperturbative study of the four gluon vertex
Binosi, D; Papavassiliou, J
2014-01-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergen...
Mukherjee, Kushal; Gupta, Shalabh; Ray, Asok; Wettergren, Thomas A
2011-06-01
This paper presents a statistical-mechanics-inspired procedure for optimization of the sensor field configuration to detect mobile targets. The key idea is to capture the low-dimensional behavior of the sensor field configurations across the Pareto front in a multiobjective scenario for optimal sensor deployment, where the nondominated points are concentrated within a small region of the large-dimensional decision space. The sensor distribution is constructed using location-dependent energy-like functions and intensive temperature-like parameters in the sense of statistical mechanics. This low-dimensional representation is shown to permit rapid optimization of the sensor field distribution on a high-fidelity simulation test bed of distributed sensor networks.
Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations
Kichakova, Olga; Radu, Eugen; Shnir, Yasha
2014-01-01
We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...
Kumar, A.; Jha, P.; Samanta, S.; Singh, A.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.
2016-05-01
Organic Field Effect Transistors (OFETs) are being investigated for a number of low-cost, large area applications; particularly those that are compatible with flexible plastic substrates. Development of low temperature processes can make way for OFETs to be integrated on flexible plastic substrates. Here we have made systematic studies on OFETs in different configurations wherein we have chosen Cobalt Phthalocyanine (CoPc) as active material. We have found the best mobility (1.86 × 10-5 cm2/V-s) in Bottom Gate Top Contact configuration. However, threshold voltage (-5V) and On off ratio (62)were found to be better in Top Gate Bottom Contact configuration The electromechanical properties of the Bottom Gate Top Contact transistors were studied by measuring the transfer characteristics of the devices in bend condition and thereby calculating mobility under different radii of bending. No significant change in the mobility of the device was observed under bent conditions.
Intermediate regime of charged particle scattering in the field-reversal configuration
Energy Technology Data Exchange (ETDEWEB)
Shustov, P. I., E-mail: p.shustov@gmail.com; Yushkov, E. V. [Space Research Institute, RAS, Profsouznaya st., 84/32, GSP-7, 117997 Moscow (Russian Federation); Department of Physics, Moscow State University, 119992 Moscow (Russian Federation); Artemyev, A. V., E-mail: artemyev@iki.rssi.ru [Space Research Institute, RAS, Profsouznaya st., 84/32, GSP-7, 117997 Moscow (Russian Federation)
2015-12-15
In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.
Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D
2012-06-22
Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.
Guiding-center Hamiltonian figure-8 particles in axisymmetric field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Mynick, H.E.
1979-09-01
The guiding-center Hamiltonian K is derived for so-called figure-8 particles which are present in field-reversed mirror configurations, using a formalism developed previously. For such particles, the gyro-orbit cannot be approximated by a circle, and standard approaches to guiding-center theory are thus totally inapplicable. K manifests this intrinsic difference by a quite different dependence on the gyroaction, and by familiar effects such as mirroring and magnetic-gradient drifts being controlled by the radial derivative of the magnetic field strength B at the point of field-reversal, rather than by B itself, as occurs in standard guiding-center theory.
Propagation of gravitational waves in the nonperturbative spinor vacuum
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2014-09-15
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the h{sub yy,zz} and h{sub yz} components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)
Chu, Shih-I
2005-08-08
In this paper, we present a short account of some recent developments of self-interaction-free density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) for accurate and efficient treatment of the electronic structure, and time-dependent quantum dynamics of many-electron atomic and molecular systems. The conventional DFT calculations using approximate and explicit exchange-correlation energy functional contain spurious self-interaction energy and improper long-range asymptotic potential, preventing reliable treatment of the excited, resonance, and continuum states. We survey some recent developments of DFT/TDDFT with optimized effective potential (OEP) and self-interaction correction (SIC) for both atomic and molecular systems for overcoming some of the above mentioned difficulties. These DFT (TDDFT)/OEP-SIC approaches allow the use of orbital-independent single-particle local potential which is self-interaction free. In addition we discuss several numerical techniques recently developed for efficient and high-precision treatment of the self-interaction-free DFT/TDDFT equations. The usefulness of these procedures is illustrated by a few case studies of atomic, molecular, and condensed matter processes of current interests, including (a) autoionizing resonances, (b) relativistic OEP-SIC treatment of atomic structure (Z=2-106), (c) shell-filling electronic structure in quantum dots, (d) atomic and molecular processes in intense laser fields, including multiphoton ionization, and very-high-order harmonic generation, etc. For the time-dependent processes, an alternative Floquet formulation of TDDFT is introduced for time-independent treatment of multiphoton processes in intense periodic or quasiperiodic fields. We conclude this paper with some open questions and perspectives of TDDFT.
Nonperturbative approach to circuit quantum electrodynamics.
Jonasson, Olafur; Tang, Chi-Shung; Goan, Hsi-Sheng; Manolescu, Andrei; Gudmundsson, Vidar
2012-10-01
We outline a rigorous method which can be used to solve the many-body Schrödinger equation for a Coulomb interacting electronic system in an external classical magnetic field as well as a quantized electromagnetic field. Effects of the geometry of the electronic system as well as the polarization of the quantized electromagnetic field are explicitly taken into account. We accomplish this by performing repeated truncations of many-body spaces in order to keep the size of the many particle basis on a manageable level. The electron-electron and electron-photon interactions are treated in a nonperturbative manner using "exact numerical diagonalization." Our results demonstrate that including the diamagnetic term in the photon-electron interaction Hamiltonian drastically improves numerical convergence. Additionally, convergence with respect to the number of photon states in the joint photon-electron Fock space basis is fast. However, the convergence with respect to the number of electronic states is slow and is the main bottleneck in calculations.
Solving String Field Equations New Uses for Old Tools
Kling, A; Popov, A D; Uhlmann, S
2003-01-01
It is argued that the (NS-sector) superstring field equations are integrable, i. e. their solutions are obtainable from linear equations. We adapt the 25-year-old solution-generating "dressing" method and reduce the construction of nonperturbative superstring configurations to a specific cohomology problem. The application to vacuum superstring field theory is outlined.
Perturbative tests of non-perturbative counting
Dabholkar, Atish; Gomes, João
2010-03-01
We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.
Final report for the field-reversed configuration power plant critical-issue scoping study
Energy Technology Data Exchange (ETDEWEB)
Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.
2001-03-01
This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.
Scaling of velocity and mixture fraction fields in laminar counterflow configurations
Bisetti, Fabrizio; Scribano, Gianfranco
2015-11-01
Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.
Coppi, B.
2017-03-01
The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of "thermo-gravitational modes" driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.
Energy Technology Data Exchange (ETDEWEB)
Coppi, B., E-mail: coppi@mit.edu [Massachusetts Institute of Technology (United States)
2017-03-15
The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.
Modeling of Resistive Wall Modes in Tokamak and Reversed Field Pinch Configurations of KTX
Han, Rui; Zhu, Ping; Bai, Wei; Lan, Tao; Liu, Wandong
2016-10-01
Resistive wall mode is believed to be one of the leading causes for macroscopic degradation of plasma confinement in tokamaks and reversed field pinches (RFP). In this study, we evaluate the linear RWM instability of Keda Torus eXperiment (KTX) in both tokamak and RFP configurations. For the tokamak configuration, the extended MHD code NIMROD is employed for calculating the dependence of the RWM growth rate on the position and conductivity of the vacuum wall for a model tokamak equilibrium of KTX in the large aspect-ratio approximation. For the RFP configuration, the standard formulation of dispersion relation for RWM based on the MHD energy principle has been evaluated for a cylindrical α- Θ model of KTX plasma equilibrium, in an effort to investigate the effects of thin wall on the RWM in KTX. Full MHD calculations of RWM in the RFP configuration of KTX using the NIMROD code are also being developed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.
Nonperturbative solution of scalar Yukawa model in two- and three-body Fock space truncations
Karmanov, Vladimir A; Smirnov, Alexander V; Vary, James P
2016-01-01
The Light-Front Tamm-Dancoff method of finding the nonperturbative solutions in field theory is based on the Fock decomposition of the state vector, complemented with the sector-dependent nonperturbative renormalization scheme. We show in detail how to implement the renormalization procedure and to solve the simplest nontrivial example of the scalar Yukawa model in the two- and three-body Fock space truncations incorporating scalar "nucleon" and one or two scalar "pions".
A new high performance field reversed configuration operating regime in the C-2 device
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); and others
2012-05-15
Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.
Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump
Energy Technology Data Exchange (ETDEWEB)
Wilkie, D.I. (Canadian Occidental Petroleum Ltd., Calgary, Alberta (Canada))
1993-09-27
Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.
Nonperturbative Yukawa theory at finite density and temperature
Fraga, Eduardo S; Pinto, Marcus Benghi
2009-01-01
In-medium Yukawa theory is part of the thermodynamics of the Standard Model of particle physics and is one of the main building blocks of most effective field theories of fermionic systems. By computing its pressure we investigate the nonperturbative thermodynamics at finite temperature and density using the optimized perturbation theory (OPT) framework. Our calculations are valid for arbitrary fermion and scalar masses, temperature, chemical potential, and not restricted to weak coupling. The model is considered in the presence as well as in the absence of condensates. Comparison with nonperturbative results shows that second order perturbation theory (PT) fails in the first case but performs rather well when condensates are absent, even at high-temperature regimes.
Nonperturbative equation of state of quark gluon plasma: Applications
Komarov, E. V.; Simonov, Yu. A.
2008-05-01
The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.
Nonperturbative Ambiguities and the Reality of Resurgent Transseries
Aniceto, Inês
2013-01-01
In a wide range of quantum theoretical settings -- from quantum mechanics to quantum field theory, from gauge theory to string theory -- singularities in the complex Borel plane, usually associated to instantons or renormalons, render perturbation theory ill-defined as they give rise to nonperturbative ambiguities. These ambiguities are associated to choices of an integration contour in the resummation of perturbation theory, along (singular) Stokes directions in the complex Borel plane (rendering perturbative expansions non-Borel summable along any Stokes line). More recently, it has been shown that the proper framework to address these issues is that of resurgent analysis and transseries. In this context, the cancelation of all nonperturbative ambiguities is shown to be a consequence of choosing the transseries median resummation as the appropriate family of unambiguous real solutions along the coupling-constant real axis. While the median resummation is easily implemented for one-parameter transseries, onc...
Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G
2015-10-01
Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.
Self-gravitating field configurations: The role of the energy-momentum trace
Hod, Shahar
2014-01-01
Static spherically-symmetric matter distributions whose energy-momentum tensor is characterized by a non-negative trace are studied analytically within the framework of general relativity. We prove that such field configurations are necessarily highly relativistic objects. In particular, for matter fields with $T\\geq\\alpha\\cdot\\rho\\geq0$ (here $T$ and $\\rho$ are respectively the trace of the energy-momentum tensor and the energy density of the fields, and $\\alpha$ is a non-negative constant), we obtain the lower bound $\\text{max}_r\\{2m(r)/r\\}>(2+2\\alpha)/(3+2\\alpha)$ on the compactness (mass-to-radius ratio) of regular field configurations. In addition, we prove that these compact objects necessarily possess (at least) {\\it two} photon-spheres, one of which exhibits {\\it stable} trapping of null geodesics. The presence of stable photon-spheres in the corresponding curved spacetimes indicates that these compact objects may be nonlinearly unstable. We therefore conjecture that a negative trace of the energy-mom...
Directory of Open Access Journals (Sweden)
Paul Pierce
2017-08-01
Full Text Available Despite the impressive growth of smart city initiatives worldwide, an organizational theory of smart city has yet to be developed, and we lack models addressing the unprecedented organizational and management challenges that emerge in smart city contexts. Traditional models are often of little use, because smart cities pursue different goals than traditional organizations, are based on networked, cross-boundary activity systems, rely on distributed innovation processes, and imply adaptive policy-making. Complex combinations of factors may lead to vicious or virtuous cycles in smart city initiatives, but we know very little about how these factors may be identified and mapped. Based on an inductive study of a set of primary and secondary sources, we develop a framework for the configurational analysis of smart cities viewed as place-specific organizational fields. This framework identifies five key dimensions in the configurations of smart city fields; these five dimensions are mapped through five sub-frameworks, which can be used both separately as well as for an integrated analysis. Our contribution is conceived to support longitudinal studies, natural experiments and comparative analyses on smart city fields, and to improve our understanding of how different combinations of factors affect the capability of smart innovations to translate into city resilience, sustainability and quality of life. In addition, our results suggest that new forms of place-based entrepreneurship constitute the engine that allows for the dynamic collaboration between government, citizens and research centers in successful smart city organizational fields.
A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere
Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki
2014-10-01
A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.
Raouafi, N -E; Wiegelmann, T
2008-01-01
Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.
Non-Linear Force-Free Field Modelling of Solar Coronal Jets in Theoretical Configurations
Savcheva, Antonia
2017-08-01
Coronal jets occur frequently on the Sun, and may contribute significantly to the solar wind. With the suite of instruments avilable now, e.g. on IRIS, Hinode and SDO, we can observe these phenomena in greater detail than ever before. Modeling and simulations can assist further in understanding the dynamic processes involved, but previous studies tend to consider only one mechanism (e.g. emergence or rotation) for the origin of the jet. In this study we model a series of idealised archetypaljet configurations and follow the evolution of the coronal magnetic field. This is a step towards understanding these idealised situations before considering their observational counterparts. Several simple situations are set up for the evolution of the photospheric magnetic field: a single parasitic polarity rotating or moving in a circular path; as well as opposite polarity pairs involved in flyby (shearing), cancellation or emergence; all in the presence of a uniform, open background magneticfield. The coronal magnetic field is evolved in time using a magnetofrictional relaxation method. While magnetofriction cannot accurately reproduce the dynamics of an eruptive phase, the structure of the coronal magnetic field, as well as the build up of electric currents and free magnetic energy are instructive. Certain configurations and motions produce a flux rope and allow the significant build up of free energy, reminiscent of the progenitors of so-called blowout jets, whereas other, simpler configurations are more comparable to the standard jet model. The next stage is a comparison with observed coronal jet structures and their corresponding photospheric evolution.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-01
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Energy Technology Data Exchange (ETDEWEB)
Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)
2015-04-15
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Nonperturbative QCD corrections to electroweak observables
Energy Technology Data Exchange (ETDEWEB)
Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)
2012-06-15
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.
Liebig, B.; Bradley, J. W.
2013-08-01
An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.
Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong
2016-08-01
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)
A configurable component-based software system for magnetic field measurements
Energy Technology Data Exchange (ETDEWEB)
Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab
2005-09-01
A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.
Transformer configuration in three dimensional Josephson lattices at zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dominguez, D.; Gronbech-Jensen, N.; Bishop, A.R. [Theoretical Division, MS B262, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Shenoy, S.R. [International Center for Theoretical Physics, P.O. Box 586, Miramare, 34100 Trieste (Italy)
1995-07-24
Recent experiments on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{ital y}} superconductors at zero magnetic field have been performed with a transformer configuration of contacts. We interpret the experimental data on the basis of large-scale Langevin dynamical simulations of a three dimensional (3D) Josephson lattice with a current bias through a single plane. We show that the experimentally observed effects can be attributed to linking thermal vortex loop excitations that cause voltages in neighboring superconducting planes to lock in a narrow temperature range near the 3D phase transition.
Ground-state correlations within a nonperturbative approach
De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.
2017-02-01
The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.
Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T
2014-01-21
We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Energy Technology Data Exchange (ETDEWEB)
Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-01-21
We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Hong, Cheolpyo; Lee, Dong-Hoon; Han, Bong Soo
2014-07-01
Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was<1 pixel with an FOV of 285mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340mm and~400mm compared with the FOV of 285mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center. Copyright © 2014 Elsevier Inc. All rights reserved.
Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration
Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.
2003-10-01
The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.
Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration
Energy Technology Data Exchange (ETDEWEB)
Schmitz, L., E-mail: lschmitz@ucla.edu; Peebles, W. A. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Ruskov, E. [Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697 (United States); Deng, B. H.; Gota, H.; Gupta, D.; Tuszewski, M.; Douglass, J.; Binderbauer, M.; Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2014-11-15
A versatile heterodyne Doppler Backscattering (DBS) system is used to measure density fluctuation levels (in the wavenumber range kρ{sub s} ≤ 50), and the toroidal E × B flow velocity in the C-2 Field-Reversed Configuration (FRC). Six tunable frequencies in three waveguide bands (26 GHz ≤ f ≤ 90 GHz) are launched using monostatic beam optics, via a quasi-optical beam combiner/polarizer and an adjustable parabolic focusing mirror (inside the vacuum enclosure) achieving Gaussian beam spot sizes of 3–5.5 cm at the X/O-mode cutoff. The DBS system covers plasma densities of 0.8 × 10{sup 13} ≤ n{sub e} ≤ 1 × 10{sup 14} cm{sup −3}, and provides access to the FRC core (up to the field null) and across the FRC separatrix into the scrape-off layer plasma.
Spectral properties of a ([I])-configuration atom driven by a pair of bichromatic fields
Institute of Scientific and Technical Information of China (English)
Jin Kang; Xie Xiao-Tao; Jiang Zhen-Yi
2013-01-01
The absorption spectrum and the incoherent fluorescence spectrum of the lower transition in an ([I])-configuration three-level atomic system driven by a pair of bichromatic fields is investigated.The transmission of the absorption profile from a multipeaked feature to a single-peak feature is identified.Adjusting the relative phase between the two driving fields,the splitting effects of the spectral peaks occur both in the fluorescence and the absorption spectra.Furthermore,phase modulating can dramatically lead to a great suppression of the amplitudes of the whole absorption spectrum.Physically,this effect is attributed to the phase-sensitive nature of the populations and coherence between the atomic states of the system.
Optimization of the electrostatic and magnetic field configuration in the MITICA accelerator
Energy Technology Data Exchange (ETDEWEB)
Chitarin, G., E-mail: giuseppe.chitarin@igi.cnr.it [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Univ. di Padova, Department of Engineering and Management, strad. S. Nicola 3, 36100 Vicenza (Italy); Agostinetti, P. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Esch, H.P.L. de [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marcuzzi, D.; Marconato, N.; Sartori, E.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy)
2013-10-15
MITICA (Megavolt ITER Injector Concept Advancement) is a test facility for the development of a full-size heating and current drive neutral beam injectors for the ITER Tokamak reactor. The optimized electrostatic and magnetic configuration has been defined by means of an iterative optimization involving all the physics and the engineering aspects. The acceleration grids have been designed considering optical performances and mechanical constraints related to embedded magnets, to cooling channels, to the grid stiffness and manufacturability. A combination of “local” vertical field and horizontal “long range” field has been found to be the most effective set-up for ion extraction, beam focusing and minimization and equalization of thermo-mechanical loads and minimal number of electrons exiting the accelerator.
Zubarev, N. M.; Zubareva, O. V.
2016-06-01
Possible equilibrium configurations of the free surface of a jet of an ideally conducting liquid placed in a nonuniform magnetic field are considered. The magnetic field is generated by two thin wires that are parallel to the jet and bear oppositely directed currents. Equilibrium is due to a balance between capillary and magnetic forces. For the plane symmetric case, when the jet deforms only in the plane of its cross section, two one-parameter families of exact solutions to the problem are derived using the method of conformal mapping. According to these solutions, a jet with an initially circular cross section deforms up to splitting into two separate jets. A criterion for jet splitting is derived by analyzing approximate two-parameter solutions.
Parkin, E R
2014-01-01
The stresses produced by magnetorotational turbulence can provide effective angular momentum transport in accretion disks. However, questions remain about the ability of simulated disks to reproduce observationally inferred stress-to-gas-pressure ratios. In this paper we present a set of high resolution global magnetohydrodynamic disk simulations which are initialised with different field configurations: purely toroidal, vertical field lines, and nested poloidal loops. A mass source term is included which allows the total disk mass to equilibrate in simulations with long run times, and also enables the impact of rapid mass injection to be explored. Notably different levels of angular momentum transport are observed during the early-time transient disk evolution. However, given sufficient time to relax, the different models evolve to a statistically similar quasi-steady state with a stress-to-gas-pressure ratio, $\\alpha \\sim 0.032-0.036$. The indication from our results is that {\\it steady, isolated} disks may...
Drift-kink instability induced by beam ions in field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Kazumi; Horiuchi, Ritoku; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-04-01
The drift-kink instability in field-reversed configurations with a beam component is investigated by means of a three-dimensional particle simulation. The unstable mode with the toroidal mode number n=4 grows with the rate {gamma} {approx} 0.1 - 1.0{omega}{sub ci} for a strong beam current and deforms the plasma profile along the beam orbit in the vicinity of the field-null line. This mode is nonlinearly saturated as a result of the relaxation of current profile. Both the saturation level and the growth rate tend to increase as the ratio of the beam current to the plasma current I{sub b}/I{sub p} increases. It is also found that there is a threshold value of the beam velocity {upsilon}{sub b} {approx} {upsilon}{sub Ti} (ion thermal velocity) for the excitation of the instability. (author)
Flow Field of Circulating Fluidized Bed Reactor with Venturi Inlet Configuration
Institute of Scientific and Technical Information of China (English)
HU Jinbang; LI Yanping; CHEN Anxin
2005-01-01
Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor.
Energy Technology Data Exchange (ETDEWEB)
Ito, Y.; Tanjyo, M.; Ohi, S.; Goto, S.; Ishimura, T.
1987-01-01
The ion rotational angular velocity ..cap omega.. and the ion temperature T/sub i/ of a translated field-reversed configuration (FRC) plasma are measured using neutral beam probe spectroscopy. The value of ..cap omega.. is --(1.0--1.2) x ..cap omega..* at the onset time of the n = 2 rotational instability, where ..cap omega..* is the ion diamagnetic frequency for a rigid-rotor equilibrium. The ion rotational direction is the same as the ion diamagnetic direction. The value of ..cap omega.. is smaller than the angular frequency ..omega../sub re/ of the n = 2 instability, which can yield experimental evidence of the ion kinetic effects on the n = 2 instability in the FRC plasma. When the octupole field is applied to the plasma in order to suppress the n = 2 deformation, ..cap omega.. is slightly reduced. The ion temperature T/sub i/ is --70 eV at the onset time of the n = 2 instability.
Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration.
Schmitz, L; Ruskov, E; Deng, B H; Gota, H; Gupta, D; Tuszewski, M; Douglass, J; Peebles, W A; Binderbauer, M; Tajima, T
2014-11-01
A versatile heterodyne Doppler Backscattering (DBS) system is used to measure density fluctuation levels (in the wavenumber range kρs ≤ 50), and the toroidal E × B flow velocity in the C-2 Field-Reversed Configuration (FRC). Six tunable frequencies in three waveguide bands (26 GHz ≤ f ≤ 90 GHz) are launched using monostatic beam optics, via a quasi-optical beam combiner/polarizer and an adjustable parabolic focusing mirror (inside the vacuum enclosure) achieving Gaussian beam spot sizes of 3-5.5 cm at the X/O-mode cutoff. The DBS system covers plasma densities of 0.8 × 10(13) ≤ ne ≤ 1 × 10(14) cm(-3), and provides access to the FRC core (up to the field null) and across the FRC separatrix into the scrape-off layer plasma.
