WorldWideScience

Sample records for nonpathogenic neisseria species

  1. Oropharyngeal Colonization With Neisseria lactamica, Other Nonpathogenic Neisseria Species and Moraxella catarrhalis Among Young Healthy Children in Ahvaz, Iran

    OpenAIRE

    Sheikhi, Raheleh; Amin, Mansour; Rostami, Soodabeh; Shoja, Saeed; Ebrahimi, Nasim

    2015-01-01

    Background: Neisseria lactamica as one of the main commensal in oropharynx during the childhood is related to the induction of a natural immunity against meningococcal meningitis. Also Moraxella catarrhalis in oropharynx of children is a predisposing factor for otitis media infection. Objectives: The current study aimed to investigate the frequency of the N. lactamica, other nonpathogenic Neisseria spp. and M. catarrhalis in the oropharynx of young healthy children in Ahvaz, Iran by the two p...

  2. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  3. Characterization of Neisseria cinerea, a nonpathogenic species isolated on Martin-Lewis medium selective for pathogenic Neisseria spp.

    Science.gov (United States)

    Knapp, J S; Totten, P A; Mulks, M H; Minshew, B H

    1984-01-01

    An asaccharolytic, gram-negative, oxidase-positive diplococcus was isolated on Martin-Lewis medium from the cervix of a patient attending an arthritis clinic at Seattle Public Health Hospital, Seattle, Wash. This strain, NRL 32165, did not produce detectable acid from glucose, maltose, sucrose, fructose, mannitol, or lactose in either cystine Trypticase agar (BBL Microbiology Systems, Cockeysville, Md.) or modified oxidation-fermentation medium and was identified presumptively as a glucose-negative Neisseria gonorrhoeae strain, but was identified later as Neisseria cinerea on the basis of its biochemical reactions. Nitrate was not reduced, nitrite (0.001%, wt/vol) was reduced, and polysaccharide was not produced from sucrose. Proline, arginine, and cystine-cysteine were required for growth on defined medium. Strain NRL 32165 did not react with antigonococcal protein I monoclonal antibodies and did not produce immunoglobulin A protease. In DNA:DNA homology studies with N. gonorrhoeae NRL 8038 (F62) and N. cinerea type strain NRL 30003, strain NRL 32165 showed 95% homology relative to N. cinerea and 44% homology relative to N. gonorrhoeae. Thus, the identity of strain NRL 32165 was confirmed as N. cinerea (von Lingelsheim 1906) Murray 1939. Of all Neisseria spp., N. cinerea is most likely to be misidentified as a glucose-negative N. gonorrhoeae strain.

  4. Comparative Phylogenomics of Pathogenic and Nonpathogenic Species

    Directory of Open Access Journals (Sweden)

    Emily Whiston

    2016-02-01

    Full Text Available The Ascomycete Onygenales order embraces a diverse group of mammalian pathogens, including the yeast-forming dimorphic fungal pathogens Histoplasma capsulatum, Paracoccidioides spp. and Blastomyces dermatitidis, the dermatophytes Microsporum spp. and Trichopyton spp., the spherule-forming dimorphic fungal pathogens in the genus Coccidioides, and many nonpathogens. Although genomes for all of the aforementioned pathogenic species are available, only one nonpathogen had been sequenced. Here, we enhance comparative phylogenomics in Onygenales by adding genomes for Amauroascus mutatus, Amauroascus niger, Byssoonygena ceratinophila, and Chrysosporium queenslandicum—four nonpathogenic Onygenales species, all of which are more closely related to Coccidioides spp. than any other known Onygenales species. Phylogenomic detection of gene family expansion and contraction can provide clues to fungal function but is sensitive to taxon sampling. By adding additional nonpathogens, we show that LysM domain-containing proteins, previously thought to be expanding in some Onygenales, are contracting in the Coccidioides-Uncinocarpus clade, as are the self-nonself recognition Het loci. The denser genome sampling presented here highlights nearly 800 genes unique to Coccidiodes, which have significantly fewer known protein domains and show increased expression in the endosporulating spherule, the parasitic phase unique to Coccidioides spp. These genomes provide insight to gene family expansion/contraction and patterns of individual gene gain/loss in this diverse order—both major drivers of evolutionary change. Our results suggest that gene family expansion/contraction can lead to adaptive radiations that create taxonomic orders, while individual gene gain/loss likely plays a more significant role in branch-specific phenotypic changes that lead to adaptation for species or genera.

  5. Conjugation of plasmids of Neisseria gonorrhoeae to other Neisseria species: potential reservoirs for the beta-lactamase plasmid.

    Science.gov (United States)

    Genco, C A; Knapp, J S; Clark, V L

    1984-09-01

    The discovery that penicillinase production in Neisseria gonorrhoeae was plasmid mediated and the spread of the beta-lactamase encoding plasmids in gonococcal isolates since 1976, raise the possibility that a nonpathogenic indigenous bacterium could serve as a reservoir for these plasmids. We initiated studies to define the ability of commensal Neisseria species and Branhamella catarrhalis strains, as well as strains of the pathogen Neisseria meningitidis, to serve as recipients in conjugation with Neisseria gonorrhoeae. We found that with N. gonorrhoeae as the donor, 3 of 5 Neisseria cinerea, 2 of 5 Neisseria flava, 0 of 1 Neisseria flavescens, 1 of 3 Neisseria subflava, 0 of 6 B. catarrhalis, 0 of 7 Neisseria lactamica, 1 of 5 Neisseria mucosa, 1 of 7 Neisseria perflava/sicca, and 0 of 13 N. meningitidis strains gave detectable conjugation frequencies (greater than 10(-8). N. cinerea was the only species found to maintain the gonococcal conjugal plasmid (pLE2451). A N. cinerea transconjugant containing pLE2451 was observed to transfer both the beta-lactamase plasmid and pLE2451 to N. gonorrhoeae at high frequency.

  6. Field efficacy of nonpathogenic Streptomyces species against potato common scab

    Science.gov (United States)

    Reports of potato fields suppressive to common scab (CS) and of association of non-pathogenic streptomycetes with CS resistance suggest that non-pathogenic strains have potential to control or modulate CS disease. Biocontrol potential of non-pathogenic Streptomyces was examined in field experiments ...

  7. Neisseria gonorrhoeae : Detection and Typing by Probe Hybridization, LCR, and PCR.

    Science.gov (United States)

    Gaydos, C A; Quinn, T C

    1999-01-01

    Neisseria gonorrhoeae, first described by Neisser in 1879, is a Gram-negative, nonmotile, nonspore-forming diplococcus, belonging to the family Neisseriaceae. It is the etiologic agent of gonorrhea. The other pathogenic species is Neisseria meningitidis, to which N. gonorrhoeae is genetically closely related. Although N. meningitidis is not usually considered to be a sexually transmitted disease, it may infect the mucous membranes of the anogenital area of homosexual men (1). The other members of the genus, which include Neisseria lactamic a, Neisseriapolysaccharea, Neisseria cinerea, and Neisseria flavescens, which are related to Neisseria gonorrhoeae, and saccharolytic strains, such as Neisseria subflava, Neisseria sicca, and Neisseria mucosa, which are less genetically related to the aforementioned, are considered to be nonpathogenic, being normal flora of the nasopharyngeal mucous membranes (2).

  8. Difficulties in differentiating Neisseria cinerea from Neisseria gonorrhoeae in rapid systems used for identifying pathogenic Neisseria species.

    OpenAIRE

    Boyce, J M; Mitchell, E B

    1985-01-01

    Neisseria cinerea and Neisseria gonorrhoeae may occur at the same body sites and may have similar colony morphologies. Ideally, systems used for rapid identification of N. gonorrhoeae should be able to differentiate N. cinerea from gonococci. We tested seven N. cinerea strains using the Gonochek II (Du Pont Diagnostics), Minitek (BBL Microbiology Systems), RapID-NH (Innovative Diagnostics, Inc.), RIM-N (American Microscan), and Phadebact (Pharmacia Diagnostics) systems. We found that the reac...

  9. Characterization of Neisseria cinerea, a nonpathogenic species isolated on Martin-Lewis medium selective for pathogenic Neisseria spp.

    OpenAIRE

    Knapp, J S; Totten, P A; Mulks, M H; Minshew, B H

    1984-01-01

    An asaccharolytic, gram-negative, oxidase-positive diplococcus was isolated on Martin-Lewis medium from the cervix of a patient attending an arthritis clinic at Seattle Public Health Hospital, Seattle, Wash. This strain, NRL 32165, did not produce detectable acid from glucose, maltose, sucrose, fructose, mannitol, or lactose in either cystine Trypticase agar (BBL Microbiology Systems, Cockeysville, Md.) or modified oxidation-fermentation medium and was identified presumptively as a glucose-ne...

  10. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  11. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids.

    Science.gov (United States)

    Llop, Pablo

    2015-01-01

    New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  12. Difficulties in differentiating Neisseria cinerea from Neisseria gonorrhoeae in rapid systems used for identifying pathogenic Neisseria species.

    Science.gov (United States)

    Boyce, J M; Mitchell, E B

    1985-11-01

    Neisseria cinerea and Neisseria gonorrhoeae may occur at the same body sites and may have similar colony morphologies. Ideally, systems used for rapid identification of N. gonorrhoeae should be able to differentiate N. cinerea from gonococci. We tested seven N. cinerea strains using the Gonochek II (Du Pont Diagnostics), Minitek (BBL Microbiology Systems), RapID-NH (Innovative Diagnostics, Inc.), RIM-N (American Microscan), and Phadebact (Pharmacia Diagnostics) systems. We found that the reactions produced by N. cinerea in Gonochek II, Minitek, and RapID-NH kits could be confused with the results produced by some strains of N. gonorrhoeae. The susceptibility of N. cinerea to colistin, its ability to grow on tryptic soy or Mueller-Hinton agar, and its inability to grow on modified Thayer-Martin medium help differentiate it from gonococci.

  13. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms.

    Science.gov (United States)

    Wörmann, Mirka E; Horien, Corey L; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M; Exley, Rachel M

    2016-03-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

  14. Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species

    Directory of Open Access Journals (Sweden)

    Qvarnstrom Yvonne

    2006-02-01

    Full Text Available Abstract Background Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. In this work, the DNA sequence surrounding folP in commensal Neisseria species was determined and compared to corresponding regions in pathogenic Neisseriae, in order to elucidate the potential for inter-species DNA transfer within this region. Results The upstream region of folP displayed differences in gene order between species, including an insertion of a complete Correia element in Neisseria lactamica and an inversion of a larger genomic segment in Neisseria sicca, Neisseria subflava and Neisseria mucosa. The latter species also had DNA uptake signal sequences (DUS in this region that were one base different from the DUS in pathogenic Neisseriae. Another interesting finding was evidence of a horizontal transfer event from Neisseria lactamica or Neisseria cinerea that introduced a novel folP allele to the meningococcal population. Conclusion Genetic recombination events immediately upstream of folP and horizontal transfer have resulted in sequence differences in the folP region between the Neisseria species. This variability could be a consequence of the selective pressure on this region exerted by the use of sulfonamide drugs.

  15. Characterization of the Maf family of polymorphic toxins in pathogenic Neisseria species

    Directory of Open Access Journals (Sweden)

    Anne Jamet

    2015-03-01

    Full Text Available In addition to harmless commensal species, Neisseria genus encompasses two pathogenic species, N. meningitidis (the meningococcus and N. gonorrhoeae (the gonococcus, which are responsible for meningitis and genital tract infections, respectively. Since the publication of the first Neisseria genome in 2000, the presence of several genomic islands (GI comprising maf genes has been intriguing. These GIs account for approximately 2% of the genome of the pathogenic Neisseria species and the function of the proteins encoded by maf genes remained unknown. We showed that maf genes encode a functional toxin-immunity system where MafB is a toxin neutralized by an immunity protein named MafI. A strain can harbor several MafB/MafI modules with distinct toxic activities. MafB toxins are polymorphic toxins with a conserved N-terminal region and a variable C-terminal region. MafB N-terminal regions consist of a signal peptide and a domain named DUF1020 that is only found in the genus Neisseria. MafB C-terminal regions are highly polymorphic and encode toxic activities. We evidenced the presence of MafB in the culture supernatant of meningococcal cells and we observed a competitive advantage for a strain overexpressing a MafB toxin. Therefore, we characterized a highly variable family of toxin-immunity modules found in multiple loci in pathogenic Neisseria species.

  16. Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses.

    Directory of Open Access Journals (Sweden)

    Jonathan Abraham

    2009-04-01

    Full Text Available The ability of a New World (NW clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1 strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV and Tacaribe (TCRV, two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens.

  17. Neisseria lactamica antigens complexed with a novel cationic adjuvant

    OpenAIRE

    Gaspar, Emanuelle B.; Rosetti, Andreza S.; Lincopan, Nilton; De Gaspari, Elizabeth

    2013-01-01

    Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA...

  18. Analytical specificity and sensitivity of the APTIMA Combo 2 and APTIMA GC assays for detection of commensal Neisseria species and Neisseria gonorrhoeae on the Gen-Probe Panther instrument.

    Science.gov (United States)

    Golparian, Daniel; Tabrizi, Sepehr N; Unemo, Magnus

    2013-02-01

    Genetic detection of Neisseria gonorrhoeae is replacing culture for increased diagnostic sensitivity. Specificity of several nucleic acid amplification tests is suboptimal. Herein, the Gen-Probe APTIMA Combo 2 and APTIMA GC assays had 100% specificity and 100% sensitivity after confirmatory testing, when testing 298 isolates of nongonococcal Neisseria and related species and 205 gonococcal isolates.

  19. Superoxol and aminopeptidase tests for identification of pathogenic Neisseria species and Moraxella (Branhamella) catarrhalis.

    Science.gov (United States)

    Pérez, J L; Pulido, A; Gómez, E; Sauca, G; Martín, R

    1990-06-01

    The superoxol test, and prolyl aminopeptidase and gammaglutamyl aminopeptidase tests were evaluated for the detection of pathogenic Neisseria spp. using 317 strains of Neisseria-ceae. The superoxol test was positive for all 116 gonococci and 62 Moraxella (Branhamella) catarrhalis strains, but also for three strains of Neisseria meningitidis, one strain of Neisseria lactamica and eight saprophytic neisseriae. When using strains grown on Thayer-Martin medium, the positive and negative predictive values of the superoxol test for the identification of Neisseria gonorrhoeae were 96.7% and 100% respectively. Meningococci were the only neisseriae growing on Thayer-Martin medium that showed gamma-glutamyl aminopeptidase activity. The prolyl aminopeptidase test showed low specificity.

  20. Cellular and lipopolysaccharide fatty acid composition of the type strains of Klebsiella pneumoniae, Klebsiella oxytoca, and Klebsiella nonpathogenic species.

    Science.gov (United States)

    Vasyurenko, Z P; Opanasenko, L S; Koval', G M; Turyanitsa, A I; Ruban, N M

    2001-01-01

    The cellular and lipopolysaccharide (LPS) fatty acid compositions of the type strains of Klebsiella pneumoniae, K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" were studied. The cellular fatty acids of klebsiellae were presented by straight-chain saturated and monounsaturated, cyclopropane, and hydroxy fatty acids. Hexadecanoic, methylenehexadecanoic, octadecenoic and hexadecenoic acids prevailed. The K. pneumoniae strain mainly differed from the strains of other species by two and more times lower level of dodecanoic acid in cells. Variations of cyclopropane and unsaturated fatty acid contents in cells were observed. LPS fatty acids profiles of klebsiellae mainly consisted of straight-chain saturated and hydroxy fatty acids with predominance of tetradecanoic and 3-hydroxytetradecanoic acids. LPS fatty acids profiles of K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" strains were very similar and differed from that of the K. pneumoniae strain by higher levels of dodecanoic acid (approximately 5-6 times) and absence of 2-hydroxytetradecanoic acid. The obtained data indicated more close relatedness of K. oxytoca, K. terrigena, and K. planticola and some their remoteness from K. pneumoniae.

  1. Biodegradation of Selected Nigerian Fruit Peels by the use of a Non-pathogenic Rhizobium species CWP G34B.

    Science.gov (United States)

    Esther Boboye, Bolatito; Ajayi, George Olarewaju

    2012-01-01

    This study was carried out to determine the ability of Rhizobium species CWP G34B to degrade the peels of selected Nigerian fruits. The potential of the bacterium to digest some carbon sources (lactose, maltose, sucrose and mannitol) and peels of some Nigerian fruits (pineapple, orange, plantain, banana, pawpaw and mango fruits) was investigated by growing the organism on the substances separately after which DNSA reagent method was used to quantify glucose released into the medium. The results showed that the bacterium was able to degrade all the carbohydrates with the highest and the lowest glucose concentrations of 5.52 mg/ml for lactose and 0.50 mg/ml for mannitol. The carbohydrate-catabolic-enzyme (CCE) activity ranged from 0.169 mg/ml to 1.346 mg/ml glucose per mg/ml protein. Mannitol exhibited the highest CCE activity while the lowest activity was observed in the presence of sucrose. The amount of extracellular protein synthesized was highest (9.803 mg/ml) in the presence of maltose and lowest (0.925 mg/ml) in mannitol. The mean polygalacturonase activity was 0.54 unit/ml when the bacterium was grown in pectin in contrast to 0.28 unit/ml when it was grown in mannitol. The bacterium showed ability to breakdown the peels of the Nigerian fruits with the highest capability in banana and pineapple (0.42 and 0.41 mg/ml glucose per mg/ml protein respectively). The fruit-peel-degrading enzyme activity was lowest in orange peel (0.75 unit/ml).

  2. Draft Genome Sequence of the Dimorphic Fungus Sporothrix pallida, a Nonpathogenic Species Belonging to Sporothrix, a Genus Containing Agents of Human and Feline Sporotrichosis

    Science.gov (United States)

    D’Alessandro, Enrico; Giosa, Domenico; Huang, Lilin; Zhang, Jing; Gao, Wenchao; Brankovics, Balazs; Oliveira, Manoel Marques Evangelista; Scordino, Fabio; Lo Passo, Carla; Criseo, Giuseppe; van Diepeningen, Anne D.; Huang, Huaiqiu; de Hoog, G. Sybren

    2016-01-01

    Sporothrix pallida is considered to be a mostly avirulent environmental fungus, phylogenetically closely related to the well-known pathogen Sporothrix schenckii. Here, we present the first assembly of its genome, which provides a valuable resource for future comparative genomic studies between nonpathogenic and pathogenic Sporothrix spp. PMID:27034494

  3. The use of high-throughput DNA sequencing in the investigation of antigenic variation: application to Neisseria species.

    Directory of Open Access Journals (Sweden)

    John K Davies

    Full Text Available Antigenic variation occurs in a broad range of species. This process resembles gene conversion in that variant DNA is unidirectionally transferred from partial gene copies (or silent loci into an expression locus. Previous studies of antigenic variation have involved the amplification and sequencing of individual genes from hundreds of colonies. Using the pilE gene from Neisseria gonorrhoeae we have demonstrated that it is possible to use PCR amplification, followed by high-throughput DNA sequencing and a novel assembly process, to detect individual antigenic variation events. The ability to detect these events was much greater than has previously been possible. In N. gonorrhoeae most silent loci contain multiple partial gene copies. Here we show that there is a bias towards using the copy at the 3' end of the silent loci (copy 1 as the donor sequence. The pilE gene of N. gonorrhoeae and some strains of Neisseria meningitidis encode class I pilin, but strains of N. meningitidis from clonal complexes 8 and 11 encode a class II pilin. We have confirmed that the class II pili of meningococcal strain FAM18 (clonal complex 11 are non-variable, and this is also true for the class II pili of strain NMB from clonal complex 8. In addition when a gene encoding class I pilin was moved into the meningococcal strain NMB background there was no evidence of antigenic variation. Finally we investigated several members of the opa gene family of N. gonorrhoeae, where it has been suggested that limited variation occurs. Variation was detected in the opaK gene that is located close to pilE, but not at the opaJ gene located elsewhere on the genome. The approach described here promises to dramatically improve studies of the extent and nature of antigenic variation systems in a variety of species.

  4. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species.

    Directory of Open Access Journals (Sweden)

    Jamie-Lee Berry

    Full Text Available Natural transformation is the widespread biological process by which "competent" bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or "transformed". To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.

  5. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species.

    Directory of Open Access Journals (Sweden)

    Jamie-Lee Berry

    Full Text Available Natural transformation is the widespread biological process by which "competent" bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or "transformed". To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.

  6. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06

    Directory of Open Access Journals (Sweden)

    White Brian

    2010-11-01

    Full Text Available Abstract Background The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. Results Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. Conclusion The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.

  7. Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage.

    Science.gov (United States)

    Vaughan, Andrew T; Gorringe, Andrew; Davenport, Victoria; Williams, Neil A; Heyderman, Robert S

    2009-02-15

    The normal flora that colonizes the mucosal epithelia has evolved diverse strategies to evade, modulate, or suppress the immune system and avoid clearance. Neisseria lactamica and Neisseria meningitidis are closely related obligate inhabitants of the human upper respiratory tract. N. lactamica is a commensal but N. meningitidis is an opportunistic pathogen that occasionally causes invasive disease such as meningitis and septicemia. We demonstrate that unlike N. meningitidis, N. lactamica does not prime the development of mucosal T or B cell memory during the peak period of colonization. This cannot be explained by the induction of peripheral tolerance or regulatory CD4(+)CD25(+) T cell activity. Instead, N. lactamica mediates a B cell-dependent mitogenic proliferative response that is absent to N. meningitidis. This mitogenic response is associated with the production of T cell-independent polyclonal IgM that we propose functions by shielding colonizing N. lactamica from the adaptive immune system, maintaining immunological ignorance in the host. We conclude that, in contrast to N. meningitidis, N. lactamica maintains a commensal relationship with the host in the absence of an adaptive immune response. This may prolong the period of susceptibility to colonization by both pathogenic and nonpathogenic Neisseria species.

  8. Neisseria lactamica antigens complexed with a novel cationic adjuvant.

    Science.gov (United States)

    Gaspar, Emanuelle B; Rosetti, Andreza S; Lincopan, Nilton; De Gaspari, Elizabeth

    2013-03-01

    Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA-BF were colloidally stable, exhibiting a mean diameter and charge optimal for antigen presentation. Immunogenicity tests for these complexes were performed in mice. A single dose of OMV/DDA-BF was sufficient to induce a (DTH) response, while the same result was achieved only after two doses of OMV/alum. In addition, to achieve total IgG levels that are similar to a single immunization with OMV/DDA-BF, it was necessary to give the mice a second dose of OMV/alum. Moreover, the antibodies induced from a single immunization with OMV/DDA-BF had an intermediate avidity, but antibodies with a similar avidity were only induced by OMV/alum after two immunizations. The use of this novel cationic adjuvant for the first time with a N. lactamica OMV preparation revealed good potential for future vaccine design.