Suarez, D Orozco; Bueno, J Trujillo
2013-01-01
We show preliminary results of an ongoing investigation aimed at determining the configuration of the magnetic field vector in the threads of a quiescent hedgerow solar prominence using high-spatial resolution spectropolarimetric observations taken in the He I 1083.0 nm multiplet. The data consist of a two-dimensional map of a quiescent hedgerow prominence showing vertical threads. The observations were obtained with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Spain). The He I 1083.0 nm Stokes signals are interpreted with an inversion code, which takes into account the key physical processes that generate and/or modify circular and linear polarization signals in the He I 1083.0 nm triplet: the Zeeman effect, anisotropic radiation pumping, and the Hanle effect. We present initial results of the inversions, i.e, the strength and orientation of the magnetic field vector along the prominence and in prominence threads.
Non-perturbative quantum geometry III
Krefl, Daniel
2016-08-01
The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.
Non-Perturbative Quantum Geometry III
Krefl, Daniel
2016-01-01
The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.
Energy Technology Data Exchange (ETDEWEB)
Deards, C. L. [Lockheed Martin, 1011 Lockheed Way, Palmdale, California 93599 (United States); Hoffman, A. L.; Steinhauer, L. C. [Redmond Plasma Physics Laboratory, University of Washington, 14700 NE 95th Street, Suite 100, Redmond, Washington 98052 (United States)
2011-11-15
Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.
Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.
2011-11-01
Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Casana, R.; Cavalcante, A.; da Hora, E.
2016-12-01
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F μν F μν . We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol'nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with | ϕ|4-potential or | ϕ|6-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)
2016-12-14
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
Non-perturbative QCD and hadron physics
Cobos-Martínez, J. J.
2016-10-01
A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.
Rethermalization of a field-reversed configuration plasma in translation experiments
Himura, Haruhiko; Okada, Shigefumi; Sugimoto, Satoshi; Goto, Seiichi
1995-01-01
A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field.
Hall effect on a Merging Formation Process of a Field-Reversed Configuration
Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku
2015-11-01
Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.
Overview of C-2 field-reversed configuration experiment plasma diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gota, H., E-mail: hgota@trialphaenergy.com; Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)
2014-11-15
A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.
Lorenzini, R.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bonfiglio, D.; Bolzonella, T.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; De Masi, G.; Escande, D. F.; Fassina, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Innocente, P.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martin, P.; Martini, S.; Martines, E.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rostagni, G.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spizzo, G.; Spolaore, M.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veltri, P.; Vianello, N.; Zaccaria, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zuin, M.
2009-05-01
The reversed field pinch (RFP) is a magnetic configuration alternative to the tokamak that can be considered for a second generation of reactors. In this paper new remarkable results obtained in the RFP experiment RFX-mod are presented, showing that an internal transport barrier delimitates a large fraction of the plasma volume in a RFP when the current is raised to ˜1.5 MA. The formation of this transport barrier is related to a profound, spontaneous modification of the magnetic topology. Due to the occurrence of a saddle node bifurcation the plasma enters in the single helical axis state, which is theoretically known to be more resilient to chaos. This bifurcation is driven by the amplitude of the helical perturbation which dominates the mode spectrum.
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
Energy Technology Data Exchange (ETDEWEB)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.
2000-03-31
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.
Self-ignition of an advanced fuel field-reversed configuration reactor by fusion product heating
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, M.; Ohi, S.; Okamoto, M.; Momota, H.; Wakabayashi, J.
1987-09-01
A self-ignition of a deuterium-deuterium (D-D)-/sup 3/He fuel field-reversed configuration (FRC) plasma by fusion product heating is studied by using the point plasma model, where an FRC plasma equilibrium is taken into account. It is numerically demonstrated that the D-D-/sup 3/He plasma can be evolved from a deuterium-tritium burning plasma in a controlled manner by means of a compression-decompression control as well as a fueling control. It is also indicated that the increase of a trapped flux is effective for suppressing the excessive elongation of a plasma during the transition. The proposed method may provide a solution to the problem on plasma heating to attain a D-D-/sup 3/He self-ignition.
Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction
Energy Technology Data Exchange (ETDEWEB)
Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, B.; McGeehan, B.; Inomoto, M.
2008-06-12
A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.
Overview of C-2 field-reversed configuration experiment plasma diagnostics.
Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W
2014-11-01
A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.
Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device
Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team
2014-10-01
The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.
Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)
Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel
2016-10-01
The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.
Institute of Scientific and Technical Information of China (English)
You Rong-Yi; Huang Xiao-Jing
2009-01-01
Based on the nanostructured surface model that the (platinum,Pt) nanocones grow out symmetrically from a plane substrate,the local electric field near the conical nanoparticle surface is computed and discussed. On the basis of these results,the adsorbed CO molecules are modelled as dipoles,and three kinds of interactions,I.e. Interactions between dipoles and local electric field,between dipoles and dipoles,as well as between dipoles and nanostructured substrate,are taken into account. The spatial configuration of CO molecules adsorbed on the nanocone surface is then given by Monte-Carlo simulation. Our results show that the CO molecules adsorbed on the nanocone surface cause local agglomeration under the action of an external electric field,and this agglomeration becomes more compact with decreasing conical angle,which results in a stronger interaction among molecules. These results serve as a basis for explaining abnormal phenomena such as the abnormal infrared effect (AIRE),which was found when CO molecules were adsorbed on the nancetructured transition-metal surface.
Nonperturbative Studies of Quantum Gravity
Beirl, W; Riedler, J; Beirl, Wolfgang; Markum, Harald; Riedler, Juergen
1993-01-01
We investigate quantum gravity in the path integral formulation using the Regge calculus. Restricting the quadratic link lengths of the originally triangular lattice the path integral can be transformed to the partition function of a spin system with higher couplings on a Kagome lattice. Various measures acting as external field were considered. Extensions to matter fields and higher dimensions are discussed.
The behaviour of magnetic field lines and drifts in 3D configurations
Energy Technology Data Exchange (ETDEWEB)
Fischer, O. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-04-01
The magnetic topology and the particles drift orbits in 3D configurations are analyzed with numerical tools developed during this thesis (the MFLT3D code and the VENUS code) or with existing codes (the VMEC code and the TERPSICHORE code). We will focus our study on the effect of a magnetic perturbation in a MHD equilibrium and on the neoclassical transport in new 3D reactor designs. Firstly, the magnetic structure and particle drift orbits are studied in a monotonic q-profile and in a reversed shear TEXTOR equilibrium that is subject to a magnetic perturbation driven by the Dynamic Ergodic Divertor (DED). The main results prove that there exists a transport barrier for the magnetic field lines and for circulating particles in the reversed shear case when the DED is applied. This transport barrier occurs near the surface of minimum q-value where the KAM theory may be invalid. Moreover, we have remarked that trapped particles are lost due to the presence of the ripple and the DED does not affect their trajectories. Then, we have observed that a magnetic perturbation produced by saddle coils, for example, can control internal instabilities like tearing modes in the JET tokamak. We have shown that depending on the n mode number, the saddle coils have beneficial effects on the island width of internal instabilities. Finally, the study of neoclassical transport and Q-particles confinement are analyzed in 3D reactor designs like the QAS3, the ST/sphellamak hybrid and the sphellamak. We have observed that neither the QAS3 nor the ST/sphellamak are quasiaxisymmetric configurations. Thus the transport process is governed by the helical deformation of the magnetic field strength and these configurations do not confine the trapped Q-particles. On the other hand, the sphellamak is a nearly isodynamic structure in the plasma core which leads to good Q-particle confinement and the neoclassical transport is very similar to that obtained in a 2D equivalent tokamak. (author)
Non-perturbative Heavy Quark Effective Theory
DEFF Research Database (Denmark)
Della Morte, Michele; Heitger, Jochen; Simma, Hubert;
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...
Non-perturbative Heavy Quark Effective Theory
DEFF Research Database (Denmark)
Della Morte, Michele; Heitger, Jochen; Simma, Hubert
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...
Families in the nonperturbative unification scheme
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Theisen, S. (European Organization for Nuclear Research, Geneva (Switzerland)); Zoupanos, G. (Ethnikon Metsovion Polytechneion, Athens (Greece). Dept. of Physics)
1989-10-12
Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.).
Non-Perturbative Quantum Dynamics of a New Inflation Model
Boyanovsky, D; De Vega, H J; Holman, R; Kumar, S P
1998-01-01
We consider an O(N) model coupled self-consistently to gravity in the semiclassical approximation, where the field is subject to `new inflation' type initial conditions. We study the dynamics self-consistently and non-perturbatively with non-equilibrium field theory methods in the large N limit. We find that spinodal instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton zero mode assemble into a new effective field. This new field behaves classically and it is the object which actually rolls down. We show how this reinterpretation saves the standard picture of how metric perturbations are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the spectrum of scalar density and tensor perturb...
Development of electric currents in a magnetic field configuration containing a magnetic null point
Santos, J. C.; Büchner, J.; Otto, A.
2011-01-01
Context. In the past the role of magnetic null points in the generation of electric currents was investigated mainly in the close vicinity of the null, with perturbations being applied at nearby boundaries, or for a magnetic null configuration with a dome-shaped fan. In the solar atmosphere, however, electric currents are generated by perturbations originating at the photosphere, far away from coronal 3D nulls, and the occurence of magnetic nulls with a dome-shaped fan is apparently not common. Aims: We investigate the consequences of photospheric motion for the development of electric currents in a coronal magnetic field configuration containing a null, located far away from the boundaries, and the influence of topological structures on the spatial distribution of the currents. Methods: We use a 3D resistive MHD code to investigate the consequences of photospheric plasma motion for the generation of currents in a coronal magnetic field containing a null. The plasma is considered fully compressible and is initially in hydrostatic equilibrium. The initial magnetic field is potential (current free). Results: The photospheric plasma motion causes magnetic field perturbations that propagate to the corona along the field lines at the local Alfvén speed. The Alfvénic wave perturbations correspond to a propagating current directed mainly parallel to the magnetic field. Perpendicular currents connect to return currents to close the current system. The magnetic perturbations eventually reach the vicinity of the null. However, the currents forming in and around the null, near the fan surface or near the spine field lines, are not always the strongest currents developing in the simulation box. In our simulation, the strongest currents develop close to the bottom boundary, where the plasma is moved, and below the null point, in a region where field line connectivity considerably changes. Conclusions: Our simulation shows that the presence of a magnetic null point does not
A non-perturbative approach to relativistic quantum communication channels
Landulfo, Andre G S
2016-01-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver posses some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a non-perturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Neutral Beam Injection System for the C-2W Field Reversed Configuration Experiment
Dunaevsky, Alexander; Ivanov, Alexander; Kolmogorov, Vyacheslav; Smirnov, Artem; Korepanov, Sergey; Binderbauer, Michl; TAE Team; BINP Team
2016-10-01
C-2U Field-Reversed Configuration (FRC) experiment proved substantial reduction in turbulence-driven losses via tangential neutral beam injection (NBI) coupled with electrically biased plasma guns at the plasma ends. Under such conditions, highly reproducible, advanced beam-driven FRCs were produced and sustained for times significantly longer (more than 5 ms) than all characteristic plasma decay times without beams. To further improve FRC sustainment and demonstrate the FRC ramp-up, the C-2U experimental device is undergoing a major upgrade. The upgrade, C-2W, will have a new NBI system producing a record total hydrogen beam power of 20 + MW in a 30ms pulse. The NBI system consists of eight positive-ion based injectors featuring flexible, modular design. Four out of eight NBI injectors have a capability to switch the beam energy during a shot from the initial 15 keV to 40 keV at a constant beam current. This feature allows to increase the beam energy and thereby optimize the beam-plasma coupling during the magnetic field ramp up. This presentation provides an overview of the C-2W NBI system, including the design of the switchable energy injectors, layout of the power supply system, and results of the prototype testing.
Confining a closed configuration of a liquid with an electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Getselev, Z.N.; Martynov, G.I.
1979-01-01
The authors consider an arrangement for electromagnetic ingot shaping. A liquid metal mass is contained by electromagnetic forces excited in its surface layer, where the field intensity is adjusted by a shield. The mass forces which maintain the configuration of the ingot during cooling are broken down into potential and vortex forces. Surface tension forces are not considered in the analysis since the meniscus surface curvature is small and the energy of the mass forces exceeds that of the surface forces by several times. An analytical procedure for computing the potential and vortex fields of force is developed for two special cases of the liquid phase surface shape. Formulas are derived for the acting electromagnetic force, the potential of the mass forces, the vortex mass force and the maximum mechanical energy of the vortex forces at any point in the liquid phase, where the liquid phase is limited to the following cases: (a) a rectangular meniscus; (b) a meniscus of constant slope; (c) a hardened flat wall, at the surface of which the electromagnetic force is constant. The distribution and relationship of the mass potential and vortex forces acting in the melt are shown graphically.
Langmuir probe diagnostic suite in the C-2 field-reversed configuration
Roche, T.; Sun, X.; Armstrong, S.; Knapp, K.; Slepchenkov, M.
2014-11-01
Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.
Fusion Ash Separation in the Princeton Field-Reversed Configuration Reactor
Abbate, Joseph; Yeh, Meagan; McGreivy, Nick; Cohen, Samuel
2016-10-01
The Princeton Field-Reversed Configuration (PFRC) concept relies on low-neutron production by D-3He fusion to enable small, safe nuclear-fusion reactors to be built, an approach requiring rapid and efficient extraction of fusion ash and energy produced by D-3He fusion reactions. The ash exhaust stream would contain energetic (0.1-1 MeV) protons, T, 3He, and 4He ions and nearly 1e5 cooler (ca. 100 eV) D ions. The T extracted from the reactor would be a valuable fusion product in that it decays into 3He, which could be used as fuel. If the T were not extracted it would be troublesome because of neutron production by the D-T reaction. This paper discusses methods to separate the various species in a PFRC reactor's exhaust stream. First, we discuss the use of curved magnetic fields to separate the energetic from the cool components. Then we discuss exploiting material properties, specifically reflection, sputtering threshold, and permeability, to allow separation of the hydrogen from the helium isotopes. DOE Contract Number DE-AC02-09CH11466.
A nonperturbative calculation of the electron's magnetic moment
Brodsky, S. J.; Franke, V. A.; Hiller, J. R.; McCartor, G.; Paston, S. A.; Prokhvatilov, E. V.
2004-12-01
In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge ( A=0), the A component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.
Velas, Katherine M.
The Translation, Confinement, Sustainment Upgrade device (TCSU) used a rotating magnetic field (RMF) to form and sustain plasma in a field-reversed configuration (FRC). The physics of RMF current drive can be modeled in terms of the torque acting on the FRC. A fully translatable three-axis internal magnetic probe was built and used to generate a full r-z map of the magnetic field in the FRC and open field line region. Probe measurements are used to calculate the torques acting on the FRC formed using even-parity and odd-parity RMF antenna configurations. Odd-parity current drive was found to be more efficient and yields a plasma with lower resistivity than in even-parity current drive. An extrapolation method was developed to generate 3D magnetic field line plots which show that unlike in even-parity, field lines in odd-parity sustained FRCs make multiple transits of the FRC. Analysis using the three-axis probe data has greatly expanded our understanding of the physics of RMF driven FRCs.
Institute of Scientific and Technical Information of China (English)
郭后扬
2005-01-01
The field-reversed configuration (FRC) offers an attractive alternative approach to magnetically confined fusion because of its extremely highβ, simple linear geometry, and natural divertor for helium ash removal. Multi-hundred eV and high density FRCs have been produced using the standard Field Reversed Theta Pinch (RFTP) method, with a confinement scaling that leads to fusion conditions. These FRCs are, however, limited to only tens of mWb fluxes and sub-msec lifetime. Recent progress has been made in building up the flux and sustaining the FRC current using Rotating Magnetic Fields (RMF) in the Translation, Sustainment, and Confinement (TCS) facility at the University of Washington. TCS has demonstrated formation and steadystate sustainment of standard, flux-confined, prolate FRCs. The RMF also provides stability for the n = 2 rotational mode, which is the dominant global instability observed experimentally.Simple calculations show that a strong radially inward force imposed by the RMF increases proportionally to any local outward deformation of the plasma crosssection. Evidence of this hasbeen experimentally demonstrated, and the effects of various RMF antenna geometries studied.High temperature FRCs could also be produced in TCS by translating high energy plasmoids formed in the normal theta pinch manner into the confinement chamber containing the RMF antennas. Extremely interesting results were obtained for this translation and capture process. The plasmoids can survive the violent dynamics of supersonic reflections off magnetic mirror structures, producing a stable high-β, near-FRC state with substantial flux conversion from toroidal to poloidal. This is a tribute not only to the robustness of FRCs, but also to the tendency of an FRC to assume a preferred state for a magnetized plasma. The magnetic helicity, as inferred by a simple interpretive model, is approximately preserved, possibly conforming to a high-β relaxation principle.
Scalar model of glueball in nonperturbative quantisation \\`a la Heisenberg
Dzhunushaliev, Vladimir
2015-01-01
A scalar model of glueball is considered. The model is based on two scalar fields approximation for SU(3) non-Abelian Lagrangian. The approach to approximation makes use of the assumption that 2 and 4-points Green's functions are described in terms of some two scalar fields. The model is described via non-perturbative method due to value of coupling constant, which does not permit us using of Feynman diagrams and therefore of perturbative methods. Asymptotical behaviour of the scalar fields are obtained. Profiles of these fileds calculated for a range of values of a parameter of the problem is given. Detailed numerical investigation of corresponding equations describing this model is performed. The dependence of the glueball mass vs parameters of scalar fields is shown. Comparison of characteristics of glueball obtained in our two-scalar model and predictions of other models and experimental data for glueball is performed.
A nonperturbative method for QCD
Jora, Renata
2015-01-01
Based on specific properties of the partition function and of the quantum correlators we derive the exact form of the beta function in the background gauge field method for QCD with an arbitrary number of flavors. The all order beta function we obtain through this method has only the first two orders coefficients different than zero and thus is equivalent to the 't Hooft scheme.
Non-perturbative Contributions from Complexified Solutions in $\\mathbb{C}P^{N-1}$ Models
Fujimori, Toshiaki; Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke
2016-01-01
We discuss the non-perturbative contributions from real and complex saddle point solutions in the $\\mathbb{C}P^1$ quantum mechanics with fermionic degrees of freedom, using the Lefschetz thimble formalism beyond the gaussian approximation. We find bion solutions, which correspond to (complexified) instanton-antiinstanton configurations stabilized in the presence of the fermionic degrees of freedom. By computing the one-loop determinants in the bion backgrounds, we obtain the leading order contributions from both the real and complex bion solutions. To incorporate quasi zero modes which become nearly massless in a weak coupling limit, we regard the bion solutions as well-separated instanton-antiinstanton configurations and calculate a complexified quasi moduli integral based on the Lefschetz thimble formalism. The non-perturbative contributions from the real and complex bions are shown to cancel out in the supersymmetric case and give an (expected) ambiguity in the non-supersymmetric case, which plays a vital ...
Quantum geometry of resurgent perturbative/nonperturbative relations
Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat
2017-05-01
For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.
Non-Perturbative Flat Direction Decay
Basboll, A; Riva, F; West, S M; Basboll, Anders; Maybury, David; Riva, Francesco; West, Stephen M.
2007-01-01
We argue that supersymmetric flat direction vevs can decay non-perturbatively via preheating. Considering the case of a single flat direction, we explicitly calculate the scalar potential in the unitary gauge for a U(1) theory and show that the mass matrix for excitations around the flat direction has non-diagonal entries which vary with the phase of the flat direction vev. Furthermore, this mass matrix has 2 zero eigenvalues (associated with the excitations along the flat direction) whose eigenstates change with time. We show that these 2 light degrees of freedom are produced copiously in the non-perturbative decay of the flat direction vev. We also comment on the application of these results to the MSSM flat direction H_uL.
Fast Filtered Imaging of the C-2U Advanced Beam-Driven Field-Reversed Configuration
Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.; the TAE Team
2015-11-01
The goal of the C-2U program is to sustain a Field-Reversed Configuration (FRC) for 5+ ms using neutral beam injection, end-biasing, and various particle fueling techniques. Three high-speed, filtered cameras are used to observe visible light emission from deuterium pellet ablation and compact-toroid injection which are used for auxiliary particle fueling. The instruments are also used to view the dynamics of the macroscopic plasma evolution, identify regions of strong plasma-material interactions, and visualize non-axisymmetric perturbations. To achieve the necessary viewing geometry, imaging lenses are mounted in re-entrant viewports, two of which are mounted on bellows for retraction during gettering and removal if cleaning is necessary. Images are coupled from the imaging lens to the camera via custom lens-based optical periscopes. Each instrument contains a remote-controlled filter wheel which is set between shots to select a particular emission line from neutral D or various charge states of He, C, O, or Ti. Measurements of absolute emissivity and estimates of neutral and impurity density will be presented.
Modeling of the merging of two colliding field reversed configuration plasmoids
Wang, Guanqiong; Wang, Xiaoguang; Li, Lulu; Yang, Xianjun
2016-06-01
The field reversed configuration (FRC) is one of the candidate plasma targets for the magneto-inertial fusion, and a high temperature FRC can be formed by using the collision-merging technology. Although the merging process and mechanism of FRC are quite complicated, it is thinkable to build a simple model to investigate the macroscopic equilibrium parameters including the density, the temperature and the separatrix volume, which may play an important role in the collision-merging process of FRC. It is quite interesting that the estimates of the related results based on our simple model are in agreement with the simulation results of a two-dimensional magneto-hydrodynamic code (MFP-2D), which has being developed by our group since the last couple of years, while these results can qualitatively fit the results of C-2 experiments by Tri-alpha energy company. On the other hand, the simple model can be used to investigate how to increase the density of the merged FRC. It is found that the amplification of the density depends on the poloidal flux-increase factor and the temperature increases with the translation speed of two plasmoids.
Yamada, Masaaki
2016-03-01
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.
Global Perturbation Configurations in a Composite Disc System with an Isopedic Magnetic Field
Lou, Y Q
2005-01-01
We construct stationary global configurations of both aligned and unaligned logarithmic spiral perturbations in a composite disc system of stellar and isopedically magnetized gaseous singular isothermal discs (SIDs) coupled by gravity. The thin gaseous SID is threaded across by a vertical magnetic field B_z with a constant ratio of the surface gas mass density to B_z. There exist two classes of stationary magnetohydrodynamic (MHD) solutions with in-phase and out-of-phase density perturbations. For both aligned and unaligned cases with azimuthal periodicities |m|\\geq 2 (m is an integer), there may be two, one, and no solution situations, depending on the chosen parameters. For the transition criteria from an axisymmetric equilibrium to aligned secular bar-like instabilities, the corresponding T/|W| ratio can be much lower than the oft-quoted value of T/|W|\\sim 0.14, where T is the total rotational kinetic energy and W is the total gravitational potential energy plus the magnetic energy. The T/|W| ratios for th...
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
Diagnosing the high density FRX-L Field Reversed Configuration plasma
Wurden, G. A.; Intrator, T. P.; Renneke, R. M.; Dorf, L. A.; Farrell, M. W.; Gray, T. K.; Hsu, S. C.; Lynn, A. G.; Ruden, E. L.
2006-10-01
The FRX-L plasma is a high pressure, high density, field reversed configuration (FRC), at n ˜1x10^16-1x10^17 cm-3, and hundreds of eV electron temperature. In order to study formation, equilibrium, transport, flow, and confinement issues, we have a suite of diagnostics. Standard plasma diagnostics include B-dot probes, magnetic flux loops, single and multi-channel visible spectroscopy, optical light tomography arrays, up to 8 filtered visible fibers (546 nm or 486 nm) and an 8-chord side-on HeNe interferometer. Recent diagnostic additions include AXUV bolometers, VUV spectroscopy using a methly salicylate fluorescer converter and optical multichannel analyzer (OMA), eight simultaneous axial views of visible spectra with a 0.3 meter spectrometer and Princeton Instruments PI-Max camera, two-foil end-on surface barrier diode soft x-ray measurements, a hard x-ray/neutron plastic scintillator/ PMT, and indium activation foils to detect time-integrated absolute DD neutron emission. We also discuss plans for a soft x-ray framing camera, using end-on optical access and consisting of a pinhole/fluorescer geometry coupled to a high resolution DiCam camera.
Non-perturbative renormalization in kaon decays
Donini, Andrea; Martinelli, G; Rossi, G C; Talevi, M; Testa, M; Vladikas, A
1996-01-01
We discuss the application of the MPSTV non-perturbative method \\cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the $\\Delta I=1/2$ rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the $B_K$ parameter.
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Non-Perturbative Theory of Dispersion Interactions
Boström, M; Persson, C; Parsons, D F; Buhmann, S Y; Brevik, I; Sernelius, Bo E
2015-01-01
Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.
Non-perturbative Euler-Heisenberg Lagrangian and paraelectricity in magnetized massless QED
Energy Technology Data Exchange (ETDEWEB)
Ferrer, Efrain J. [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Incera, Vivian de la, E-mail: vincera@utep.edu [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Sanchez, Angel [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States)
2012-11-21
In this paper we calculate the non-perturbative Euler-Heisenberg Lagrangian for massless QED in a strong magnetic field H, where the breaking of the chiral symmetry is dynamically catalyzed by the external magnetic field via the formation of an electro-positron condensate. This chiral condensate leads to the generation of dynamical parameters that have to be found as solutions of non-perturbative Schwinger-Dyson equations. Since the electron-positron pairing mechanism leading to the breaking of the chiral symmetry is mainly dominated by the contributions from the infrared region of momenta much smaller than {radical}(eH), the magnetic field introduces a dynamical ultraviolet cutoff in the theory that also enters in the non-perturbative Euler-Heisenberg action. Using this action, we show that the system exhibits a significant paraelectricity in the direction parallel to the magnetic field. The non-perturbative nature of this effect is reflected in the non-analytic dependence of the obtained electric susceptibility on the fine-structure constant. The strong paraelectricity in the field direction is linked to the orientation of the electric dipole moments of the pairs that form the chiral condensate. The large electric susceptibility can be used to detect the realization of the magnetic catalysis of chiral symmetry breaking in physical systems.
Non-perturbative quantization of the electroweak model's electrodynamic sector
Fry, M P
2015-01-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces twenty-four fermion determinants. These multiply the Gaussian functional measures of the Maxwell, $Z$, $W$ and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the $Z$, $W$ and $H$ fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be non-perturbatively estimated fo...
Damping of gravitational waves in the nonperturbative spinor vacuum
Dzhunushaliev, Vladimir
2014-01-01
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists the fixed phase difference between the $h_{yy,zz}$ and $h_{yz}$ components of the wave; there exists the damping of gravitational waves; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of experimental verification of the obtained effects as a tool to investigate nonperurbative quantum field theories. %The possible experimental verification of obtained results %as a tool to investigate nonperurbative effects is discussed. %It is shown that the experimental measurements of such waves give us the tools for the investigation of nonperurbative quantum field theories.
Directory of Open Access Journals (Sweden)
Pavlin Mojca
2007-10-01
Full Text Available Abstract Background Electrochemotherapy and gene electrotransfer are novel promising treatments employing locally applied high electric pulses to introduce chemotherapeutic drugs into tumor cells or genes into target cells based on the cell membrane electroporation. The main focus of this paper was to calculate analytically and numerically local electric field distribution inside the treated tissue in two dimensional (2D models for different plate and needle electrode configurations and to compare the local electric field distribution to parameter U/d, which is widely used in electrochemotherapy and gene electrotransfer studies. We demonstrate the importance of evaluating the local electric field distribution in electrochemotherapy and gene electrotransfer. Methods We analytically and numerically analyze electric field distribution based on 2D models for electrodes and electrode configurations which are most widely used in electrochemotherapy and gene electrotransfer. Analytical calculations were performed by solving the Laplace equation and numerical calculations by means of finite element method in two dimensions. Results We determine the minimal and maximal E inside the target tissue as well as the maximal E over the entire treated tissue for the given electrode configurations. By comparing the local electric field distribution calculated for different electrode configurations to the ratio U/d, we show that the parameter U/d can differ significantly from the actual calculated values of the local electric field inside the treated tissue. By calculating the needed voltage to obtain E > U/d inside the target tissue, we showed that better electric field distribution can be obtained by increasing the number and changing the arrangement of the electrodes. Conclusion Based on our analytical and numerical models of the local electric field distribution we show that the applied voltage, configuration of the electrodes and electrode position need to be
Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front
Energy Technology Data Exchange (ETDEWEB)
Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A. [Saint Petersburg State University, Saint Petersburg (Russian Federation)
2016-01-22
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Pauli-Villars Regularization in nonperturbative Hamiltonian approach on the Light Front
Malyshev, M Yu; Prokhvatilov, E V; Zubov, R A; Franke, V A
2015-01-01
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar $\\lambda\\varphi^4$ field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Energy Technology Data Exchange (ETDEWEB)
Valenzuela, L.; Zarza, E.; Leon, J.
2006-07-01
The DISS plant located at the Plataforma Solar de Almeria (PSA) serves as test bed to investigate under real solar conditions the direct steam generation (DSG) in a parabolic trough collectors field working as the boiler and superheater of a Rankine steam cycle. This solar field can be configured in different operation modes (recirculation, once-TROUGH and injection modes) being the recirculation mode the most efficient from the stability and control points of view. Within the INDITEP project, financed by the EU Commission (2002-2005), one of the tasks performed has been testing new components for the solar field with the system configured in recirculation mode. One disadvantage of this configuration is the cost of the facility; it is needed a middle water-steam separator in the solar field, which separates evaporation and superheating sections, and a recirculation pump. Reduction of the liquid inventory in the process, i.e. the volume of the middle separator tank, will reduce the cost and parasitic loads of the solar field but it requires an efficient control of the liquid level inside the separator and, with the current layout of the solar field, that means an efficient control of the inlet water flow to the solar field, affecting also to the recirculation ratio (ratio between the recirculation flow and feed water flow) established for nominal conditions. The paper presents simulation and experimental results obtained using different classical and advanced control strategies. (Author)
Nonperturbative equation of state of quark-gluon plasma. Applications
Komarov, E V
2007-01-01
The vacuum-driven nonperturbative factors $L_i$ for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for $\\mu=0$ including $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$. The basic role in the dynamics at $T\\la 3T_c$ is played by the factors $L_i$ which are approximately equal to the modulus of Polyakov line for quark $L_{fund}$ and gluon $L_{adj}$. The properties of $L_i$ are derived from field correlators and compared to lattice data, in particular the Casimir scaling property $L_{adj} =(L_{fund})^{\\frac{C_2(adj)}{C_2(fund)}}$ follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$ are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.
Introduction to non-perturbative heavy quark effective theory
Energy Technology Data Exchange (ETDEWEB)
Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-08-15
My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it
Khandekar, D.C.; Wiegel, F.W.
1993-01-01
The statistical mechanical properties of plane polymer configurations which enclose a fixed area and are subject to an external electric field are investigated. For this purpose an exact expression for the generating functional is obtained and subsequently used to derive: (a) the distribution functi
Suárez, David Orozco; Bueno, Javier Trujillo
2014-01-01
Context: The determination of the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: To determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He I 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods. The He I 1083.0 nm triplet Stokes profiles are analyzed with an inversion code that takes into account the physics responsible of the polarization signals in this triplet. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field streng...
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories
Energy Technology Data Exchange (ETDEWEB)
Yin, Zheng [Univ. of California, Berkeley, CA (United States)
1998-05-01
In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.
Deng, B H; Kinley, J S; Knapp, K; Feng, P; Martinez, R; Weixel, C; Armstrong, S; Hayashi, R; Longman, A; Mendoza, R; Gota, H; Tuszewski, M
2014-11-01
A two-chord far infrared (FIR) laser polarimeter for high speed sub-degree Faraday rotation measurements in the C-2 field reversed configuration experiment is described. It is based on high power proprietary FIR lasers with line width of about 330 Hz. The exceptionally low intrinsic instrument phase error is characterized with figures of merit. Significant toroidal magnetic field with rich dynamics is observed. Simultaneously obtained density fluctuation spectra by far forward scattering are presented.
DEFF Research Database (Denmark)
Thomsen, Peter; Nielsen, Christian; Lund, Morten
Purpose – This study suggests applying the lenses of Activity Systems Theory and Representation Theory in relation to the study of business models. It examines the link between the 71 business model configurations identified by Taran et al. (2016) and performance measures through the mechanisms...... ensure a link to value creation. Originality/value – Based on the understanding of value creation from the concept of business models, benchmarking of corporate performance is proposed as an agent for validating business models configurations and related KPIs....... of value drivers. Design/methodology/approach – An explorative case study of 80 case companies is conducted as a basis for this paper. From these cases, 19 distinct business model configurations are identified and the present study focuses on the 10 configurations that have more than a single datapoint...
Non-Perturbative Topological Strings And Conformal Blocks
Cheng, Miranda C N; Vafa, Cumrun
2010-01-01
We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.
Non-perturbative topological strings and conformal blocks
Cheng, Miranda C. N.; Dijkgraaf, Robbert; Vafa, Cumrun
2011-09-01
We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.
World-Line Formalism: Non-Perturbative Applications
Directory of Open Access Journals (Sweden)
Dmitry Antonov
2016-11-01
Full Text Available This review addresses the impact on various physical observables which is produced by confinement of virtual quarks and gluons at the level of the one-loop QCD diagrams. These observables include the quark condensate for various heavy flavors, the Yang-Mills running coupling with an infra-red stable fixed point, and the correlation lengths of the stochastic Yang-Mills fields. Other non-perturbative applications of the world-line formalism presented in the review are devoted to the determination of the electroweak phase-transition critical temperature, to the derivation of a semi-classical analogue of the relation between the chiral and the gluon QCD condensates, and to the calculation of the free energy of the gluon plasma in the high-temperature limit. As a complementary result, we demonstrate Casimir scaling of k-string tensions in the Gaussian ensemble of the stochastic Yang-Mills fields.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Energy Technology Data Exchange (ETDEWEB)
Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.
2002-08-01
A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)
Asner, A
1985-01-01
Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles
Symmetry Relations and the Nonperturbative Form of Interactions
Institute of Scientific and Technical Information of China (English)
2001-01-01
Applying QCD to study and understand hadronic physics and nuclear physics is one of basic goals of modern nuclear physics. Developing nonperturbative approach of QCD to understand the dynamical chiral-symmetry breaking and color confinement then becomes one of our most important challenges. Besides the lattice gauge theory, the Dyson-Schwinger equation (DSE) formalism is such an appropriate nonperturbative approach. In undertaking nonperturbative studies using DSEs, we immediately have to confront the issue of what is the nonperturbative form of interactions. In recent 20 years, there have been considerable efforts to solve this open problem, however, all such attempts
Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek
2012-08-01
We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.
Non-perturbative study of QCD correlators
Lokhov, A Y
2006-01-01
This PhD dissertation is devoted to a non-perturbative study of QCD correlators. The main tool that we use is lattice QCD. We concentrated our efforts on the study of the main correlators of the pure Yang - Mills theory in the Landau gauge, namely the ghost and the gluon propagators. We are particularly interested in determining the $\\Lqcd$ parameter. It is extracted by means of perturbative predictions available up to NNNLO. The related topic is the influence of non-perturbative effects that show up as appearance of power-corrections to the low-momentum behaviour of the Green functions. A new method of removing these power corrections allows a better estimate of $\\Lqcd$. Our result is $\\Lambda^{n_f=0}_{\\ms} = 269(5)^{+12}_{-9}$ MeV. Another question that we address is the infrared behaviour of Green functions, at momenta of order and below $\\Lqcd$. At low energy the momentum dependence of the propagators changes considerably, and this is probably related to confinement. The lattice approach allows to check t...
Probing black holes in non-perturbative gauge theory
Iizuka, N; Lifschytz, G; Lowe, D A; Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2002-01-01
We use a 0-brane to probe a ten-dimensional near-extremal black hole with N units of 0-brane charge. We work directly in the dual strongly-coupled quantum mechanics, using mean-field methods to describe the black hole background non-perturbatively. We obtain the distribution of W boson masses, and find a clear separation between light and heavy degrees of freedom. To localize the probe we introduce a resolving time and integrate out the heavy modes. After a non-trivial change of coordinates, the effective potential for the probe agrees with supergravity expectations. We compute the entropy of the probe, and find that the stretched horizon of the black hole arises dynamically in the quantum mechanics, as thermal restoration of unbroken U(N+1) gauge symmetry. Our analysis of the quantum mechanics predicts a correct relation between the horizon radius and entropy of a black hole.
Perturbation theory and nonperturbative effects: A happy marriage ?
Chýla, J.
1992-03-01
Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.
FRC Lifetime Studies for the Field Reversed Configuration Heating Experiment (FRCHX)
2011-06-01
the other and that are marxed when discharged (a re-configured Shiva Star bank module). The Main bank current is crowbarred when its peak current...diffusion time would be required. The Shiva Star high-energy capacitor bank is a seventh bank for FRCHX when compression heating tests are performed...The Shiva bank is comprised of thirty six 36- F bank modules, and the bank delivers 11 ~ 12 MA of current to drive the liner implosion around the
Nonperturbative aspects of Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Schleifenbaum, Wolfgang
2008-07-01
The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from
The Nonperturbative Quantum de Sitter Universe
Ambjørn, Jan; Jurkiewicz, J; Loll, R
2008-01-01
The dynamical generation of a four-dimensional classical universe from nothing but fundamental quantum excitations at the Planck scale is a long-standing challenge to theoretical physicists. A candidate theory of quantum gravity which achieves this goal without invoking exotic ingredients or excessive fine-tuning is based on the nonperturbative and background-independent technique of Causal Dynamical Triangulations. We demonstrate in detail how in this approach a macroscopic de Sitter universe, accompanied by small quantum fluctuations, emerges from the full gravitational path integral, and how the effective action determining its dynamics can be reconstructed uniquely from Monte Carlo data. We also provide evidence that it may be possible to penetrate to the sub-Planckian regime, where the Planck length is large compared to the lattice spacing of the underlying regularization of geometry.
Nonperturbative enhancement of superloop at strong coupling
Belitsky, A. V.
2016-10-01
We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of the 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the Pentagon Operator Product Expansion, via the dual superWilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass mh which is exponentially suppressed in the 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit, τ ≪ 1 /mh. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area - a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.
Non-perturbative match of ultraviolet renormalon
Zakharov, V I
2003-01-01
The paper is motivated by observation of a kind of branes in the vacuum state of the lattice SU(2) gluodynamics. The branes represent two-dimensional vortices whose total area scales in physical units while the non-Abelian action diverges in the ultraviolet. We consider the question whether effects of the branes can be accommodated into the continuum theory. We demonstrate that at least in case of the gluon condensate (plaquette action) and of the heavy quark potential the contribution of the branes corresponds to the ultraviolet renormalon. Thus, the vortices might represent a non-perturbative match of the ultraviolet renormalon. Such an identification constrains, in turn, properties of the branes.
Nonperturbative enhancement of superloop at strong coupling
Belitsky, A V
2015-01-01
We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the pentagon operator product expansion, via the dual super Wilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass which is exponentially suppressed in 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area, --- a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.
Non-perturbative Euler-Heisenberg Lagrangian and Paraelectricity in Magnetized Massless QED
Ferrer, Efrain J; Sanchez, Angel
2012-01-01
Using the non-perturbative Euler-Heisenberg Lagrangian for massless QED in a strong magnetic field, we show that the chiral-symmetry-broken phase of massless QED in the presence of a magnetic field exhibits significant paraelectricity. A large anisotropic electric susceptibility develops in the strong-field region, where most of the fermions are confined to their lowest Landau level, and dynamical mass and anomalous magnetic moment are generated via the magnetic catalysis mechanism. The nonperturbative nature of this effect is reflected in the non-analytic dependence of the electric susceptibility on the fine-structure constant. The strong paraelectricity is linked to the electric dipole moments of the particle/anti-particle pairs that form the chiral condensate. The large electric susceptibility can be used to detect the realization of the magnetic catalysis of chiral symmetry breaking in physical systems.
Sheftman, D.; Gupta, D.; Roche, T.; Thompson, M. C.; Giammanco, F.; Conti, F.; Marsili, P.; Moreno, C. D.
2016-11-01
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
Experimental results with an optimized magnetic field configuration for JET breakdown
Albanese, R.; Maviglia, F.; Lomas, P. J.; Manzanares, A.; Mattei, M.; Neto, A.; Rimini, F. G.; de Vries, P. C.; JET-EFDA Contributors,
2012-01-01
Experiments and modelling have been carried out to optimize the magnetic field null during breakdown at JET. Such optimization may prove to be essential for reliable plasma initiation at low voltages, e.g. in ITER where the value of the electric field available will be limited to 0.33 V&
Nonperturbative QCD and elastic processes at CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)
1994-04-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.
Wang, Benjamin; Cappelli, Mark
2016-10-01
A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. A structured array of discharge plasma tubes are arranged in a square crystal lattice with the individual plasma dielectric constant tuned through variation in the plasma density. Microwave field-mapping is used to characterize the transmitted electromagnetic fields of the tunable device operating in waveguiding and bending modes. These modes are obtained by introducing appropriate line defects in the photonic crystal structure by controlling the activity of individual plasma tubes. Comparisons are made of the measured fields to those simulated using commercially-available software.
Investigation of different magnetic field configurations using an electrical, modular Zeeman slower
Energy Technology Data Exchange (ETDEWEB)
Ohayon, Ben; Ron, Guy, E-mail: gron@racah.phys.huji.ac.il [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2015-10-15
We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.
Plasma grid design for optimized filter field configuration for the NBI test facility ELISE
Energy Technology Data Exchange (ETDEWEB)
Nocentini, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)], E-mail: riccardo.nocentini@ipp.mpg.de; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)
2009-12-15
Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm{sup 2}) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm{sup 2}), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.
Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.
1979-01-01
The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.
Non-perturbative renormalization of quark bilinear operators and B_K using domain wall fermions
Aoki, Y; Christ, N H; Dawson, C; Donnellan, M A; Izubuchi, T; Juttner, A; Li, S; Mawhinney, R D; Noaki, J; Sachrajda, Christopher T C; Soni, A; Tweedie, R J; Yamaguchi, A
2007-01-01
We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-Kbar mixing parameter B_K. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed non-perturbatively and then matched perturbatively to the MSbar scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16^3 x 32 lattice volume, the Iwasaki gauge action at beta=2.13 and domain wall fermions with L_s=16.
Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects
Energy Technology Data Exchange (ETDEWEB)
Boglione, Mariaelena [aDipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Gonzalez Hernandez, Jose O. [INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Melis, Stefano [Univ. Torino, Torino, Italy; Prokudin, Alexey [Jefferson Laboratory, 12000 Jeerson Avenue, Newport News, VA 23606, USA
2015-09-01
We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q_{T}. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.
Non-perturbative monodromies in N=2 heterotic string vacua
Lópes-Cardoso, G; Mohaupt, T; Cardoso, Gabriel Lopes; Lust, Dieter; Mohaupt, Thomas
1995-01-01
We address non-perturbative effects and duality symmetries in N=2 heterotic string theories in four dimensions. Specifically, we consider how each of the four lines of enhanced gauge symmetries in the perturbative moduli space of N=2 T_2 compactifications is split into 2 lines where monopoles and dyons become massless. This amounts to considering non-perturbative effects originating from enhanced gauge symmetries at the microscopic string level. We show that the perturbative and non-perturbative monodromies consistently lead to the results of Seiberg-Witten upon identication of a consistent truncation procedure from local to rigid N=2 supersymmetry.
Orthopedic and interventional applications at low field MRI with horizontally open configuration
Energy Technology Data Exchange (ETDEWEB)
Koskinen, S.K.; Parkkola, R.K.; Karhu, J.; Komu, M.E.S.; Kormano, M.J. [Diagnostic Radiology, Turku Univ. Hospital (Finland)
1997-10-01
The recently introduced horizontally open configuration imagers allow imaging of knee, hip or shoulder during whole range of motion, which is not possible in conventional MR imagers. Special joint motion devices can be used to provide accurate and reproducible studies. In cervical spine, functional MR imaging may be useful in evaluating alarligament stability in patients with late sequelae of a whiplash injury, and in patients with rheumatoid arthritis who are clinically suspected of having a cervical myelopathy or superior migration of the odontoid process. In shoulder, full range of motion abduction study may be helpful in assessing the supraspinatus tendon impingement. To evaluate patellofemoral malalignment, quadriceps loading is recommended since associated contracting muscles and related soft tissue structures can be evaluated. The position of the femoral head relative to the acetabulum during different positions can be assessed. Open-configuration scanners provide an access to patients during scanning procedure, and therefore permit interventional procedures to be monitored with MRI. Such interventions include aspiration cytology/biopsy and different drainage procedures. (orig.) [Deutsch] Die kuerzlich eingefuehrten bildgebenden Systeme mit horizontal offener Konfiguration ermoeglichen die Darstellung von Knie, Huefte oder Schulter ueber den gesamten Bewegungsbereich, war bisher mit konventionellen MR-Systemen nicht moeglich. Fuer genauere und reproduzierbare Untersuchungen koennen spezielle Gelenkbewegungsgeraete verwendet werden. Bei der Halswirbelsaeule kann die funktionelle NMR-Darstellung im Hinblick auf die Beurteilung der Stabilitaet der Ligamenta alaria bei Patienten mit Spaetfolgen eines Schleudertraumas und bei Patienten mit rheumatoider Arthritis von Nutzen sein, wenn klinisch eine zervikale Myelopathie oder superiore migration des Dens axis vermutet wird. Bei der Schulter kann eine Abduktionsstudie des vollen Bewegungsbereichs bei der Beurteilung
Stable anisotropic plasma confinement in magnetic configurations with convex-concave field lines
Tsventoukh, M. M.
2014-02-01
It is shown that a combination of the convex and the concave part of a field line provides a strong stabilizing action against convective (flute-interchange) plasma instability (Tsventoukh 2011 Nucl. Fusion 51 112002). This results in internal peaking of the stable plasma pressure profile that is calculated from the collisionless kinetic stability criterion for any magnetic confinement system with combination of mirrors and cusps. Connection of the convex and concave field line parts results in a reduction of the space charge that drives the unstable E × B motion, as there is an opposite direction of the particle drift in a non-uniform field at convex and concave field lines. The pressure peaking arises at the minimum of the second adiabatic invariant J that takes place at the ‘middle’ of a tandem mirror-cusp transverse cross-section. The position of the minimum in J varies with the particle pitch angle that results in a shift of the peaking position depending on plasma anisotropy. This allows one to improve a stable peaked pressure profile at a convex-concave field by changing the plasma anisotropy over the trap cross-section. Examples of such anisotropic distribution functions are found that give an additional substantial enhancement in the maximal central pressure. Furthermore, the shape of new calculated stable profiles has a wide central plasma layer instead of a narrow peak.