  9. Enfoques mucosales en vacunologia de Neisseria

    Directory of Open Access Journals (Sweden)

    Pérez O

    2009-08-01

    Full Text Available Meningococcal B strains accounts for some 72% and 28% of meningococcal diseases in infants and toddlers in Europe and the USA, respectively. Nevertheless, meningococcal diseases are rare in Cuba owing to the wide spread program on antimeningococcal vaccination in the country. Finlay Institute is one of the pioneering organizations in Neisseria Vaccinology mainly by its contribution to N. meningitidis serogroup B outer membrane-based bivalent vaccine, VA-MENGOC-BC™. This vaccine was given intramuscularly in more than 60 million doses corresponding 10.7 millions of them to Cuban young adults, children, and infants. However, most dangerous or commensally Neisseria strains enter and establish in the mucosa, where the secretory (S IgA is the main specific guardian and is mainly induced by mucosal routes. However, few mucosal vaccines exist principally due to the absent of mucosal adjuvants. We develop a Finlay Adjuvant (AF platform based in outer membrane vesicles (Proteoliposome, PL and its derivate Cochleate (Co. AFPL1 derived from serogroup B N. meningitidis is a potent Th1/CTL driving parenteral adjuvant. AFCo1 is a potent mucosal adjuvant. Therefore, we sought to go deeper in the possible mucosal cross recognition between N. meningitidis serogroups and Neisseria species and explore a concurrent mucosal and parenteral immunization strategy (SinTimVaS in order to develop suitable mucosal vaccines. Experiments were conducted in Balb/c or C57Bl6 mice with mucosal and systemic immunization using AFCo1 and AFPL1. Human sera and saliva were also analyzed for cross cognition. Mucosal cross recognition at SIgA level in human saliva between N. meningitidis serogroups B, A, C, Y, and W135 were observed. This SIgA cross recognition response was also observed between pathogenic (N. meningitidis serogroup B, N. gonorrhoeae and non-pathogenic strains (N. flava, N. lactamica. The possible influence of meningococcal vaccination against Gonorrhea was also

  10. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation.

    OpenAIRE

    Bowler, L. D.; Zhang, Q Y; Riou, J Y; Spratt, B G

    1994-01-01

    The penicillin-binding protein 2 genes (penA) of penicillin-resistant Neisseria meningitidis have a mosaic structure that has arisen by the introduction of regions from the penA genes of Neisseria flavescens or Neisseria cinerea. Chromosomal DNA from both N. cinerea and N. flavescens could transform a penicillin-susceptible isolate of N. meningitidis to increased resistance to penicillin. With N. flavescens DNA, transformation to resistance was accompanied by the introduction of the N. flaves...

  11. Nonpathogenic Entamoeba dispar quickly outgrows pathogenic Entamoeba histolytica in mixed xenic cultures.

    Science.gov (United States)

    Pysova, I; Tumova, P; Tolarova, V; Nohynkova, E

    2009-04-01

    Entamoeba histolytica and Entamoeba dispar are two microscopically indistinguishable amoebae living in the human colon. The former is a pathogen, whereas the latter is a nonpathogenic commensal. Using a model system of in vitro cocultures and PCR detection of the Entamoeba species, we found that the nonpathogenic species can rapidly outgrow the pathogen in xenic cultures.

  12. Susceptibility of pathogenic and nonpathogenic Naegleria ssp

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, L.Y.

    1988-01-01

    The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenic or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.

  13. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    Science.gov (United States)

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  14. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Full Text Available Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%, predicted hydrophobicity and molecular weight (Da using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1 client workstation, (2 web server, (3 application server, and (4 database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs, 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence

  15. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.

    Science.gov (United States)

    Elshikh, Mohamed; Funston, Scott; Chebbi, Alif; Ahmed, Syed; Marchant, Roger; Banat, Ibrahim M

    2017-05-25

    Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur.

  16. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation.

    Science.gov (United States)

    Bowler, L D; Zhang, Q Y; Riou, J Y; Spratt, B G

    1994-01-01

    The penicillin-binding protein 2 genes (penA) of penicillin-resistant Neisseria meningitidis have a mosaic structure that has arisen by the introduction of regions from the penA genes of Neisseria flavescens or Neisseria cinerea. Chromosomal DNA from both N. cinerea and N. flavescens could transform a penicillin-susceptible isolate of N. meningitidis to increased resistance to penicillin. With N. flavescens DNA, transformation to resistance was accompanied by the introduction of the N. flavescens penA gene, providing a laboratory demonstration of the interspecies recombinational events that we believe underlie the development of penicillin resistance in many meningococci in nature. Surprisingly, with N. cinerea DNA, the penicillin-resistant transformants did not obtain the N. cinerea penA gene. However, the region of the penA gene derived from N. cinerea in N. meningitidis K196 contained an extra codon (Asp-345A) which was not found in any of the four N. cinerea isolates that we examined and which is known to result in a decrease in the affinity of PBP 2 in gonococci.

  17. Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba.

    Science.gov (United States)

    Khan, Naveed A; Jarroll, Edward L; Paget, Timothy A

    2002-09-01

    In this study, 14 isolates of Acanthamoeba from both clinical and environmental sources belonging to seven different species were assayed for tolerance of high osmotic pressure, temperature tolerance, extracellular proteases, and cytopathic effects (CPE) on immortalized rabbit corneal epithelial cells. On the basis of the results, amoeba isolates were divided into pathogenic and nonpathogenic groups. Ribosomal DNA sequencing was performed on these isolates. Phylogenetic relationships revealed that all the pathogenic strains tested clustered together as one group, while nonpathogenic strains clustered into other groups. Sequence comparisons with previously published sequences determined that among the six new pathogenic isolates used in this study, five belong to T4 genotype and one to T11. This is the first report of a T11 genotype being found in Acanthamoeba keratitis.

  18. Production of UC-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, J.M.; Mitchell, E.B. Jr.; Knapp, J.S.; Buttke, T.M.

    1985-09-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. UC-labeled gas was produced significantly faster by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the UC-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits.

  19. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea.

    Science.gov (United States)

    Boyce, J M; Mitchell, E B; Knapp, J S; Buttke, T M

    1985-09-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster (P less than 0.02) by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the 14C-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits.

  20. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria.

    Science.gov (United States)

    Barth, Kenneth R; Isabella, Vincent M; Clark, Virginia L

    2009-12-01

    Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only Neisseria mucosa contained a nitrate reductase (Nar), and only Neisseria lactamica, Neisseria cinerea, Neisseria subflava, Neisseria flavescens and Neisseria sicca contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except N. mucosa had a two- to fourfold lower nitrite reductase activity than N. gonorrhoeae, while N. meningitidis and most of the commensal Neisseria species had a two- to fourfold higher nitric oxide (NO) reductase activity. For N. meningitidis and most of the commensal Neisseria, there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with N. gonorrhoeae. All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of N. gonorrhoeae. The greatest difference between the Neisseria species was the lack of a functional Nos system in the pathogenic species N. gonorrhoeae and N. meningitidis.

  1. Conservation of Meningococcal Antigens in the Genus Neisseria

    OpenAIRE

    Muzzi, Alessandro; Mora, Marirosa; Pizza, Mariagrazia; Rappuoli, Rino; Donati, Claudio

    2013-01-01

    ABSTRACT Neisseria meningitidis, one of the major causes of bacterial meningitis and sepsis, is a member of the genus Neisseria, which includes species that colonize the mucosae of many animals. Three meningococcal proteins, factor H-binding protein (fHbp), neisserial heparin-binding antigen (NHBA), and N. meningitidis adhesin A (NadA), have been described as antigens protective against N. meningitidis of serogroup B, and they have been employed as vaccine components in preclinical and clinic...

  2. A novel metal transporter mediating manganese export (MntX regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence.

    Directory of Open Access Journals (Sweden)

    Frédéric J Veyrier

    2011-09-01

    Full Text Available Neisseria meningitidis (Nm and N. gonorrhoeae (Ng are adapted to different environments within their human host. If the basis of this difference has not yet been fully understood, previous studies (including our own data have reported that, unlike Ng, Nm tolerates high manganese concentrations. As transition metals are essential regulators of cell growth and host pathogen interactions, we aimed to address mechanisms of Nm Mn²⁺ tolerance and its pathogenic consequences. Using bioinformatics, gene deletion and heterologous expression we identified a conserved bacterial manganese resistance factor MntX (formerly YebN. The predicted structure suggests that MntX represents a new family of transporters exporting Mn. In the Neisseria genus, this exporter is present and functional in all Nm isolates but it is mutated in a majority of Ng strains and commonly absent in nonpathogenic species. In Nm, Mn²⁺ export via MntX regulates the intracellular Mn/Fe ratio and protects against manganese toxicity that is exacerbated in low iron conditions. MntX is also important for N. meningitidis to resist killing by human serum and for survival in mice blood during septicemia. The present work thus points to new clues about Mn homeostasis, its interplay with Fe metabolism and the influence on N. meningitidis physiology and pathogenicity.

  3. A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence

    Science.gov (United States)

    Veyrier, Frédéric J.; Boneca, Ivo G.; Cellier, Mathieu F.; Taha, Muhamed-Kheir

    2011-01-01

    Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) are adapted to different environments within their human host. If the basis of this difference has not yet been fully understood, previous studies (including our own data) have reported that, unlike Ng, Nm tolerates high manganese concentrations. As transition metals are essential regulators of cell growth and host pathogen interactions, we aimed to address mechanisms of Nm Mn2+ tolerance and its pathogenic consequences. Using bioinformatics, gene deletion and heterologous expression we identified a conserved bacterial manganese resistance factor MntX (formerly YebN). The predicted structure suggests that MntX represents a new family of transporters exporting Mn. In the Neisseria genus, this exporter is present and functional in all Nm isolates but it is mutated in a majority of Ng strains and commonly absent in nonpathogenic species. In Nm, Mn2+ export via MntX regulates the intracellular Mn/Fe ratio and protects against manganese toxicity that is exacerbated in low iron conditions. MntX is also important for N. meningitidis to resist killing by human serum and for survival in mice blood during septicemia. The present work thus points to new clues about Mn homeostasis, its interplay with Fe metabolism and the influence on N. meningitidis physiology and pathogenicity. PMID:21980287

  4. The Biology of Neisseria Adhesins

    Directory of Open Access Journals (Sweden)

    Miao-Chiu Hung

    2013-07-01

    Full Text Available Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.

  5. Tricuspid valve endocarditis due to Neisseria cinerea.

    Science.gov (United States)

    Benes, J; Dzupova, O; Krizova, P; Rozsypal, H

    2003-02-01

    Reported here is a case of infective endocarditis caused by the saprophytic species Neisseria cinerea. To the best of our knowledge, this etiology has not been documented in the medical literature previously. The patient was an intravenous drug addict who developed tricuspid endocarditis with lung embolism. The disease was cured after treatment with ampicillin/clavulanate that was changed to ceftriaxone after an embolic event.

  6. Conjugative plasmids of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids

  7. Neisseria meningitidis B vaccines.

    Science.gov (United States)

    Panatto, Donatella; Amicizia, Daniela; Lai, Piero Luigi; Gasparini, Roberto

    2011-09-01

    Invasive infections caused by Neisseria meningitidis are a serious public health problem worldwide and have a heavy economic impact. The incidence of invasive disease due to Neisseria meningitidis is highly variable according to geographical area and serogroup distribution. Since the introduction of vaccination programs with conjugated vaccine C in children and adolescents, most cases of invasive meningococcal disease in developed countries have been caused by meningococcus B. It is important to underline that invasive meningococcal disease will not be controlled until safe and effective vaccines for meningococcal B are available and widely used. The aims of this article are to describe the most recent developments in meningococcal B vaccines and to discuss how these vaccines can contribute to containing meningococcal disease.

  8. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response trhough Toll-like receptors 2, 4, and 9 in species-specific patterns

    DEFF Research Database (Denmark)

    Mogensen, T.H.; Paludan, Søren Riis; Kilian, Mogens

    2006-01-01

    activation by live bacteria. Here, we demonstrate that live Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitidis, the three principal causes of bacterial meningitis, use distinct sets of TLRs to trigger the inflammatory response. Using human embryonic kidney 293 cell lines......, each overexpressing one type of TLR, we found that S. pneumoniae triggered activation of the transcription factor nuclear factor-kappaB and expression of interleukin-8, only in cells expressing TLR2 or -9. The same response was evoked by H. influenzae in cells expressing TLR2 or -4 and by N....... meningitidis in cells expressing TLR2, -4, or -9. It is interesting that the ability of S. pneumoniae and N. meningitidis to activate TLR9 was severely attenuated when bacteria had been heat-inactivated prior to stimulation of the cells. In human peripheral blood mononuclear cells, we blocked TLR2, -4, or -9...

  9. Sulphonamide resistant commensal Neisseria with alterations in the dihydropteroate synthase can be isolated from carriers not exposed to sulphonamides

    OpenAIRE

    Swedberg Göte; Qvarnström Yvonne

    2002-01-01

    Abstract Background Development of sulphonamide resistance in Neisseria meningitidis has been suggested to involve horizontal DNA-transfer from a commensal Neisseria species. In this study, we isolated commensal Neisseria from throat specimens and examined the isolates with respect to sulphonamide resistance. Results Three resistant clones were identified and the resistance phenotype could be explained by amino acid variations in their dihydropteroate synthase, the target molecule for sulphon...

  10. Cryptic Polyketide Synthase Genes in Non-Pathogenic Clostridium SPP

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-01-01

    Modular type I polyketide synthases (PKS) produce a vast array of bacterial metabolites with highly diverse biological functions. Notably, all known polyketides were isolated from aerobic bacteria, and yet no example has been reported for strict anaerobes. In this study we explored the diversity and distribution of PKS genes in the genus Clostridium. In addition to comparative genomic analyses combined with predictions of modular type I polyketide synthase (PKS) gene clusters in sequenced genomes of Clostridium spp., a representative selection of other species inhabiting a variety of ecological niches was investigated by PCR screening for PKS genes. Our data reveal that all studied pathogenic Clostridium spp. are devoid of putative PKS genes. In stark contrast, cryptic PKS genes are widespread in genomes of non-pathogenic Clostridium species. According to phylogenetic analyses, the Clostridium PKS genes have unusual and diverse origins. However, reverse transcription quantitative PCR demonstrates that these genes are silent under standard cultivation conditions, explaining why the related metabolites have been overlooked until now. This study presents clostridia as a putative source for novel bioactive polyketides. PMID:22235310

  11. Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae.

    Science.gov (United States)

    Katharios-Lanwermeyer, S; Rakic-Martinez, M; Elhanafi, D; Ratani, S; Tiedje, J M; Kathariou, S

    2012-11-01

    Resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) may be an important contributor to the ability of Listeria spp. to persist in the processing plant environment. Although a plasmid-borne disinfectant resistance cassette (bcrABC) has been identified in Listeria monocytogenes, horizontal transfer of these genes has not been characterized. Nonpathogenic Listeria spp. such as L. innocua and L. welshimeri are more common than L. monocytogenes in food processing environments and may contribute to the dissemination of disinfectant resistance genes in listeriae, including L. monocytogenes. In this study, we investigated conjugative transfer of resistance to BC and to cadmium from nonpathogenic Listeria spp. to other nonpathogenic listeriae, as well as to L. monocytogenes. BC-resistant L. welshimeri and L. innocua harboring bcrABC, along with the cadmium resistance determinant cadA2, were able to transfer resistance to other nonpathogenic listeriae as well as to L. monocytogenes of diverse serotypes, including strains from the 2011 cantaloupe outbreak. Transfer among nonpathogenic Listeria spp. was noticeably higher at 25°C than at 37°C, whereas acquisition of resistance by L. monocytogenes was equally efficient at 25 and 37°C. When the nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection between these resistance attributes. The results suggest that nonpathogenic Listeria spp. may behave as reservoirs for disinfectant and heavy metal resistance genes for other listeriae, including the pathogenic species L. monocytogenes.

  12. Coselection of Cadmium and Benzalkonium Chloride Resistance in Conjugative Transfers from Nonpathogenic Listeria spp. to Other Listeriae

    Science.gov (United States)

    Katharios-Lanwermeyer, S.; Rakic-Martinez, M.; Elhanafi, D.; Ratani, S.; Tiedje, J. M.

    2012-01-01

    Resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) may be an important contributor to the ability of Listeria spp. to persist in the processing plant environment. Although a plasmid-borne disinfectant resistance cassette (bcrABC) has been identified in Listeria monocytogenes, horizontal transfer of these genes has not been characterized. Nonpathogenic Listeria spp. such as L. innocua and L. welshimeri are more common than L. monocytogenes in food processing environments and may contribute to the dissemination of disinfectant resistance genes in listeriae, including L. monocytogenes. In this study, we investigated conjugative transfer of resistance to BC and to cadmium from nonpathogenic Listeria spp. to other nonpathogenic listeriae, as well as to L. monocytogenes. BC-resistant L. welshimeri and L. innocua harboring bcrABC, along with the cadmium resistance determinant cadA2, were able to transfer resistance to other nonpathogenic listeriae as well as to L. monocytogenes of diverse serotypes, including strains from the 2011 cantaloupe outbreak. Transfer among nonpathogenic Listeria spp. was noticeably higher at 25°C than at 37°C, whereas acquisition of resistance by L. monocytogenes was equally efficient at 25 and 37°C. When the nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection between these resistance attributes. The results suggest that nonpathogenic Listeria spp. may behave as reservoirs for disinfectant and heavy metal resistance genes for other listeriae, including the pathogenic species L. monocytogenes. PMID:22904051

  13. Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes.

    Science.gov (United States)

    Kim, J J; Mandrell, R E; Griffiss, J M

    1989-02-01

    Neisseria lactamica, a common human pharyngeal commensal, contributes to acquired immunity to Neisseria meningitidis. To define the surface antigens shared between these two species, we used monoclonal antibodies (MAbs) to study 35 N. lactamica strains isolated in various parts of the world for cross-reactivity with meningococcal capsules, outer membrane proteins, and lipooligosaccharides (LOS). No N. lactamica strain reacted significantly with MAbs specific for capsular group A, B, C, Y, or W, and we were unable to extract capsular polysaccharide from them. Only 2 of 33 strains reacted weakly with MAbs against class 2 serotype proteins P2b and P2c. None reacted with MAbs specific for meningococcal class 1 protein P1.2 or P1.16 or class 2/3 serotype protein P2a or P15. Most N. lactamica strains (30 of 35) bound one or more of seven LOS-specific MAbs. Two LOS epitopes, defined by MAbs O6B4 and 3F11, that are commonly found on pathogenic Neisseria species were found on 25 of 35 N. lactamica. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting showed that the LOS of N. lactamica are composed of multiple components that are physically and antigenically similar to the LOS of pathogenic Neisseria species. Among four other commensal neisserial species, only Neisseria cinerea shared LOS epitopes defined by MAbs O6B4 and 3F11. Previous studies have shown that pharyngeal colonization with N. lactamica induces bactericidal antibodies against the meningococcus. We postulate that shared N. lactamica and meningococcal LOS epitopes may play an important role in the development of natural immunity to the meningococcus.

  14. Association of Neisseria cinerea with ocular infections in paediatric patients.

    Science.gov (United States)

    Dolter, J; Wong, J; Janda, J M

    1998-01-01

    Twenty-two strains of Neisseria cinerea were recovered from paediatric patients over a 7-year period and forwarded to the Microbial Diseases Laboratory for biochemical identification and/or confirmation. Eighteen of these 22 strains (82%) were recovered from the eyes of very young children ( 50% occurring during the neonatal period. The majority of eye isolates were involved in a variety of ocular infections including orbital cellulitis, conjunctivitis, and eye discharge (most common); in four of the 13 instances (31%) where laboratory data was available, Neisseria cinerea was recovered in pure culture. Neisseria cinerea isolates were often submitted to the Microbial Diseases Laboratory as possible 'N. gonorrhoeae' or 'Neisseria species' due to problems resulting from the use of commercial assays or unfamiliarity with the organism. These observations indicate that N. cinerea can produce eye infections in very young children, who presumably acquire this organism vertically from the mother during birth. Accurate identification of N. cinerea in such infants can preclude the social trauma and possible legal ramifications which can initially result from its misidentification as N. gonorrhoeae.

  15. Sulphonamide resistant commensal Neisseria with alterations in the dihydropteroate synthase can be isolated from carriers not exposed to sulphonamides

    Directory of Open Access Journals (Sweden)

    Swedberg Göte

    2002-11-01

    Full Text Available Abstract Background Development of sulphonamide resistance in Neisseria meningitidis has been suggested to involve horizontal DNA-transfer from a commensal Neisseria species. In this study, we isolated commensal Neisseria from throat specimens and examined the isolates with respect to sulphonamide resistance. Results Three resistant clones were identified and the resistance phenotype could be explained by amino acid variations in their dihydropteroate synthase, the target molecule for sulphonamides. Some of these variations occurred in positions corresponding to previously detected variations in resistant N. meningitidis. Conclusions Sulphonamide resistant commensal Neisseria were isolated from an environment not exposed to sulphonamides, suggesting that resistant Neisseria has become a natural part of the commensal throat flora.

  16. Proctitis associated with Neisseria cinerea misidentified as Neisseria gonorrhoeae in a child.

    OpenAIRE

    Dossett, J H; Appelbaum, P. C.; Knapp, J S; Totten, P A

    1985-01-01

    An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirme...

  17. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults.

    OpenAIRE

    Knapp, J S; Hook, E W

    1988-01-01

    Neisseria cinerea is a commensal Neisseria sp. which was first described in 1906 but was subsequently misclassified as a subtype of Branhamella catarrhalis. N. cinerea resembles Neisseria gonorrhoeae in both cultural and biochemical characteristics and, thus, may also have been misidentified as N. gonorrhoeae. Of 202 patients whose oropharynges were colonized by Neisseria spp., N. cinerea was isolated in 57 (28.2%) patients, including 25 (30.1%) of 83 women, 22 (23.9%) of 92 heterosexual men,...

  18. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation.

    Science.gov (United States)

    Cesbron, Sophie; Briand, Martial; Essakhi, Salwa; Gironde, Sophie; Boureau, Tristan; Manceau, Charles; Fischer-Le Saux, Marion; Jacques, Marie-Agnès

    2015-01-01

    The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.

  19. Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation

    Directory of Open Access Journals (Sweden)

    Sophie eCesbron

    2015-12-01

    Full Text Available The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of Juglans regia in France called vertical oozing canker (VOC was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight, strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.

  20. Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria.

    Science.gov (United States)

    Davis, J; Smith, A L; Hughes, W R; Golomb, M

    2001-08-01

    The genomes of pathogenic Haemophilus influenzae strains are larger than that of Rd KW20 (Rd), the nonpathogenic laboratory strain whose genome has been sequenced. To identify potential virulence genes, we examined genes possessed by Int1, an invasive nonencapsulated isolate from a meningitis patient, but absent from Rd. Int1 was found to have a novel gene termed lav, predicted to encode a member of the AIDA-I/VirG/PerT family of virulence-associated autotransporters (ATs). Associated with lav are multiple repeats of the tetranucleotide GCAA, implicated in translational phase variation of surface molecules. Laterally acquired by H. influenzae, lav is restricted in distribution to a few pathogenic strains, including H. influenzae biotype aegyptius and Brazilian purpuric fever isolates. The DNA sequence of lav is surprisingly similar to that of a gene previously described for Neisseria meningitidis. Sequence comparisons suggest that lav was transferred relatively recently from Haemophilus to Neisseria, shortly before the divergence of N. meningitidis and Neisseria gonorrhoeae. Segments of lav predicted to encode passenger and beta-domains differ sharply in G+C base content, supporting the idea that AT genes have evolved by fusing domains which originated in different genomes. Homology and base sequence comparisons suggest that a novel biotype aegyptius AT arose by swapping an unrelated sequence for the passenger domain of lav. The unusually mobile lav locus joins a growing list of genes transferred from H. influenzae to Neisseria. Frequent gene exchange suggests a common pool of hypervariable contingency genes and may help to explain the origin of invasiveness in certain respiratory pathogens.

  1. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Directory of Open Access Journals (Sweden)

    Miša Korva

    2013-12-01

    Full Text Available Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus, A. agrarius (Dobrava virus–Kurkino, M. glareolus (Puumala virus, S. areanus (Seewis virus,M. agrestis, M. arvalis and M. subterraneus (Tula virus. Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas.

  2. Transfer of plasmid-mediated ampicillin resistance from Haemophilus to Neisseria gonorrhoeae requires an intervening organism.

    Science.gov (United States)

    McNicol, P J; Albritton, W L; Ronald, A R

    1986-01-01

    Haemophilus species have been implicated as the source of plasmid-mediated ampicillin resistance in Neisseria gonorrhoeae. Previous attempts to transfer conjugally the resistance plasmids from Haemophilus species to N. gonorrhoeae have met with limited success. Using both biparental and triparental mating systems, it was found that transfer will occur if the commensal Neisseria species, Neisseria cinerea, is used as a transfer intermediate. This organism stably maintains resistance plasmids of Haemophilus and facilitates transfer of these plasmids to N. gonorrhoeae, in a triparental mating system, at a transfer frequency of 10(-8). Both Haemophilus ducreyi and N. gonorrhoeae carry mobilizing plasmids capable of mediating conjugal transfer of the same resistance plasmids. However, restriction endonuclease mapping and DNA hybridization studies indicate that the mobilizing plasmids are distinctly different molecules. Limited homology is present within the transfer region of these plasmids.

  3. Identification of Neisseria spp., Haemophilus spp., and other fastidious gram-negative bacteria with the MicroScan Haemophilus-Neisseria identification panel.

    Science.gov (United States)

    Janda, W M; Bradna, J J; Ruther, P

    1989-05-01

    The Haemophilus-Neisseria identification (HNID) panel (American MicroScan, Sacramento, Calif.) is a 4-h microdilution format system for identification of Haemophilus and Neisseria spp., Branhamella (Moraxella) catarrhalis, and Gardnerella vaginalis. The HNID panel was evaluated by using 423 clinical isolates and stock strains of these organisms, and HNID identifications were compared with those obtained by conventional methods. In addition, 32 isolates representing six genera not included in the HNID data base were tested to determine whether these organisms would produce unique biotype numbers for possible inclusion in the data base. The HNID panel correctly identified 95.3% of 86 Neisseria gonorrhoeae strains, 96% of 25 G. vaginalis strains, and 100% of 28 Neisseria lactamica strains and 48 B. catarrhalis strains. Only 64.7% of 68 Neisseria meningitidis isolates were identified correctly owing to false-negative or equivocal carbohydrate and/or aminopeptidase reactions. Among the Haemophilus spp., 98.8% of 83 H. influenzae strains, 97.1% of 34 H. parainfluenzae strains, and 80% of 15 H. aphrophilus and H. paraphrophilus strains were correctly identified. Eight strains of Neisseria cinerea, a species not included in the data base, produced profiles identical with those for B. catarrhalis and N. gonorrhoeae. Isolates of other species not included in the data base, including Eikenella corrodens, Kingella spp., and Cardiobacterium hominis, produced unique biochemical reaction patterns on the panel. Modification of interpretative criteria for certain tests, expansion of the data base to include other species, and suggestions for additional confirmatory tests will increase the accuracy and utility of the HNID panel.

  4. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Science.gov (United States)

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  5. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Mitchell, E B; Knapp, J S; Buttke, T M

    1985-01-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster (P less tha...

  6. Proctitis associated with Neisseria cinerea misidentified as Neisseria gonorrhoeae in a child.

    Science.gov (United States)

    Dossett, J H; Appelbaum, P C; Knapp, J S; Totten, P A

    1985-04-01

    An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirmed by additional serological, growth, and antibiotic susceptibility tests and, if necessary, by a reference laboratory. The implications of such misidentifications are discussed.

  7. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.

  8. Ophthalmia neonatorum caused by Neisseria cinerea.

    OpenAIRE

    Bourbeau, P; Holla, V; Piemontese, S

    1990-01-01

    Neisseria cinerea is an organism that has only recently been implicated as a human pathogen. In this case, N. cinerea was identified as the cause of ophthalmia neonatorum (conjunctivitis) in a 2-day-old girl.

  9. Ophthalmia neonatorum caused by Neisseria cinerea.

    Science.gov (United States)

    Bourbeau, P; Holla, V; Piemontese, S

    1990-07-01

    Neisseria cinerea is an organism that has only recently been implicated as a human pathogen. In this case, N. cinerea was identified as the cause of ophthalmia neonatorum (conjunctivitis) in a 2-day-old girl.

  10. Penicillin resistant neisseria gonorrhoeae at Aurangabad

    OpenAIRE

    Bhatambare G; Karyakarte R

    2001-01-01

    A total of 101 male patients with signs and symptoms suggestive of gonococcal urethritis were studied and 60 showed growth of Neisseria gonorrhoeae on culture. All the isolates were tested for antimicrobial susceptibility. Four strains of Neisseria gonorrhoeae were resistant to penicillin. The resistant strains were tested for production of b-lactamase. The rapid iodometric method for detection of b-lactamase showed that two strains produced b-lactamase.

  11. ABSCESO PERIAMIGDALINO CAUSADO POR NEISSERIA MENINGITIDIS.

    Directory of Open Access Journals (Sweden)

    March GA

    2012-01-01

    Full Text Available SUMMARY: PERITONSILLAR ABSCESS CAUSED BY NEISSERIA MENINGITIDIS Neisseria meningitidis is a higly virulent microorganism that can cause meningitis and sepsis. This microorganism can be cultivated from the throats of asymptomatic carriers and it likely enters the circulation through the upper respiratory tract but it is infrequent that N. meningitidis causes simple infections of the upper respiratory tract. Here we present a case report of peritonsillar abscess caused by N. meningitidis.

  12. Detection of Neisseria meningitidis in cerebrospinal fluid using a multiplex PCR and the Luminex detection technology

    DEFF Research Database (Denmark)

    Møller, Jens Kjølseth

    2012-01-01

    Rapid clinical and laboratory diagnoses are the foundation for a successful management of serious infections with Neisseria meningitidis. A species-specific multiplex polymerase chain reaction (PCR) coupled with fluidic microarrays using microbeads (the Luminex xMAP™ Technology) can detect pathog...

  13. Resistance of Neisseria gonorrhoeae to neutrophils

    Directory of Open Access Journals (Sweden)

    M. Brittany eJohnson

    2011-04-01

    Full Text Available Infection with the human-specific bacterial pathogen Neisseria gonorrhoeae triggers a potent, local inflammatory response driven by polymorphonuclear leukocytes (neutrophils or PMNs. PMNs are terminally differentiated phagocytic cells that are a vital component of the host innate immune response and are the first responders to bacterial and fungal infections. PMNs possess a diverse arsenal of components to combat microorganisms, including the production of reactive oxygen species and release of degradative enzymes and antimicrobial peptides. Despite numerous PMNs at the site of gonococcal infection, N. gonorrhoeae can be cultured from the PMN-rich exudates of individuals with acute gonorrhea, indicating that some bacteria resist killing by neutrophils. The contribution of PMNs to gonorrheal pathogenesis has been modeled in vivo by human male urethral challenge and murine female genital inoculation and in vitro using isolated primary PMNs or PMN-derived cell lines. These systems reveal that some gonococci survive and replicate within PMNs and suggest that gonococci defend themselves against PMNs in two ways: they express virulence factors that defend against PMNs’ oxidative and non-oxidative antimicrobial components, and they modulate the ability of PMNs to phagocytose gonococci and to release antimicrobial components. In this review, we will highlight the varied and complementary approaches used by N. gonorrhoeae to resist clearance by human PMNs, with an emphasis on gonococcal gene products that modulate bacterial-PMN interactions. Understanding how some gonococci survive exposure to PMNs will help guide future initiatives for combating gonorrheal disease.

  14. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults.

    Science.gov (United States)

    Knapp, J S; Hook, E W

    1988-05-01

    Neisseria cinerea is a commensal Neisseria sp. which was first described in 1906 but was subsequently misclassified as a subtype of Branhamella catarrhalis. N. cinerea resembles Neisseria gonorrhoeae in both cultural and biochemical characteristics and, thus, may also have been misidentified as N. gonorrhoeae. Of 202 patients whose oropharynges were colonized by Neisseria spp., N. cinerea was isolated in 57 (28.2%) patients, including 25 (30.1%) of 83 women, 22 (23.9%) of 92 heterosexual men, and 10 (37.0%) of 27 homosexual men in Seattle, Wash., in 1983 to 1984. N. cinerea was isolated from the urethra of only one (1.1%) patient. The oropharynges of many individuals were colonized persistently by strains of N. cinerea and other Neisseria spp.

  15. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria.

    Science.gov (United States)

    Wachter, Jenny; Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.

  16. Comparative transcriptional analysis of homologous pathogenic and non-pathogenic Lawsonia intracellularis isolates in infected porcine cells.

    Directory of Open Access Journals (Sweden)

    Fabio A Vannucci

    Full Text Available Lawsonia intracellularis is the causative agent of proliferative enteropathy. This disease affects various animal species, including nonhuman primates, has been endemic in pigs, and is an emerging concern in horses. Non-pathogenic variants obtained through multiple passages in vitro do not induce disease, but bacterial isolates at low passage induce clinical and pathological changes. We hypothesize that genes differentially expressed between pathogenic (passage 10 and non-pathogenic (passage 60 L. intracellularis isolates encode potential bacterial virulence factors. The present study used high-throughput sequencing technology to characterize the transcriptional profiling of a pathogenic and a non-pathogenic homologous L. intracellularis variant during in vitro infection. A total of 401 genes were exclusively expressed by the pathogenic variant. Plasmid-encoded genes and those involved in membrane transporter (e.g. ATP-binding cassette, adaptation and stress response (e.g. transcriptional regulators were the categories mostly responsible for this wider transcriptional landscape. The entire gene repertoire of plasmid A was repressed in the non-pathogenic variant suggesting its relevant role in the virulence phenotype of the pathogenic variant. Of the 319 genes which were commonly expressed in both pathogenic and non-pathogenic variants, no significant difference was observed by comparing their normalized transcription levels (fold change±2; p<0.05. Unexpectedly, these genes demonstrated a positive correlation (r(2 = 0.81; p<0.05, indicating the involvement of gene silencing (switching off mechanisms to attenuate virulence properties of the pathogenic variant during multiple cell passages. Following the validation of these results by reverse transcriptase-quantitative PCR using ten selected genes, the present study represents the first report characterizing the transcriptional profile of L. intracellularis. The complexity of the virulence

  17. Genetic diversity of non-pathogenic Clavibacter strains isolated from tomato seeds.

    Science.gov (United States)

    Zaluga, Joanna; Van Vaerenbergh, Johan; Stragier, Pieter; Maes, Martine; De Vos, Paul

    2013-09-01

    Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-transmitted, quarantine pathogen which causes bacterial wilt and canker of tomato. Despite efforts to prevent seed contamination, new introductions are regularly detected, associated with new regions of tomato seed production. It seems as if the expanding diversity of Cmm also challenges the limited host range. Clavibacter-like isolates from tomato seed are phenotypically similar to Cmm in the common diagnostic semi-selective media and are identified as Cmm in the customary tests but are not pathogenic to tomato. In our first study four representatives formed a separate cluster in gyrB sequence analysis and in MALDI-TOF MS. Their presence on seed prevents clear judgment on the health status of tomato seeds. As their nature and function are unclear we aimed to investigate and compare them to Cmm. Twenty strains described as Clavibacter-like isolated from tomato seed and not pathogenic to tomato plantlets were selected. Leaf spots, wilting or cankers were not induced after local or systemic inoculation. Tomato stems were not colonized nor was there evidence of survival in tomato stems. Total DNA-DNA hybridization and sequence analysis of gyrB and dnaA proved that they belong to the Cm species but can be unambiguously separated from Cmm. Some of the genes encoding virulence determinants in Cmm strains were also detected in some of the non-pathogenic isolates. Moreover, Cmm strains formed a coherent group, while non-pathogenic Cm strains were heterogenic. The latter was confirmed by BOX-PCR. We speculate that tomato seeds likely represent a larger reservoir of unexplored Clavibacter diversity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Cephalosporin resistance in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Manju Bala

    2010-01-01

    Full Text Available Gonorrhea, a disease of public health importance, not only leads to high incidence of acute infections and complications but also plays a major role in facilitating human immunodeficiency virus (HIV acquisition and transmission. One of the major public health needs for gonorrhea control is appropriate, effective treatment. However, treatment options for gonorrhea are diminishing as Neisseria gonorrhoeae have developed resistance to several antimicrobial drugs such as sulfonamides, penicillin, tetracyclines and quinolones. Antimicrobial resistance (AMR surveillance of N. gonorrhoeae helps establish and maintain the efficacy of standard treatment regimens. AMR surveillance should be continuous to reveal the emergence of new resistant strains, monitor the changing patterns of resistance, and be able to update treatment recommendations so as to assist in disease control. Current treatment guidelines recommend the use of single dose injectable or oral cephalosporins. The emergence and spread of cephalosporin resistant and multi drug resistant N. gonorrhoeae strains, represents a worrying trend that requires monitoring and investigation. Routine clinical laboratories need to be vigilant for the detection of such strains such that strategies for control and prevention could be reviewed and revised from time to time. It will be important to elucidate the genetic mechanisms responsible for decreased susceptibility and future resistance. There is also an urgent need for research of safe, alternative anti-gonococcal compounds that can be administered orally and have effective potency, allowing high therapeutic efficacy (greater than 95.0% cure rate.

  19. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Klee, S R; Nassif, X; Kusecek, B; Merker, P; Beretti, J L; Achtman, M; Tinsley, C R

    2000-04-01

    The pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae cause dramatically different diseases despite strong relatedness at the genetic and biochemical levels. N. meningitidis can cross the blood-brain barrier to cause meningitis and has a propensity for toxic septicemia unlike N. gonorrhoeae. We previously used subtractive hybridization to identify DNA sequences which might encode functions specific to bacteremia and invasion of the meninges because they are specific to N. meningitidis and absent from N. gonorrhoeae. In this report we show that these sequences mark eight genetic islands that range in size from 1.8 to 40 kb and whose chromosomal location is constant. Five of these genetic islands were conserved within a representative set of strains and/or carried genes with homologies to known virulence factors in other species. These were deleted, and the mutants were tested for correlates of virulence in vitro and in vivo. This strategy identified one island, region 8, which is needed to induce bacteremia in an infant rat model of meningococcal infection. Region 8 encodes a putative siderophore receptor and a disulfide oxidoreductase. None of the deleted mutants was modified in its resistance to the bactericidal effect of serum. Neither were the mutant strains altered in their ability to interact with endothelial cells, suggesting that such interactions are not encoded by large genetic islands in N. meningitidis.

  20. Exemplification of serological cross-reactivity of Neisseria lipopolysaccharides.

    Science.gov (United States)

    Maeland, J A; Smeland, S

    1986-08-01

    Antibodies against the Gc2 serotype determinant of gonococcal lipopolysaccharides (LPS) and antisera against strains of meningococci were tested by ELISA against the Gc2 LPS, and the antibodies examined for inhibition by bacteria of prototype strains of gonococci and meningococci. From one of the anti-meningococcal sera and anti-lactose (anti-lac) type of antibody was isolated. The results showed that antigenic sites belonging to the serotype, variable, and common sets of determinants as defined for gonococcal LPSs, may cross-react with meningococci. The anti-lac antibody combined with all of 34 strains of gonococci, with 41 out of 44 strains of meningococci tested, and with a Neisseria cinerea strain. The anti-lac showed no reactivity with any of a number of other Gram-negative cocci or bacilli examined. The results indicate that LPS from most strains of the pathogenic Neisseria species share a lactosyl moiety, presumably an inner core structure, of similar or identical configuration.

  1. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  2. Expression of phosphofructokinase in Neisseria meningitidis

    NARCIS (Netherlands)

    Baart, G.J.E.; Langenhof, M.; Waterbeemd, van de B.; Hamstra, H.J.; Zomer, B.; Pol, van der L.A.; Beuvery, E.C.; Tramper, J.; Martens, D.E.

    2010-01-01

    Neisseria meningitidis serogroup B is a pathogen that can infect diverse sites within the human host. According to the N. meningitidis genomic information and experimental observations, glucose can be completely catabolized through the Entner–Doudoroff pathway and the pentose phosphate pathway. The

  3. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history

    OpenAIRE

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects o...

  4. Neisseria arctica sp. nov. isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska

    Science.gov (United States)

    Hansen, Cristina M.; Himschoot, Elizabeth; Hare, Rebekah F.; Meixell, Brandt; Van Hemert, Caroline R.; Hueffer, Karsten

    2017-01-01

    During the summers of 2013 and 2014, isolates of a novel Gram-negative coccus in the Neisseria genus were obtained from the contents of nonviable greater white-fronted goose (Anser albifrons) eggs on the Arctic Coastal Plain of Alaska. We used a polyphasic approach to determine whether these isolates represent a novel species. 16S rRNA gene sequences, 23S rRNA gene sequences, and chaperonin 60 gene sequences suggested that these Alaskan isolates are members of a distinct species that is most closely related to Neisseria canis, N. animaloris, and N. shayeganii. Analysis of the rplF gene additionally showed that our isolates are unique and most closely related to N. weaveri. Average nucleotide identity of the whole genome sequence of our type strain was between 71.5% and 74.6% compared to close relatives, further supporting designation as a novel species. Fatty acid methyl ester analysis showed a predominance of C14:0, C16:0, and C16:1ω7c fatty acids. Finally, biochemical characteristics distinguished our isolates from other Neisseria species. The name Neisseria arctica (type strain KH1503T = ATCC TSD-57T = DSM 103136T) is proposed.

  5. Nucleotide sequence composition and method for detection of neisseria gonorrhoeae

    Energy Technology Data Exchange (ETDEWEB)

    Lo, A.; Yang, H.L.

    1990-02-13

    This patent describes a composition of matter that is specific for {ital Neisseria gonorrhoeae}. It comprises: at least one nucleotide sequence for which the ratio of the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria gonorrhoeae} to the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria meningitidis} is greater than about five. The ratio being obtained by a method described.

  6. Description of an unusual Neisseria meningitidis isolate containing and expressing Neisseria gonorrhoeae-Specific 16S rRNA gene sequences.

    Science.gov (United States)

    Walcher, Marion; Skvoretz, Rhonda; Montgomery-Fullerton, Megan; Jonas, Vivian; Brentano, Steve

    2013-10-01

    An apparently rare Neisseria meningitidis isolate containing one copy of a Neisseria gonorrhoeae 16S rRNA gene is described herein. This isolate was identified as N. meningitidis by biochemical identification methods but generated a positive signal with Gen-Probe Aptima assays for the detection of Neisseria gonorrhoeae. Direct 16S rRNA gene sequencing of the purified isolate revealed mixed bases in signature regions that allow for discrimination between N. meningitidis and N. gonorrhoeae. The mixed bases were resolved by sequencing individually PCR-amplified single copies of the genomic 16S rRNA gene. A total of 121 discrete sequences were obtained; 92 (76%) were N. meningitidis sequences, and 29 (24%) were N. gonorrhoeae sequences. Based on the ratio of species-specific sequences, the N. meningitidis strain seems to have replaced one of its four intrinsic 16S rRNA genes with the gonococcal gene. Fluorescence in situ hybridization (FISH) probes specific for meningococcal and gonococcal rRNA were used to demonstrate the expression of the rRNA genes. Interestingly, the clinical isolate described here expresses both N. meningitidis and N. gonorrhoeae 16S rRNA genes, as shown by positive FISH signals with both probes. This explains why the probes for N. gonorrhoeae in the Gen-Probe Aptima assays cross-react with this N. meningitidis isolate. The N. meningitidis isolate described must have obtained N. gonorrhoeae-specific DNA through interspecies recombination.

  7. Neisseria mucosus septicemia after near-drowning.

    Science.gov (United States)

    Manser, T J; Warner, J F

    1987-10-01

    Neisseria mucosus is a normal inhabitant of the upper respiratory tract which may rarely cause serious infection. A 21-year-old woman had N mucosus bacteremia and the adult respiratory distress syndrome (ARDS) after a near-drowning episode. Despite appropriate antibiotic therapy and intensive respiratory support, the patient died. Bacteremia with this organism is rare, and we believe it has not previously been reported in association with near-drowning.

  8. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome.

    Science.gov (United States)

    Duncan, Joseph A; Gao, Xi; Huang, Max Tze-Han; O'Connor, Brian P; Thomas, Christopher E; Willingham, Stephen B; Bergstralh, Daniel T; Jarvis, Gary A; Sparling, P Frederick; Ting, Jenny P-Y

    2009-05-15

    Neisseria gonorrhoeae is a common sexually transmitted pathogen that significantly impacts female fertility, neonatal health, and transmission of HIV worldwide. N. gonorrhoeae usually causes localized inflammation of the urethra and cervix by inducing production of IL-1beta and other inflammatory cytokines. Several NLR (nucleotide-binding domain, leucine-rich repeat) proteins are implicated in the formation of pro-IL-1beta-processing complexes called inflammasomes in response to pathogens. We demonstrate that NLRP3 (cryopyrin, NALP3) is the primary NLR required for IL-1beta/IL-18 secretion in response to N. gonorrhoeae in monocytes. We also show that N. gonorrhoeae infection promotes NLRP3-dependent monocytic cell death via pyronecrosis, a recently described pathway with morphological features of necrosis, including release of the strong inflammatory mediator HMBG1. Additionally, N. gonorrhoeae activates the cysteine protease cathepsin B as measured by the breakdown of a cathepsin B substrate. Inhibition of cathepsin B shows that this protease is an apical controlling step in the downstream activities of NLRP3 including IL-1beta production, pyronecrosis, and HMGB1 release. Nonpathogenic Neisseria strains (Neisseria cinerea and Neisseria flavescens) do not activate NLRP3 as robustly as N. gonorrhoeae. Conditioned medium from N. gonorrhoeae contains factors capable of initiating the NLRP3-mediated signaling events. Isolated N. gonorrhoeae lipooligosaccharide, a known virulence factor from this bacterium that is elaborated from the bacterium in the form of outer membrane blebs, activates both NLRP3-induced IL-1beta secretion and pyronecrosis. Our findings indicate that activation of NLRP3-mediated inflammatory response pathways is an important venue associated with host response and pathogenesis of N. gonorrhoeae.