Directory of Open Access Journals (Sweden)
A. G. Batische
2012-01-01
Full Text Available The effectiveness of the screening constant magnetic field is multi-layered film screens system of NiFe/Cu, formed on the cylindrical housing of photomultiplier tubes, and compared with screen-based steel material – brand 80NHS permalloy. It is shown that the most effective is the screen on the basis of the multilayered film screens, which provide shielding effectiveness value 8–10 in magnetic fields with induction of 0,1–1 mT, and 80–100 – in magnetic fields with induction of 2–4 mT , which is 4–5 times higher than for the screen of the material 80NHS.
Numerical Analysis of Neutral Entrainment Effect on Field-Reversed Configuration Thruster Efficiency
2014-12-01
efficiently accelerated by the electromagnetic field. On the contrary, the electron impact ionization, being a highly endothermic reaction, takes away...The authors used, in part, the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number
Study of the Synchronous Operation of an Annular Field Reversed Configuration Plasma Device
2008-05-05
coil theta pinch (CSS) [42], multi-pole geometry ( Extrap ) [35], and rotating magnetic field (Rotamak) [24]. In total, developing a lower voltage...orbit-limited current collection. Physics of Fluids, 16(5):629–36, 1973. [35] B. Lehnert. The extrap concept. Nuclear Instruments and Methods in
Nonperturbative QCD corrections to electroweak observables
Energy Technology Data Exchange (ETDEWEB)
Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies
2011-12-01
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
Valor, A; Bonche, P
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF+BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF+BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.
2017-02-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model.
Nonperturbative Pauli-Villars regularization of vacuum polarization in light-front QED
Chabysheva, S S
2010-01-01
We continue the development of a nonperturbative light-front Hamiltonian method for the solution of quantum field theories by considering the one-photon eigenstate of Lorentz-gauge QED. The photon state is computed nonperturbatively for a Fock basis with a bare photon state and electron-positron pair states. The calculation is regulated by the inclusion of Pauli-Villars (PV) fermions, with one flavor to make the integrals finite and a second flavor to guarantee a zero mass for the physical photon eigenstate. We compute in detail the constraints on the PV coupling strengths that this zero mass implies. As part of this analysis, we provide the complete Lorentz-gauge light-front QED Hamiltonian with two PV fermion flavors and two PV photon flavors, which will be useful for future work. The need for two PV photons was established previously; the need for two PV fermions is established here.
Compact Variables and Singular Fields in QCD
Lenz, F; Lenz, Frieder; Woerlen, Stefan
2000-01-01
Subject of our investigations is QCD formulated in terms of physical degrees of freedom. Starting from the Faddeev-Popov procedure, the canonical formulation of QCD is derived for static gauges. Particular emphasis is put on obstructions occurring when implementing gauge conditions and on the concomitant emergence of compact variables and singular fields. A detailed analysis of non-perturbative dynamics associated with such exceptional field configurations within Coulomb- and axial gauge is described. We present evidence that compact variables generate confinement-like phenomena in both gauges and point out the deficiencies in achieving a satisfactory non-perturbative treatment concerning all variables. Gauge fixed formulations are shown to constitute also a useful framework for phenomenological studies. Phenomenological insights into the dynamics of Polyakov loops and monopoles in confined and deconfined phases are presented within axial gauge QCD
What are the Confining Field Configurations of Strong-Coupling Lattice Gauge Theory?
Faber, M; Olejník, S
2000-01-01
Starting from the strong-coupling SU(2) Wilson action in D=3 dimensions, we derive an effective, semi-local action on a lattice of spacing L times the spacing of the original lattice. It is shown that beyond the adjoint color-screening distance, i.e. for $L \\ge 5$, thin center vortices are stable saddlepoints of the corresponding effective action. Since the entropy of these stable objects exceeds their energy, center vortices percolate throughout the lattice, and confine color charge in half-integer representations of the SU(2) gauge group. This result contradicts the folklore that confinement in strong-coupling lattice gauge theory, for D>2 dimensions, is simply due to plaquette disorder, as is the case in D=2 dimensions. It also demonstrates explicitly how the emergence and stability of center vortices is related to the existence of color screening by gluon fields.
Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration
Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Magara, Tetsuya; Moon, Young-Jae
2017-08-01
Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite (GOES), and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (˜12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ˜105 km) is analogous to that of coronal jets (base size ˜104 km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun.
Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.
2016-10-01
High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.
Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaokang, E-mail: xyang@trialphaenergy.com; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, CA 92688 (United States); Koehn, Alf [IGVP, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Petrov, Yuri [CompX, P.O. Box 2672, Del Mar, CA 92014 (United States)
2015-12-10
Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.
A Perturbative Window into Non-Perturbative Physics
Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun
2002-01-01
We argue that for a large class of N=1 supersymmetric gauge theories the effective superpotential as a function of the glueball chiral superfield is exactly given by a summation of planar diagrams of the same gauge theory. This perturbative computation reduces to a matrix model whose action is the tree-level superpotential. For all models that can be embedded in string theory we give a proof of this result, and we sketch an argument how to derive this more generally directly in field theory. These results are obtained without assuming any conjectured dualities and can be used as a systematic method to compute instanton effects: the perturbative corrections up to n-th loop can be used to compute up to n-instanton corrections. These techniques allow us to see many non-perturbative effects, such as the Seiberg-Witten solutions of N=2 theories, the consequences of Montonen-Olive S-duality in N=1* and Seiberg-like dualities for N=1 theories from a completely perturbative planar point of view in the same gauge theo...
Nonperturbative models of quark stars in $f(R)$ gravity
Astashenok, A V; Odintsov, S D
2014-01-01
Quark star models with realistic equation of state in nonperturbative $f(R)$ gravity are considered. The mass-radius relation for $f(R)=R+\\alpha R^2$ model is obtained. Considering scalar curvature $R$ as an independent function, one can find out, for each value of central density, the unique value of central curvature for which one has solutions with the required asymptotic $R\\rightarrow 0$ for $r\\rightarrow\\infty$. In another words, one needs a fine-tuning for $R$ to achieve quark stars in $f(R)$ gravity. We consider also the analogue description in corresponding scalar-tensor gravity. The fine-tuning on $R$ is equivalent to the fine-tuning on the scalar field $\\phi$ in this description. For distant observers, the gravitational mass of the star increases with increasing $\\alpha$ ($\\alpha>0$) but the interpretation of this fact depends on frame where we work. Considering directly $f(R)$ gravity, one can say that increasing of mass occurs by the "gravitational sphere" outside the star with some "effective mas...
Nonperturbative models of quark stars in f(R gravity
Directory of Open Access Journals (Sweden)
Artyom V. Astashenok
2015-03-01
Full Text Available Quark star models with realistic equation of state in nonperturbative f(R gravity are considered. The mass-radius relation for f(R=R+αR2 model is obtained. Considering scalar curvature R as an independent function, one can find out, for each value of central density, the unique value of central curvature for which one has solutions with the required asymptotic R→0 for r→∞. In other words, one needs a fine-tuning for R to achieve quark stars in f(R gravity. We consider also the analogue description in corresponding scalar-tensor gravity. The fine-tuning on R is equivalent to the fine-tuning on the scalar field ϕ in this description. For distant observers, the gravitational mass of the star increases with increasing α (α>0 but the interpretation of this fact depends on frame where we work. Considering directly f(R gravity, one can say that increasing of mass occurs by the “gravitational sphere” outside the star with some “effective mass”. On the other hand, in conformal scalar-tensor theory, we also have a dilaton sphere (or “disphere” outside the star but its contribution to gravitational mass for distant observer is negligible. We show that it is possible to discriminate modified theories of gravity from General Relativity due to the gravitational redshift of the thermal spectrum emerging from the surface of the star.
Non-Perturbative Two-Dimensional Dilaton Gravity
Mikovic, A
1993-01-01
We present a review of the canonical quantization approach to the problem of non-perturbative 2d dilaton gravity. In the case of chiral matter we describe a method for solving the constraints by constructing a Kac-Moody current algebra. For the models of interest, the relevant Kac-Moody algebras are based on SL(2,R) X U(1) group and on an extended 2d Poincare group. As a consequence, the constraints become free-field Virasoro generators with background charges. We argue that the same happens in the non-chiral case. The problem of the corresponding BRST cohomology is discussed as well as the unitarity of the theory. One can show that the theory is unitary by chosing a physical gauge, and hence the problem of transitions from pure into mixed sates is absent. Implications for the physics of black holes are discussed. (Based on the talks presented at Trieste conference on Gauge Theories, Applied Supersymmetry and Quantum Gravity, May 1993 and at Danube '93 Workshop, Belgrade, Yugoslavia, June 1993)
Energy Technology Data Exchange (ETDEWEB)
Brandi, F.; Giammanco, F. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Harris, W. S.; Roche, T.; Trask, E.; Wessel, F. J. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2009-11-15
A compact high-sensitivity second-harmonic interferometer for line-integrated electron density measurements on a large plasma machine is presented. The device is based on a fiber coupled near-infrared continuous-wave Nd:YAG laser and is remotely controlled. The performances of the instrument are tested on the Irvine field-reversed configuration machine, and a sensitivity of few 10{sup 14} cm{sup -2} in measuring line integrated electron density is demonstrated with a time resolution of a few microseconds. The interferometer is self calibrated, has an impressive stability, and it does not require any further alignment after proper installation. These features make this device a real turn-key system suitable for electron density measurement in large plasma machines.
Krause, Pascal; Schlegel, H. Bernhard
2014-11-01
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment
Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.
2016-11-01
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.
Siclari, M. J.; Darden, C. M.
1991-01-01
Current efforts to reduce the sonic boom of a future High Speed Civil Transport (HSCT) by careful shaping have led to the need for more accurate predictions of the near-field flow conditions of the configuration. A fully three-dimensional Euler finite volume code is used to predict sonic boom pressure signatures for two low boom concepts - one designed to cruise at Mach 2 and the other at Mach 3. Calculations were carried out using a grid topology that has been modified to reduce the inaccuracies caused by grid spreading often suffered with CFD methods when calculations several body lengths downstream become necessary. Comparisons of CFD results and experimental wind tunnel signatures are shown. Ground signatures are predicted by extrapolating the pressures predicted by the Euler code with an extrapolation method based on the Whitham theory.
Lu, Zhumin; Dou, Hua-Shu; Phan-Thien, Nhan; Yeo, Khoon Seng
2008-01-01
In this paper, the finite element method is combined with the Brownian Configuration Field (BFC) method to simulate the fibre suspension flow in axisymmetric contraction and expansion passages. In order to solve for the high stress at high concentration, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) method is employed. For the axisymmetric contraction and expansion passages with different geometry ratios, the results obtained are compared to available constitutive models and experiments. The predicted vortex length for dilute suspensions agrees well with experimental data in literature. Our numerical results show clearly the effect on vortex enhancement with increase of the volume fractions and the aspect ratios. Effect of aspect ratio of fibres on the vortex length is also studied. It is found that for the lower expansion ratio flows the vortex dimension in the corner region is fairly independent of fibre concentration and aspect ratio of fibres while the said vortex dimension increases with th...
Jagau, Thomas-C.; Prochnow, Eric; Evangelista, Francesco A.; Gauss, Jürgen
2010-04-01
Analytic gradients for the state-specific multireference coupled-cluster method suggested by Mahapatra et al. [Mol. Phys. 94, 157 (1998)] (Mk-MRCC) are reported within the singles and doubles approximation using two-configurational self-consistent field (TCSCF) orbitals. The present implementation extends our previous work on Mk-MRCC gradients [E. Prochnow et al., J. Chem. Phys. 131, 064109 (2009)] which is based on restricted Hartree-Fock orbitals and consequently the main focus of the present paper is on the treatment of orbital relaxation at the TCSCF level using coupled-perturbed TCSCF theory. Geometry optimizations on m-arynes and nitrenes are presented to illustrate the influence of the orbitals on the computed equilibrium structures. The results are compared to those obtained at the single-reference coupled-cluster singles and doubles and at the Mk-MRCC singles and doubles level of theory when using restricted Hartree-Fock orbitals.
Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment
Energy Technology Data Exchange (ETDEWEB)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)
2016-11-15
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.
Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.
Wang, Likun; Chen, Yong; Han, Yong
2016-09-01
Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.
Osin, D.; Schindler, T.
2016-11-01
A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.
Energy Technology Data Exchange (ETDEWEB)
Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)
2016-11-15
A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.
Lee, Kiyong
The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.
Xiang-Gruess, M; Duschl, W J
2009-01-01
We study global non-axisymmetric stationary perturbations of aligned and unaligned logarithmic spiral configurations in an axisymmetric composite differentially rotating disc system of scale-free stellar and isopedically magnetized gas discs coupled by gravity. The gas disc is threaded across by a vertical magnetic field $B_z$ with a constant dimensionless isopedic ratio $\\lambda\\equiv 2\\pi\\sqrt{G} \\Sigma^{(g)}/B_z$ of surface gas mass density $\\Sigma^{(g)}$ to $B_z$ with $G$ being the gravitational constant. Our exploration focuses on the relation between $\\lambda$ and the dark matter amount represented by a ratio $f\\equiv\\bar{\\Phi}/\\Phi$ in order to sustain stationary perturbation configurations, where $\\bar{\\Phi}$ is the gravitational potential of a presumed axisymmetric halo of dark matter and $\\Phi$ is the gravitational potential of the composite disc matter. High and low $\\lambda$ values correspond to relatively weak and strong magnetic fields given the same gas surface mass density, respectively. The m...
Perturbativity versus non-perturbativity in QED effects for H-like atoms with large Z
Roenko, A A
2016-01-01
The effects, produced for the lowest levels of superheavy H-like atoms with $Z\\alpha >1$ by interaction $\\Delta U_{AMM}$ of the electron's magnetic anomaly with the Coulomb field of atomic nuclei, are considered within perturbative as well as essentially nonperturbative approaches. In the nonperturbative case, due to specific properties of the Dirac-Pauli operator, the nuclei charge distribution is determined in terms of point-like charges of valence quarks. It is shown, how the shifts of $1s_{1/2}$ and $2p_{1/2}$ levels caused by $\\Delta U_{AMM}$ change by transition from central problem with spherical symmetry to accounting of contribution from the nuclei periphery. It is shown also, that in superheavy atoms the perturbative expansion in $\\alpha/\\pi$ doesn't lead to correct results, even if the exact dependence on $Z\\alpha$ is taken into account from the very beginning. Best results are achieved via nonperturbative calculation, when $\\Delta U_{AMM}$ is treated as a valuable term of the Dirac eq. Within this...
Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A.; Grierson, B. A.
2016-05-01
Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ⊥) is presented. This model is used to derive χ⊥ at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ⊥ at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ⊥ are often attributed to turbulence driven transport, the reduction of the O-point χ⊥ is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ⊥ at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ⊥ at the O-point on NTM saturation.
Aohua, MAO; Yang, REN; Hantao, JI; Peng, E.; Ke, HAN; Zhibin, WANG; Qingmei, XIAO; Liyi, LI
2017-03-01
A new ground-based experimental device, the Space Plasma Environment Research Facility (SPERF), is being designed at Harbin Institute of Technology in China, with Asymmetric REconnection eXperiment-3 Dimensional (AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas. The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet, but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry. These two asymmetries are fundamental features of the reconnection process at the Earth’s magnetopause. In experiment, the reconnection process is driven by a set of flux cores through coil-current-ramp-up from the ‘magnetosheath-side’ to interact with a dipole magnetic field generated by the Dipole Research EXperiment (DREX) coil on the ‘magnetosphere-side’. The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth’s magnetopause. A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the ‘magnetosheath-side’ and electron cyclotron resonance (ECR) with microwave sources on the ‘magnetosphere-side’, e.g. high (low) plasma density at experimental magnetosheath (dipole) side. Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms. The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.
Lionello, Roberto; Downs, Cooper; Linker, Jon A; Mikić, Zoran
2014-01-01
Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. (2007) developed a sophisticated, 1D, time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al. (2014), which incorporates turbulent dissipation of Alfv\\'en waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional ...
Heuvel, Willem Van den; Soncini, Alessandro
2015-01-01
We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
Kostora, M. R.; Hsu, S. C.; Wurden, G. A.
2006-10-01
A bolometer array diagnostic has been developed for the University of Washington Translation, Confinement, and Sustainment (TCS) field-reversed configuration (FRC) experiment in order to measure radially resolved total radiated power per unit length of the FRC. This will provide radiation energy loss information, useful in power balance and impurity studies. The 20-element photodiode bolometer will be mounted at the midplane of the TCS cylindrical vacuum chamber to view the rotating magnetic field (RMF) generated FRC plasma. Key features of this new bolometer array are (1) extensive electrical shielding against the RMF, (2) robust electrical isolation, (3) trans-impedance amplifiers using a microcoax interface at the array and a fiber optic interface to the screen room, and (4) a custom glass-on-metal socket for the 20-element photodiode chip to ensure high vacuum compatibility. The bolometer array can be retracted behind a gate valve using a stepper motor to protect it during vacuum chamber bakeout. The slit assembly housing is interchangeable to provide flexibility for the viewing sightlines.
Non-perturbative effects and the refined topological string
Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi
2013-01-01
The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P1xP1, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.
Casimir operator dependences of nonperturbative fermionic QCD amplitudes
Fried, H. M.; Grandou, T.; Hofmann, R.
2016-07-01
In eikonal and quenched approximations, it is argued that the strong coupling fermionic QCD Green’s functions and related amplitudes depart from a sole dependence on the SUc(3) quadratic Casimir operator, C2f, evaluated over the fundamental gauge group representation. Noted in nonrelativistic quark models and in a nonperturbative generalization of the Schwinger mechanism, an additional dependence on the cubic Casimir operator shows up, in contradistinction with perturbation theory and other nonperturbative approaches. However, it accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). Though numerically subleading effects, cubic Casimir dependences, here and elsewhere, appear to be a signature of the nonperturbative fermionic sector of QCD.
Non-perturbative effects and the refined topological string
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.
Lauro Cesar Araujo; Mamede Lima-Marques
2016-01-01
Introduction: The term "configuration information" has emerged in the works of Information Architecture; however, there isn’t a conceptualization of “configuration” within Information Architecture. Objective: The objective is propose a definition for "configuration" and "information configuration" within the Information Architecture discipline, and indicate a teleological corpus from configuration management that can be used as paxis in Information Architecture. Methodolo...
Nonperturbative effects in a rapidly expanding quark gluon plasma
Mohanty, A K; Gleiser, Marcello; 10.1103/PhysRevC.65.034908
2002-01-01
Within first-order phase transitions, we investigate pretransitional effects due to the nonperturbative, large-amplitude thermal fluctuations which can promote phase mixing before the critical temperature is reached from above. In contrast with the cosmological quark-hadron transition, we find that the rapid cooling typical of the relativistic heavy ion collider and large hadron collider experiments and the fact that the quark-gluon plasma is chemically unsaturated suppress the role of nonperturbative effects at current collider energies. Significant supercooling is possible in a (nearly) homogeneous state of quark gluon plasma. (24 refs).
Geometric transition in Non-perturbative Topological string
Sugimoto, Yuji
2016-01-01
We study a geometric transition in non-perturbative topological string. We consider two cases. One is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the closed topological string on the resolved conifold. The other is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the open topological string on the resolved conifold with a toric A-brane. We find that, in both cases, the geometric transition can be applied for the non-perturbative topological string. We also find the corrections of the value of K\\"ahler parameters at which the geometric transition occurs.
Energy Technology Data Exchange (ETDEWEB)
Liu, H.Q., E-mail: hqliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Hanada, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Nishino, N. [Graduate School of Engineering, Hiroshima University, Hiroshima 7398511 (Japan); Ogata, R.; Ishiguro, M. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Gao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan)
2013-07-15
Blob-filaments have been observed by combined measurement with a fast camera and a movable Langmuir probe in an open magnetic field line configuration of electron cyclotron resonance (ECR) heating plasma in QUEST. Blob-filaments extended along field lines do correspond to over-dense plasma structures and propagated across the field lines to the outer wall. The radial velocity of the blob structure, V{sub b}, was obtained by three methods and was dominantly driven by the E × B force. The radial velocity, size of the blob showed good agreements with the results obtained by sheath-connected interchange theoretical model. V{sub b} corresponds to roughly 0.02–0.07 of the local sound speed (C{sub s}) in QUEST. The higher moments (skewness S and kurtosis K) representing the shape of PDF of density fluctuation are studied. Their least squares fitting with quadratic polynomial is K = (1.60 ± 0.27)S{sup 2} − (0.46 ± 0.20). The larger blob structures, occurring only 10% of the time, can carry more than 60% loss of the entire radial particle flux.
Non-perturbative four-wave mixing in InSb with intense off-resonant multi-THz pulses
Directory of Open Access Journals (Sweden)
Huber R.
2013-03-01
Full Text Available High-field multi-THz pulses are employed to analyze the coherent nonlinear response of the narrow-gap semiconductor InSb which is driven off-resonantly. Field-resolved four-wave mixing signals manifest the onset of a non-perturbative regime of Rabi flopping at external amplitudes above 5 MV/cm per pulse. Simulations based on a two-level quantum system confirm these experimental results.
Energy Technology Data Exchange (ETDEWEB)
Roche, T., E-mail: troche@trialphaenergy.com; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2016-11-15
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.
Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.
2016-11-01
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.
Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device
Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.
2016-11-01
The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.
Energy Technology Data Exchange (ETDEWEB)
Krause, Pascal; Schlegel, H. Bernhard [Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 (United States)
2014-11-07
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device
Energy Technology Data Exchange (ETDEWEB)
Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2016-11-15
The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...
Nonperturbative results for two-index conformal windows
DEFF Research Database (Denmark)
Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco
2015-01-01
Via large and small $N_c$ relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when $N...
Nonperturbative sum over topologies in 2-D Lorentzian quantum gravity
Loll, R.; Westra, W.; Zohren, S.
2007-01-01
The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a nonperturbati
Insights on non-perturbative aspects of TMDs from models
Energy Technology Data Exchange (ETDEWEB)
H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada
2009-12-01
Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.
Non-perturbative lorentzian quantum gravity, causality and topology change
Ambjørn, J.; Loll, R.
1998-01-01
We formulate a non-perturbative lattice model of two-dimensional Lorentzian quantum gravity by performing the path integral over geometries with a causal structure. The model can be solved exactly at the discretized level. Its continuum limit coincides with the theory obtained by quantizing 2d conti
Nonperturbative sum over topologies in 2-D Lorentzian quantum gravity
Loll, R.; Westra, W.; Zohren, S.
2006-01-01
The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a nonperturbati
Nonperturbative determination of the QCD potential at O(1/m)
Energy Technology Data Exchange (ETDEWEB)
Koma, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Koma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Osaka Univ. (JP). Research Center for Nuclear Physics (RCNP); Wittig, H. [Mainz Univ. (Germany). Inst. fuer Physik
2006-07-15
The relativistic correction to the QCD static inter-quark potential at O(1/m) is investigated nonperturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts to 26% of the Coulombic term for bottomonium. (Orig.)
Nonperturbative sum over topologies in 2-D Lorentzian quantum gravity
Loll, R.; Westra, W.; Zohren, S.
The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a
Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks
DEFF Research Database (Denmark)
Bernardoni, F.; Blossier, B.; Bulava, J.;
2014-01-01
We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three...... limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with other results in the literature does not reveal a dependence on the number of dynamical quarks, and effects from truncating HQET appear to be negligible....
Nonperturbative renormalization group in light-front three-dimensional real scalar model
Sugihara, T; Sugihara, Takanori; Yahiro, Masanobu
1997-01-01
The three-dimensional real scalar model, in which the $Z_2$ symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as running mass and coupling so that the mass of the ground state vanishes. The marginal ($\\phi^6$) coupling dependence of the critical line is weak.
Non-Perturbative Effects in 2-D String Theory or Beyond the Liouville Wall
Brustein, Ram
1997-01-01
We discuss continuous and discrete sectors in the collective field theory of $d=1$ matrix models. A canonical Lorentz invariant field theory extension of collective field theory is presented and its classical solutions in Euclidean and Minkowski space are found. We show that the discrete, low density, sector of collective field theory includes single eigenvalue Euclidean instantons which tunnel between different vacua of the extended theory. We further show that these ``stringy" instantons induce non-perturbative effective operators of strength $e^{-{1\\over g}}$ in the extended theory. The relationship of the world sheet description of string theory and Liouville theory to the effective space-time theory is explained. We also comment on the role of the discrete, low density, sector of collective field theory in that framework.
Nonperturbative linked-cluster expansions in long-range ordered quantum systems
Ixert, Dominik; Schmidt, Kai Phillip
2016-11-01
We introduce a generic scheme to perform nonperturbative linked cluster expansions in long-range ordered quantum phases. Clusters are considered to be surrounded by an ordered reference state leading to effective edge fields in the exact diagonalization on clusters, which break the associated symmetry of the ordered phase. Two approaches, based either on a self-consistent solution of the order parameter or on minimal sensitivity with respect to the ground-state energy per site, are formulated to find the optimal edge field in each NLCE order. Furthermore, we investigate the scaling behavior of the NLCE data sequences towards the infinite-order limit. We apply our scheme to gapped and gapless ordered phases of XXZ Heisenberg models on various lattices and for spins 1/2 and 1 using several types of cluster expansions ranging from a full-graph decomposition, rectangular clusters, up to more symmetric square clusters. It is found that the inclusion of edge fields allows to regularize nonperturbative linked-cluster expansions in ordered phases yielding convergent data sequences. This includes the long-range spin-ordered ground state of the spin-1/2 and spin-1 Heisenberg model on the square and triangular lattice as well as the trimerized valence bond crystal of the spin-1 Heisenberg model on the kagome lattice.
A nonperturbative calculation of the electron's magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J. [Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 (United States); Franke, V.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Hiller, J.R. [Department of Physics, University of Minnesota-Duluth, Duluth, MN 55812 (United States)]. E-mail: jhiller@d.umn.edu; McCartor, G. [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Paston, S.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Prokhvatilov, E.V. [St. Petersburg State University, St. Petersburg (Russian Federation)
2004-12-20
In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge (A+=0), the A- component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.
Nonperturbative emergence of the Dirac fermion in a strongly correlated composite Fermi liquid
Yang, Yibin; Luo, Xi; Yu, Yue
2017-01-01
The classic composite fermion field theory [B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993)], 10.1103/PhysRevB.47.7312 builds up an excellent framework to uniformly study important physical objects and globally explain anomalous experimental phenomena in fractional quantum Hall physics while there are also inherent weaknesses. We present a nonperturbative emergent Dirac fermion theory from this strongly correlated composite fermion field theory, which overcomes these serious long-standing shortcomings. The particle-hole symmetry of the Dirac equation resolves this particle-hole symmetry enigma in the composite fermion field theory. With the help of presented numerical data, we show that for main Jain's sequences of fractional quantum Hall effects, this emergent Dirac fermion theory in mean field approximation is most likely stable.
Non-perturbative effects of vacuum energy on the recent expansion of the universe
Parker, L; Parker, Leonard; Raval, Alpan
1999-01-01
We show that the vacuum energy of a free quantized field of very low mass can significantly alter the recent expansion of the universe. The effective action of the theory is obtained from a non-perturbative sum of scalar curvature terms in the propagator. We numerically investigate the semiclassical Einstein equations derived from it. As a result of non-perturbative quantum effects, the scalar curvature of the matter-dominated universe stops decreasing and approaches a constant value. The universe in our model evolves from an open matter-dominated epoch to a mildly inflating de Sitter expansion. The Hubble constant during the present de Sitter epoch, as well as the time at which the transition occurs from matter-dominated to de Sitter expansion, are determined by the mass of the field and by the present matter density. The model provides a theoretical explanation of the observed recent acceleration of the universe, and gives a good fit to data from high-redshift Type Ia supernovae, with a mass of about 10^{-3...
Some Improved Nonperturbative Bounds for Fermionic Expansions
Energy Technology Data Exchange (ETDEWEB)
Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)
2016-06-15
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.
Nonperturbative results for two-index conformal windows
DEFF Research Database (Denmark)
Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco
2015-01-01
Via large and small $N_c$ relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when $N......_c$ is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: The large $N_c$ two......-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small $N_c$) expressed in terms of Dirac fermions; Lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU...
Non-perturbative String Theory from Water Waves
Energy Technology Data Exchange (ETDEWEB)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Importance of Nonperturbative QCD Parameters for Bottom Mesons
Directory of Open Access Journals (Sweden)
A. Upadhyay
2014-01-01
Full Text Available The importance of nonperturbative quantum chromodynamics (QCD parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two nonperturbative QCD parameters used in heavy quark effective theory formula, and using the best fitted parameter, masses of the excited bottom meson states in jp=1/2+ doublet in strange and nonstrange sectors are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass splitting and hyperfine splitting have also been analyzed for both strange and nonstrange heavy mesons with respect to spin and flavor symmetries.
Sarantopoulou, E.; Kollia, Z.; Cefalas, A. C.; Semashko, V. V.; Yu. Abdulsabirov, R.; Naumov, A. K.; Korableva, S. L.; Szczurek, T.; Kobe, S.; McGuiness, P. J.
2002-07-01
The absorption and the laser-induced fluorescence spectra of Pr 3+ ion in YF 3, LaF 3, KY 3 F 10 and LiLuF 4, single crystal hosts were obtained in the vacuum ultraviolet region of the spectrum. The energy position and the spacing of the levels of the 4f 5d electronic configuration depend on the host matrix. In addition, strong vacuum ultraviolet emission bands were observed, following crystal excitation at 157 nm with the molecular fluorine laser. The emission bands were due to the interconfigurational 4 f 5 d→4 f2 dipole-allowed transitions in Pr 3+ ions, and they were assigned to the transitions between the edge of the lowest Stark component of the 4f 5d electronic configuration and the levels of the 4f 2 electronic configuration. The VUV spectra can be interpreted by applying the crystal field model, and taking into consideration that lanthanide contraction of the 4f n-1 5d electronic configurations of the rare earth ions, and shielding of the positive ion charge from the electrons in the 4f n electronic configuration is taking place. Finally, a new method for monitoring the concentration of the rare earth ions in wide band gap fluoride dielectric crystals in a non-destructive way, by measuring magnetic dipole moments with the vibrating sample magnetometer (VSM) method, is presented for the first time to our knowledge for this type of crystals.
Jet Extinction from Non-Perturbative Quantum Gravity Effects
Kilic, Can; Lath, Amitabh; Rose, Keith; Thomas, Scott
2012-01-01
The infrared-ultraviolet properties of quantum gravity suggest on very general grounds that hard short distance scattering processes are highly suppressed for center of mass scattering energies beyond the fundamental Planck scale. If this scale is not too far above the electroweak scale, these non-perturbative quantum gravity effects could be manifest as an extinction of high transverse momentum jets at the LHC. To model these effects we implement an Extinction Monte Carlo modification of the...
Non-perturbative inputs for gluon distributions in the hadrons
Ermolaev, B. I.; Troyan, S. I.
2017-03-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.
Duality covariant type IIB supersymmetry and nonperturbative consequences
Bars, Itzhak
1997-01-01
Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U-duality, which controls the non-perturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet fivebranes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the non-perturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal blackholes constructed from D-1-branes and D-5-branes. In the latter case the non-perturbative coupling dependence of the BPS mass and metric is comput...
Ermolaev, Yu. S.; Rudnev, I. A.
2014-07-01
Interaction of a superconductor with an array of magnets having different orientations of the magnetization vector is theoretically investigated. Based on a critical state model, the interaction force arising in the system superconductor - array of magnets is calculated by the method of finite elements. Optimal configurations of the magnetic system are established in which maximum values of both attractive and repulsive forces are created.
Yazadjiev, S
2012-01-01
We present a new solution in 5D Einstein-Maxwell-dilaton gravity describing an equilibrium configuration of extremal rotating black holes with lens space horizon topologies. The basic properties of the solution are investigated and the basic physical quantities are calculated. It is shown that the black hole horizons are superconducting in the sense that they expel the magnetic flux lines.
Casimir-Polder forces: A nonperturbative approach
Buhmann, Stefan Yoshi; Knöll, Ludwig; Welsch, Dirk-Gunnar; Dung, Ho Trung
2004-11-01
Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.
Aeberhard, Urs
2016-01-01
We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultrathin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to leakage of electronically and optically injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the i...
Liu, J. W.; Liao, M. Y.; Imura, M.; Koide, Y.
2016-09-01
A band configuration of a high-k ZrO2/Al2O3 bilayer on hydrogenated diamond (H-diamond), a breakdown field (EB) of the ZrO2/Al2O3 bilayer, and an effect of gate-drain distance (dG-D) on electrical properties of ZrO2/Al2O3/H-diamond metal-insulator-semiconductor field-effect transistors (MISFETs) have been investigated. The Al2O3 and ZrO2 layers are successively deposited on H-diamond by atomic layer deposition (ALD) and sputtering-deposition (SD) techniques, respectively. The thin ALD-Al2O3 buffer layer with 4.0 nm thickness plays a role in protecting the H-diamond surface from being damaged by the plasma discharge during SD-ZrO2 deposition. The ZrO2/Al2O3 heterojunction has a type I band structure with valence and conduction band offsets of 0.6 ± 0.2 and 1.0 ± 0.2 eV, respectively. The valence band offset between ZrO2 and H-diamond is deduced to be 2.3 ± 0.2 eV. The EB of the ZrO2/Al2O3 bilayer is measured to be 5.2 MV cm-1, which is larger than that of the single ZrO2 layer due to the existence of the ALD-Al2O3 buffer layer. The dependence of dG-D on drain-source current maximum (IDS,max), on-resistance (RON), threshold voltage (VTH), and extrinsic transconductance maximum (gm,max) of the MISFETs has been investigated. With increasing dG-D from 4 to 18 μm, the absolute IDS,max decreases from 72.7 to 40.1 mA mm-1, and the RON increases linearly from 83.3 ± 5 to 158.7 ± 5 Ω mm. Variation of VTH values of around 1.0 V is observed, and the gm,max is in the range between 8.0 ± 0.1 and 13.1 ± 0.1 mS mm-1.
Schäfer, T.; Ciuchi, S.; Wallerberger, M.; Thunström, P.; Gunnarsson, O.; Sangiovanni, G.; Rohringer, G.; Toschi, A.
2016-12-01
We analyze the highly nonperturbative regime surrounding the Mott-Hubbard metal-to-insulator transition (MIT) by means of dynamical mean field theory (DMFT) calculations at the two-particle level. By extending the results of Schäfer et al. [Phys. Rev. Lett. 110, 246405 (2013), 10.1103/PhysRevLett.110.246405] we show the existence of infinitely many lines in the phase diagram of the Hubbard model where the local Bethe-Salpeter equations, and the related irreducible vertex functions, become singular in the charge as well as the particle-particle channel. By comparing our numerical data for the Hubbard model with analytical calculations for exactly solvable systems of increasing complexity [disordered binary mixture (BM), Falicov-Kimball (FK), and atomic limit (AL)], we have (i) identified two different kinds of divergence lines; (ii) classified them in terms of the frequency structure of the associated singular eigenvectors; and (iii) investigated their relation to the emergence of multiple branches in the Luttinger-Ward functional. In this way, we could distinguish the situations where the multiple divergences simply reflect the emergence of an underlying, single energy scale ν* below which perturbation theory is no longer applicable, from those where the breakdown of perturbation theory affects, not trivially, different energy regimes. Finally, we discuss the implications of our results on the theoretical understanding of the nonperturbative physics around the MIT and for future developments of many-body algorithms applicable in this regime.
Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation
Directory of Open Access Journals (Sweden)
Samuel Friot
2010-10-01
Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.
Binderbauer, M W; Guo, H Y; Tuszewski, M; Putvinski, S; Sevier, L; Barnes, D; Rostoker, N; Anderson, M G; Andow, R; Bonelli, L; Brandi, F; Brown, R; Bui, D Q; Bystritskii, V; Ceccherini, F; Clary, R; Cheung, A H; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Feng, P; Galeotti, L; Garate, E; Giammanco, F; Glass, F J; Gornostaeva, O; Gota, H; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Korepanov, S; Hollins, M; Isakov, I; Jose, V A; Li, X L; Luo, Y; Marsili, P; Mendoza, R; Meekins, M; Mok, Y; Necas, A; Paganini, E; Pegoraro, F; Pousa-Hijos, R; Primavera, S; Ruskov, E; Qerushi, A; Schmitz, L; Schroeder, J H; Sibley, A; Smirnov, A; Song, Y; Sun, X; Thompson, M C; Van Drie, A D; Walters, J K; Wyman, M D
2010-07-23
A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{i}+T{e}) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.
Zohar, Erez; Cirac, J Ignacio; Reznik, Benni
2012-09-21
Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.
Towards a non-perturbative construction of the operator product expansion
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [Universitaet Leipzig (Germany)
2016-07-01
Our current understanding of Quantum Field Theory (QFT) is based to a large extent on perturbative - i.e. approximate - methods. Exact constructions in QFT are not only of fundamental conceptual interest, but they offer insights into physical phenomena that are intractable by perturbative means. In this talk, I present progress on a novel approach towards the non-perturbative construction of the Operator Product Expansion (OPE). The OPE is a structure encoding the complete algebraic skeleton as well as the short distance properties of a Quantum Field Theory. Our construction method is based on a recently found recursion formula for the OPE, which is discussed along with recent results on mathematical properties of the OPE in perturbation theory.
Electron-Positron Pair Production in Structured Pulses of Electric Fields
Kohlfürst, Christian
2012-01-01
The non-perturbative electron-positron pair production in time-dependent electric fields is investigated. The quantum kinetic formalism is employed in order to calculate the electron density for various field configurations. The corresponding set of first order, ordinary differential equations is analyzed and numerically solved. The focus of this study lies on the dynamically assisted Schwinger effect in pulsed electric fields with at least two different time scales. Furthermore, interference effects arising in setups with multiple pulses are examined and first results for an optimization of the particle number yield by pulse-shaping are given.
Extended loops a new arena for nonperturbative quantum gravity
Di Bartolo, C; Griego, J R; Pullin, J
1993-01-01
We propose a new representation for gauge theories and quantum gravity. It can be viewed as a generalization of the loop representation. We make use of a recently introduced extension of the group of loops into a Lie Group. This extension allows the use of functional methods to solve the constraint equations. It puts in a precise framework the regularization problems of the loop representation. It has practical advantages in the search for quantum states. We present new solutions to the Wheeler-DeWitt equation that reinforce the conjecture that the Jones Polynomial is a state of nonperturbative quantum gravity.
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T; Tandy, P C
2009-01-01
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Minimal Length and the Quantum Bouncer: A Nonperturbative Study
Pedram, Pouria
2012-01-01
We present the energy eigenvalues of a quantum bouncer in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP) via quantum mechanical and semiclassical schemes. In this paper, we use two equivalent nonperturbative representations of a deformed commutation relation in the form [X,P]=i\\hbar(1+\\beta P^2) where \\beta is the GUP parameter. The new representation is formally self-adjoint and preserves the ordinary nature of the position operator. We show that both representations result in the same modified semiclassical energy spectrum and agrees well with the quantum mechanical description.
Minimal Length and the Quantum Bouncer: A Nonperturbative Study
Pedram, Pouria
2012-06-01
We present the energy eigenvalues of a quantum bouncer in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP) via quantum mechanical and semiclassical schemes. In this paper, we use two equivalent nonperturbative representations of a deformed commutation relation in the form [ X, P]= iħ(1+ βP 2) where β is the GUP parameter. The new representation is formally self-adjoint and preserves the ordinary nature of the position operator. We show that both representations result in the same modified semiclassical energy spectrum and agrees well with the quantum mechanical description.
Universality of nonperturbative QCD effects in radiative B-decays
Descotes-Genon, S
2003-01-01
We demonstrate, by an explicit one-loop calculation, that at leading twist the nonperturbative effects in B -> gamma l nu, B -> gamma gamma and B -> gamma l+ l- radiative decays are contained in a common multiplicative factor (\\Lambda_B(E_\\gamma), where E_\\gamma is the energy of the photon). We argue that this result holds also at higher orders. Ratios of the amplitudes for these processes do not depend on scales below the mass of the B-meson (M_B), and can be calculated as perturbative series in \\alpha_s(M_B)
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Fried, H. M.; Grandou, T.; Sheu, Y.-M.
2014-05-01
Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD.
Nonperturbative Solution of Yukawa Theory and Gauge Theories
Hiller, John R.
2004-11-01
Recent progress in the nonperturbative solution of (3+1)-dimensional Yukawa theory and quantum electrodynamics (QED) and (1+1)-dimensional super Yang-Mills (SYM) theory will be summarized. The work on Yukawa theory has been extended to include two-boson contributions to the dressed fermion state and has inspired similar work on QED, where Feynman gauge has been found surprisingly convenient. In both cases, the theories are regulated in the ultraviolet by the inclusion of Pauli-Villars particles. For SYM theory, new high-resolution calculations of spectra have been used to obtain thermodynamic functions and improved results for a stress-energy correlator.
Nonperturbative theory of exciton-phonon resonances in semiconductor absorption
Hannewald, K.; Bobbert, P. A.
2005-09-01
We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and usefulness of our approach with respect to practical applications for semiconductors is demonstrated.
Cool, Simon; Pieters, Jan G; Mertens, Koen C; Mora, Sergio; Cointault, Frédéric; Dubois, Julien; van de Gucht, Tim; Vangeyte, Jürgen
2015-11-12
Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m² with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications.
Directory of Open Access Journals (Sweden)
Simon Cool
2015-11-01
Full Text Available Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m2 with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications.
Integrability and non-perturbative effects in the AdS/CFT correspondence
Gómez, C; Gómez, César; Hernández, Rafael
2007-01-01
We present a non-perturbative resummation of the asymptotic strong-coupling expansion for the dressing phase factor of the AdS_5xS^5 string S-matrix. The non-perturbative resummation provides a general form for the coefficients in the weak-coupling expansion, in agreement with crossing symmetry and transcendentality. The ambiguities of the non-perturbative prescription are discussed together with the similarities with the non-perturbative definition of the c=1 matrix model.
Johansson, Sara; Fiandaca, Gianluca; Dahlin, Torleif
2015-12-01
Resistivity and induced polarization (IP) measurements on soil contaminated with non-aqueous phase liquids (NAPLs) show a great variety in results in previous research. Several laboratory studies have suggested that the presence of NAPLs in soil samples generally decrease the magnitude of the IP-effect, while others have indicated the opposite. A number of conceptual models have been proposed suggesting that NAPLs can alter the pore space in different ways, e.g. by coating the grain surfaces and thus inhibiting grain polarization, or by changing the pore throat size and thus affecting the membrane polarization mechanism. The main aim of this paper is to review previously published conceptual models and to introduce some new concepts of possible residual NAPL configurations in the pore space. Time domain induced polarization measurements were performed at a NAPL contaminated field site, and the data were inverted using the Constant Phase Angle (CPA) model and the Cole-Cole model respectively. No significant phase anomalies were observed in the source area of the contamination when the CPA inverted profiles were compared with soil sampling results of free-phase contaminant concentrations. However, relatively strong phase and normalized phase anomalies appeared next to the source area, where residual free-phase presence could be expected according to the chemical data. We conclude that depending on the NAPL configuration, different spectral IP responses can be expected. In previous research, the NAPL configurations in different samples or field sites are often unknown, and this may to some extent explain why different results have been achieved by different authors. In our field case, we believe that the NAPL forms a more or less continuous phase in the pore space of the source zone leading to an absence of IP anomalies. The increase in phase and normalized phase angle observed next to the source zone is interpreted as a degradation zone. The ongoing biodegradation
Testing QCD in the non-perturbative regime
Energy Technology Data Exchange (ETDEWEB)
A.W. Thomas
2007-01-01
This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.
Non-perturbative closure calculation for fluids and plasmas
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua
2015-11-01
Closure calculation of the Chapman-Enskog type is based on a perturbative expansion in the small parameter of Knudsen number, which is defined as the ratio of the thermal particle mean-free-path and the system gradient length scale. The error in the analysis can be locally measured in phase space using the local Knudsen number, which for the energy squared dependence of the mean-free-path, is much larger for high energy particles. Such breakdown, if occurs at sufficiently high energy, has small impact on closure results, but in cases of strong spatial gradients, can have large effect and invalidate the perturbative calculation. Here we show a non-perturbative closure formulation and its application in calculating standard closure quantitities such as heat flux. This approach applies as long as the thermal bulk is close to a Maxwellian, where a perturbative analysis can be matched onto a non-perturbative treatment of the tail population. Work supported by DOE via LANL-LDRD.
A Non-Perturbative Gauge-Invariant QCD: Ideal vs. Realistic QCD
Fried, H M; Sheu, Y -M
2011-01-01
A basic distinction, long overlooked, between the conventional, "idealistic" formulation of QCD, and a more "realistic" formulation is brought into focus by a rigorous, non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of exact Fradkin representations for the Green's functional $\\mathbf{G}_{c}(x,y|A)$ and the vacuum functional $\\mathbf{L}[A]$. The quanta of all (Abelian) quantized fields may be expected to obey standard quantum-mechanical measurement properties, perfect position dependence at the cost of unknown momenta, and vice-versa, but this is impossible for quarks since they always appear asymptotically in bound states, and their transverse position or momenta can never, in principle, be exactly measured. Violation of this principle produces an absurdity in the exact evaluation of each and every QCD amplitude. We here suggest a phenomenological change in the basic QCD Lagrangian, such that a limitation of transverse precision is automatical...
Enea Romano, Antonio; Sanes Negrete, Sergio; Sasaki, Misao; Starobinsky, Alexei A.
2014-06-01
We study effects on the luminosity distance of a local inhomogeneity seeded by primordial curvature perturbations of the type predicted by the inflationary scenario and constrained by the cosmic microwave background radiation. We find that a local underdensity originated from a one, two or three standard deviations peaks of the primordial curvature perturbations field can induce corrections to the value of a cosmological constant of the order of 0.6{%},1{%},1.5{%} , respectively. These effects cannot be neglected in the precision cosmology era in which we are entering. Our results can be considered an upper bound for the effect of the monopole component of the local non-linear structure which can arise from primordial curvature perturbations and requires a fully non-perturbative relativistic treatment.