  9. Prevalences of pathogenic and nonpathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    Directory of Open Access Journals (Sweden)

    Carmen eLopez-Joven

    2015-07-01

    Full Text Available Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh + and tdh+ and/or trh+ versus a nonpathogenic one (only tlh+ as species marker for V. parahaemolyticus, was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459. It was, however, significantly dependent on sampling point, campaign (year and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+ were detected in 3.8% of the samples (56/1459, meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207. Moreover, the presence of pathogenic V. parahaemolyticus (trh+ was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001, which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked.This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast.

  10. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast.

    Science.gov (United States)

    Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M Dolores; Roque, Ana

    2015-01-01

    Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast.

  11. NadA diversity and carriage in Neisseria meningitidis.

    Science.gov (United States)

    Comanducci, Maurizio; Bambini, Stefania; Caugant, Dominique A; Mora, Marirosa; Brunelli, Brunella; Capecchi, Barbara; Ciucchi, Laura; Rappuoli, Rino; Pizza, Mariagrazia

    2004-07-01

    NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal species Neisseria lactamica was also found not to have the nadA gene. Eighteen of the carrier strains belonged to the ET-5 and ET-37 hypervirulent clusters, indicating that only the 5.1% of the genuine carrier population actually harbored nadA (7 of 136 strains). Five of the seven strains harbored a novel allele of the nadA gene that was designated nadA4. The NadA4 protein was present on the bacterial surface as heat-stable high-molecular-weight oligomers. Antibodies against the recombinant NadA4 protein were bactericidal against homologous strains, whereas the activity against other NadA alleles was weak. In conclusion, the nadA gene segregates differently in the population of strains isolated from healthy individuals and in the population of strains isolated from patients. The presence of NadA can therefore be used as a tool to study the dynamics of meningococcal infections and understand why this bacterium, which is mostly a commensal, can become a severe pathogen.

  12. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    Science.gov (United States)

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  13. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  14. Co-occurrence of pathogenic and non-pathogenic Fusarium decemcellulare and Lasiodiplodia theobromae isolates in cushion galls disease of cacao (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Castillo Daynet Sosa del

    2016-04-01

    Full Text Available Flowery cushion gall of cacao is a disease complex with six types. Fusarium decemcellulare have been isolated from both flowery and green point galls and recognized as the etiological agent of the disease. In the present work we: i identified by ITS-rDNA sequencing and/or taxonomy the cultivable fungal species or Operative Taxonomic Units (OTUs associated with the five symptoms of cushion galls in cacao from Venezuela, and ii determined the gall inducing capacity on cacao peeled seeds after 45 days of inoculation with suspensions of mycelia/ spores from distinct isolate types. The whole isolate collection rendered an abundance of 113 isolates with a richness of 39 OTUs (27 and eight identified at the species or genera levels, respectively, and in unidentified fungi. The dominant recovered species (≈36% were F. decemcellulare and Lasiodiplodia theobromae. Some isolates of F. decemcellulare, L. theobromae, F. equiseti, Fusarium spp., F. solani, F. incarnatum, Rhizocthonia solani and Penicillium sp. were pathogenic. Some other isolates of the first six mentioned taxa behave as non-pathogenic. Furthermore, pathogenic and non-pathogenic isolates can also co-occur within a single plant and gall type. Moreover, 2-5 species within a single gall symptom in a single tree were identified (not necessarily at the same point in the tree, indicating a broad diversity of co-occurring taxa.

  15. Differentiation between a pathogenic and a non-pathogenic form of Gyrodactylus salaris using PCR-RFLP

    DEFF Research Database (Denmark)

    Kania, Per Walther; Jørgensen, Thomas Rohde; Buchmann, Kurt

    2007-01-01

    A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form.......A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form....

  16. Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption

    Science.gov (United States)

    Redman, R.S.; Ranson, J.C.; Rodriguez, R.J.

    1999-01-01

    Hygromycin-resistant transformants of the cucurbit pathogen Colletotrichum magna (teleomorph: Glomerella magna) were generated by restriction enzyme-mediated integration (REMI) transformation. A rapid pathogenicity assay involving watermelon (Citrullus lanatus) seedlings was developed and 14,400 REMI transformants were screened and assessed for their ability to cause disease, colonize plant tissues, and confer disease resistance against wild-type C. magna. A total of 176 nonpathogenic REMI mutants capable of colonizing cucurbit plants were isolated and assigned to three groups based on their ability to confer disease resistance: phenotype A, 80 to 100% disease protection; phenotype B, 10 to 65% disease protection; and phenotype C, 0 to 4% disease protection. Molecular and genetic analyses of one REMI mutant (R1) indicated that the nonpathogenic phenotype A resulted from a single-site integration. R1 showed a 1:1 segregation of hygromycin resistance and nonpathogenicity and all hygromycin-resistant progeny were nonpathogenic. The integrated vector and 5.5 kb of flanking fungal genomic DNA were isolated from R1 and designated pGMR1. To verify that pGMR1 contained pathogenicity gene sequences, a wild-type isolate of C. magna was transformed with pGMR1 to induce gene disruptions by homologous integration. Approximately 47% of the pGMR1 transformants expressed phenotype A, indicating homologous integration and gene disruption.

  17. Sucrose-mediated giant cell formation in the genus Neisseria.

    Science.gov (United States)

    Johnson, K G; McDonald, I J

    1976-03-01

    Growth of Neisseria perflava, Neisseria cinerea, and Neisseria sicca strain Kirkland in media supplemented with sucrose (0.5 to 5.0% w/v) resulted in the formation of giant cells. Response to sucrose was specific in that a variety of other carbohydrates did not mediate giant cell formation. Giant cells appeared only under growth conditions and did not lyse upon transfer to medium lacking sucrose or upon resuspension in hypotonic media. Reversion of giant to normal cells occurred when giant cells were used as inocula and allowed to multiply in media lacking sucrose.

  18. Neisseria prophage repressor implicated in gonococcal pathogenesis.

    Science.gov (United States)

    Daou, Nadine; Yu, Chunxiao; McClure, Ryan; Gudino, Cynthia; Reed, George W; Genco, Caroline A

    2013-10-01

    Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea, can infect and colonize multiple mucosal sites in both men and women. The ability to cope with different environmental conditions requires tight regulation of gene expression. In this study, we identified and characterized a gonococcal transcriptional regulatory protein (Neisseria phage repressor [Npr]) that was previously annotated as a putative gonococcal phage repressor protein. Npr was found to repress transcription of NGNG_00460 to NGNG_00463 (NGNG_00460-00463), an operon present within the phage locus NgoΦ4. Npr binding sites within the NGNG_00460-00463 promoter region were found to overlap the -10 and -35 promoter motifs. A gonococcal npr mutant demonstrated increased adherence to and invasion of human endocervical epithelial cells compared to a wild-type gonococcal strain. Likewise, the gonococcal npr mutant exhibited enhanced colonization in a gonococcal mouse model of mucosal infection. Analysis of the gonococcal npr mutant using RNA sequence (RNA-seq) analysis demonstrated that the Npr regulon is limited to the operon present within the phage locus. Collectively, our studies have defined a new gonococcal phage repressor protein that controls the transcription of genes implicated in gonococcal pathogenesis.

  19. COMPARISON OF METHODS TO IDENTIFY Neisseria meningitidis IN ASYMPTOMATIC CARRIERS

    Science.gov (United States)

    RIZEK, Camila F.; LUIZ, André Machado; de ASSIS, Gracilene Ramos; COSTA, Silvia Figueiredo; LEVIN, Anna Sara; LOPES, Marta Heloisa

    2016-01-01

    SUMMARY Neisseria meningitidis is a cause of several life-threatening diseases and can be a normal commensal in the upper respiratory tract of healthy carriers. The carrier rate is not well established especially because there is no standard method for the isolation of N. meningitidis. Therefore, the aim of this study was to compare identification methods for the carrier state. Two swabs were collected from 190 volunteers: one was cultured and the other had DNA extracted directly from the sample. The Polymerase Chain Reaction (PCR) was performed to determine species and serogroups and compared the results between the methods. PCR for species determination used two pairs of primers and when there was only one amplicon, it was sequenced. The culture technique was positive in 23 (12.1%) subjects while the direct extraction method was positive in 132 (69.5%), p < 0.001. Among the 135 subjects with positive N. meningitides tests, 88 (65.2%) were serogroup C; 3 (2.2%) serogroup B; 5 (3.7%) were positive for both serogroup B and C, and 39 (28.9%) did not belong to any of the tested serogroups. In this study, PCR from DNA extracted directly from swabs identified more N. meningitidis asymptomatic carriers than the culture technique. PMID:27680165

  20. Role of outer-membrane proteins and lipopolysaccharide in conjugation between Neisseria gonorrhoeae and Neisseria cinerea.

    Science.gov (United States)

    Genco, C A; Clark, V L

    1988-12-01

    Little is known concerning the mechanism involved in cell contact between the donor and recipient during conjugation in Neisseria gonorrhoeae. The formation of stable mating pairs during conjugation in Escherichia coli appears to require a specific protein as well as LPS in the outer membrane of the recipient cell. To attempt to identify the cell surface components necessary for conjugation in the neisseriae, we began a comparison of the outer membrane of Neisseria cinerea strains that can (Con+) and cannot (Con-) serve as recipients in conjugation with N. gonorrhoeae. There were no differences in outer-membrane protein profiles on SDS-polyacrylamide gel electrophoresis between Con+ and Con- strains that could be correlated with the ability to conjugate. However, whole outer membrane isolated from Con+ strains specifically inhibited conjugation while those from Con- strains did not. Proteolytic cleavage of outer-membrane proteins by trypsin, pronase or alpha-chymotrypsin abolished the inhibitory effect of Con+ outer membranes, suggesting that these outer membranes contained a protease-sensitive protein(s) involved in conjugation. Although periodate oxidation of Con+ outer-membrane carbohydrates did not abolish the inhibitory action of these membranes, purified LPS from both Con+ and Con- strains inhibited conjugation when added at low concentrations. These results suggest that conjugation requires the presence of a specific conjugal receptor that consists of both LPS and one or more outer-membrane proteins. Both Con+ and Con- strains contain the necessary LPS, but only Con+ strains contain the required protein(s).

  1. Analytical specificity and sensitivity of the novel dual-target GeneProof Neisseria gonorrhoeae PCR kit for detection of N. gonorrhoeae.

    Science.gov (United States)

    Golparian, Daniel; Hellmark, Bengt; Unemo, Magnus

    2015-11-01

    Detection of Neisseria gonorrhoeae relies increasingly on nucleic acid amplification tests (NAATs). The specificity of many gonococcal NAATs has been suboptimal and supplementary testing remains recommended in Europe and several additional countries. The novel dual-target GeneProof Neisseria gonorrhoeae PCR kit, targeting porA pseudogene and 16S rRNA gene, showed a high specificity and sensitivity when isolates of non-gonococcal Neisseria and related species (n = 144), and gonococci (n = 104) were tested. However, rare gonococcal porA mutants were only detected in the 16S rRNA gene target and two non-gonococcal isolates showed a low-level cross-reactivity in the 16S rRNA gene target. The detection limit for both targets was 1.5 copies per reaction.

  2. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils.

    Science.gov (United States)

    Inoue, Yoshinari; Matsuwaki, Yoshinori; Shin, Seung-Heon; Ponikau, Jens U; Kita, Hirohito

    2005-10-15

    Eosinophils and their products are probably important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to certain organisms. An association between environmental fungal exposure and asthma has been long recognized clinically. Although products of microorganisms (e.g., lipopolysaccharides) directly activate certain inflammatory cells (e.g., macrophages), the mechanism(s) that triggers eosinophil degranulation is unknown. In this study we investigated whether human eosinophils have an innate immune response to certain fungal organisms. We incubated human eosinophils with extracts from seven environmental airborne fungi (Alternaria alternata, Aspergillus versicolor, Bipolaris sorokiniana, Candida albicans, Cladosporium herbarum, Curvularia spicifera, and Penicillium notatum). Alternaria and Penicillium induced calcium-dependent exocytosis (e.g., eosinophil-derived neurotoxin release) in eosinophils from normal individuals. Alternaria also strongly induced other activation events in eosinophils, including increases in intracellular calcium concentration, cell surface expression of CD63 and CD11b, and production of IL-8. Other fungi did not induce eosinophil degranulation, and Alternaria did not induce neutrophil activation, suggesting specificity for fungal species and cell type. The Alternaria-induced eosinophil degranulation was pertussis toxin sensitive and desensitized by preincubating cells with G protein-coupled receptor agonists, platelet-activating factor, or FMLP. The eosinophil-stimulating activity in Alternaria extract was highly heat labile and had an M(r) of approximately 60 kDa. Thus, eosinophils, but not neutrophils, possess G protein-dependent cellular activation machinery that directly responds to an Alternaria protein product(s). This innate response by eosinophils to certain environmental fungi may be important in host defense and in the exacerbation of inflammation in asthma and allergic diseases.

  3. Characterization of the Neisseria meningitidis Helicase RecG

    Science.gov (United States)

    Beyene, Getachew Tesfaye; Balasingham, Seetha V.; Frye, Stephan A.; Namouchi, Amine; Homberset, Håvard; Kalayou, Shewit; Riaz, Tahira

    2016-01-01

    Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant. PMID:27736945

  4. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Science.gov (United States)

    2010-04-01

    ... Neisseria spp. directly from clinical specimens. The identification aids in the diagnosis of disease caused by bacteria belonging to the genus Neisseria, such as epidemic cerebrospinal meningitis, meningococcal disease, and gonorrhea, and also provides epidemiological information on diseases caused by...

  5. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp.

    Science.gov (United States)

    Snyder, Lori A S; Shafer, William M; Saunders, Nigel J

    2003-01-01

    Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components.

  6. INFEKSI NEISSERIA GONORRHOEAE AKIBAT SEXUAL ABUSE PADA SEORANG ANAK PEREMPUAN

    Directory of Open Access Journals (Sweden)

    Satya Wydya Yenny

    2008-09-01

    Full Text Available AbstrakInfeksi Neisseria gonorrhoeae pada anak akibat sexual abuse sangat jarang dilaporkan.Dilaporkan satu kasus infeksi Neisseria gonorrhoeae pada seorang anak perempuan usia 6 tahun setelah mengalami sexual abuse satu minggu yang lalu.Diagnosis ditegakkan berdasarkan anamnesis, pemeriksaan klinis dan pemeriksaan laboratorium. Anamnesis adanya keputihan sejak 5 hari sebelum berobat. Pada pemeriksaan fisis tampak cairan berwarna krem menempel pada celana dalam, cukup banyak, serta sedikit kemerahan dan duh genital pada vulva. Hasil pemeriksaan mikroskopis ditemukan diplokokus Gram negatif dan kultur didapatkan Neisseria gonorrhoeae. Berdasarkan hasil tes sensitivitas, pasien diterapi dengan ceftriaxon 125 mg i.m, dosis tunggal dan memberikan kesembuhan.Infeksi ini membutuhkan penatalaksanaan yang komprehensif karena mempunyai dampak psikologis baik bagi anak maupun keluarga seumur hidupKata kunci : Neisseria gonorrhoeae, sexual abuse, anakAbstractNeisseria gonorrhoe infection in childhood caused by sexual abuse is considered rare reported.A young girl 6 years old suffering gonococcal infection was reported. The diagnostic procedure were base on clinically and laboratory findings. The source of transmission was sexual abuse by an adult man. Physical examination revealed purulent discharge, cream in colour that stains the underwear with minimal vaginal discharge and vulval erythema. Laboratory examination showed Gram-negative diplococcic and isolation of Neisseria gonorrhoeae. This patient had been treated with ceftriaxon 125mg given intramuscularly in a single dose. Result of the treatment was good.The psychological sequelae of sexual abuse and the turmoil in the family produced by suspicions and allegations are largely unknown, but are probably life long.Keywords: Neisseria gonorrhoeae, sexual abuse, childLAPORAN

  7. Pathogenic and Nonpathogenic Strains of Entamoeba histolytica can be Differentiated by Monoclonal Antibodies to the Galactose-Specific Adherence Lectin

    Science.gov (United States)

    1991-04-01

    AD- A235 913 DEVELOPMENT Ei ENGINEERING CENTER CRDEC-TR-268 PATHOGENIC AND NONPATHOGENIC STRAINS OF ENTAMOEBA HISTOLYTICA CAN BE DIFFERENTIATED BY...Pathogenic and Nonpathogenic Strains of Entamoeba Histolytica can be Differentiated by Monoclonal PR-IFJlX2XXRPEW Antibodies to the Galactose-Specific...galactose lectin produced by Entamoeba histolytica provide the basis for development of a model system for the environmental detection of adherence and

  8. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Culture medium for pathogenic Neisseria spp. (a) Identification. A culture medium for pathogenic Neisseria...

  9. Meningitis and Bacteremia Due to Neisseria cinerea following a Percutaneous Rhizotomy of the Trigeminal Ganglion.

    Science.gov (United States)

    von Kietzell, M; Richter, H; Bruderer, T; Goldenberger, D; Emonet, S; Strahm, C

    2016-01-01

    Neisseria cinerea is a human commensal. The first known case of meningitis and bacteremia due to Neisseria cinerea following percutaneous glycerol instillation of the trigeminal ganglion is reported. Conventional phenotypic methods and complete 16S RNA gene sequencing accurately identified the pathogen. Difficulties in differentiation from pathogenic neisseriae are discussed.

  10. Meningitis and Bacteremia Due to Neisseria cinerea following a Percutaneous Rhizotomy of the Trigeminal Ganglion

    OpenAIRE

    von Kietzell, M.; Richter, H.; Bruderer, T.; Goldenberger, D.; Emonet, S; Strahm, C.

    2015-01-01

    Neisseria cinerea is a human commensal. The first known case of meningitis and bacteremia due to Neisseria cinerea following percutaneous glycerol instillation of the trigeminal ganglion is reported. Conventional phenotypic methods and complete 16S RNA gene sequencing accurately identified the pathogen. Difficulties in differentiation from pathogenic neisseriae are discussed.

  11. pilS loci in Neisseria gonorrhoeae are transcriptionally active

    Science.gov (United States)

    Wachter, Jenny; Masters, Thao L.; Wachter, Shaun; Mason, Joanna

    2015-01-01

    Piliation is an important virulence determinant for Neisseria gonorrhoeae. PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between pilE and a pilS locus. pilS were so-named as they are believed to be transcriptionally silent, in contrast to the pilE locus. In this study, we demonstrate the presence of a small, pil-specific RNA species. Through using a series of pilE deletion mutants, we show by Northern blotting and quantitative reverse transcriptase PCR analysis (qRT-PCR), that these smaller RNA species are not derived from the primary pilE transcript following some processing events, but rather, arose through transcription of the pilS loci. Small transcriptome analysis, in conjunction with analysis of pilS recombinants, identified both sense and anti-sense RNAs originating from most, but not all, of the pilS gene copies. Focusing on the MS11 pilS6 locus, we identified by site-directed mutagenesis a sense promoter located immediately upstream of pilS6 copy 2, as well as an anti-sense promoter immediately downstream of pilS6 copy 1. Whole transcriptome analysis also revealed the presence of pil-specific sRNA in both gonococci and meningococci. Overall, this study reveals an added layer of complexity to the pilE/pilS recombination scheme by demonstrating pil-specific transcription within genes that were previously thought to be transcriptionally silent. PMID:25701734

  12. Fur-mediated global regulatory circuits in pathogenic Neisseria species.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-12-01

    The ferric uptake regulator (Fur) protein has been shown to function as a repressor of transcription in a number of diverse microorganisms. However, recent studies have established that Fur can function at a global level as both an activator and a repressor of transcription through both direct and indirect mechanisms. Fur-mediated indirect activation occurs via the repression of additional repressor proteins, or small regulatory RNAs, thereby activating transcription of a previously silent gene. Fur mediates direct activation through binding of Fur to the promoter regions of genes. Whereas the repressive mechanism of Fur has been thoroughly investigated, emerging studies on direct and indirect Fur-mediated activation mechanisms have revealed novel global regulatory circuits.

  13. Metabolism and virulence in Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Christoph eSchoen

    2014-08-01

    Full Text Available A longstanding question in infection biology addresses the genetic basis for invasive behaviour in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.

  14. Diagnosis of Neisseria gonorrhoeae Using Molecular Beacon

    Science.gov (United States)

    Patel, Achchhe Lal; Sonkar, Subash Chandra; Kumari, Indu; Saluja, Daman

    2015-01-01

    Neisseria gonorrhoeae is an important sexually transmitted diseases (STD) causing pathogen worldwide. Due to absence of an affordable diagnostic assay, routine screening of gonococcal infection becomes impossible in developing countries where infection rates are maximum. Treatment is given on the basis of symptoms alone which leads to spread of infection. Thus, development of a rapid, sensitive, specific, and PCR based visual diagnostic assay suitable for developing countries, required for better disease management, is aimed at in present study. Endocervical swabs were collected from patients visiting gynecology department of various hospitals in Delhi. In-house PCR based assay was developed and modified to visual assay using molecular beacon for end-point detection. It was evaluated against Roche AMPLICOR NG kit and rmp gene. Specificity of beacon was confirmed by competition experiments. Diagnostic test was 98.21% specific and 99.59% sensitive whereas negative and positive predicted value were 99.40% and 98.78%, respectively. We also observed that twice the concentration (2X) of premix was stable at 4°C for 4 months and dry swab samples gave concordant results with that of wet swabs. These features make the test best suitable for routine diagnosis of genital infections in developing countries. PMID:25802857

  15. The Laboratory Diagnosis of Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Lai-King Ng

    2005-01-01

    Full Text Available The present article describes the laboratory diagnosis of Neisseria gonorrhoeae by culturing of the organism from different types of clinical specimens followed by confirmatory tests. The success of culture methods requires good quality collection and transport of clinical specimens. The present guide describes the media requirements and cultural conditions for N gonorrhoeae growth and the characteristics for a presumptive identification of N gonorrhoeae. Confirmatory tests include biochemical tests, chromogenic enzyme substrate tests, immunoassays and nucleic acid methods. Nucleic acid detection methods include either amplification-based methods or nonamplification tests, and are increasingly used in clinical laboratories where a viable culture is not possible to obtain. Nucleic acid methods can also be used to detect the presence of low numbers in a specimen. Nucleic acid detection methods need confirmation with another amplification method or gene target. Controls must be included to ensure true positive and negative results, and to rule out nucleic acid contamination. Monitoring of antimicrobial susceptibilities of N gonorrhoeae is important to investigate treatment failure and to evaluate the efficacy of currently recommended therapies. Many methods for the characterization of N gonorrhoeae require cultures. The useful typing methods for determining strain relatedness include auxotyping, serotyping, plasmid profile analysis, DNA sequencing of the porB gene and pulsed-field gel electrophoresis. Quality assurance programs for diagnostic testing and antimicrobial susceptibility testing is reviewed.