Constraining a fourth generation of quarks. Non-perturbative Higgs boson mass bounds
Energy Technology Data Exchange (ETDEWEB)
Bulava, J. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagy, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2013-01-15
We present a non-perturbative determination of the upper and lower Higgs boson mass bounds with a heavy fourth generation of quarks from numerical lattice computations in a chirally symmetric Higgs-Yukawa model. We find that the upper bound only moderately rises with the quark mass while the lower bound increases significantly, providing additional constraints on the existence of a straight-forward fourth quark generation. We examine the stability of the lower bound under the addition of a higher dimensional operator to the scalar field potential using perturbation theory, demonstrating that it is not significantly altered for small values of the coupling of this operator. For a Higgs boson mass of {proportional_to}125 GeV we find that the maximum value of the fourth generation quark mass is {proportional_to}300 GeV, which is already in conflict with bounds from direct searches.
A novel approach to nonperturbative renormalization of singlet and nonsinglet lattice operators
Directory of Open Access Journals (Sweden)
A.J. Chambers
2015-01-01
Full Text Available A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman–Hellmann relation, and involves computing two-point correlators in the presence of generalized background fields arising from introducing additional operators into the action. As a first application, and test of the method, we compute the renormalization factors of the axial vector current Aμ and the scalar density S for both nonsinglet and singlet operators for Nf=3 flavors of SLiNC fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with recent calculations using standard three-point function techniques is found.
Inspecting non-perturbative contributions to the Entanglement Entropy via wavefunctions
Bhattacharyya, Arpan; Lau, P H C; Liu, Si-Nong
2016-01-01
In this paper, we would like to systematically explore the implications of non-perturbative effects on entanglement in a many body system. Instead of pursuing the usual path-integral method in a singular space, we attempt to study the wavefunctions in detail. We begin with a toy model of multiple particles whose interaction potential admits multiple minima. We study the entanglement of the true ground state after taking the tunnelling effects into account and find some simple patterns. Notably, in the case of multiple particle interactions, entanglement entropy generically decreases with increasing number of minima. The knowledge of the subsystem actually increases as the number of minima increases. The reduced density matrix can also be seen to have close connections with graph spectra. In a more careful study of the two-well tunnelling system, we also extract the exponentially suppressed tail contribution, the analogues of instantons. To understand the effects of multiple minima in a field theory, it inspir...
Truthing the stretch: Non-perturbative cosmological realizations with multiscale spherical collapse
Neyrinck, Mark C
2015-01-01
Here we present a simple, parameter-free, non-perturbative algorithm that gives low-redshift cosmological particle realizations accurate to few-Megaparsec scales, called muscle (MUltiscale Spherical ColLapse Evolution). It has virtually the same cost as producing N-body-simulation initial conditions, since it works with the 'stretch' parameter {\\psi}, the Lagrangian divergence of the displacement field. It promises to be useful in quickly producing mock catalogs, and to simplify computationally intensive reconstructions of galaxy surveys. muscle applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and 2LPT), and, by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme. Additionally, we show the behavior of {\\psi} for different morphologies (voids, walls, filaments, and haloes). A Python code to produce these realizations is availab...
Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave
Dzhunushaliev, Vladimir
2015-01-01
We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schr\\"odinger equation. Its gravitational-wave solution is analogous to the solution of the Schr\\"odinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested.
Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave
Dzhunushaliev, Vladimir; Folomeev, Vladimir
2015-07-01
We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schrödinger equation. Its gravitational-wave solution is analogous to the solution of the Schrödinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested.
Time-dependent backgrounds of 2D string theory: Non-perturbative effects
Alexandrov, S Yu; Alexandrov, Sergei Yu.; Kostov, Ivan K.
2005-01-01
We study the non-perturbative corrections (NPC) to the partition function of a compactified 2D string theory in a time-dependent background generated by a tachyon source. The sine-Liouville deformation of the theory is a particular case of such a background. We calculate the leading as well as the subleading NPC using the dual description of the string theory as matrix quantum mechanics. As in the minimal string theories, the NPC are classified by the double points of a complex curve. We calculate them by two different methods: by solving Toda equation and by evaluating the quasiclassical fermion wave functions. We show that the result can be expressed in terms of correlation functions of the bosonic field associated with the tachyon source and identify the leading and the subleading corrections as the contributions from the one-point (disk) and two-point (annulus) correlation functions.
Non-perturbative studies of N = 2 conformal quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Ashok, S.K.; Dell' Aquila, E.; John, R.R. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai (India); Billo, M.; Frau, M.; Lerda, A. [Universita di Torino, Dipartimento di Fisica (Italy); I.N.F.N., Sezione di Torino (Italy)
2015-05-01
We study N = 2 super-conformal field theories in four dimensions that correspond to mass-deformed linear quivers with n gauge groups and (bi-)fundamental matter. We describe them using Seiberg-Witten curves obtained from an M-theory construction and via the AGT correspondence. We take particular care in obtaining the detailed relation between the parameters appearing in these descriptions and the physical quantities of the quiver gauge theories. This precise map allows us to efficiently reconstruct the non-perturbative prepotential that encodes the effective IR properties of these theories. We give explicit expressions in the cases n = 1, 2, also in the presence of an Ω-background in the Nekrasov-Shatashvili limit. All our results are successfully checked against those of the direct microscopic evaluation of the prepotential a la Nekrasov using localization methods. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Ordered phase of the O(N) model within the nonperturbative renormalization group.
Peláez, Marcela; Wschebor, Nicolás
2016-10-01
We analyze nonperturbative renormalization group flow equations for the ordered phase of Z_{2} and O(N) invariant scalar models. This is done within the well-known derivative expansion scheme. For its leading order [local potential approximation (LPA)], we show that not every regulator yields a smooth flow with a convex free energy and discuss for which regulators the flow becomes singular. Then we generalize the known exact solutions of smooth flows in the "internal" region of the potential and exploit these solutions to implement an improved numerical algorithm, which is much more stable than previous ones for N>1. After that, we study the flow equations at second order of the derivative expansion and analyze how and when the LPA results change. We also discuss the evolution of the field renormalization factors.
Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2015-07-15
We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schroedinger equation. Its gravitational-wave solution is analogous to the solution of the Schroedinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested. (orig.)
A novel approach to nonperturbative renormalization of singlet and nonsinglet lattice operators
Energy Technology Data Exchange (ETDEWEB)
Chambers, A.J. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Horsley, R. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047 (Japan); Perlt, H., E-mail: perlt@itp.uni-leipzig.de [Institut für Theoretische Physik, Universität Leipzig, 04103 Leipzig (Germany); Rakow, P.E.L. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Schiller, A. [Institut für Theoretische Physik, Universität Leipzig, 04103 Leipzig (Germany); Zanotti, J.M. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia)
2015-01-05
A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman–Hellmann relation, and involves computing two-point correlators in the presence of generalized background fields arising from introducing additional operators into the action. As a first application, and test of the method, we compute the renormalization factors of the axial vector current A{sub μ} and the scalar density S for both nonsinglet and singlet operators for N{sub f}=3 flavors of SLiNC fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with recent calculations using standard three-point function techniques is found.
DEFF Research Database (Denmark)
Finnemann, Niels Ole
2016-01-01
, links, interactive processes, and time scalings, and that the hypertext configuration is a major but not sole source of the messiness of big data. The notion of hypertext will be revalidated, placed at the center of the interpretation of networked digital media, and used in the analysis of the fast...
Dynamic gluon confinement in high energy processes within effective QCD field theory
Kinder-Geiger, Klaus
1994-01-01
An effective Lagrangian approach to describe the dynamics of confinement and symmetry breaking in the process of quark-gluon to hadron conversion is proposed. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color neutral condensate fields representing the non-perturbative vacuum with broken scale and chiral symmetry. As a first application the evolution of gluons emitted by a fragmenting high energy q\\bar q pair from the perturbative to the non-perturbative regime with confinement is studied. For reasonable parameter choice the solution of the equations of motion leads to flux tube configurations with a string tension t \\simeq 1 GeV/fm.
Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
Cui, X G; Gutheil, E
2011-11-10
The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.
Aringazin, A. K.
2002-01-01
In this paper we overview some results on the hydrogen atom in external static uniform magnetic fields. We focus on the case of very strong magnetic field, B>>B_0=2.3x10^9 Gauss, use various approximate models and, particularly, in the adiabatic approximation have calculated exactly the integral defining the effective potential. This potential appears to be finite at z=0. Our consideration of the problem of highly magnetized atoms and molecules is motivated by the recently developed MagneGas ...
Glazkov, S. A.; Gorbushin, A. R.; Osipova, S. L.; Semenov, A. V.
2016-10-01
The report describes the results of flow field experimental research in TsAGI T-128 transonic wind tunnel. During the tests Mach number, stagnation pressure, test section wall perforation ratio, angles between the test section panels and mixing chamber flaps varied. Based on the test results one determined corrections to the free-stream Mach number related to the flow speed difference in the model location and in the zone of static pressure measurement on the test section walls, nonuniformity of the longitudinal velocity component in the model location, optimal position of the movable test section elements to provide flow field uniformity in the test section and minimize the test leg drag.
A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Backside configured surface plasmonic enhancement
Energy Technology Data Exchange (ETDEWEB)
Gu, Guiru; Lu, Xuejun, E-mail: xuejun-lu@uml.edu [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Vaillancourt, Jarrod [Applied NanoFemto Technologies, LLC, 181 Stedman St. 2, Lowell, MA 01851 (United States)
2014-03-31
In this work, we fabricated, measured and compared the quantum dots infrared photodetector enhancement by the top- and backside- configured plasmonic structures. The backside configured plasmonic structure can provide much higher device performance enhancement. Furthermore, the excitation of the surface plasmonic waves by the top- and backside- configured plasmonic structures was analyzed. Detailed simulation results of the electric field at different wavelength from top illumination and backside illumination were provided. The stronger electric field from the backside illumination attributed to the higher enhancement.
Miteva, R; Malandraki, O; Dorrian, G
2014-01-01
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20% of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, $\\approx 0.6$. The SEP events within ICMEs show stronger correlation between the peak proton inten...
Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.
2016-03-01
Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.
Bolsinger, V. J.; Krönke, S.; Schmelcher, P.
2017-02-01
Exploring the impact of dimensionality on the quantum dynamics of interacting bosons in traps including particle correlations is an interesting but challenging task. Due to the different participating length scales, the modelling of the short-range interactions in three dimensions plays a special role. We review different approaches for the latter and elaborate that for multi-configurational computational strategies, finite-range potentials are adequate resulting in the need for large grids to resolve the relevant length scales. This results in computational challenges, which include the exponential scaling of complexity with the number of atoms. We show that the recently developed ab initio multi-layer multi-configurational time-dependent Hartee method for bosons (ML-MCTDHB) (2013 J. Chem. Phys. 139 134103) can face both numerical challenges and present an efficient numerical implementation of ML-MCTDHB in three spatial dimensions, particularly suited to describe the quantum dynamics for elongated traps. The beneficial scaling of our approach is demonstrated by studying the tunnelling dynamics of bosonic ensembles in a double well. Comparing three-dimensional with quasi-one dimensional simulations, we find dimensionality-induced effects in the density. Furthermore, we study the crossover from weak transversal confinement, where a mean-field description of the system is sufficient, towards tight transversal confinement, where particle correlations and beyond mean-field effects are pronounced.
DEFF Research Database (Denmark)
Finnemann, Niels Ole
2016-01-01
, links, interactive processes, and time scalings, and that the hypertext configuration is a major but not sole source of the messiness of big data. The notion of hypertext will be revalidated, placed at the center of the interpretation of networked digital media, and used in the analysis of the fast......The article presents a conceptual framework for distinguishing different sorts of heterogeneous digital materials. The hypothesis is that a wide range of heterogeneous data resources can be characterized and classified due to their particular configurations of hypertext features such as scripts......-growing amounts of heterogeneous digital collections, assemblages, and corpora. The introduction summarizes the wider background of a fast-changing data landscape....
Valor, A; Bonche, P
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to sup 2 sup 4 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment.
Directory of Open Access Journals (Sweden)
Shabeer Ahmed Abbasi
2016-03-01
Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.
Dzhunushaliev, Vladimir
2016-01-01
The contribution of gluon fields to the proton spin is calculated. The calculations are performed following non-perturbative Heisenberg's quantization technique. In our approach a proton is considered as consisting of three quarks connected by three flux tubes. The flux tubes contain colour longitudinal electric and transversal electric and magnetic fields. The longitudinal electric field causes the interaction forces between quarks. The quantum superposition of the transversal fields causes the appearance of the angular momentum density. From our calculations, we obtain that the contribution of the gluon field from the flux tubes to the proton spin is of the order of $15\\%$. The dimensionless relation between the angular momentum and the mass of the gluon fields is obtained. The experimental verification of this relation is discussed. Simple numerical relation between the proton mass, the speed of light and the proton radius, which is of the same order as the Planck constant, is discussed.
Classical Simulation of Quantum Fields I
Hirayama, T
2005-01-01
We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In $\\lambda\\phi^{4}$ theory in 1+1 dimensions we find results, in particular for mass renormalization and the critical coupling for symmetry breaking, that are in agreement with their quantum counterparts. We then study the perturbative expansion of the $n$-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.
Classical simulation of quantum fields I
Hirayama, T.; Holdom, B.
2006-10-01
We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In lambda phi(4) theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.
Non-perturbative QCD effects in jets at hadron colliders
Dasgupta, Mrinal; Salam, Gavin P
2008-01-01
We discuss non-perturbative QCD contributions to jet observables, computing their dependence on the jet radius R, and on the colour and transverse momentum of the parton initiating the jet. We show, using analytic QCD models of power corrections as well as Monte Carlo simulations, that hadronisation corrections grow at small values of R, behaving as 1/R, while underlying event contributions grow with the jet area as R^2. We highlight the connection between hadronisation corrections to jets and those for event shapes in e^+e^- and DIS; we note the limited dependence of our results on the choice of jet algorithm; finally, we propose several measurements in the context of which to test or implement our predictions. The results presented here reinforce the motivation for the use of a range of R values, as well as a plurality of infrared-safe jet algorithms, in precision jet studies at hadron colliders.
Non-perturbative renormalization of three-quark operators
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2008-10-15
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)
Disentangling the timescales behind the nonperturbative heavy quark potential
Burnier, Yannis; Rothkopf, Alexander
2012-09-01
The static part of the heavy quark potential has been shown to be closely related to the spectrum of the rectangular Wilson loop. In particular the lowest lying positive frequency peak encodes the late time evolution of the two-body system, characterized by a complex potential. While initial studies assumed a perfect separation of early- and late-time physics, where a simple Lorentzian (Breit-Wigner) shape suffices to describe the spectral peak, we argue that scale decoupling in general is not complete. Thus early-time, i.e., nonpotential effects significantly modify the shape of the lowest peak. We derive on general grounds an improved peak distribution that reflects this fact. Application of the improved fit to nonperturbative lattice QCD spectra now yields a potential that is compatible with a transition to a deconfined screening plasma.
Casimir operator dependences of non-perturbative fermionic QCD amplitudes
Fried, H M; Hofmann, R
2015-01-01
In eikonal and quenched approximation, it is argued that the strong coupling fermionic QCD Green's functions and related amplitudes, when based on the newly discovered effective locality property, depart from a sole dependence on the SUc(3) quadratic Casimir operator, evaluated over the fundamental gauge group representation.Though noticed in non-relativistic Quark Models, an additional dependence on the cubic Casimir operator is in contradistinction with perturbation theory, and also with a number of non-perturbative approaches such as the MIT Bag, the Stochastic Vacuum Models and lattice simulations. It accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). We briefly discuss the orders of magnitude of quadratic and cubic Casimir operator contributions.
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Energy Technology Data Exchange (ETDEWEB)
Fried, H.M. [Physics Department, Brown University, Providence, RI 02912 (United States); Grandou, T., E-mail: Thierry.Grandou@inln.cnrs.fr [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France); Sheu, Y.-M., E-mail: ymsheu@alumni.brown.edu [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France)
2014-05-15
Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.
Non-perturbative Thermodynamics in Matrix String Theory
Peñalba, J P
1999-01-01
A study of the thermodynamics in IIA Matrix String Theory is presented. The free string limit is calculated and seen to exactly reproduce the usual result. When energies are enough to excite non-perturbative objects like D-particles and specially membranes, the situation changes because they add a large number of degrees of freedom that do not appear at low energies. There seems to be a negative specific heat (even in the Microcanonical Ensemble) that moves the asymptotic temperature to zero. Besides, the mechanism of interaction and attachment of open strings to D-particles and D-membranes is analyzed. A first approach to type IIB Matrix String is carried out: its spectrum is found in the (2+1)-SYM and used to calculate an SL(2,Z) invariant partition function.
Importance of Non-Perturbative QCD Parameters for Bottom Mesons
Upadhyay, A
2015-01-01
The importance of non-perturbative Quantum Chromodynamics [QCD] parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two non perturbative QCD parameters used in heavy quark effective theory formula and using the best fitted parameter, masses of the excited bottom meson states in JP=(1/2)+ doublet in strange as well as non-strange sector are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass and hyperfine splitting has also been analyzed for both strange and non-strange heavy mesons with respect to spin and flavor symmetries.
Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2015-01-14
We consider the hybrid system-bath dynamics, based on the Yan's dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes.
Mao, Aohua; Ji, Hantao; Ren, Yang; E, Peng; Wang, Zhibin; Xiao, Qingmei; Xiao, Chijie
2016-10-01
A new terrella device, the Space Plasma Environment Research Facility (SPERF), is designed and under construction in China, with Asymmetric Reconnection EXperiment (AREX) as one component to study the interaction between the magnetosheath and magnetosphere plasmas. AREX will provide a unique platform for studying asymmetric magnetic reconnection relevant to the magnetopause, via a set of coils for simulating ``solar-wind-side'' magnetosheath field and a dipole field on the ``magnetosphere-side''. Thus it could be able to investigate a range of important issues in the magnetosphere geometry, such as the electron and ion-scale dynamics in the current sheet, particle and energy transfer from magnetosheath to magnetosphere, particle energization/heating during magnetic reconnection, 3D and asymmetric effects in fast reconnection, and so on. The plasma is generated by two flux cores at the ``magnetosheath-side'' and one electron cyclotron resonance source at the ``magnetosphere-side''. Different kinds of coils with specific current driven functions, as well as advanced diagnostics are designed. Motivation, overview of the AREX design and reconnection scenarios will be discussed.
Dzhunushaliev, Vladimir
2016-01-01
The nonperturbative quantization technique \\`{a} la Heisenberg is applied for non-Abelian gauge theories. The operator Yang-Mills equation is written, which on the corresponding averaging gives an infinite set of equations for all Green functions. We split all degrees of freedom into two groups: in the former, we have $A^a_\\mu \\in \\mathcal G \\subset SU(N)$, and in the second group we have coset degrees of freedom $SU(N) / \\mathcal G$. Using such splitting and some assumptions about 2- and 4-point Green functions, we truncate the infinite set of equations to two equations. The first equation is for the gauge fields from the subgroup $\\mathcal G$, and the second equation is for a gluon condensate which is the dispersion of quantum fluctuations of the coset fields. As an example, we obtain a flux tube solution describing longitudinal color electric fields stretched between quark and antiquark located at the $\\pm$ infinities. This solution represents the dual Meissner effect: the electric field is pushed out from...
Simulation of QCD with N_f=2+1 flavors of non-perturbatively improved Wilson fermions
Bruno, Mattia; Engel, Georg P; Francis, Anthony; Herdoiza, Gregorio; Horch, Hanno; Korcyl, Piotr; Korzec, Tomasz; Papinutto, Mauro; Schaefer, Stefan; Scholz, Enno E; Simeth, Jakob; Simma, Hubert; Söldner, Wolfgang
2014-01-01
We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Luescher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.
Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki
2008-02-01
This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.
Wang, Hong-Juan; Gong, Jian-Cun; Lin, Jun
2014-01-01
We investigate equilibrium height of the flux rope, and its internal equilibrium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilibrium height of the flux rope is approximately a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms the catastrophe in the magnetic configuration of interest can be triggered by decrease of strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope commences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence o...
Building a non-perturbative quark-gluon vertex from a perturbative one
Bermudez, Rocio
2016-10-01
The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.
Topological string theory, modularity and non-perturbative physics
Energy Technology Data Exchange (ETDEWEB)
Rauch, Marco
2011-09-15
In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in
Study on relative orbital configuration in satellite formation flying
Institute of Scientific and Technical Information of China (English)
Junfeng Li; Xin Meng; Yunfeng Gao; Xiang Li
2005-01-01
In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J2 perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of nonperturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal.These shapes can be lines, ellipses or distorted closed curves.Secondly, on the basis of the analysis of J2 effect on relative orbital configurations, we find out that J2 effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J2perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J2 effect. The relationship of relative orbital elements and J2 effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J2 effect. The results show that the minimum relation perturbation conditions can reduce the J2 effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
On the Interface between Perturbative and Nonperturbative QCD
Deur, A; de Teramond, G F
2016-01-01
The QCD running coupling $\\alpha_s(Q^2)$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $\\alpha_s(Q^2)$. The high-$Q^2$ dependence of the coupling $\\alpha_s(Q^2)$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $\\alpha_s(Q^2)$ then determines the scale $Q_0$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $Q_0$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We di...
Nonperturbative theory of weak pre- and post-selected measurements
Kofman, Abraham G; Nori, Franco
2011-01-01
This paper starts with a review of the topic of strong and weak pre- and post-selected (PPS) measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov-Albert-Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the mea...
Nucleon resonance electrocouplings in the non-perturbative regime
Energy Technology Data Exchange (ETDEWEB)
Philip L. Cole, Viktor Mokeev, Ralf Gothe
2012-09-01
There is an extensive search for baryon resonances using the CLAS detector in Hall B of JLab. Extracting the transition helicity amplitudes (or the {gamma}{sub v}NN* photo- and electrocouplings) sheds light on nature of the non-perturbative strong interaction. We have extended the data on differential cross sections to Q{sup 2} = 6.0 GeV{sup 2} for the {pi}N electroproduction channel. Electroproduction data were also collected on the two-charged-pion channel off protons, which provides nine independent differential {pi}{sup +}{pi}{sup -}p cross sections at Q{sup 2} up to 1.5 GeV{sup 2}. The two-pion results, moreover, are consistent with those from independent {pi}N electroproduction analyses, where the background contributions in the two-pion channel are completely different from that of the single-pion one. A phenomenological approach developed at Jefferson Lab - Moscow State University is employed for separating the resonant and non-resonant contributions to the final state. The Q{sup 2}-dependent electrocouplings were then obtained for the P{sub 11}(1440) and D{sub 13}(1520) excited baryon states. The new data will be discussed in light of these new developments in systematically exploring the affects of meson-baryon dressing on the transition helicity amplitudes as a function of Q{sup 2}.
Matyjasek, Jerzy
2016-10-01
In this paper, using the general Schwinger-DeWitt approach, we construct the approximate stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in D =4 and D =5 classical spacetimes of the electrically charged static black holes with the cosmological constant. Depending on the sign of the cosmological constant we consider both spherically symmetric and topological spacetimes with the special emphasis put on the extremal and ultraextremal configurations. Moreover, we analyze the geometries of the closest vicinity of the degenerate horizons, which topologically are the product of the maximally symmetric subspaces. We solve the semiclassical Einstein field equations for such product spacetimes. Since the transformation k →-k and f''→-f'' leaves the equations unchanged, where k is the curvature of the (D -2 )-dimensional subspace and f'' is the second derivative of the metric potential at the degenerate horizon, it suffices to consider only the spherically symmetric case. It is shown that in four and five dimensions there are forbidden sectors of the parameter space.