  16. Diagnosis of Neisseria gonorrhoeae Using Molecular Beacon

    Directory of Open Access Journals (Sweden)

    Divya Sachdev

    2015-01-01

    Full Text Available Neisseria gonorrhoeae is an important sexually transmitted diseases (STD causing pathogen worldwide. Due to absence of an affordable diagnostic assay, routine screening of gonococcal infection becomes impossible in developing countries where infection rates are maximum. Treatment is given on the basis of symptoms alone which leads to spread of infection. Thus, development of a rapid, sensitive, specific, and PCR based visual diagnostic assay suitable for developing countries, required for better disease management, is aimed at in present study. Endocervical swabs were collected from patients visiting gynecology department of various hospitals in Delhi. In-house PCR based assay was developed and modified to visual assay using molecular beacon for end-point detection. It was evaluated against Roche AMPLICOR NG kit and rmp gene. Specificity of beacon was confirmed by competition experiments. Diagnostic test was 98.21% specific and 99.59% sensitive whereas negative and positive predicted value were 99.40% and 98.78%, respectively. We also observed that twice the concentration (2X of premix was stable at 4°C for 4 months and dry swab samples gave concordant results with that of wet swabs. These features make the test best suitable for routine diagnosis of genital infections in developing countries.

  17. Challenges in the management of Neisseria gonorrhoeae keratitis.

    Science.gov (United States)

    McElnea, Elizabeth; Stapleton, Patrick; Khan, Sheryar; Stokes, John; Higgins, Gareth

    2015-02-01

    We describe the presentation and subsequent management of a case of keratitis caused by Neisseria gonorrhoeae. A thirty-nine year old gentleman presented with a purulent ocular discharge. Corneal melt with corneal perforation occurred. Neisseria gonorrhoeae was cultured. Systemic and topical antibiotics were given. Deep lamellar keratoplasty was performed for corneal perforation. At three months post treatment no recurrence of infection was noted. The possibility of Neisseria gonorrhoeaea keratitis should always be considered in patients with a purulent ocular discharge even if the case history is not immediately suggestive of the same. Severe gonococcal keratitis may be unilateral. Deep lamellar keratoplasty can be considered as a therapeutic option in patients with severe gonococcal keratitis.

  18. Study on Serotypes and Auxotypes of Neisseria Gonorrhoeae in Guangzhou

    Institute of Scientific and Technical Information of China (English)

    ZHENG Heping(郑和平); PAN Huiqing(潘慧清); HUANG Jinmei(黄进梅); ZENG Weiying(曾维英); WU Xingzhong(吴兴中); LIU Zhongqiu(刘仲秋)

    2002-01-01

    Objective: To investigate the serotypes and auxotypesdistribution of Neisseria gonorrhoeae in Guangzhou.Method: 131 strains of Neisseria gonorrhoeae wereserotyped by co-agglutination test and 108 strains wereauxotyped by La Scolea′s method.Results: Out of 131 strains of Neisseria gonorrhoeae ,87.8% (115/131) were WⅡ/WⅢ, while 9.9% (13/131) wereWI. The most important auxotypes were Proto, Pro and ILe,42.6% (46/108), 21.3% (23/108) and 12.0%, respectively. WⅡ/WⅢ was distributed among the all auxotypes aboveand WI found only in both Proto and Pro.Conclusion: The study illustrated the prevailing serotype,WⅡ/WⅢ, and higher prevalence of Ile- in Guangzhou.

  19. Discrimination of Pathogenic vs. Nonpathogenic Francisella tularensis and Burkholderia pseudomallei Using Proteomics Mass Spectrometry

    Science.gov (United States)

    2011-03-01

    assignments. Validated peptide sequences, differentially present or absent in various strains (STB matrices), were visualized as assignment bitmaps...PERL, MATLAB, and Microsoft Visual Basic. 3. RESULTS AND DISCUSSION The current project characterized and identified pathogenic and nonpathogenic...ECa_O157H7EDt9|ECOt.UTie ABC«.51!2| AEt «.MlHEllBA(41_AP5|BAPH_BP|6V»PH_5G|r»O_RBS0|ECEN_AU1054|BaC_rK;|BMAl. SO.O_MOR5ITAN5 ECCl.536|ECOt_536|ECOl._CFT073

  20. Phase I Safety and Immunogenicity Study of a Candidate Meningococcal Disease Vaccine Based on Neisseria lactamica Outer Membrane Vesicles▿

    Science.gov (United States)

    Gorringe, Andrew R.; Taylor, Stephen; Brookes, Charlotte; Matheson, Mary; Finney, Michelle; Kerr, Moyra; Hudson, Michael; Findlow, Jamie; Borrow, Ray; Andrews, Nick; Kafatos, George; Evans, Cariad M.; Read, Robert C.

    2009-01-01

    Natural immunity to meningococcal disease in young children is associated epidemiologically with carriage of commensal Neisseria species, including Neisseria lactamica. We have previously demonstrated that outer membrane vesicles (OMVs) from N. lactamica provide protection against lethal challenge in a mouse model of meningococcal septicemia. We evaluated the safety and immunogenicity of an N. lactamica OMV vaccine in a phase I placebo-controlled, double-blinded clinical trial. Ninety-seven healthy young adult male volunteers were randomized to receive three doses of either an OMV vaccine or an Alhydrogel control. Subsequently, some subjects who had received the OMV vaccine also received a fourth dose of OMV vaccine, 6 months after the third dose. Injection site reactions were more frequent in the OMV-receiving group, but all reactions were mild or moderate in intensity. The OMV vaccine was immunogenic, eliciting rises in titers of immunoglobulin G (IgG) against the vaccine OMVs, together with a significant booster response, as determined by an enzyme-linked immunosorbent assay. Additionally, the vaccine induced modest cross-reactive immunity to six diverse strains of serogroup B Neisseria meningitidis, including IgG against meningococcal OMVs, serum bactericidal antibodies, and opsonophagocytic activity. The percentages of subjects showing ≥4-fold rises in bactericidal antibody titer obtained were similar to those previously reported for the Norwegian meningococcal OMV vaccine against the same heterologous meningococcal strain panel. In conclusion, this N. lactamica OMV vaccine is safe and induces a weak but broad humoral immune response to N. meningitidis. PMID:19553555

  1. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles.

    Science.gov (United States)

    Gorringe, Andrew R; Taylor, Stephen; Brookes, Charlotte; Matheson, Mary; Finney, Michelle; Kerr, Moyra; Hudson, Michael; Findlow, Jamie; Borrow, Ray; Andrews, Nick; Kafatos, George; Evans, Cariad M; Read, Robert C

    2009-08-01

    Natural immunity to meningococcal disease in young children is associated epidemiologically with carriage of commensal Neisseria species, including Neisseria lactamica. We have previously demonstrated that outer membrane vesicles (OMVs) from N. lactamica provide protection against lethal challenge in a mouse model of meningococcal septicemia. We evaluated the safety and immunogenicity of an N. lactamica OMV vaccine in a phase I placebo-controlled, double-blinded clinical trial. Ninety-seven healthy young adult male volunteers were randomized to receive three doses of either an OMV vaccine or an Alhydrogel control. Subsequently, some subjects who had received the OMV vaccine also received a fourth dose of OMV vaccine, 6 months after the third dose. Injection site reactions were more frequent in the OMV-receiving group, but all reactions were mild or moderate in intensity. The OMV vaccine was immunogenic, eliciting rises in titers of immunoglobulin G (IgG) against the vaccine OMVs, together with a significant booster response, as determined by an enzyme-linked immunosorbent assay. Additionally, the vaccine induced modest cross-reactive immunity to six diverse strains of serogroup B Neisseria meningitidis, including IgG against meningococcal OMVs, serum bactericidal antibodies, and opsonophagocytic activity. The percentages of subjects showing > or =4-fold rises in bactericidal antibody titer obtained were similar to those previously reported for the Norwegian meningococcal OMV vaccine against the same heterologous meningococcal strain panel. In conclusion, this N. lactamica OMV vaccine is safe and induces a weak but broad humoral immune response to N. meningitidis.

  2. Antimicrobial susceptibility and molecular epidemiology of Neisseria gonorrhoeae in Germany.

    Science.gov (United States)

    Horn, Nicole Nari; Kresken, Michael; Körber-Irrgang, Barbara; Göttig, Stephan; Wichelhaus, Cornelia; Wichelhaus, Thomas A

    2014-07-01

    Antimicrobial drug resistance in Neisseria gonorrhoeae has become an increasing public health problem. Hence, surveillance of resistance development is of crucial importance to implement adequate treatment guidelines. Data on the spread of antibiotic resistance among gonococcal isolates in Germany, however, is scarce. In a resistance surveillance study conducted by the Paul Ehrlich Society for Chemotherapy between October 2010 and December 2011, 23 laboratories all over Germany were requested to send N. gonorrhoeae isolates to the study laboratory in Frankfurt am Main. Species verification was performed biochemically using ApiNH and with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed using the Etest method. For molecular epidemiological analysis, N. gonorrhoeae strains were genotyped by means of N. gonorrhoeae multi-antigen sequence typing. A total of 213 consecutive gonococcal isolates were analyzed in this nationwide study. Applying EUCAST breakpoints, high resistance rates were found for ciprofloxacin (74%) and tetracycline (41%). Penicillin non-susceptibility was detected in 80% of isolates. The rate of azithromycin resistance was 6%, while all strains were susceptible to spectinomycin, cefixime, and ceftriaxone. Molecular typing of gonococcal isolates revealed a great heterogeneity of 99 different sequence types (ST), but ST1407 predominated (n=39). This is the first comprehensive German multi-centre surveillance study on antibiotic susceptibility and molecular epidemiology of N. gonorrhoeae with implications for antibiotic choice for treatment of gonorrhoea. The World Health Organization supports the concept that an efficacious treatment of gonorrhoea results in at least 95% of infections being cured. Accordingly, as spectinomycin is not available on the German market, only the third generation cephalosporins cefixime and ceftriaxone are regarded as valuable drugs

  3. A putatively phase variable gene (dca) required for natural competence in Neisseria gonorrhoeae but not Neisseria meningitidis is located within the division cell wall (dcw) gene cluster.

    Science.gov (United States)

    Snyder, L A; Saunders, N J; Shafer, W M

    2001-02-01

    A cluster of 18 open reading frames (ORFs), 15 of which are homologous to genes involved in division and cell wall synthesis, has been identified in Neisseria gonorrhoeae and Neisseria meningitidis. The three additional ORFs, internal to the dcw cluster, are not homologous to dcw-related genes present in other bacterial species. Analysis of the N. meningitidis strain MC58 genome for foreign DNA suggests that these additional ORFs have not been acquired by recent horizontal exchange, indicating that they are a long-standing, integral part of the neisserial dcw gene cluster. Reverse transcription-PCR analysis of RNA extracted from N. gonorrhoeae strain FA19 confirmed that all three ORFs are transcribed in gonococci. One of these ORFs (dca, for division cluster competence associated), located between murE and murF, was studied in detail and found to be essential for competence in the gonococcal but not in the meningococcal strains tested. Computer analysis predicts that dca encodes an inner membrane protein similar to hypothetical proteins produced by other gram-negative bacteria. In some meningococcal strains dca is prematurely terminated following a homopolymeric tract of G's, the length of which differs between isolates of N. meningitidis, suggesting that dca is phase variable in this species. A deletion and insertional mutation was made in the dca gene of N. gonorrhoeae strain FA19 and N. meningitidis strain NMB. This mutation abrogated the ability of the gonococci to be transformed with chromosomal DNA. Thus, we conclude that the dca-encoded gene product is an essential competence factor for gonococci.

  4. Will targeting oropharyngeal gonorrhoea delay the further emergence of drug-resistant Neisseria gonorrhoeae strains?

    Science.gov (United States)

    Lewis, D A

    2015-06-01

    Gonorrhoea is an important sexually transmitted infection associated with serious complications and enhanced HIV transmission. Oropharyngeal infections are often asymptomatic and will only be detected by screening. Gonococcal culture has low sensitivity (gonorrhoea, and, although not yet approved commercially, nucleic acid amplification tests (NAAT) are the assay of choice. Screening for oropharyngeal gonorrhoea should be performed in high-risk populations, such as men-who-have-sex-with-men(MSM). NAATs have a poor positive predictive value when used in low-prevalence populations. Gonococci have repeatedly thwarted gonorrhoea control efforts since the first antimicrobial agents were introduced. The oropharyngeal niche provides an enabling environment for horizontal transfer of genetic material from commensal Neisseria and other bacterial species to Neisseria gonorrhoeae. This has been the mechanism responsible for the generation of mosaic penA genes, which are responsible for most of the observed cases of resistance to extended-spectrum cephalosporins (ESC). As antimicrobial-resistant gonorrhoea is now an urgent public health threat, requiring improved antibiotic stewardship, laboratory-guided recycling of older antibiotics may help reduce ESC use. Future trials of antimicrobial agents for gonorrhoea should be powered to test their efficacy at the oropharynx as this is the anatomical site where treatment failure is most likely to occur. It remains to be determined whether a combination of frequent screening of high-risk individuals and/or laboratory-directed fluoroquinolone therapy of oropharyngeal gonorrhoea will delay the further emergence of drug-resistant N. gonorrhoeae strains.

  5. A combined mass spectrometry strategy for complete posttranslational modification mapping of Neisseria meningitidis major pilin.

    Science.gov (United States)

    Gault, Joseph; Malosse, Christian; Duménil, Guillaume; Chamot-Rooke, Julia

    2013-11-01

    Herein, we report a new approach, based on the combination of mass profiling and tandem mass spectrometry, to address the issue of localising all post-translational modifications (PTMs) on the major pilin protein PiIE expressed by the pathogenic Neisseria species. PilE is the main component of type IV pili; filamentous organelles expressed at the surface of many bacterial pathogens and important virulence factors. Previous reports have shown that PilE can harbour various combinations of PTMs and have established strong links between PTM and pathogenesis. Complete PTM mapping of proteins involved in bacterial infection is therefore highly desirable. The methodology we propose here allowed us to fully characterise the PilE proteoforms of Neisseria meningitidis strain 8013, definitively identifying all PTMs present on all proteoforms and localising their position on the protein backbone. These modifications include a processed and methylated N-terminus, disulfide bridge, glycosylation and glycerophosphorylation at two different sites. A key element of our approach is high resolution, intact mass measurement of the proteoforms, a piece of information completely lacking in all classical bottom-up proteomics strategies used for PTM analysis and without which it is difficult to ensure complete PTM mapping.

  6. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections.

    Science.gov (United States)

    Cartwright, Emily K; McGary, Colleen S; Cervasi, Barbara; Micci, Luca; Lawson, Benton; Elliott, Sarah T C; Collman, Ronald G; Bosinger, Steven E; Paiardini, Mirko; Vanderford, Thomas H; Chahroudi, Ann; Silvestri, Guido

    2014-05-15

    Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.

  7. The properties of lectins and cells surface biopolymers of non-pathogenic corynebacteria

    Directory of Open Access Journals (Sweden)

    Sashschuk E. V.

    2011-02-01

    Full Text Available Aim. To study lectin properties of non-pathogenic corynebacteria cells and preparations of their surface biopolymers (SBP, extracted by SDS. Methods. SBP were extracted from intact cells by 0.15 M solution of NaCl contains 1 % SDS. Protein content was determined using Lowry method, carbohydrates – with anthrone method. Electrophoresis was performed in SDS-PAGE according to Lemmli. Hemagglutinating activity (HAA was studied using rabbit erythrocytes. The lectin carbohydrate specificity was determined by reaction of inhibition of hemagglutination. Results. Electrophoretic set of SBP preparations contained the proteins and carbohydrates biopolymers with molecular mass of 10.0–120.0 kDa which did not possess HAA. After extraction of SBP the corynebacteria cells remained viable and have HAA higher than intact cells (64–2048 units. The hemagglutinins of the majority of corynebacteria strains after treatment of cells with SDS exhibited the highest affinity to the bovine submandibular gland mucin and N-acetylneuraminic acid. Conclusions. The examined non-pathogenic strains of corynebacteria were found to contain the lectins, associated with internal layers of a cell wall, which showed a predominant specificity to sialic acids.

  8. Molecular typing of Treponema pallidum and Neisseria gonorrhoeae

    NARCIS (Netherlands)

    Heijmans, R.

    2012-01-01

    De seksueel overdraagbare aandoeningen syfilis en gonorroe worden veroorzaakt door de bacteriën Treponema pallidum en Neisseria gonorrhoeae. Raymond Heijmans onderzocht technieken voor de moleculaire genotypering van deze ziekteverwekkers. Genotypering van T. pallidum op basis van het sterk polymorf

  9. Bacteremia due to Neisseria cinerea: report of two cases.

    Science.gov (United States)

    Southern, P M; Kutscher, A E

    1987-06-01

    We report two cases of bacteremia due to Neisseria cinerea. One was a 2.5-yr-old boy with otitis media and pneumonia, who responded to treatment with amoxicillin. The other was a 47-yr-old man with underlying ethanol abuse who developed severe polymicrobial sepsis due to apparent intraabdominal disease. This man died despite extensive antimicrobial therapy.

  10. Complete Genome Sequence of Neisseria weaveri Strain NCTC13585

    Science.gov (United States)

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. PMID:27563039

  11. Neisseria meningitidis ST-11 clonal complex, Chile 2012.

    Science.gov (United States)

    Araya, Pamela; Fernández, Jorge; Del Canto, Felipe; Seoane, Mabel; Ibarz-Pavón, Ana B; Barra, Gisselle; Pidal, Paola; Díaz, Janepsy; Hormazábal, Juan C; Valenzuela, María T

    2015-02-01

    Serogroup W Neisseria meningitidis was the main cause of invasive meningococcal disease in Chile during 2012. The case-fatality rate for this disease was higher than in previous years. Genotyping of meningococci isolated from case-patients identified the hypervirulent lineage W:P1.5,2:ST-11, which contained allele 22 of the fHbp gene.

  12. Neisseria meningitidis ST-11 Clonal Complex, Chile 2012

    OpenAIRE

    Araya,Pamela; Fern?ndez, Jorge; Del Canto, Felipe; Seoane, Mabel; Ibarz-Pav?n, Ana B.; Barra, Gisselle; Pidal, Paola; D?az, Janepsy; Hormaz?bal, Juan C.; Valenzuela, Mar?a T.

    2015-01-01

    Serogroup W Neisseria meningitidis was the main cause of invasive meningococcal disease in Chile during 2012. The case-fatality rate for this disease was higher than in previous years. Genotyping of meningococci isolated from case-patients identified the hypervirulent lineage W:P1.5,2:ST-11, which contained allele 22 of the fHbp gene.

  13. Neisseria meningitidis, pathogenetic mechanisms to overcome the human immune defences.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2012-06-01

    Neisseria meningitidis is hosted only by humans and colonizes the nasopharynx; it survives in the human body by reaching an equilibrium with its exclusive host. Indeed, while cases of invasive disease are rare, the number of asymptomatic Neisseria meningitides carriers is far higher. The aim of this paper is to summarize the current knowledge of survival strategies of Neisseria meningitides against the human immune defences. Neisseria meningitidis possesses a variety of adaptive characteristics which enable it to avoid being killed by the immune system, such as the capsule, the lipopolysaccharide, groups of proteins that block the action of the antimicrobial proteins (AMP), proteins that inhibit the complement system, and components that prevent both the maturation and the perfect functioning of phagocytes. The main means of adhesion of Neisseria meningitides to the host cells are Pili, constituted by several proteins of whom the most important is Pilin E. Opacity-associated proteins (Opa) and (Opc) are two proteins that make an important contribution to the process of adhesion to the cell. Porins A and B contribute to neisserial adhesion and penetration into the cells, and also inhibit the complement system. Factor H binding protein (fhbp) binds factor H, allowing the bacteria to survive in the blood. Neisserial adhesin A (NadA) is a minor adhesin that is expressed by 50% of the pathogenic strains. NadA is known to be involved in cell adhesion and invasion and in the induction of proinflammatory cytokines. Neisserial heparin binding antigen (NHBA) binds heparin, thus increasing the resistance of the bacterium in the serum.

  14. Close sequence identity between ribosomal DNA episomes of the non-pathogenic Entamoeba dispar and pathogenic Entamoeba histolytica

    Indian Academy of Sciences (India)

    Jaishree Paul; Alok Bhattacharya; Sudha Bhattacharya

    2002-11-01

    Entamoeba dispar and Entamoeba histolytica are now recognized as two distinct species – the former being nonpathogenic to humans. We had earlier studied the organization of ribosomal RNA genes in E. histolytica. Here we report the analysis of ribosomal RNA genes in E. dispar. The rRNA genes of E. dispar, like their counterpart in E. histolytica are located on a circular rDNA molecule. From restriction map analysis, the size of E. dispar rDNA circle was estimated to be 24.4 kb. The size was also confirmed by linearizing the circle with BsaHI, and by limited DNAseI digestion. The restriction map of the E. dispar rDNA circle showed close similarity to EhR1, the rDNA circle of E. histolytica strain HM-1:IMSS which has two rDNA units per circle. The various families of short tandem repeats found in the upstream and downstream intergenic spacers (IGS) of EhR1 were also present in E. dispar. Partial sequencing of the cloned fragments of E. dispar rDNA and comparison with EhR1 revealed only 2.6% to 3.8% sequence divergence in the IGS. The region Tr and the adjoining PvuI repeats in the IGS of EhR1, which are missing in those E. histolytica strains that have one rDNA unit per circle, were present in the E. dispar rDNA circle. Such close similarity in the overall organization and sequence of the IGS of rDNAs of two different species is uncommon. In fact the spacer sequences were only slightly more divergent than the 18S rRNA gene sequence which differs by 1.6% in the two species. The most divergent sequence between E. histolytica and E. dispar was the internal transcribed spacer, ITS2. Therefore, it was concluded that probes derived from the ITS1 and ITS2 sequences would be more reliable and reproducible than probes from the IGS regions used earlier for identifying these species.

  15. Opa+ and Opa- isolates of Neisseria meningitidis and Neisseria gonorrhoeae induce sustained proliferative responses in human CD4+ T cells.

    NARCIS (Netherlands)

    Youssef, A.R.; Flier, M. van der; Estevao, S.; Hartwig, N.G.; Ley, P. van der; Virji, M.

    2009-01-01

    T cells may interact with a number of bacterial surface antigens, an encounter which has the potential to downmodulate host immune responses. Neisseria meningitidis, a human colonizer and an agent of septicemia and meningitis, expresses Opa proteins which interact with the CEACAM1 receptor expressed

  16. Morphological and comparative genomic analyses of pathogenic and non-pathogenic Fusarium solani isolated from Dalbergia sissoo.