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Renormalization Constants of Quark Operators for the Non-Perturbatively Improved Wilson Action
Becirevic, D; Lubicz, V; Martinelli, G; Papinutto, Mauro; Reyes, J
2004-01-01
We present the results of an extensive lattice calculation of the renormalization constants of bilinear and four-quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained in the quenched approximation at four values of the lattice coupling by using the non-perturbative RI/MOM renormalization method. Several sources of systematic uncertainties, including discretization errors and final volume effects, are examined. The contribution of the Goldstone pole, which in some cases may affect the extrapolation of the renormalization constants to the chiral limit, is non-perturbatively subtracted. The scale independent renormalization constants of bilinear quark operators have been also computed by using the lattice chiral Ward identities approach and compared with those obtained with the RI-MOM method. For those renormalization constants the non-perturbative estimates of which have been already presented in the literature we find an agreement which is typically at the level of 1%...
Propagation of Gluons From a Non-Perturbative Evolution Equation in Axial Gauges
Kinder-Geiger, Klaus
1999-01-01
We derive a non-perturbative evolution equation for the gluon propagator in axial gauges based on the framework of Wetterich's formulation of the exact renormalization group. We obtain asymptotic solutions to this equation in the ultraviolet and infrared limits.
Check of a new non-perturbative mechanism for elementary fermion mass generation
Capitani, Stefano; Dimopoulos, Petros; Frezzotti, Roberto; Garofalo, M; Knippschild, Bastian; Kostrzewa, Bartosz; Ottnad, Konstantin; Rossi, Giancarlo; Schrröck, Mario; Urbach, Carsten
2016-01-01
We consider a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via a Yukawa and an irrelevant Wilson-like term. Despite the presence of these two chiral breaking operators in the Lagrangian, an exact symmetry acting on fermions and scalars prevents perturbative mass corrections. In the phase where fermions are massless (Wigner phase) the Yukawa coupling can be tuned to a critical value at which chiral transformations acting on fermions only become a symmetry of the theory (up to cutoff effects). In the Nambu-Goldstone phase of the critical theory a fermion mass term of dynamical origin is expected to arise in the Ward identities of the purely fermionic chiral transformations. Such a non-perturbative mechanism of dynamical mass generation can provide a "natural" (\\`a la 't Hooft) alternative to the Higgs mechanism adopted in the Standard Model. Here we lay down the theoretical framework necessary to demonstrate...
Enhancement of Higgs to diphoton decay width in non-perturbative Higgs model
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kaneta, Kunio [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Mimura, Yukihiro [Department of Physics, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Takahashi, Ryo, E-mail: ryo.takahasi88@gmail.com [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2013-01-29
We investigate a possibility if a loop diagram via Higgsino can enhance the Higgs to diphoton decay width in supersymmetric models with an extension of Higgs sector. A model with an additional non-renormalizable term of Higgs fields is firstly analyzed where the higher order term can introduce the Higgs coupling to Higgsinos as well as charged Higgs bosons. We point out that a choice of the Higgs coupling to obtain a significant size of enhancement of diphoton decay width reduces the Higgs mass and/or a size of non-renormalizable term needs to be large and a cutoff scale is around the weak scale. Another model in which the Higgsino mass term is generated by a non-perturbative instanton effect via a strong dynamics in a context of SUSY QCD is also suggested. It is shown that the sign of the Higgs coupling to fermions is opposite from perturbative models due to an operator including bosonic fields in the denominator and a constructive contribution to the diphoton decay amplitude can be easily obtained in this kind of model.
Gauge-invariant functional measure for gauge fields on CP2
Nair, V. P.
2013-11-01
We introduce a general parametrization for non-Abelian gauge fields on the four-dimensional space CP2. The volume element for the gauge-orbit space or the space of physical configurations is then investigated. The leading divergence in this volume element is obtained in terms of a higher dimensional Wess-Zumino-Witten action, which has previously been studied in the context of Kähler-Chern-Simons theories. This term, it is argued, implies that one needs to introduce a dimensional parameter to specify the integration measure, a step which is a nonperturbative version of the well-known dimensional transmutation in four-dimensional gauge theories.
Complex curves and non-perturbative effects in c=1 string theory
Alexandrov, S
2004-01-01
We investigate a complex curve in the $c=1$ string theory which provides a geometric interpretation for different kinds of D-branes. The curve is constructed for a theory perturbed by a tachyon potential using its matrix model formulation. The perturbation removes the degeneracy of the non-perturbed curve and allows to identify its singularities with ZZ branes. Also, using the constructed curve, we find non-perturbative corrections to the free energy and elucidate their CFT origin.
Configuration entropy of fractal landscapes
National Research Council Canada - National Science Library
Rodríguez‐Iturbe, Ignacio; D'Odorico, Paolo; Rinaldo, Andrea
1998-01-01
.... The spatial arrangement of two‐dimensional images is found to be an effective way to characterize fractal landscapes and the configurational entropy of these arrangements imposes demanding conditions for models attempting to represent these fields.
On the interface between perturbative and nonperturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-06-01
The QCD running coupling αs(Q2) sets the strength of the interactions of quarks and gluons as a function of the momentum transfer Q . The Q2 dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-Q2 analytic behavior of the strong coupling αs(Q2). The high-Q2 dependence of the coupling αs(Q2) is specified by perturbative QCD and its renormalization group equation. The matching of the high and low Q2 regimes of αs(Q2) then determines the scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics. The value of Q0 can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of Q0 and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the View the MathML source, g1, MOM and V renormalization schemes. Our results show that the discrepancies on the value of αs at large distance seen in the literature can be explained by different choices of renormalization schemes. We also provide the formulae to compute αs(Q2) over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.
Holomorphic couplings in non-perturbative string compactifications
Energy Technology Data Exchange (ETDEWEB)
Klevers, Denis Marco
2011-06-15
In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)
Onchi, Takumi; Zushi, Hideki; Mishra, Kishore; Hanada, Kazuaki; Idei, Hiroshi; Nakamura, Kazuo; Fujisawa, Akihide; Nagashima, Yoshihiko; Hasegawa, Makoto; Kuzmin, Arseny; Nagaoka, Kenichi; QUEST Team
2014-10-01
Heat flux and plasma flow in the scrape off layer (SOL) are examined in the inboard poloidal null (IPN) configuration on the spherical tokamak (ST) QUEST. In the ST, trapped energetic electrons on the low field side are widely excursed from the last closed flux surface to SOL so that significant heat loss occurs. Interestingly, plasma flows in the core and the SOL are also observed in IPN though no inductive force like ohmic heating is applied. High heat flux (>1 MW/m2) and sonic flow (M > 1) in far-SOL arise in current ramp-up phase. In quasi-steady state, sawtooth-like oscillation of plasma current with 20 Hz has been observed. Heat flux and subsonic plasma flow in far-SOL are well correlated to plasma current oscillation. The toroidal Mach number largely increases from Mφ ~ 0.1 to ~ 0.5 and drops although the amplitude of plasma current is about 10% of that. Note that such flow modification occurs before plasma current crash, there may be some possibility that phenomena in the SOL or the edge trigger reactions in the core plasma. This work is supported by Grants-in-aid for Scientific Research (S24226020), NIFS Collaboration Research Program (NIFS12KUTR081), and the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University.
Non-perturbative measurement of low-intensity charged particle beams
Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.
2017-01-01
Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.
Non-perturbative over-production of axion-like-particles (ALPs) via derivative interaction
Mazumdar, Anupam
2015-01-01
Axion like particles (ALPs) are quite generic in many scenarios for physics beyond the Standard Model, they are pseudoscalar Nambu-Goldstone bosons, and appear once any global $U(1)$ symmetry is broken spontaneously. The ALPs can gain mass from various non-perturbative quantum effects, such as anomalies or instantons. ALPs can couple to the matter sector incluidng a scalar condensate such as inflaton or moduli field via derivative interactions, which are suppressed by the axion {\\it decay constant}, $f_\\chi$ . Although weakly interacting, the ALPs can be produced abundantly from the coherent oscillations of a homogeneous condensate. In this paper we will study such a scenario where the ALPs can be produced abundantly, and in some cases can even overclose the Universe via odd and even dimensional operators, as long as $f_\\chi/\\Phi_{\\rm I} \\ll 1$, where $\\Phi_{\\rm I}$ denotes the initial amplitude of the coherent oscillations of the scalar condensate, $\\phi$. We will briefly mention how such dangerous overprodu...
Canet, Léonie; Chaté, Hugues; Delamotte, Bertrand; Wschebor, Nicolás
2011-12-01
We present an analytical method, rooted in the nonperturbative renormalization group, that allows one to calculate the critical exponents and the correlation and response functions of the Kardar-Parisi-Zhang (KPZ) growth equation in all its different regimes, including the strong-coupling one. We analyze the symmetries of the KPZ problem and derive an approximation scheme that satisfies the linearly realized ones. We implement this scheme at the minimal order in the response field, and show that it yields a complete, qualitatively correct phase diagram in all dimensions, with reasonable values for the critical exponents in physical dimensions. We also compute in one dimension the full (momentum and frequency dependent) correlation function, and the associated universal scaling function. We find a very satisfactory quantitative agreement with the exact result from Prähofer and Spohn [J. Stat. Phys. 115, 255 (2004)]. In particular, we obtain for the universal amplitude ratio g_{0}≃1.149(18), to be compared with the exact value g_{0}=1.1504... (the Baik and Rain [J. Stat. Phys. 100, 523 (2000)] constant). We emphasize that all these results, which can be systematically improved, are obtained with sole input the bare action and its symmetries, without further assumptions on the existence of scaling or on the form of the scaling function.
Nonperturbative theory of weak pre- and post-selected measurements
Energy Technology Data Exchange (ETDEWEB)
Kofman, Abraham G., E-mail: kofmana@gmail.com; Ashhab, Sahel; Nori, Franco
2012-11-01
This paper starts with a brief review of the topic of strong and weak pre- and post-selected (PPS) quantum measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov–Albert–Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the measurement strength. The optimal conditions for weak PPS measurements are obtained in the strongly-nonlinear regime, where the magnitude of the average pointer deflection is equal or close to the maximum. This maximum is independent of the measurement strength, being typically of the order of the pointer uncertainty. In the optimal regime, the small parameter of the theory is comparable to the overlap of the pre- and post-selected states. We show that the amplification coefficient in the weak PPS measurements is generally a product of two qualitatively different factors. The effects of the free system and meter Hamiltonians are discussed. We also estimate the size of the ensemble required for a measurement and identify optimal and efficient meters for weak measurements. Exact solutions are obtained for a certain class of the measured observables. These solutions are used for numerical calculations, the results of which agree with the theory
An Entropy-Weighted Sum over Non-Perturbative Vacua
Gregori, Andrea
2007-01-01
We discuss how, in a Universe restricted to the causal region connected to the observer, General Relativity implies the quantum nature of physical phenomena and directly leads to a string theory scenario, whose dynamics is ruled by a functional that weights all configurations according to their entropy. The most favoured configurations are those of minimal entropy. Along this class of vacua a four-dimensional space-time is automatically selected; when, at large volume, a description of space-time in terms of classical geometry can be recovered, the entropy-weighted sum reduces to the ordinary Feynman's path integral. What arises is a highly predictive scenario, phenomenologically compatible with the experimental observations and measurements, in which everything is determined in terms of the fundamental constants and the age of the Universe, with no room for freely-adjustable parameters. We discuss how this leads to the known spectrum of particles and interactions. Besides the computation of masses and coupli...
Nonperturbative contributions in quantum-mechanical models the instantonic approach
Casahorrán, J
2000-01-01
We review the euclidean path-integral formalism in connection with the one-dimensional non-relativistic particle. The configurations which allow to construct a semiclassical approximation classify themselves into either topological (instantons) and non-topological (bounces) solutions. While the instantons dominate the tunneling phenomena between classical vacua, the bounces describe the decay from a false vacuum to the true one. The quantum amplitudes consist on an exponential associated with the classical contribution multiplied by the fluctuation factor which is given by a functional determinant. The eigenfunctions as well as the energy eigenvalues of the quadratic operators at issue can be written in closed form due to the shape-invariance property. Accordingly we resort to the zeta-function method to compute the functional determinants in a systematic way. The effect of the multi-instantons configurations is also carefully considered. To illustrate the instanton calculus in a relevant model we go to the d...
Non-perturbative renormalisation of Delta F=2 four-fermion operators in two-flavour QCD
Dimopoulos, P; Palombi, Filippo; Papinutto, Mauro; Peña, C; Vladikas, A; Wittig, H
2008-01-01
Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields/ (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B_K and B_B (the latter also in the static limit).
Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-12-15
Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)
Buchert, Thomas
2012-01-01
In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativistic analogue of Zel'dovich's approximation for the description of structure formation in cosmology, and compare it with previous suggestions in the literature. This approximation is then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic analogues of the basic system of equations for a single dynamical field variable and recall the first-order perturbation solution of these equations. We then define a general-relativistic analogue of Zel'dovich's approximation and investigate consequences by functionally evaluating relevant variables. We so obtain a possibly powerful model that, although constructed through extrapolation of a perturbative solution, can be used to address non-perturbatively, e.g. problems of structu...
SAMI Automated Plug Plate Configuration
Lorente, Nuria P F; Goodwin, Michael
2012-01-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13 x 61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
A New Approach to Analytic, Non-Perturbative and Gauge-Invariant QCD
Fried, H M; Sheu, Y -M
2012-01-01
Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of the Green's functional and the vacuum functional. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interact...
More on the non-perturbative Gribov-Zwanziger quantization of linear covariant gauges
Capri, M A L; Fiorentini, D; Guimaraes, M S; Justo, I F; Mintz, B W; Palhares, L F; Pereira, A D; Sobreiro, R F; Sorella, S P
2015-01-01
In this paper, we discuss the gluon propagator in the linear covariant gauges in $D=2,3,4$ Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for $D=3,4$, the gluon propagator displays a massive (decoupling) behaviour, while for $D=2$, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.
Non-perturbative gluon-hadron inputs for all available forms of QCD factorization
Ermolaev, B I
2016-01-01
Description of hadronic reactions at high energies is conventionally done on basis of QCD factoriza- tion so that factorization convolutions involve non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct the inputs for the gluon- hadron scattering amplitudes in the forward kinematics and, using the Optical theorem, convert them into inputs for gluon distributions in the both polarized and unpolarized hadrons. Firstly, we derive general mathematical criteria which any model for the inputs should obey and then suggest a Resonance Model satisfying those criteria. This model is inspired by a simple observation: after emitting an active parton off the hadron, the remaining ensemble of spectators becomes unstable and therefore it can be described through factors of the resonance type. Exploiting Resonance Model, we obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available forms of QCD factorization...
Collider searches for non-perturbative low-scale gravity states
Gingrich, Douglas M
2015-01-01
The possibility of producing non-perturbative low-scale gravity states in collider experiments was first discussed in about 1998. The ATLAS and CMS experiments have searched for non-perturbative low-scale gravity states using the Large Hadron Collider (LHC) with a proton--proton centre of mass energy of 8 TeV. These experiments have now seriously confronted the possibility of producing non-perturbative low-scale gravity states which were proposed over 17 years ago. I will summarise the results of the searches, give a personal view of what they mean, and make some predictions for 13 TeV centre of mass energy. I will also discuss early ATLAS 13 TeV centre of mass energy results.
Resonance model for non-perturbative inputs to gluon distributions in the hadrons
Ermolaev, B I; Troyan, S I
2015-01-01
We construct non-perturbative inputs for the elastic gluon-hadron scattering amplitudes in the forward kinematic region for both polarized and non-polarized hadrons. We use the optical theorem to relate invariant scattering amplitudes to the gluon distributions in the hadrons. By analyzing the structure of the UV and IR divergences, we can determine theoretical conditions on the non-perturbative inputs, and use these to construct the results in a generalized Basic Factorization framework using a simple Resonance Model. These results can then be related to the K_T and Collinear Factorization expressions, and the corresponding constrains can be extracted.
F-theory duals of nonperturbative heterotic E$_{8}$ x E$_{8}$ vacua in six dimensions
Candelas, Philip; Rajesh, G; Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan
1997-01-01
We present a systematic way of generating F-theory models dual to nonperturbative vacua of heterotic E8xE8 strings compactified on K3, using hypersurfaces in toric varieties. We find a distinction between models with point-like instantons and models with extra tensor multiplets, which is clearly visible in the dual polyhedra of the corresponding Calabi-Yau threefolds on the F-theory side. We conjecture that the point-like instantons signal the appearance of nonperturbative gauge groups in the heterotic models, independent of the distribution of instantons or the presence of tensor multiplets.
Körs, B
1999-01-01
We study nonperturbative aspects of asymmetric orbifolds of type IIA, focussing on models that allow a dual perturbative heterotic description. In particular we derive the boundary states that describe the nonsupersymmetric D-branes of the untwisted sector and their zero mode spectra. These we use to demonstrate, how some special non BPS multiplets are identified under the duality map, and give some indications, how the mismatch of bosons and fermions in the perturbative heterotic spectrum is to be interpreted in terms of the nonperturbative degrees of freedom on the type IIA side.
Controlling quark mass determinations non-perturbatively in three-flavour QCD
Directory of Open Access Journals (Sweden)
Campos Isabel
2017-01-01
Full Text Available The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS¯$\\overline {{\\rm{MS}}} $ scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf = 3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.
Scalar coupling evolution in a non-perturbative QCD resummation scheme
Energy Technology Data Exchange (ETDEWEB)
Gomez, J.D., E-mail: jgomez@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica, UNESP, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070, São Paulo, SP (Brazil)
2015-07-30
We compute the Standard Model scalar coupling (λ) evolution in a particular QCD resummation scheme, where the QCD coupling becomes infrared finite due to the presence of a dynamically generated gluon mass, leading to the existence of a non-perturbative infrared fixed point. We discuss how this scheme can be fixed taking recourse to phenomenological considerations in the infrared region. The QCD β function associated to this non-perturbative coupling when introduced into the SM renormalization group equations increases the λ values at high energies.
Controlling quark mass determinations non-perturbatively in three-flavour QCD
Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios
2016-01-01
The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS-bar scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf=3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.
反场构形的二维磁流体力学描述%Two-dimensional magneto-hydro dynamic description of field reversed configuration
Institute of Scientific and Technical Information of China (English)
李璐璐; 张华; 杨显俊
2014-01-01
磁化靶聚变技术作为实现纯聚变的一种途径,不需要惯性约束聚变的高初始密度(约1026 cm-3),也不需要磁约束聚变的长约束时间(秒量级),可能是一种实现纯聚变更低廉更有效的途径。开发了一个二维磁流体力学模拟程序MPF-2D,用于描述反场构形的形成过程。采用该程序对美国洛斯阿拉莫斯国家实验室在反场构形形成装置上形成反场构形的实验进行了二维模拟和分析,理论值与实验值符合得较好；同时也对中国工程物理研究院流体物理研究所设计的“荧光-1”实验装置上形成的反场构形进行了模拟与评估,结果表明该装置上的反场构形基本达到设计指标。%Magnetized target fusion (MTF) is an alternative approach to fusion, of which the plasma lifetime and density are those between inertial confinement fusion and magnetic confinement fusion. Field-reversed configuration (FRC) is a candidate target plasma of MTF. In this paper, a two-dimensional magneto-hydrodynamic code MPF-2D is developed, and it is used to simulate the formation process of FRC on experimental devices FRX series at Los Alamos National Laboratory. In addition, design parameters of FRC on“Yingguang-1”device are also evaluated, which will be constructed in 2015 at the Institute of Fluid Physics, China Academy of Engineering Physics.
Liu, J. W.; Liao, M. Y.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y.
2013-08-01
In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO3 films with thin Al2O3 buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO3/ALD-Al2O3/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO3/ALD-Al2O3 structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO3 is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO3/ALD-Al2O3/H-diamond MOS diode is smaller than 10-8 A cm-2 at gate bias from -4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from -3.6 ± 0.1 to -5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are -7.5 mA mm-1 and 2.3 ± 0.1 mS mm-1, respectively. The enhancement mode SD-LaAlO3/ALD-Al2O3/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.
Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.
1980-01-01
The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.
Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.
1980-01-01
The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.
Physical consequences of black holes in non-perturbative quantum gravity and inflationary cosmology
Reska, P.M.
2011-01-01
In this thesis the consequences of the presence of a Schwarzschild black hole in de Sitter space are studied in the setting of non-perturbative quantum gravity and in inflationary cosmology. We first review the formalism of Causal Dynamical Triangulations (CDT) which implements a lattice regularizat
Spectral zeta function and non-perturbative effects in ABJM Fermi-gas
Hatsuda, Yasuyuki
2015-11-01
The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of "non-perturbative" poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.
Constraining the Higgs boson mass: A non-perturbative lattice study
Jansen, Karl; Nagy, Attila
2012-01-01
We present non-perturbatively obtained results for upper and lower Higgs boson mass bounds using a chiral invariant lattice formulation of the Higgs-Yukawa sector of the standard model. We determine the mass bounds both, for a standard model top quark mass and for a possible fourth quark generation with masses up to 700GeV.
Non-perturbative Heavy Quark Effective Theory: An application to semi-leptonic B-decays
Della Morte, Michele; Simma, Hubert; Sommer, Rainer
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m_h.
Nonperturbative study of the 't Hooft-Polyakov monopole form factors
Rajantie, Arttu
2011-01-01
The mass and interactions of a quantum 't Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.
Nonperturbative study of the 't Hooft-Polyakov monopole form factors
Rajantie, Arttu; Weir, David J.
2012-01-01
The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.
Conceptualizing Embedded Configuration
DEFF Research Database (Denmark)
Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole
2006-01-01
and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...
Energy Technology Data Exchange (ETDEWEB)
Barnes, D.C.; Fernandez, J.C.; Rej, D.J. (comps.)
1990-05-01
The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.
Barnes, D. C.; Fernandez, J. C.; Rej, D. J.
1990-05-01
The U.S.-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th U.S.-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7 to 9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.
Directory of Open Access Journals (Sweden)
Maria da Graça Jacintho Setton
2002-06-01
Full Text Available Este artigo tem como objetivo refletir sobre a particularidade do processo de socialização e de construção das identidades dos sujeitos no mundo contemporâneo. Para desenvolver este argumento o texto se apoia na idéia de que as instâncias tradicionais da educação -- família e escola -- partilham com as instituições midiáticas uma responsabilidade pedagógica. Identificando uma nova estruturação no campo da socialização, busca-se uma perspectiva relacional de análise entre essas instâncias a fim de apreender a especificidade do processo de construção da identidade do sujeito na atualidade. Partindo do conceito de configuração de Norbert Elias, toma-se como hipótese que a cultura da modernidade imprime uma nova prática socializadora distinta das demais verificadas historicamente. Considera-se que o processo de socialização das formações atuais é um espaço plural de múltiplas referências identitárias. Ou seja, a modernidade caracteriza-se por oferecer um ambiente social em que o indivíduo encontra condições de forjar um sistema de referências que mescla as influências familiar, escolar e midiáticas (entre outras, um sistema de esquemas coerente, no entanto híbrido e fragmentado. Nesse sentido, a particularidade dessa socialização deriva não só da relação de interdependência entre as duas instâncias tradicionais da educação, mas da relação de interdependência entre elas e a mídia.The purpose of this article is to reflect on the specificity of the process of socialization and construction of identities of the subjects in the contemporary world. To develop this line of reasoning the text is founded on the idea that the traditional instances of education -- family and school -- share with the mediatic institutions a pedagogical responsibility. By the identification of a new structure in the field of socialization, a relational perspective of analysis is searched between those instances with a view
Bolsinger, V; Schmelcher, P
2016-01-01
Exploring the impact of dimensionality on the quantum dynamics of interacting bosons in traps including particle correlations is an interesting but challenging task. Due to the different participating length scales the modelling of the short-range interactions in three dimensions plays a special role. We review different approaches for the latter and elaborate that for multi-configurational computational strategies finite range potentials are adequate resulting in the need of large grids to resolve the relevant length scales. This results in computational challenges which include also the exponential scaling of complexity with the number of atoms. We show that the recently developed ab-initio Multi-Layer Multi-Configurational Time- Dependent Hartee method for Bosons (ML-MCTDHB) [J. Chem. Phys. 139, 134103 (2013)] can face both numerical challenges and present an efficient numerical implementation of ML-MCTDHB in three spatial dimensions, particularly suited to describe the quantum dynamics for elongated traps...