    Science.gov (United States)

    Arif, M; Zaidi, N W; Haq, Q M R; Singh, Y P; Taj, G; Kar, C S; Singh, U S

    2015-06-01

    Sissoo or shisham (Dalbergia sissoo Roxb.) is one of the finest wood of South Asia. Fusarium solani is a causal organism of sissoo wilt, decline, or dieback. It is also a potential causal organism associated with other valuable tree species. Thirty-eight Fusarium isolates including 24 F. solani and 14 Fusarium sp., were obtained in 2005 from different geographical locations in India. All 38 (18 pathogenic and 20 non-pathogenic) isolates were characterized for genomic analysis, growth behaviour, pigmentation and sensitivity to carbendazim. Based on growth pattern, growth rate, pigmentation and sensitivity to carbendazim, all 38 isolates showed a wide range of variability, but no correlation with pathogenicity or geographical distribution. Three techniques were used for comparative genomic analysis: random amplified polymorphic DNA (RAPD); inter simple sequence repeats (ISSR); and simple sequence repeats (SSR). A total of 90 primers targeting different genome regions resulted a total of 1159 loci with an average of 12.88 loci per primer. These primers showed high genomic variability among the isolates. The maximum loci (14.64) per primer were obtained with RAPD. The total variation of the first five principal components for RAPD, ISSR, SSR and combined analysis were estimated as 47.42, 48.21, 46.30 and 46.78 %, respectively. Among the molecular markers, highest Pearson correlation value (r = 0.957) was recorded with combination of RAPD and SSR followed by RAPD and ISSR (r = 0.952), and SSR and ISSR (r = 0.942). The combination of these markers would be similarly effective as single marker system i.e. RAPD, ISSR and SSR. Based on polymorphic information content (PIC = 0.619) and highest coefficient (r = 0.995), RAPD was found to be the most efficient marker system compared to ISSR and SSR. This study will assist in understanding the population biology of wilt causing phytopathogen, F. solani, and in assisting with integrated disease management measures.

  17. Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes Shares Features of Both Pathogenic and Non-pathogenic Lentiviral Infections.

    Directory of Open Access Journals (Sweden)

    Edward J D Greenwood

    2015-09-01

    Full Text Available The virus-host relationship in simian immunodeficiency virus (SIV infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in 'natural host' species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections.

  18. Oligo-DNA custom macroarray for monitoring major pathogenic and non-pathogenic fungi and bacteria in the phyllosphere of apple trees.

    Directory of Open Access Journals (Sweden)

    Ying-Hong He

    Full Text Available BACKGROUND: To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. METHODS AND FINDINGS: First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. CONCLUSIONS: The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in

  19. Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection

    DEFF Research Database (Denmark)

    Muenchhoff, Maximilian; Adland, Emily; Karimanzira, Owen

    2016-01-01

    nonprogressors. These children therefore express two cardinal immunological features of nonpathogenic SIV infection in sooty mangabeys-low immune activation despite high viremia and low CCR5 expression on long-lived central memory CD4 T cells-suggesting closer similarities with nonpathogenetic mechanisms evolved......Disease-free infection in HIV-infected adults is associated with human leukocyte antigen-mediated suppression of viremia, whereas in the sooty mangabey and other healthy natural hosts of simian immunodeficiency virus (SIV), viral replication continues unabated. To better understand factors...... preventing HIV disease, we investigated pediatric infection, where AIDS typically develops more rapidly than in adults. Among 170 nonprogressing antiretroviral therapy-naïve children aged >5 years maintaining normal-for-Age CD4 T cell counts, immune activation levels were low despite high viremia (median, 26...

  20. Polyamine Metabolism in Flax in Response to Treatment with Pathogenic and Non-pathogenic Fusarium Strains

    Directory of Open Access Journals (Sweden)

    Wioleta eWojtasik

    2015-04-01

    Full Text Available Flax crop yield is limited by various environmental factors, but the largest crop losses worldwide are caused by Fusarium infection. Polyamines are one of the many metabolites possibly involved in the plant response to infection. However, in flax the polyamine composition, genes involved in polyamine synthesis, and their regulation, were previously unknown. The aim of this study was to investigate the polyamine synthesis pathway in flax and its involvement in response to pathogen infection. It is well established that polyamines are essential for the growth and development of both plants and fungi, but their role in pathogen infection still remains unknown. In our study we correlated the expression of genes involved in polyamine metabolism with the polyamine levels in plant tissues and compared the results for flax seedlings treated with two pathogenic and one non-pathogenic strains of Fusarium. We observed an increase in the expression of genes participating in polyamine synthesis after fungal infection, and it was reflected in an increase of polyamine content in the plant tissues. The highest level of mRNA was characteristic for ornithine decarboxylase during infection with all tested Fusarium strains and the arginine decarboxylase gene during infection with the pathogenic strain of F. culmorum. The main polyamine identified in the flax was putrescine, and its level changed the most during infection. Moreover, the considerable increase in the cell wall-bound polyamines compared to the levels of free and conjugated polyamines may indicate that their main role during pathogen infection lies in strengthening of the cell wall. In vitro experiments showed that the polyamines inhibit Fusarium growth, which suggests that they play an important role in plant defence mechanisms. Furthermore, changes in metabolism and content of polyamines indicate different defence mechanisms activated in flax in response to infection by pathogenic and non-pathogenic

  1. Clinical Neisseria gonorrhoeae isolate with a N. meningitidis porA gene and no prolyliminopeptidase activity, Sweden, 2011: danger of false-negative genetic and culture diagnostic results.

    Science.gov (United States)

    Golparian, D; Johansson, E; Unemo, M

    2012-03-01

    We describe a Neisseria gonorrhoeae strain, found in Sweden in 2011, that harbours a N. meningitidis porA gene causing false-negative results in PCRs targeting the gonococcal porA pseudogene. Furthermore, the strain had no prolyliminopeptidase (PIP) activity that many commercial biochemical kits for species verification in culture rely on. Enhanced awareness of the spread of such strains and screening for them can be crucial.

  2. Nosocomial pneumonia caused by a glucose-metabolizing strain of Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Taylor, M R; Mitchell, E B; Knapp, J S

    1985-01-01

    We describe what appears to be the first reported case of nosocomial pneumonia caused by Neisseria cinerea. The isolate metabolized glucose when tested in BACTEC Neisseria Differentiation Kits (Johnston Laboratories), but did not produce detectable acid in cystine-Trypticase (BBL Microbiology Systems) agar medium or in modified oxidation-fermentation medium. Clinical laboratories that rely on the BACTEC method for differentiation of pathogenic neisseriae should be aware of the fact that N. ci...

  3. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits.

    Science.gov (United States)

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola.

  4. Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea.

    Science.gov (United States)

    Unterweger, C; Kahler, A; Gerlach, G-F; Viehmann, M; von Altrock, A; Hennig-Pauka, I

    2017-04-01

    A bacterial cocktail of living strains of Clostridium perfringens type A (CPA) without β2-toxin gene and non-pathogenic Escherichia coli was administered orally to newborn piglets before first colostrum intake and on 2 consecutive days on a farm with a high incidence of diarrhoea and antibiotic treatment in suckling piglets associated with E. coli and CPA. This clinical field study was driven by the hypothetic principle of competitive exclusion of pathogenic bacteria due to prior colonization of the gut mucosal surface by non-pathogenic strains of the same bacterial species with the aim of preventing disease. Although CPA strains used in this study did not produce toxins in vitro, their lack of pathogenicity cannot be conclusively confirmed. The health status of the herd was impaired by a high incidence of postpartum dysgalactia syndrome in sows (70%) and a high incidence of neonatal diarrhoea caused by enterotoxigenic E. coli and CPA during the study. No obvious adverse effect of the bacterial treatment occurred. On average, more piglets were weaned in litters treated (P=0.009). Visual pathological alterations in the small intestinal wall were more frequent in dead piglets of the control group (P=0.004) and necrotizing enteritis was only found in that group. A higher average daily weight gain of piglets in the control group (P<0.001) may be due to an increased milk uptake due to less competition in the smaller litters. The bacterial cocktail was tested under field conditions for its potential to stabilize gut health status in suckling piglets before disease development due to colibacillosis and clostridial infections; however, the gut flora stabilizing effect of the bacterial cocktail was not clearly discernible in this study. Further basic research is needed to confirm the positive effects of the bacterial treatment used and to identify additional potential bacterial candidates for competitive exclusion.

  5. Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis.

    Science.gov (United States)

    Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-12-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.

  6. Functional diversity of three different DsbA proteins from Neisseria meningitidis.

    Science.gov (United States)

    Sinha, Sunita; Langford, Paul R; Kroll, J Simon

    2004-09-01

    The genome of Neisseria meningitidis serogroup B strain MC58 contains three genes - nmb0278, nmb0294 and nmb0407 - encoding putative homologues of DsbA, a periplasmic thiol disulphide oxidoreductase protein-folding catalyst of the Dsb protein family. DsbA assists the folding of periplasmic and membrane proteins in diverse organisms. While all three cloned genes complemented the DTT sensitivity of dsbA-null Escherichia coli, they showed different activities in folding specific target proteins in this background. NMB0278 protein was the most active in complementing defects in motility and alkaline phosphatase activity, while NMB0294 was the most active in folding periplasmic MalF. NMB0407 showed the weakest activity in all assays. It is extremely unusual for organisms to contain more than one chromosomal dsbA. Among the members of the genus Neisseria, only the meningococcus carries all three of these genes. Strains of Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea and Neisseria polysaccharea contained only homologues of nmb0278 and nmb0407, while Neisseria flava, Neisseria subflava and Neisseria flavescens carried only nmb0294. It is speculated that the versatility of the meningococcus in surviving in different colonizing and invasive disease settings may be derived in part from an enhanced potential to deploy outer-membrane proteins, a consequence of carrying an extended repertoire of protein-folding catalysts.

  7. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review.

    Science.gov (United States)

    Fussenegger, M; Rudel, T; Barten, R; Ryll, R; Meyer, T F

    1997-06-11

    In Neisseria gonorrhoea (Ngo), the processes of type-4 pilus biogenesis and DNA transformation are functionally linked and play a pivotal role in the life style of this strictly human pathogen. The assembly of pili from its main subunit pilin (PilE) is a prerequisite for gonococcal infection since it allows the first contact to epithelial cells in conjunction with the pilus tip-associated PilC protein. While the components of the pilus and its assembly machinery are either directly or indirectly involved in the transport of DNA across the outer membrane, other factors unrelated to pilus biogenesis appear to facilitate further DNA transfer across the murein layer (ComL, Tpc) and the inner membrane (ComA) before the transforming DNA is rescued in the recipient bacterial chromosome in a RecA-dependent manner. Interestingly, PilE is essential for the first step of transformation, i.e., DNA uptake, and is itself also subject to transformation-mediated phase and antigenic variation. This short-term adaptive mechanism allows Ngo to cope with changing micro-environments in the host as well as to escape the immune response during the course of infection. Given the fact that Ngo has no ecological niche other than man, horizontal genetic exchange is essential for a successful co-evolution with the host. Horizontal exchange gives rise to heterogeneous populations harboring clones which better withstand selective forces within the host. Such extended horizontal exchange is reflected by a high genome plasticity, the existence of mosaic genes and a low linkage disequilibrium of genetic loci within the neisserial population. This led to the concept that rather than regarding individual Neisseria species as independent traits, they comprise a collective of species interconnected via horizontal exchange and relying on a common gene pool.

  8. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

  9. Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene.

    Science.gov (United States)

    Zhou, J; Spratt, B G

    1992-08-01

    Studies of natural populations of Neisseria meningitidis using multilocus enzyme electrophoresis have shown extensive genetic variation within this species, which, it has been proposed, implies a level of sequence diversity within meningococci that is greater than that normally considered as the criterion for species limits in bacteria. To obtain a direct measure of the sequence diversity among meningococci, we obtained the nucleotide sequences of most of the argF, recA and fbp genes of eight meningococci of widely differing electrophoretic type (from the reference collection of Caugant). Sequence variation between the meningococcal strains ranged from 0-0.6% for fbp, 0-1.3% for argF, and 0-3.3% for recA. These levels of diversity are no greater than those found within Escherichia coli 'housekeeping' genes and suggest that multilocus enzyme electrophoresis may overestimate the extent of nucleotide sequence diversity within meningococci. The average sequence divergence between the Neisseria meningitidis strains and N. gonorrhoeae strain FA19 was 1.0% for fbp and 1.6% for recA. The argF gene, although very uniform among the eight meningococcal isolates, had a striking mosaic structure when compared with the gonococcal argF gene: two regions of the gene differed by greater than 13% in nucleotide sequence between meningococci and gonococci, whereas the rest of the gene differed by less than 1.7%. One of the diverged regions was shown to have been introduced from the argF gene of a commensal Neisseria species that is closely related to Neisseria cinerea. The source of the other region was unclear.

  10. Neisseria meningitidis B vaccines: recent advances and possible immunization policies.

    Science.gov (United States)

    Gasparini, Roberto; Amicizia, Daniela; Domnich, Alexander; Lai, Piero Luigi; Panatto, Donatella

    2014-03-01

    Since the development of the first-generation vaccines based on outer membrane vesicles (OMV), which were able to contain strain-specific epidemics, but were not suitable for universal use, enormous steps forward in the prevention of Neisseria meningitidis B have been made. The first multicomponent vaccine, Bexsero(®), has recently been authorized for use; other vaccines, bivalent rLP2086 and next-generation OMV vaccines, are under development. The new vaccines may substantially contribute to reducing invasive bacterial infections as they could cover most Neisseria meningitidis B strains. Moreover, other potentially effective serogroup B vaccine candidates are being studied in preclinical settings. It is therefore appropriate to review what has recently been achieved in the prevention of disease caused by serogroup B.

  11. Detection of 16S rDNA and PIA genes of Neisseria isolated from the patients with male genitourinary tract infections%男性泌尿生殖道感染患者分离奈瑟菌的16S rDNA和PIA基因检测

    Institute of Scientific and Technical Information of China (English)

    姜敏敏; 王涛; 王和

    2012-01-01

    目的 检测男性泌尿生殖道分离奈瑟菌的16S rDNA和PIA基因,探讨奈瑟菌属菌种的基因鉴定及其致病机理.方法 用PCR扩增和核苷酸序列分析方法分别检测11例男性泌尿生殖道感染患者泌尿生殖道分离的14株奈瑟菌属菌种的16S rDNA和PIA基因及其序列.结果 14株奈瑟菌属菌种经16S rDNA检测鉴定分别为淋病奈瑟菌2株,黏液奈瑟菌3株,灰色奈瑟菌5株,微黄奈瑟菌2株,干燥奈瑟菌1株,嗜乳糖奈瑟菌及多糖奈瑟菌各1株;与常规细菌学方法鉴定的符合率为85.7%.非淋球菌奈瑟菌未检出淋病奈瑟菌毒力相关的PIA核苷酸序列.结论 常规细菌学方法与染色体16S rDNA检测及其序列分析方法的联合使用,可提高奈瑟菌属菌种感染的实验室诊断准确率;PIA基因对于奈瑟菌属的男性生殖道致病性无关.%Objective To detect the 16S rDNA and PIA genes of Neisseria isolated from the patients with male genitourinary tract infections and investigate the gene identification and pathogenesis of Neisseria species. Methods The 16S rRNA and PIA genes and their sequences of 14 Neisseria species isolated from reproductive tract of 11 patients with male genitourinary tract infections were identified by PCR amplification and nucleotide sequencing. Results Fourteen Neisseria strains contained 2 strains of Neisseria gonorrhoeae, 3 strains of Neisseria mucosa, 5 strains of Neisseria cinerea, 2 strain of Neisseria subflava, 1 strain of Neisseria sicca,1 strain of Neisseria lactamica and 1 strain of Neisseria polysaccharea. The accordance rate of the results reported by 16S rDNA and routine bacteriological method was 85. 7%. The nucleotide sequence of virulence-associated gene PIA of Neisseria gonorrhoeae was not found in non-gonococcal strains of Neisseria. Conclusion The accuracy rate of laboratory diagnosis for the infection caused by Neisseria can be improved by combined use of routine bacteriological method and 16S r

  12. Crystal structure of nitrogen regulatory protein IIANtr from Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Stammers David K

    2005-08-01

    Full Text Available Abstract Background The NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr. The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography. Results The NM-IIANtr was over-expressed in E. coli and was shown to be partially mono-phosphorylated, as assessed by mass spectrometry of the purified protein. Crystals of un-phosphorylated protein were obtained and diffraction data collected to 2.5 Å resolution. The structure of NM-IIANtr was solved by molecular replacement using the coordinates of the E. coli nitrogen regulatory protein IIAntr [PDB: 1A6J] as the starting model. The overall fold of the Neisseria enzyme shows a high degree of similarity to the IIANtr from E. coli, and the position of the phosphoryl acceptor histidine residue (H67 is conserved. The orientation of an adjacent arginine residue (R69 suggests that it may also be involved in coordinating the phosphate group. Comparison of the structure with that of E. coli IIAmtl complexed with HPr [PDB: 1J6T] indicates that NM-IIANtr binds in a similar way to the HPr-like enzyme in Neisseria. Conclusion The structure of NM-IIANtr confirms its assignment as a homologue of the IIANtr proteins found in a range of other Gram-negative bacteria. We conclude that the NM- IIANtr protein functions as part of a phosphorylation cascade which, in contrast to E. coli, shares the upstream phosphotransfer protein with the sugar uptake phosphoenolpyruvate:sugar phosphotransferase system (PTS, but in common with E. coli has a distinct downstream effector mechanism.

  13. Adjuvantes:Un componente esencial de las vacunas de Neisseria

    Directory of Open Access Journals (Sweden)

    Reinaldo Acevedo

    2009-08-01

    Full Text Available Adjuvants may be classified into delivery systems and immune potentiator or modulator molecules based on their mechanism of action. Neisseria vaccines containing traditional adjuvants such as aluminium salts have existed for long time, but meningitis caused by Neisseria meningitidis serogroups, particularly serogroup B, continues to be a global health problem. Novel strategies have applied in silico and recombinant technologies to develop "universal" antigens (e.g. proteins, peptides and plasmid DNA for vaccines, but these antigens have been shown to be poorly immunogenic even when alum adjuvanted, implying a need for better vaccine design. In this work we review the use of natural, detoxified, or synthetic molecules in combination with antigens to activate the innate immune system and to modulate the adaptive immune responses. In the main, antigenic and imune potentiator signals are delivered using nano-, micro-particles, alum, or emulsions. The importance of interaction between adjuvants and antigens to activate and target dendritic cells, the bridge between the innate and adaptive immune systems, will be discussed. In addition, nasal vaccine strategies based on the development of mucosal adjuvants and Neisseria derivatives to eliminate the pathogen at the site of infection provide promising adjuvants effective not only against respiratory pathogens, but also against pathogens responsible for enteric and sexually transmitted diseases.

  14. Structural basis for iron piracy by pathogenic Neisseria.

    Science.gov (United States)

    Noinaj, Nicholas; Easley, Nicole C; Oke, Muse; Mizuno, Naoko; Gumbart, James; Boura, Evzen; Steere, Ashley N; Zak, Olga; Aisen, Philip; Tajkhorshid, Emad; Evans, Robert W; Gorringe, Andrew R; Mason, Anne B; Steven, Alasdair C; Buchanan, Susan K

    2012-02-12

    Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.

  15. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.

  16. Neisseria meningitidis Infecting a Prosthetic Knee Joint: A New Case of an Unusual Disease

    Science.gov (United States)

    Becerril Carral, Berta; López Cárdenas, Salvador; Canueto Quintero, Jesús

    2017-01-01

    Primary meningococcal meningitis is an infrequent but known disease. However, the infection of a prosthetic joint with Neisseria meningitidis is rare. We hereby describe the second case of an arthroplasty infected with Neisseria meningitidis that responded favourably to prosthesis retention with surgical debridement, in combination with antibiotics treatment. PMID:28326209

  17. Neisseria meningitidis Infecting a Prosthetic Knee Joint: A New Case of an Unusual Disease

    Directory of Open Access Journals (Sweden)

    Berta Becerril Carral

    2017-01-01

    Full Text Available Primary meningococcal meningitis is an infrequent but known disease. However, the infection of a prosthetic joint with Neisseria meningitidis is rare. We hereby describe the second case of an arthroplasty infected with Neisseria meningitidis that responded favourably to prosthesis retention with surgical debridement, in combination with antibiotics treatment.

  18. Fatal bacteremia by neisseria cinerea in a woman with myelodysplastic syndrome: a case report.

    Science.gov (United States)

    Zhu, Xiaofei; Li, Min; Cao, Huiling; Yang, Xuewen

    2015-01-01

    Neisseria cinerea has been rarely found in blood cultures. In this study, we are reporting a case of a Myelodysplastic Syndrome (MDS) patient in whose blood Neisseria cinerea was found and led a fatal consequence. This case will call our attentions to the uncommon pathogens in the pathogenicity of end-stage patients.

  19. Fatal bacteremia by neisseria cinerea in a woman with myelodysplastic syndrome: a case report

    OpenAIRE

    Zhu, Xiaofei; Li, Min; Cao, Huiling; Yang, Xuewen

    2015-01-01

    Neisseria cinerea has been rarely found in blood cultures. In this study, we are reporting a case of a Myelodysplastic Syndrome (MDS) patient in whose blood Neisseria cinerea was found and led a fatal consequence. This case will call our attentions to the uncommon pathogens in the pathogenicity of end-stage patients.

  20. Towards a Neisseria meningitidis B vaccine : introducing systems biology in process development

    NARCIS (Netherlands)

    Baart, G.J.E.

    2008-01-01

    Towards a Neisseria meningitidis B vaccine Neisseria meningitidis is a bacterium that is only found in humans and can cause the diseases meningitis or septicaemia, especially in young children. At the Netherlands Vaccine Institute a vaccine against serogroup B meningococci, which causes about 50% o

  1. A case of polymicrobial infective endocarditis involving Neisseria mucosa occurring in an intravenous drug abuser.

    Science.gov (United States)

    Giles, M W; Andrew, J H; Tellus, M M

    1988-12-01

    The incidence of polymicrobial endocarditis has increased markedly in recent years, in association with the increasing level of abuse of intravenous drugs. Neisseria mucosa, an upper respiratory tract commensal, is a rare cause of infective endocarditis. We report the first case of polymicrobial infective endocarditis involving Neisseria mucosa occurring in an intravenous drug abuser.

  2. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica.

    Directory of Open Access Journals (Sweden)

    Hazel En En Wong

    Full Text Available Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.

  3. Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection.

    Science.gov (United States)

    Muenchhoff, Maximilian; Adland, Emily; Karimanzira, Owen; Crowther, Carol; Pace, Matthew; Csala, Anna; Leitman, Ellen; Moonsamy, Angeline; McGregor, Callum; Hurst, Jacob; Groll, Andreas; Mori, Masahiko; Sinmyee, Smruti; Thobakgale, Christina; Tudor-Williams, Gareth; Prendergast, Andrew J; Kloverpris, Henrik; Roider, Julia; Leslie, Alasdair; Shingadia, Delane; Brits, Thea; Daniels, Samantha; Frater, John; Willberg, Christian B; Walker, Bruce D; Ndung'u, Thumbi; Jooste, Pieter; Moore, Penny L; Morris, Lynn; Goulder, Philip

    2016-09-28

    Disease-free infection in HIV-infected adults is associated with human leukocyte antigen-mediated suppression of viremia, whereas in the sooty mangabey and other healthy natural hosts of simian immunodeficiency virus (SIV), viral replication continues unabated. To better understand factors preventing HIV disease, we investigated pediatric infection, where AIDS typically develops more rapidly than in adults. Among 170 nonprogressing antiretroviral therapy-naïve children aged >5 years maintaining normal-for-age CD4 T cell counts, immune activation levels were low despite high viremia (median, 26,000 copies/ml). Potent, broadly neutralizing antibody responses in most of the subjects and strong virus-specific T cell activity were present but did not drive pediatric nonprogression. However, reduced CCR5 expression and low HIV infection in long-lived central memory CD4 T cells were observed in pediatric nonprogressors. These children therefore express two cardinal immunological features of nonpathogenic SIV infection in sooty mangabeys-low immune activation despite high viremia and low CCR5 expression on long-lived central memory CD4 T cells-suggesting closer similarities with nonpathogenetic mechanisms evolved over thousands of years in natural SIV hosts than those operating in HIV-infected adults.

  4. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    Science.gov (United States)

    Redman, R.S.; Freeman, S.; Clifton, D.R.; Morrel, J.; Brown, G.; Rodriguez, R.J.

    1999-01-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) 'plant-defense' response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1 colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  5. A biochemical comparison of proteases from pathogenic naegleria fowleri and non-pathogenic Naegleria gruberi.

    Science.gov (United States)

    Serrano-Luna, Jesús; Cervantes-Sandoval, Isaac; Tsutsumi, Victor; Shibayama, Mineko

    2007-01-01

    Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.

  6. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    Science.gov (United States)

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-02-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.

  7. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    Energy Technology Data Exchange (ETDEWEB)

    Redman, R.S.; Rodriguez, R.J. (Geological Survey, Seattle, WA (United States) Univ. of Washington, Seattle, WA (United States). Dept. of Botany); Clifton, D.R.; Morrel, J.; Brown, G. (Geological Survey, Seattle, WA (United States)); Freeman, S. (Volcani Center, Bet Dagan (Israel). Dept. of Plant Pathology)

    1999-02-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) plant-defense response were investigated in anthracnose-resistant and-susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  8. Nonpathogenic strains of Colletotrichum lindemuthianum trigger progressive bean defense responses during appressorium-mediated penetration.

    Science.gov (United States)

    Veneault-Fourrey, Claire; Laugé, Richard; Langin, Thierry

    2005-08-01

    The fungal bean pathogen Colletotrichum lindemuthianum differentiates appressoria in order to penetrate bean tissues. We showed that appressorium development in C. lindemuthianum can be divided into three stages, and we obtained three nonpathogenic strains, including one strain blocked at each developmental stage. H18 was blocked at the appressorium differentiation stage; i.e., no genuine appressoria were formed. H191 was blocked at the appressorium maturation stage; i.e., appressoria exhibited a pigmentation defect and developed only partial internal turgor pressure. H290 was impaired in appressorium function; i.e., appressoria failed to penetrate into bean tissues. Furthermore, these strains could be further discriminated according to the bean defense responses that they induced. Surprisingly, appressorium maturation, but not appressorium function, was sufficient to induce most plant defense responses tested (superoxide ion production and strong induction of pathogenesis-related proteins). However, appressorium function (i.e., entry into the first host cell) was necessary for avirulence-mediated recognition of the fungus.

  9. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum.

    Science.gov (United States)

    Jaroszuk-Sciseł, Jolanta; Kurek, Ewa; Rodzik, Beata; Winiarczyk, Krystyna

    2009-10-01

    Interactions of rye (Secale cereale) root border cells (RBCs), generated during plant growth and surrounding the root cap, with nonpathogenic rhizosphere Fusarium culmorum isolates: DEMFc2 (PGPF) and DEMFc5 (DRMO), and a pathogenic strain DEMFc37 were studied in test tube experiments. The effect of water-suspended RBCs released from the rye root cap on the rate of macroconidia germination and hyphae (mycelial) growth of F. culmorum strains was also examined. It was found that root caps of 3-d-old rye seedlings (with the root length of 20mm) were surrounded with a layer of RBCs generated in a number specific for this plant species of 1980+/-30. Introduction of the macroconidia of the tested F. culmorum strains into the root zone of 3-d-old seedlings resulted, after 3d of incubation, in the formation of mantle-like structures only in the rhizosphere of plants inoculated with the pathogenic DEMFc37 strain. The macroconidia were suspended in (1) water, (2) a water mixture with root caps deprived of RBCs, (3) Martin medium, (4) malt extract broth, and (5) a water mixture with rye RBCs, and their percentage germination was determined during 96-h incubation at 20 degrees C. Germination of the macroconidia of all the tested F. culmorum strains suspended in the rich growth media (Martin and malt extract broth) and in the mixture with RBCs was significantly speeded up. While only an average of 16.6 % of macroconidia suspended in water germinated after 96-h incubation, more than 90 % of those suspended in the growth media or in the mixture with RBCs germinated after 24h of incubation. In all the treatments, the highest rate of macroconidia germination was found in suspensions of the pathogenic strain and the lowest in macroconidial suspensions of the PGPF strain. The stimulatory effect of RBCs was not specific to the pathogenic strain. Nevertheless, microscopic observation revealed that it was only in the suspension containing a mixture of rye RBCs and macroconidia of the

  10. Probiotic yeasts: Anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice

    Institute of Scientific and Technical Information of China (English)

    Benot; Foligné; Jo■lle; Dewulf; Pascal; Vandekerckove; Georges; Pignède; Bruno; Pot

    2010-01-01

    AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice.METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70,IL-10,tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains.A murine ...

  11. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles.

    Science.gov (United States)

    Walochnik, J; Sommer, K; Obwaller, A; Haller-Schober, E-M; Aspöck, H

    2004-03-01

    Free-living amoebae of the genus Acanthamoeba are the causative agents of Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis. Acanthamoebae occur ubiquitously in the environment and are thus a constant cause of antigenic stimulation. In a previous study we have shown that compared to control sera, AK patients exhibit markedly lower immunoreactivities to whole cell antigen of Acanthamoeba spp. As the pathogenicity of acanthamoebae primarily relies on the excretion of proteins, it was the aim of the present study to investigate the immunoreactivity of metabolic antigen from different Acanthamoeba strains of varying pathogenicity. Three Acanthamoeba strains, one highly pathogenic, one non-pathogenic but thermophilic and one non-thermophilic non-pathogenic, were used for antigen extraction. The antigen was harvested before and after contact with human cells and all strains were tested with AK sera and with sera from healthy individuals. It was shown that the somatic protein profiles of the Acanthamoeba strains correlated to the morphological groups, and that within morphological group II-the group associated with AK-the profiles of the metabolic antigens correlated to strain pathogenicity. Moreover, it was shown that the control sera showed markedly higher immunoreactivities than the sera of the AK patients and that this immunoreactivity was generally higher to the non-pathogenic strains than to the pathogenic strain. Altogether our results once again raise the question of whether there is an immunological predisposition in AK. To our knowledge this is the first study on the immunoreactivity of metabolic antigen of acanthamoebae.

  12. Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto).

    Science.gov (United States)

    Hosoi, Tomohiro; Hirose, Rieko; Saegusa, Shizue; Ametani, Akio; Kiuchi, Kan; Kaminogawa, Shuichi

    2003-05-15

    Intestinal epithelial cells produce cytokines in response to pathogenic bacteria. However, cellular responses of these cells to nonpathogenic strains, such as Bacillus subtilis, are yet to be determined. In this study, we investigate whether epithelial-like human colon carcinoma Caco-2 cells produce cytokines in response to B. subtilis or B. subtilis (natto). The latter strain is utilized for manufacturing the fermented soy food "natto". Live cells of nonpathogenic B. subtilis JCM 1465(T), B. subtilis (natto) and E. coli JCM 1649(T), as well as pathogenic S. enteritidis JCM 1652 and P. aeruginosa JCM 5516 strains, induced secretion of interleukin-6 (IL-6) and/or IL-8, but not IL-7, IL-15 or tumor necrosis factor alpha (TNF-alpha). Transepithelial electrical resistance (TER) of Caco-2 cell monolayers cultured with E. coli, S. enteritidis or P. aeruginosa decreased more rapidly than that of cells cultured with B. subtilis or B. subtilis (natto). The amounts of cytokine induced by B. subtilis (natto) cells were strain-dependent. Moreover, B. subtilis (natto) cells subjected to hydrochloric acid treatment, but not autoclaving, induced a higher secretion of IL-6 and IL-8 than intact cells. Tyrosine kinase inhibitors, including AG126 and genistein, suppressed cytokine secretion. Our results suggest that the nonpathogenic B. subtilis (natto) bacterium induces cytokine responses in intestinal epithelial cells via activation of an intracellular signaling pathway, such as that of nuclear factor-kappa B (NF-kappaB).

  13. Antimicrobial effect of probiotics on bacterial species from dental plaque.

    Science.gov (United States)

    Zambori, Csilla; Morvay, Attila Alexandru; Sala, Claudia; Licker, Monica; Gurban, Camelia; Tanasie, Gabriela; Tirziu, Emil

    2016-03-31

    The antimicrobial role of probiotic Lactobacillus casei subspecies casei DG (L. casei DG) and of the mix culture of probiotic Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 was tested on species of Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera from supragingival sites from dogs with dental disease of different breed, age, sex, weight, and diet. The research was conducted on these four genera because of their importance in zoonotic infections after dog bites. Species from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera were isolated and identified. To test the antimicrobial efficacy of L. casei DG and the mixed culture of probiotic L. acidophilus LA-5 and Bifidobacterium bifidum BB-12 on the pathogenic species, the agar overlay method was used. L. casei DG had a bactericidal effect on all analyzed species isolated from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera after 24 hours of incubation. The mixed probiotic culture made up of L. acidophilus LA-5 and Bifidobacterium BB-12 species had no bactericidal effect on the species of Staphylococcus and Streptococcus genera, which were resistant. However, it had a bacteriostatic effect on several species of Pasteurella and Neisseria genera. This work highlights the antimicrobial potential of probiotics in vitro, demonstrating that the probiotic L. casei DG has a bactericidal effect on all analyzed species isolated from dental plaque and that the mix culture of probiotic L. acidophilus LA-5 and Bifidobacterium BB-12 has only a bacteriostatic effect.

  14. Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia.

    Science.gov (United States)

    Lu, Haifeng; Qian, Guirong; Ren, Zhigang; Zhang, Chunxia; Zhang, Hua; Xu, Wei; Ye, Ping; Yang, Yunmei; Li, Lanjuan

    2015-06-23

    The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.

  15. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae.

    Science.gov (United States)

    Gawthorne, Jayde A; Beatson, Scott A; Srikhanta, Yogitha N; Fox, Kate L; Jennings, Michael P

    2012-01-01

    Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.

  16. Neisseria Adhesin A Variation and Revised Nomenclature Scheme

    Science.gov (United States)

    Bambini, Stefania; De Chiara, Matteo; Muzzi, Alessandro; Mora, Marirosa; Lucidarme, Jay; Brehony, Carina; Borrow, Ray; Masignani, Vega; Comanducci, Maurizio; Maiden, Martin C. J.; Pizza, Mariagrazia; Jolley, Keith A.

    2014-01-01

    Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/. PMID:24807056

  17. Optimizing production of recombinant tissue plasminogen activator in non-pathogenic Leishmania by two genetic constructs

    Directory of Open Access Journals (Sweden)

    Hemayatkar M

    2011-02-01

    Full Text Available "nBackground: Recombinant tissue plasminogen activator (rt-PA is one of the most important thrombolytic agents used in patients with vascular occlusions such as acute ischemic stroke or myocardial infarction. A variety of recombinant protein expression systems have been developed for heterologous gene expression in prokaryotic and eukaryotic hosts. In recent years, Leishmania tarentolae (L. tarentolae, a non-pathogenic trypanosomatid protozoa, has come under consideration because of its safety and immunogenicity as a vaccine vector and special attributes in the expression of complex proteins. This study was done to improve rt-PA expression in this protozoon and create the opportunity for the replacement of rt-PA gene with other genes for the production of other complex proteins."n "n Methods: Two expression cassettes were used for the integration of two copies of t-PA cDNA, one copy in each cassette, into the parasite genome by electroporation. The transformed clones were selected by antibiotic resistancy. The expression of active secreted rt-PA was confirmed by Western blot analysis and Chromolize assay."n "n Results: Appearance of a 64 kD band in nitrocellulose membrane in the Western blot analysis confirmed the presence of full-length rt-PA in the culture media. Chromolize assay showed the expression levels of active recombinant t-PA in single and double transfected L. tarentolae clones- 375 IU/ml and 480 IU/ml of the culture media, respectively."n "n Conclusion: The produced rt-PA in the culture media containing the transfected cells was at least seven times higher than what has been reported in previous studies on L. tarentolae or on some other eukaryotic systems.

  18. NadA Diversity and Carriage in Neisseria meningitidis

    OpenAIRE

    Comanducci, Maurizio; Bambini, Stefania; Dominique A Caugant; Mora, Marirosa; Brunelli, Brunella; Capecchi, Barbara; Ciucchi, Laura; Rappuoli, Rino; Pizza, Mariagrazia

    2004-01-01

    NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal s...

  19. Polymicrobial infective endocarditis caused by Neisseria sicca and Haemophilus parainfluenzae

    Directory of Open Access Journals (Sweden)

    Nikoloz Koshkelashvili

    2016-01-01

    Full Text Available Infective endocarditis is a common clinical problem in industrialized countries. Risk factors include abnormal cardiac valves, a history of endocarditis, intracardiac devices, prosthetic valves and intravenous drug use. We report a case of polymicrobial infective endocarditis in a 33 year-old female with a history chronic heroin use caused by Neisseria sicca and Haemophilus parainfluenzae. We believe the patient was exposed to these microbes by cleansing her skin with saliva prior to injection. Pairing a detailed history with the consideration of atypical agents is crucial in the proper diagnosis and management of endocarditis in patients with high-risk injection behaviors.

  20. [Antimicrobal resistance of Neisseria gonorrhoeae strains in Hungary].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Brunner, Alexandra; Tóth, Béla; Tóth, Veronika; Bánvölgyi, András; Ostorházi, Eszter

    2015-02-08

    Bevezetés: A Neisseria gonorrhoeae-infekciók kezelésére kiadott európai ajánlás elsősorban a nyugat-európai adatok alapján készült, és nem egyértelműen használható a magyarországi helyzet ismeretében. Célkitűzés: A szerzők 2011. január és 2014. június közötti időszakban a Semmelweis Egyetem, Bőr-, Nemikórtani és Bőronkológiai Klinika Országos Szexuális Úton Terjedő Betegségek Centrumában izolált Neisseria gonorrhoeae törzsek rezisztenciaadatait összevetették az izolált törzsek molekuláris tipizálási eredményeivel, azzal a céllal, hogy pontos adatokat kapjanak a hazánkban előforduló Neisseria gonorrhoeae törzsek antimikrobiális rezisztenciájáról. Módszer: Az antibiotikumrezisztencia-meghatározás minimális inhibitorkoncentráció-méréssel, a szekvenciameghatározás a Neisseria gonorrhoeae Multi Antigen Sequence Typing módszerrel történt. Eredmények: A jelenleg terápiának ajánlott széles spektrumú cefalosporinok elleni rezisztencia ritka, az utóbbi években az azithromycinrezisztencia előfordulása viszont rohamosan növekedett. Következtetések: Az új terápiás irányelvek készítésekor figyelembe kell venni, hogy a gyakran fertőzést okozó molekuláris típusba sorolható törzsek között kiemelkedően magas az azithromycinrezisztensek aránya. Orv. Hetil., 2015, 156(6), 226–229.

  1. Mutagenesis of Neisseria gonorrhoeae: absence of error-prone repair

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.A.; Yasbin, R.E.

    1984-10-01

    The lethal and mutagenic effects of various mutagens on Neisseria gonorrhoeae were investigated. Lethality studies demonstrated that N. gonorrhoeae was relatively sensitive to ethyl methanesulfonate, UV light, and methyl methanesulfonate. Although N. gonorrhoeae was readily mutated by ethyl methanesulfonate and N-methyl-n'-nitro-N-nitrosoguanidine for the three genetic markers assayed, no increase in the mutation frequency was observed for any of the selective markers after UV irradiation of methyl methanesulfonate treatment. These results suggest than N. gonorrhoeae lacks an error-prone repair mechanism.

  2. Dense cultures of Neisseria gonorrhoeae in liquid medium.

    Science.gov (United States)

    Brookes, R; Hedén, C G

    1967-03-01

    Cultivation of Neisseria gonorrhoeae was effected in a conical glass culture vessel surrounded by a constant-temperature water jacket, and with facilities for stirring, aeration, and pH measurement and control. With the use of an aerated peptone-based medium, containing polypropylene glycol to prevent foam build-up, the yields obtained over the pH range from 5.8 to 7.4 were determined. The greatest yield was obtained at pH 6.4 when the dry weight was 1.5 g/liter. At pH 7.2 to 7.6, lysis was extensive.

  3. NadA Diversity and Carriage in Neisseria meningitidis

    OpenAIRE

    Comanducci, Maurizio; Bambini, Stefania; Dominique A Caugant; Mora, Marirosa; Brunelli, Brunella; Capecchi, Barbara; Ciucchi, Laura; Rappuoli, Rino; Pizza, Mariagrazia

    2004-01-01

    NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal s...

  4. [Carriers of Neisseria meningitidis among children from a primary school].

    Science.gov (United States)

    Martínez, Isabel; López, Omar; Sotolongo, Franklin; Mirabal, Mayelin; Bencomo, Antonio

    2003-01-01

    A cross-sectional and descriptive study was conducted among 318 children from the "Mártires del Corynthia" Primary School under the authorization of the Municipal Division of Education and the informed consent of their parents aimed at knowing the prevalence of meningoccoco carriers in school children, determining the epidemiological markers of the isolated strains and establishing the possible relation existing between the carrier and variables, such as age, sex, acute respiratory infection history, hacinamiento, amigdalectomy, inhibitory effect of of the accompanying flora and the secretory state of ABH antigens in saliva. All of them underwent nasopharyngeal exudate and a saliva sample was taken. In adition, the paents were surveyed about the risks factors to be investigated. 6.9 % of meningoccoco carriers were found and the NA:NT:P1:NST:L3,7,9 strains predominated. The risk factors with statistically significant results regarding the condition of carrier Neisseria meningitidis carrier were age, acute respiratory infection history, and the presence of Streptococcus pneumoniae and Neisseria lactamica of the accompanying bacterial flora in the nasopharynx of the children under study.

  5. A New Zearalenone Biodegradation Strategy Using Non-Pathogenic Rhodococcus pyridinivorans K408 Strain

    Science.gov (United States)

    Kriszt, Rókus; Krifaton, Csilla; Szoboszlay, Sándor; Cserháti, Mátyás; Kriszt, Balázs; Kukolya, József; Czéh, Árpád; Fehér-Tóth, Szilvia; Török, Lívia; Szőke, Zsuzsanna; Kovács, Krisztina J.; Barna, Teréz; Ferenczi, Szilamér

    2012-01-01

    Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to

  6. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Science.gov (United States)

    Naganandhini, S; Kennedy, Z John; Uyttendaele, M; Balachandar, D

    2015-01-01

    The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  7. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Directory of Open Access Journals (Sweden)

    S Naganandhini

    Full Text Available The persistence of Shiga-like toxin producing E. coli (STEC strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU was compared with non-pathogenic (MTCC433 and genetically modified (DH5α strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days than those compared (60 days. Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA. The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  8. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  9. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  10. Nosocomial pneumonia caused by a glucose-metabolizing strain of Neisseria cinerea.

    Science.gov (United States)

    Boyce, J M; Taylor, M R; Mitchell, E B; Knapp, J S

    1985-01-01

    We describe what appears to be the first reported case of nosocomial pneumonia caused by Neisseria cinerea. The isolate metabolized glucose when tested in BACTEC Neisseria Differentiation Kits (Johnston Laboratories), but did not produce detectable acid in cystine-Trypticase (BBL Microbiology Systems) agar medium or in modified oxidation-fermentation medium. Clinical laboratories that rely on the BACTEC method for differentiation of pathogenic neisseriae should be aware of the fact that N. cinerea may mimic N. gonorrhoeae when tested in BACTEC Neisseria Differentiation kits. The ability of N. cinerea to grow well on tryptic soy and Mueller-Hinton agars and its inability to grow on modified Thayer-Martin medium are characteristics which help to distinguish N. cinerea from N. gonorrhoeae.

  11. Identification of a new restriction endonuclease R.NciII, from Neisseria cinerea.

    Science.gov (United States)

    Piekarowicz, A

    1994-01-01

    Site-specific restriction endonuclease R. Nci II has been purified from Neisseria cinerea strain 32615. The enzyme recognizes the sequence 5' GATC 3' and its activity is inhibited by the presence of methylated adenine residue within the recognition sequence.

  12. Design of a multiplex PCR assay for the simultaneous detection and confirmation of Neisseria gonorrhoeae.

    LENUS (Irish Health Repository)

    O'Callaghan, Isabelle

    2010-05-01

    To improve the detection of Neisseria gonorrhoeae by designing a multiplex PCR assay using two N gonorrhoeae-specific genes as targets, thereby providing detection and confirmation of a positive result simultaneously.

  13. Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Streefland, M.; Keulen, van L.J.M.; IJssel, van den J.; Bakker-de Haan, A.M.C.; Eppink, M.H.M.; Pol, van der L.A.

    2012-01-01

    Outer membrane vesicles (OMV) are used as a vaccine against Neisseria meningitidis serogroup B and are traditionally produced with detergent-extraction to remove toxic lipopolysaccharide. Engineered strains with attenuated lipopolysaccharide allowed the use of native vesicles (NOMV) with improved

  14. The modulatory effects of commensal neisseriae on upper respiratory tract infections

    OpenAIRE

    Page, K.

    2014-01-01

    The human nasopharynx is a reservoir of both commensal and pathogenic bacteria that can be easily transmitted from one individual to another. It has long been hypothesised that host commensal flora give protection from carriage of pathogens and invasive disease. The commensal Neisseria lactamica has previously been associated with protection against the closely related human pathogen Neisseria meningitidis, which is thought to be due to the acquisition of cross-reactive immunity to N. meningi...

  15. Neisseria elongata subsp elongata infective endocarditis following endurance exercise.

    Science.gov (United States)

    Jenkins, Joanne May; Fife, Amanda; Baghai, Max; Dworakowski, Rafal

    2015-12-11

    A 31-year-old Argentinian woman presented with a 3-week history of fever, night sweats, myalgia and lethargy following a work trip to Uganda where she ran a marathon. Malarial screens were negative but C reactive protein, erythrocyte sedimentation rate and neutrophil count were raised and she was anaemic. A new pansystolic murmur was heard over the mitral valve and the transthoracic echocardiogram showed a large vegetation (>1 cm) with at least moderate mitral regurgitation. Blood cultures grew Neisseria elongata, subsp elongata treated initially with ceftriaxone then oral ciprofloxacin to complete 4 weeks of treatment. CT scan revealed a wedge-shaped area of low attenuation in the spleen in keeping with a splenic infarct. Seven days postadmission, the patient underwent a successful mitral valve repair. Recovery was complicated by a likely embolic infarct in the right frontal lobe, but the patient was discharged 12 days postoperative with no neurological sequelae.