A nonperturbative method for the Yang Mills Lagrangian
Jora, Renata
2014-01-01
Using the properties of the partition function for a Yang Mills theory we compute simple relations among the renormalization constants. In the particular case of the background gauge field method we obtain that the all orders beta function for the gauge coupling constant contains only the first two orders coefficients different than zero and thus corresponds to the 't Hooft scheme.
Modified gravity from the nonperturbative quantization of a metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2015-04-01
Based on certain assumptions for the expectation value of a product of the quantum fluctuating metric at two points, the gravitational and scalar field Lagrangians are evaluated. Assuming a vanishing expectation value of the first-order terms of the metric, the calculations are performed with an accuracy of second order. It is shown that such quantum corrections give rise to modified gravity. (orig.)
Puhr, Matthias; Buividovich, P. V.
2017-05-01
We demonstrate the nonrenormalization of the chiral separation effect (CSE) in quenched finite-density QCD in both confinement and deconfinement phases using a recently developed numerical method which allows us, for the first time, to address the transport properties of exactly chiral, dense lattice fermions. This finding suggests that CSE can be used to fix renormalization constants for axial current density. Explaining the suppression of the CSE which we observe for topologically nontrivial gauge field configurations on small lattices, we also argue that CSE vanishes for self-dual non-Abelian fields inside instanton cores.
Conformal bootstrap: non-perturbative QFT's under siege
CERN. Geneva
2016-01-01
[Exceptionally in Council Chamber] Originally formulated in the 70's, the conformal bootstrap is the ambitious idea that one can use internal consistency conditions to carve out, and eventually solve, the space of conformal field theories. In this talk I will review recent developments in the field which have boosted this program to a new level. I will present a method to extract quantitative informations in strongly-interacting theories, such as 3D Ising, O(N) vector model and even systems without a Lagrangian formulation. I will explain how these techniques have led to the world record determination of several critical exponents. Finally, I will review exact analytical results obtained using bootstrap techniques.
Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli
2016-04-01
In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.
Black hole entropy from non-perturbative gauge theory
Kabat, D; Lowe, D A; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2001-01-01
We present the details of a mean-field approximation scheme for the quantum mechanics of N D0-branes at finite temperature. The approximation can be applied at strong 't Hooft coupling. We find that the resulting entropy is in good agreement with the Bekenstein-Hawking entropy of a ten-dimensional non-extremal black hole with 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena, Sonnenschein and Yankielowicz. We discuss ways of resolving the black hole horizon, and also study the spectrum of single-string excitations within the quantum mechanics.
QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter
Bruno, Mattia; Brida, Mattia Dalla; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Schaefer, Stefan; Simma, Hubert; Sint, Stefan; Sommer, Rainer; Alpha Collaboration
2017-09-01
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain ΛMS¯ (3 )=341 (12 ) MeV . The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for ΛMS¯ (5 )/ΛMS¯ (3 ) yields αMS¯ (5 )(mZ)=0.11852 (84 ) .
Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2016-10-15
In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)
Nonperturbative evaluation of quantum particle production in parametric resonance enhanced by noise
Murakami, Asako
2016-01-01
Numerical studies are reported to support the idea to explain the particle production in late inflationary era based on the parametric resonance with a noise effect. Two nonperturbative renormalization group formulations are used to numerically calculate the time evolution of particle numbers. Firstly, the dynamical renormalization group (DRG) method is applied to sum up the secular contributions. Secondly, we derive an exact evolution equation of the particle number which turned out to be possible surprisingly owing to the presence of the noise effect. Our numerical results show a drastic enhancement of the particle production in agreement with earlier works qualitatively. A comparison is made of numerical results based on two methods. Our work provides nonperturbative and quantitative methods to evaluate the particle production for the inflationary cosmology.
Single Spin Asymmetries in High Energy Reactions and Nonperturbative QCD Effects
Dorokhov, A E; Nowak, W -D
2009-01-01
We discuss some experimental and theoretical results on single spin asymmetries (SSA) in high energy lepton-hadron and hadron-hadron reactions. In particular, recent results on meson SSA obtained by HERMES are considered in detail. We also discuss the SSA results obtained recently by COMPASS, as well as those from BRAHMS, PHENIX and STAR. Special attention is paid to a possible nonperturbative QCD mechanism that might be responsible for the observed meson SSA. This mechanism originates from the spin-flip quark-gluon chromomagnetic interaction induced by the complex topological structure of the QCD vacuum. We argue that in semi-inclusive deep-inelastic scattering a large SSA is expected not only for mesons but also for baryons due to strong nonperturbative final state interactions between $ud$-diquark and $u$-quark in the fragmenting proton.
Bufalo, Rodrigo; Pimentel, Bruto Max
2010-01-01
We have performed a nonperturbative quantization of the two-dimensional gauged Thirring model by using the path-integral approach. First, we have studied the constraint structure via the Dirac's formalism for constrained systems and by using the Faddeev-Senjanovic method we have calculated the vacuum--vacuum transition amplitude, then have computed the correlation functions in a nonperturbative framework, and the Ward-Takahashi identities of model as well. Afterwards, we have established at quantum level the isomorphisms between gauged Thirring model with the Schwinger and Thirring models by analyzing the respective Green's functions in the strong limit of the coupling constants $g $ and $e$, respectively. A special attention is necessary to perform the quantum analysis in the limit $e\\rightarrow \\infty $.
Factorization and infrared properties of non-perturbative contributions to DIS structure functions
Ermolaev, B I; Troyan, S I
2010-01-01
Analytical expressions for the non-perturbative components of the hadronic scattering amplitudes and the DIS structure functions are not usually obtained from theoretical considerations, but are introduced phenomenologically by fitting the data. We derive some restrictions for such contributions from the general concepts of factorization and integrability. These restrictions are obtained in the context of both k_T and collinear factorizations. We also show that the use of the collinear factorization basically makes the DIS structure functions be dependent on the factorization scale. Our analysis shows that singular factors of the type x^{-a} in the initial parton densities can be used for the singlet component of the structure function F_1, provided a <1, but excludes the use of them for the other structure functions. The restrictions for the non-perturbative contributions we obtain can also be applied to other QCD reactions at high energies.
Pire, B
2009-01-01
QCD is the theory of strong interactions and non-perturbative methods have been developed to address the confinement property of QCD. Many experimental measurements probe the confining dynamics, and it is well-known that hard scattering processes allow the extraction of non perturbative hadronic matrix elements. To study exclusive hard processes, such as electromagnetic form factors and reactions like gamma* N -> gamma N', gamma* N -> pi N', gamma* gamma -> pi pi, antiproton proton ->gamma* pi in particular kinematics (named as generalized Bjorken regime), one introduces specific non-perturbative objects, namely generalized parton distributions (GPDs), distribution amplitudes (DA) and transition distribution amplitudes (TDA), which are Fourier transformed non-diagonal matrix elements of non-local operators on the light-cone. We review here a selected sample of exclusive amplitudes in which the quark and gluon content of hadrons is probed, and emphasize that much remains to be done to successfully compute thei...
Ab Initio Approach to the Non-Perturbative Scalar Yukawa Model
Li, Yang; Maris, P; Vary, J P
2015-01-01
We report on the first non-perturbative calculation of the quenched scalar Yukawa model in the four-body Fock sector truncation. The light-front Hamiltonian approach with a Fock sector dependent renormalization is applied. We study the Fock sector contribution and the electromagnetic form factor in the non-perturbative region. We find that the one- and two-body contributions dominate the Fock space up to coupling $\\alpha\\approx 1.7$. By comparing with lower Fock sector truncations, we show that the form factor converges with respect to the Fock sector expansion. As we approach the coupling $\\alpha \\approx 2.2$, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions.
Ab initio approach to the non-perturbative scalar Yukawa model
Directory of Open Access Journals (Sweden)
Yang Li
2015-09-01
Full Text Available We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one “scalar nucleon” and three “scalar pions”. The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the n-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling α≈1.7. As we approach the coupling α≈2.2, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions. By comparing with lower sector truncations, we show that the form factor converges with respect to the Fock sector expansion.
QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter.
Bruno, Mattia; Brida, Mattia Dalla; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Schaefer, Stefan; Simma, Hubert; Sint, Stefan; Sommer, Rainer
2017-09-08
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ_{MS[over ¯]}^{(3)}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ_{MS[over ¯]}^{(5)}/Λ_{MS[over ¯]}^{(3)} yields α_{MS[over ¯]}^{(5)}(m_{Z})=0.11852(84).
Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2
Couso-Santamaría, Ricardo; Schiappa, Ricardo; Vonk, Marcel
2015-01-01
The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local CP2 toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by Z_3 symmetry, alongside another action related to the Kahler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomal...
HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Edinburgh Univ. (United Kingdom). School of Physics and Astronomy - SUPA; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-01-15
We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m{sub b}. Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m{sub b} in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)
Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD
Fritzsch, Patrick; Tantalo, Nazario
2010-01-01
We non-perturbatively determine the renormalization constant and the improvement coefficients relating the renormalized current and subtracted quark mass in O(a) improved two-flavour lattice QCD. We employ the Schr\\"odinger functional scheme and fix the physical extent of the box by working at a constant value of the renormalized coupling. Our calculation yields results which cover two regions of bare parameter space. One is the weak-coupling region suitable for volumes of about half a fermi. By making simulations in this region, quarks as heavy as the bottom can be propagated with the full relativistic QCD action and renormalization problems in HQET can be solved non-perturbatively by a matching to QCD in finite volume. The other region refers to the common parameter range in large-volume simulations of two-flavour lattice QCD, where our results have particular relevance for charm physics applications.
Non-perturbative renormalization of the quark condensate in Ginsparg-Wilson regularizations
Hernández, Pilar; Lellouch, L P; Wittig, H; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut
2001-01-01
We present a method to compute non-perturbatively the renormalization constant of the scalar density for Ginsparg-Wilson fermions. It relies on chiral symmetry and is based on a matching of renormalization group invariant masses at fixed pseudoscalar meson mass, making use of results previously obtained by the ALPHA Collaboration for O(a)-improved Wilson fermions. Our approach is quite general and enables the renormalization of scalar and pseudoscalar densities in lattice regularizations that preserve chiral symmetry and of fermion masses in any regularization. As an application we compute the non-perturbative factor which relates the renormalization group invariant quark condensate to its bare counterpart, obtained with overlap fermions at beta=5.85 in the quenched approximation.
Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T
2003-01-01
We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma ' ' Tor Vegata' ' (Italy)]|[Universita die Roma ' ' Tor Vegata' ' (Italy). Dipt. die Fisica; Giusti, L.; Pena, C. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Hernandez, P. [Valencia Univ., Burjassot (Spain). Dpto. de Fisica Teorica and IFIC; Palombi, F.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Wennekers, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2006-07-15
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the {delta}S=1 and {delta}S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays. (Orig.)
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
Dimopoulos, P; Hernández, P; Palombi, Filippo; Peña, C; Vladikas, A; Wennekers, J; Wittig, H
2006-01-01
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the Delta S=1 and Delta S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, P. [INFN, Sezione di Rome ' Tor Vergata' , c/o Dipartimento di Fisica, Universita di Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Giusti, L. [CERN, Physics Department, TH Division, CH-1211 Geneva 23 (Switzerland); Hernandez, P. [Departamento de Fisica Teorica and IFIC, Universitat de Valencia, E-46100 Burjassot (Spain); Palombi, F. [Institut fuer Kernphysik, University of Mainz, D-55099 Mainz (Germany); Pena, C. [CERN, Physics Department, TH Division, CH-1211 Geneva 23 (Switzerland)]. E-mail: carlos.pena.ruano@cern.ch; Vladikas, A. [INFN, Sezione di Rome ' Tor Vergata' , c/o Dipartimento di Fisica, Universita di Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Wennekers, J. [DESY, Theory Group, Notkestrasse 85, D-22603 Hamburg (Germany); Wittig, H. [Institut fuer Kernphysik, University of Mainz, D-55099 Mainz (Germany)
2006-09-28
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the {delta}S=1 and {delta}S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.
Comments on Exact Quantization Conditions and Non-Perturbative Topological Strings
Hatsuda, Yasuyuki
2015-01-01
We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.
Non-perturbative renormalisation of left left four-fermion operators with Neuberger fermions
Dimopoulos, P.; Giusti, L.; Hernández, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.
2006-09-01
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS = 1 and ΔS = 2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.
Factorization and infrared properties of non-perturbative contributions to DIS structure functions
Energy Technology Data Exchange (ETDEWEB)
Ermolaev, B.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Greco, M. [University Roma Tre, Department of Physics (Italy); INFN, Rome (Italy); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)
2011-09-15
In this paper we present a new derivation of QCD factorization. We deduce the k{sub T} and collinear factorizations for the DIS structure functions by consecutive reductions of a more general theoretical construction. We begin by studying the amplitude of forward Compton scattering off a hadron target, representing this amplitude as a set of convolutions of two blobs connected by the simplest, two-parton intermediate states. Each blob in the convolutions can contain both the perturbative and non-perturbative contributions. We formulate conditions for separating the perturbative and non-perturbative contributions and attributing them to the different blobs. After that the convolutions correspond to QCD factorization. Then we reduce this totally unintegrated (basic) factorization first to k{sub T} -factorization and finally to collinear factorization. In order to yield a finite expression for the Compton amplitude, the integration over the loop momentum in the basic factorization must be free of both ultraviolet and infrared singularities. This obvious mathematical requirement leads to theoretical restrictions on the non-perturbative contributions (parton distributions) to the Compton amplitude and the DIS structure functions related to the Compton amplitude through the Optical Theorem. In particular, our analysis excludes the use of the singular factors x{sup -a} (with a >0) in the fits for the quark and gluon distributions because such factors contradict the integrability of the basic convolutions for the Compton amplitude. This restriction is valid for all DIS structure functions in the framework of both k{sub T} -factorization and collinear factorization if we attribute the perturbative contributions only to the upper blob. The restrictions on the non-perturbative contributions obtained in the present paper can easily be extended to other QCD processes where the factorization is exploited. (orig.)
Non-integer Quantum Transition, a True Non-perturbation Effect in Laser-Atom Interaction
Institute of Scientific and Technical Information of China (English)
ZHANG Qi-Ren
2007-01-01
We show that in the quantum transition of an atom interacting with an intense laser of circular frequencyω, the energy difference between the initial and the final states of the atom is not necessarily an integer multiple of the quantum energy (h)ω. This kind of non-integer transition is a true non-perturbation effect in laser-atom interaction.
Non-perturbative effects for the Quark-Gluon Plasma equation of state
Energy Technology Data Exchange (ETDEWEB)
Begun, V. V., E-mail: viktor.begun@gmail.com; Gorenstein, M. I., E-mail: goren@bitp.kiev.ua; Mogilevsky, O. A. [Bogolyubov Institute for Theoretical Physics (Ukraine)
2012-07-15
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
Non-perturbative effects for the Quark-Gluon Plasma equation of state
Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.
2012-07-01
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
Dimitrovski, Darko; Madsen, Lars Bojer; Pedersen, Thomas Garm
2017-01-01
We consider the interaction of gapped graphene in the two-band approximation using an explicit time-dependent approach. In addition to the full high-order harmonic generation (HHG) spectrum, we also obtain the perturbative harmonic response using the time-dependent method at photon energies covering all the significant features in the responses. The transition from the perturbative to the fully nonperturbative regime of HHG at these photon energies is studied in detail.
Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography
Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.
2017-03-01
We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson-baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the s(x) - bar{s}(x) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.
Nonperturbative contribution to the strange-antistrange asymmetry of the nucleon sea
Vega, Alfredo; Gutsche, Thomas; Lyubovitskij, Valery E
2015-01-01
We study the nonperturbative (intrinsic) contribution to the $s(x) - \\bar{s}(x)$ asymmetry of the nucleon sea. For this purpose we use different light-front wave functions inspired by the AdS/QCD formalism, together with a model of the nucleon in terms of meson-baryon fluctuations. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.
Spectroscopy and decay constants from nonperturbative HQET at order 1/m
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Paris 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Hippel, Georg von; Mendes, Tereza; Simma, Hubert; Sommer, Rainer [NIC, DESY, Zeuthen (Germany)
2009-11-15
We carry out a thorough analysis with the GEVP method to obtain ground-state and first-excited-state masses and decay constants of bottom-strange (pseudo-scalar and vector) mesons. This computation is done for quenched, nonperturbatively renormalized HQET, including order 1/m{sub b} terms. The continuum limit is obtained using three lattice spacings and two static actions. (orig.)
HLT configuration management system
Daponte, Vincenzo
2015-01-01
The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...
Optimization of experimental snowflake configurations on TCV
Ambrosino, R; Albanese, R.; Coda, S.; Mattei, M.; Moret, J. -M.; Reimerdes, H.
2014-01-01
The design of a snowflake (SF) equilibrium requires a strong effort on the poloidal field (PF) currents in terms of MAturns and mechanical loads. This has limited the maximum plasma current in SF configurations on Tokamak a Configuration Variable (TCV) to values well below the intrinsic magnetohydrodynamic limits. In this paper the definition of optimized SF configurations in TCV and their experimental tests are illustrated. The PF current optimization procedure proposed in Albanese et al (20...
Non-perturbative QCD Effects and the Top Mass at the Tevatron
Wicke, Daniel
2008-01-01
The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...
Non-Perturbative QCD Coupling and Beta Function from Light Front Holography
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab
2010-05-26
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).
Spectral zeta function and non-perturbative effects in ABJM Fermi-gas
Hatsuda, Yasuyuki
2015-01-01
The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of "non-perturbative" poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example as...
Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas
Xu, Jiechen
In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.
De Wilde, Juray; Lorant, Christophe; Descamps, Pierre
2017-04-01
In atmospheric-pressure plasma reactors, the flow dynamics can be complex, determine the reactor performance and complicate scale-up. Coupling computational fluid dynamics to the calculation of the electric field and plasma chemistry is challenging because of the numerical stiffness introduced by the difference in time scale of the different phenomena involved. Focusing on low-temperature, atmospheric-pressure pure nitrogen plasma, a model and model reduction based solution strategy to deal with the numerical stiffness are presented and evaluated. The influence of the electric field on the flow dynamics and species concentration fields is first qualitatively studied by means of 2D simulations of a sharp-end plate-to-plane configuration. Next, a specific reactor prototype for low-temperature, atmospheric-pressure plasma-enhanced chemical vapor deposition for in-line surface treatments is simulated to illustrate the importance of accounting for the detailed flow dynamics.
Non-perturbative gravity at different length scales
Energy Technology Data Exchange (ETDEWEB)
Folkerts, Sarah
2013-12-18
In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP
Business Model Process Configurations
DEFF Research Database (Denmark)
Taran, Yariv; Nielsen, Christian; Thomsen, Peter
2015-01-01
Purpose – The paper aims: 1) To develop systematically a structural list of various business model process configuration and to group (deductively) these selected configurations in a structured typological categorization list. 2) To facilitate companies in the process of BM innovation......, by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...... method of data analysis. Findings - A comprehensive literature review and analysis resulted in a list of business model process configurations systematically organized under five classification groups, namely, revenue model; value proposition; value configuration; target customers, and strategic...
Software configuration management
Keyes, Jessica
2004-01-01
Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.
Airport Configuration Prediction Project
National Aeronautics and Space Administration — Airport configuration is a primary factor in various airport characteristics such as arrival and departure capacities and terminal area traffic patterns. These...
Energy Technology Data Exchange (ETDEWEB)
A. Alsaed
2004-11-18
''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k{sub eff} regression analysis associated with the methodology. However, the use of a k{sub eff} regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed.
Ansible configuration management
Hall, Daniel
2013-01-01
Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.
Effective field theory approach to parton-hadron conversion in high energy QCD processes
Kinder-Geiger, Klaus
1995-01-01
A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...
Nickeler, D H; Fahr, H -J
2012-01-01
A stellar wind passing through the reverse shock is deflected into the astrospheric tail and leaves the stellar system either as a sub-Alfvenic or as a super-Alfvenic tail flow. An example is our own heliosphere and its heliotail. We present an analytical method of calculating stationary, incompressible, and field-aligned plasma flows in the astrotail of a star. We present a recipe for constructing an astrosphere with the help of only a few parameters, like the inner Alfven Mach number and the outer Alfven Mach number, the magnetic field strength within and outside the stellar wind cavity, and the distribution of singular points of the magnetic field within these flows. Within the framework of a one-fluid approximation, it is possible to obtain solutions of the MHD equations for stationary flows from corresponding static MHD equilibria, by using noncanonical mappings of the canonical variables. The canonical variables are the Euler potentials of the magnetic field of magnetohydrostatic equilibria. Thus we sta...
Kahler, S. W.; Webb, D. F.; Moore, R. L.
1981-01-01
On August, 29, 1973, a flare event occurred that involved the disappearance of a filament near central meridian. The event, well-observed in X-rays on Skylab and in H-alpha, was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H-alpha, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H-alpha brightening at the footpoints of the brightest X-ray loops. It is suggested that the event involved a reconnection of magnetic field lines rather than a brightening in place of preexisting loops. The simultaneity of the H-alpha brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation.
PIV Logon Configuration Guidance
Energy Technology Data Exchange (ETDEWEB)
Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-04
This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).
Capri, M A L; Pereira, A D; Fiorentini, D; Guimaraes, M S; Mintz, B W; Palhares, L F; Sorella, S P
2016-01-01
In order to construct a gauge invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge invariant transverse configurations A^h. Such configurations can be obtained through the minimization of the functional A^2_{min} along the gauge orbit within the BRST invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of non-perturbative aspects of the theory in a BRST invariant and gauge parameter independent way. In particular, it turns out that the poles of are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST invariant formulation introduced before. Moreover, the correlator enables us to attach a BRST invariant meaning to the possible positivity violation of ...
Hayat, T.; Tanveer, A.; Alsaadi, F.
2015-12-01
The objective of present article is to address the magnetohydrodynamic (MHD) peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.
Directory of Open Access Journals (Sweden)
T. Hayat
2015-12-01
Full Text Available The objective of present article is to address the magnetohydrodynamic (MHD peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.
New motives in modern field theory
Isaev, A P
2001-01-01
A review of the basic tendencies in the modern development of field theory is given. Main approaches to the investigation of the nonperturbative quantum field theories are discussed. The ideas of duality conception, superstring and p-brane models, AdS/CFT correspondence, noncommutative field theories, etc. are briefly outlined