  16. Cloning and expression of Neisseria meningitides luxS gene

    Institute of Scientific and Technical Information of China (English)

    Bahram Kazemi; Nazila Baghalzadeh-Mohammadi; Reza Hadavi; Mojgan Bandehpour; Elham Ghayour; Majid Moghbeli; Kazem Parivar

    2008-01-01

    Neisseria meningitides is a Gram-negative bacterium which is an important causative agent of septicemia and meningitis.Numerous pathogenic bacteria contain luxS,which is required for autoinducer-2 production.Neis-seria meningitides contains a functional copy of luxS that is necessary for full meningococcal virulence.Neisse-ria meningitides DNA was extracted and its luxS gene was amplified by nested PCR.PCR product was purified and cloned in to pQE-30 expression vector.Recombinant plasmid was transformed and mass cultured.luxS was expressed in E.coli and confirmed by western blot analysis.In this study,N.meningitides luxS was amplified, cloned and expressed successfully.The sequencing of PCR product confirmed that amplified gene was luxS. Gene was expressed and observed in SDS-PAGE.Protein was reacted by his tag monoclonal antibody through western blot analysis.

  17. Potential Therapy for Neisseria Gonorrhoeae Infections With Human Chorionic Gonadotropin.

    Science.gov (United States)

    Rao, C V

    2015-12-01

    The scientific evidence suggests that Neisseria gonorrhoeae (NG) infects human fallopian tubes by molecular mimicry in which pathogens act like a ligand to bind to epithelial cell surface human chorionic gonadotrophin (hCG)/luteinizing hormone (LH) receptors. The hCG-like molecule has been identified as ribosomal protein L12 in NG coat surface. Human fallopian tube epithelial cells have been shown to contain functional hCG/LH receptors. As previously shown in human fallopian tube organ and cell culture studies, cellular invasion and infection can be prevented by exposing the cells to excess hCG, which would outnumber and outcompete NG for receptor binding. Based on these data, we suggest testing hCG in clinical trials on infected women.

  18. Survey of Neisseria gonorrhoeae Antimicrobial Susceptibility in Ontario

    Directory of Open Access Journals (Sweden)

    Vivian G Loo

    1990-01-01

    Full Text Available The minimal inhibitory concentrations (MICs of penicillin, tetracycline, erythromycin, cefoxitin, ceftriaxone and spectinomycin were determined for 300 consecutive strains of Neisseria gonorrhoeae collected from physicians’ offices in Ontario. Only four isolates were found to produce beta-lactamase. Of the remaining 296 isolates, five (1.7% had penicillin MICs greater than or equal to 1 mg/L, 78 (26.3% had tetracycline MICs greater than or equal to 1 mg/L, 13 (4.4% had cefoxitin MICs greater than or equal to 1 mg/L and 43 (14.5% had erythromycin MICs greater than or equal to 1 mg/L. Two isolates (0.7% had high level tetracycline resistance with MICs greater than or equal to 16 mg/L. All N gonorrhoeae isolates were susceptible to ceftriaxone and to spectinomycin.

  19. Neisseria gonorrhoeae and fosfomycin: Past, present and future.

    Science.gov (United States)

    Tesh, Lauren D; Shaeer, Kristy M; Cho, Jonathan C; Estrada, Sandy J; Huang, Vanthida; Bland, Christopher M; DiMondi, V Paul; Potter, Alicia N; Hussein, Gamal; Bookstaver, P Brandon

    2015-09-01

    Drug-resistant Neisseria gonorrhoeae has become a global health concern that requires immediate attention. Due to increasing resistance to cephalosporins, pursuing novel alternatives for treating N. gonorrhoeae infections is paramount. Whilst new drug development is often cumbersome, reviving antiquated antibiotic agents for treatment of modern infections has become prevalent in clinical practice. Fosfomycin exhibits bactericidal activity through a unique mechanism of action, and a variety of organisms including N. gonorrhoeae are susceptible. In vitro studies have demonstrated that fosfomycin can retain activity against ceftriaxone-resistant N. gonorrhoeae; however, it remains unclear whether there is synergy between fosfomycin and other antibiotics. Clinical investigations evaluating fosfomycin for the treatment of N. gonorrhoeae infections are confounded by methodological limitations, none the less they do provide some perspective on its potential role in therapy. Future studies are needed to establish a safe, convenient and effective fosfomycin regimen for treating N. gonorrhoeae infections.

  20. Quinolones for the Treatment of Neisseria Gonorrhoeae and Chlamydia Trachomatis

    Directory of Open Access Journals (Sweden)

    Sebastian Faro

    1993-01-01

    Full Text Available The most commonly sexually transmitted bacteria are Neisseria gonorrhoeae and Chlamydia trachomatis. The quinolones ofloxacin and ciprofloxacin have been shown to have activity against both of these bacteria in vitro and in vivo. Ofloxacin is particularly well suited for the treatment of N. gonorrhoeae and C. trachomatis cervical infection, which can be considered the earliest manifestation of pelvic inflammatory disease (PID. Not only can ofloxacin be effectively used as a single agent, it is also useful in treating urinary tract infections caused by Enterobacteriaceae. Although it has moderate activity against anaerobes in general, ofloxacin does have activity against the anaerobes commonly isolated from female patients with soft tissue pelvic infections. Thus, ofloxacin has the potential for being utilized to treat early salpingitis.

  1. Neisseria meningitidis presenting as acute abdomen and recurrent reactive pericarditis

    Directory of Open Access Journals (Sweden)

    Karolina Akinosoglou

    Full Text Available ABSTRACT Meningococcal meningitis is a well established potential fatal infection characterized by fever, headache, petechial rash, and vomiting in the majority of cases. However, protean manifestations including abdominal pain, sore throat, diarrhea and cough, even though rare, should not be overlooked. Similarly, although disseminated infection could potentially involve various organ-targets, secondary immune related complications including joints or pericardium should be dealt with caution, since they remain unresponsive to appropriate antibiotic regimens. We hereby report the rare case of an otherwise healthy adult female, presenting with acute abdominal pain masking Neisseria meningitidis serotype B meningitis, later complicated with recurrent reactive pericarditis despite appropriate antibiotic treatment. There follows a review of current literature.

  2. Detection of Neisseria Gonorrhoeae from Urine with Ligase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    曹经江; 郑和义; 胡维

    2003-01-01

    Objective: To evaluate the value of ligase chain reaction(LCR) in the diagnosis of diplococcus gonorrhoeae in urine.Methods: LCR detection of the urine for Neisseria gonorrhoeae and bacteria culture of discharge was per-formed simultaneously to 276 patients with urethritis or cervicitis seeking treatment in sex transmitted dis-eases (STDs) outpatient clinic. For specimens with discordant results, polymerase chain reaction was conducted. The purpose was to detect the respective sensitivity and specificity of bacteria culture and LCR. Results: 24 of 276(8.7%) patients had positive LCR results and 21 of 276(7.6%) were positive for culture.5 specimens had discordant results from LCR and bacteria culture. The sensitivity and specificity of LCR in the diagnosis of gonorrhoeae were 92.3% and 100% respectively. Conclusion: This study showed that LCR had a higher sensitivity and specificity for the diagnosis of gonorrhoeae from urine.

  3. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    Science.gov (United States)

    Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P

    2015-12-21

    Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

  4. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells.

    Science.gov (United States)

    Green, Luke R; Monk, Peter N; Partridge, Lynda J; Morris, Paul; Gorringe, Andrew R; Read, Robert C

    2011-06-01

    The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria.

  5. Seminal plasma initiates a Neisseria gonorrhoeae transmission state.

    Science.gov (United States)

    Anderson, Mark T; Dewenter, Lena; Maier, Berenike; Seifert, H Steven

    2014-03-04

    Niche-restricted pathogens are evolutionarily linked with the specific biological fluids that are encountered during infection. Neisseria gonorrhoeae causes the genital infection gonorrhea and is exposed to seminal fluid during sexual transmission. Treatment of N. gonorrhoeae with seminal plasma or purified semen proteins lactoferrin, serum albumin, and prostate-specific antigen each facilitated type IV pilus-mediated twitching motility of the bacterium. Motility in the presence of seminal plasma was characterized by high velocity and low directional persistence. In addition, infection of epithelial cells with N. gonorrhoeae in the presence of seminal plasma resulted in enhanced microcolony formation. Close association of multiple pili in the form of bundles was also disrupted after seminal plasma treatment leading to an increase in the number of single pilus filaments on the bacterial surface. Thus, exposure of N. gonorrhoeae to seminal plasma is proposed to alter bacterial motility and aggregation characteristics to influence the processes of transmission and colonization. IMPORTANCE There are greater than 100 million estimated new cases of gonorrhea annually worldwide. Research characterizing the mechanisms of pathogenesis and transmission of Neisseria gonorrhoeae is important for developing new prevention strategies, since antibiotic resistance of the organism is becoming increasingly prevalent. Our work identifies seminal plasma as a mediator of N. gonorrhoeae twitching motility and microcolony formation through functional modification of the type IV pilus. These findings provide insight into motility dynamics and epithelial cell colonization under conditions that are relevant to sexual transmission. Type IV pili are common virulence factors with diverse functions among bacterial pathogens, and this work identifies interactions between type IV pili and the host environment. Finally, this work illustrates the importance of the host environment and niche

  6. Adherence of clinically isolated lactobacilli to human cervical cells in competition with Neisseria gonorrhoeae.

    Science.gov (United States)

    Vielfort, Katarina; Sjölinder, Hong; Roos, Stefan; Jonsson, Hans; Aro, Helena

    2008-10-01

    Lactobacilli are normal inhabitants of our microbiota and are known to protect against pathogens. Neisseria gonorrhoeae is a human specific pathogenic bacterium that colonises the urogenital tract where it causes gonorrhoea. In this study we analysed early interactions between lactobacilli and gonococci and investigated how they compete for adherence to human epithelial cervical cells. We show that lactobacilli adhere at various levels and that the number of adherent bacteria does not correlate to the level of protection against gonococcal infection. Protection against gonococcal adhesion varied between Lactobacillus species. Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus reuteri were capable of reducing gonococcal adherence while Lactobacillus rhamnosus was not. Lactobacillus strains of vaginal origin had the best capacity to remain attached to the host cell during gonococcal adherence. Further, we show that gonococci and lactobacilli interact with each other with resultant lactobacilli incorporation into the gonococcal microcolony. Hence, gonococci bind to colonised lactobacilli and this complex frequently detaches from the epithelial cell surface, resulting in reduced bacterial colonisation. Also, purified gonococcal pili are capable of removing adherent lactobacilli from the cell surface. Taken together, we reveal novel data regarding gonococcal and lactobacilli competition for adherence that will benefit future gonococcal prevention and treatments.

  7. Characterization of Invasive Neisseria meningitidis from Atlantic Canada, 2009 To 2013: With Special Reference to the Nonpolysaccharide Vaccine Targets (Pora, Factor H Binding Protein, Neisseria Heparin-Binding Antigen and Neisseria Adhesin A

    Directory of Open Access Journals (Sweden)

    Raymond SW Tsang

    2015-01-01

    Full Text Available BACKGROUND: Serogroup B Neisseria meningitidis (MenB has always been a major cause of invasive meningococcal disease (IMD in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB.

  8. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation

    Science.gov (United States)

    Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-01-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  9. Mutation of the conserved calcium-binding motif in Neisseria gonorrhoeae PilC1 impacts adhesion but not piliation.

    Science.gov (United States)

    Cheng, Yuan; Johnson, Michael D L; Burillo-Kirch, Christine; Mocny, Jeffrey C; Anderson, James E; Garrett, Christopher K; Redinbo, Matthew R; Thomas, Christopher E

    2013-11-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we produced recombinant full-length PilC1 and a PilC1 C-terminal domain fragment. We show that, while alterations of the calcium-binding motif disrupted the ability of PilC1 to bind calcium, they did not grossly affect the secondary structure of the protein. Furthermore, we demonstrate that both full-length wild-type PilC1 and full-length calcium-binding-deficient PilC1 inhibited gonococcal adherence to cultured human cervical epithelial cells, unlike the truncated PilC1 C-terminal domain. Similar to PilC1 in K. kingae, but in contrast to the calcium-binding mutant of P. aeruginosa PilY1, an equivalent mutation in N. gonorrhoeae PilC1 produced normal amounts of pili. However, the N. gonorrhoeae PilC1 calcium-binding mutant still had partial defects in gonococcal adhesion to ME180 cells and genetic transformation, which are both essential virulence factors in this human pathogen. Thus, we conclude that calcium binding to PilC1 plays a critical role in pilus function in N. gonorrhoeae.

  10. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow‐chamber systems. These biofilms contain large amounts of extracellular DNA, which...

  11. 1H, 13C and 15N assignment of the GNA1946 outer membrane lipoprotein from Neisseria meningitidis

    NARCIS (Netherlands)

    Neumoin, A.; Leonchiks, A.; Petit, P.; Vuillard, L.; Pizza, M.; Soriani, M.; Boelens, R.; Bonvin, A.M.J.J.

    2011-01-01

    GNA1946 (Genome-derived Neisseria Antigen 1946) is a highly conserved exposed outer membrane lipoprotein from Neisseria meningitidis bacteria of 287 amino acid length (31 kDa). Although the structure of NMB1946 has been solved recently by X-Ray crystallography, understanding the behaviour of GNA1946

  12. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children

    Science.gov (United States)

    Seidman, Jessica C.; Johnson, Lashaunda B.; Levens, Joshua; Mkocha, Harran; Muñoz, Beatriz; Silbergeld, Ellen K.; West, Sheila K.; Coles, Christian L.

    2016-01-01

    Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance. PMID

  13. Pathogenic and nonpathogenic Acanthamoeba spp. in thermally polluted discharges and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    de Jonckheere, J.F.

    1981-02-01

    During spring and autumn, the total number of amoebae and the number of acanthamoeba species able to grow at 37 degrees C were determined in six thermally polluted factory discharges and the surrounding surface waters. The isolated Acanthamoeba strains were studied for growth in axenic medium, cytopathic effect in Vito cell cultures, and virulence in mice. Although more amoebae were isolated in autumn, the number of Acanthamoeba species was lower than in spring, when the percent of pathogenic strains among the isolates was highest. Higher concentrations of amoebae were found in warm discharges, and more virulent strains occurred in thermal discharges than in surface waters.

  14. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes.

    Science.gov (United States)

    Dunning Hotopp, Julie C; Grifantini, Renata; Kumar, Nikhil; Tzeng, Yih Ling; Fouts, Derrick; Frigimelica, Elisabetta; Draghi, Monia; Giuliani, Marzia Monica; Rappuoli, Rino; Stephens, David S; Grandi, Guido; Tettelin, Hervé

    2006-12-01

    To better understand Neisseria meningitidis genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491 and FAM18, and N. gonorrhoeae FA1090. By comparing hybridization data to genome sequences, the core N. meningitidis genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between N. lactamica and N. meningitidis. However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The N. meningitidis genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.

  15. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Science.gov (United States)

    Srikhanta, Yogitha N; Dowideit, Stefanie J; Edwards, Jennifer L; Falsetta, Megan L; Wu, Hsing-Ju; Harrison, Odile B; Fox, Kate L; Seib, Kate L; Maguire, Tina L; Wang, Andrew H-J; Maiden, Martin C; Grimmond, Sean M; Apicella, Michael A; Jennings, Michael P

    2009-04-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that

  16. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    2009-04-01

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18 and modB (modB1, 2. These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11, differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates

  17. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of verticillium wilt of cotton

    Science.gov (United States)

    Aims: The study aimed to identify volatile organic compounds (VOCs) produced by the non-pathogenic Fusarium oxysporum (Fo) strain CanR-46, and to determine the anti-fungal spectrum and the control efficacy of the Fo-VOCs. Methods: The Fo-VOCs were identified by GC-MS. The antifungal activity of the...

  18. Draft Genome Sequence of the Nonpathogenic, Thermotolerant, and Exopolysaccharide-Producing Bacillus anthracis Strain PFAB2 from Panifala Hot Water Spring in West Bengal, India

    Science.gov (United States)

    Banerjee, Aparna; Halder, Urmi; Chaudhry, Vasvi; Varshney, Rajeev K.; Mantri, Shrikant

    2016-01-01

    Bacillus anthracis is the causative agent of fatal anthrax in both animals and humans. It is prevalently pathogenic. Here, we present a Bacillus anthracis PFAB2 strain from a relatively unexplored Panifala hot water spring in West Bengal, India. It is nonpathogenic, exopolysaccharide producing, and thermotolerant in nature. PMID:28007848

  19. Cooperative Role for Tetraspanins in Adhesin-Mediated Attachment of Bacterial Species to Human Epithelial Cells ▿ †

    Science.gov (United States)

    Green, Luke R.; Monk, Peter N.; Partridge, Lynda J.; Morris, Paul; Gorringe, Andrew R.; Read, Robert C.

    2011-01-01

    The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria. PMID:21464080

  20. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    Science.gov (United States)

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment.

  1. TonB-dependent transporters expressed by Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Cynthia N Cornelissen

    2011-05-01

    Full Text Available Neisseria gonorrhoeae causes the common sexually transmitted infection, gonorrhea. This microorganism is an obligate human pathogen, existing nowhere in nature except in association with humans. For growth and proliferation, N. gonorrhoeae requires iron and must acquire this nutrient from within its host. The gonococcus is well-adapted for growth in diverse niches within the human body because it expresses efficient transport systems enabling use of a diverse array of iron sources. Iron transport systems facilitating the use of transferrin, lactoferrin and hemoglobin have two components: one TonB-dependent transporter and one lipoprotein. A single component TonB-dependent transporter also allows N. gonorrhoeae to avail itself of iron bound to heterologous siderophores produced by bacteria within the same ecological niche. Other TonB-dependent transporters are encoded by the gonococcus but have not been ascribed specific functions. The best characterized iron transport system expressed by N. gonorrhoeae enables the use of human transferrin as a sole iron source. This review summarizes the molecular mechanisms involved in gonococcal iron acquisition from human transferrin and also reviews what is currently known about the other TonB-dependent transport systems. No vaccine is available to prevent gonococcal infections and our options for treating this disease are compromised by the emergence of antibiotic resistance. Because iron transport systems are critical for the survival of the gonococcus in vivo, the surface-exposed components of these systems are attractive candidates for vaccine development or therapeutic intervention.

  2. Sequence features contributing to chromosomal rearrangements in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Russell Spencer-Smith

    Full Text Available Through whole genome sequence alignments, breakpoints in chromosomal synteny can be identified and the sequence features associated with these determined. Alignments of the genome sequences of Neisseria gonorrhoeae strain FA1090, N.gonorrhoeae strain NCCP11945, and N. gonorrhoeae strain TCDC-NG08107 reveal chromosomal rearrangements that have occurred. Based on these alignments and dot plot pair-wise comparisons, the overall chromosomal arrangement of strain NCCP11945 and TCDC-NG08107 are very similar, with no large inversions or translocations. The insertion of the Gonococcal Genetic Island in strain NCCP11945 is the most prominent distinguishing feature differentiating these strains. When strain NCCP11945 is compared to strain FA1090, however, 14 breakpoints in chromosomal synteny are identified between these gonococcal strains. The majority of these, 11 of 14, are associated with a prophage, IS elements, or IS-like repeat enclosed elements which appear to have played a role in the rearrangements observed. Additional rearrangements of small regions of the genome are associated with pilin genes. Evidence presented here suggests that the rearrangements of blocks of sequence are mediated by activation of prophage and associated IS elements and reintegration elsewhere in the genome or by homologous recombination between IS-like elements that have generated inversions.

  3. TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae.

    Science.gov (United States)

    Cornelissen, Cynthia Nau; Hollander, Aimee

    2011-01-01

    Neisseria gonorrhoeae causes the common sexually transmitted infection, gonorrhea. This microorganism is an obligate human pathogen, existing nowhere in nature except in association with humans. For growth and proliferation, N. gonorrhoeae requires iron and must acquire this nutrient from within its host. The gonococcus is well-adapted for growth in diverse niches within the human body because it expresses efficient transport systems enabling use of a diverse array of iron sources. Iron transport systems facilitating the use of transferrin, lactoferrin, and hemoglobin have two components: one TonB-dependent transporter and one lipoprotein. A single component TonB-dependent transporter also allows N. gonorrhoeae to avail itself of iron bound to heterologous siderophores produced by bacteria within the same ecological niche. Other TonB-dependent transporters are encoded by the gonococcus but have not been ascribed specific functions. The best characterized iron transport system expressed by N. gonorrhoeae enables the use of human transferrin as a sole iron source. This review summarizes the molecular mechanisms involved in gonococcal iron acquisition from human transferrin and also reviews what is currently known about the other TonB-dependent transport systems. No vaccine is available to prevent gonococcal infections and our options for treating this disease are compromised by the emergence of antibiotic resistance. Because iron transport systems are critical for the survival of the gonococcus in vivo, the surface-exposed components of these systems are attractive candidates for vaccine development or therapeutic intervention.

  4. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  5. Agar dilution method for susceptibility testing of Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Marta C de Castillo

    1996-12-01

    Full Text Available The antibiotic susceptibilities of Neisseria gonorrhoeae isolates obtained from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina, were determined by the agar dilution method (MIC. 3.5% of the isolates produced ²-lactamase. A total of 96.5% of ²-lactamase negative isolates tested were susceptible to penicillin (MIC < 2 µgml-1; 14.03% of the tested isolates were resistant to tetracycline (MIC < 2 µgml-1, and 98% of the tested isolates were susceptible to spectinomycin (MIC < 64 µgml-1. The MICs for 95% of the isolates, tested for other drugs were: < 2 µgml-1 for cefoxitin, < 0.06 µgml-1 for cefotaxime, < 0.25 µgml-1 for norfloxacin, < 10 µgml-1 for cephaloridine, < 10 µgml-1 for cephalexin, and < 50 µgml-1 for kanamycin. Antibiotic resistance among N. gonorrhoeae isolates from Tucumán, Argentina, appeared to be primarily limited to penicillin and tetracycline, which has been a general use against gonorrhoeae in Tucumán since 1960. Periodic monitoring of the underlying susceptibility profiles of the N. gonorrhoeae strains prevalent in areas of frequent transmission may provide clues regarding treatment options and emerging of drug resistance.

  6. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release.

    Directory of Open Access Journals (Sweden)

    Sonja Löfmark

    Full Text Available Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.

  7. Antibiotic resistance of Neisseria gonorrhoeae isolated from gonorrhoeae patients

    Directory of Open Access Journals (Sweden)

    Mohammad Bokaeian

    2010-06-01

    Full Text Available Background: The objective of this study was to determine antibiotic susceptibility and penicillinase production by Neisseria gonorrhoeae strains isolated from gonorrhoeae patients in Zahedan.Materials and methods: In a descriptive study during 2005-2008 years, 400 suspected patients were studied by history review, medical examination, gram staining and culture in Thayer-Martin medium. Antibiotic susceptibility and penicillinase tests of isolated strains were done by disk diffusion method and aciodometric method, respectively.Results: Cultures were positive in 77(19.2% patients. The resistanat rate against antibiotics were as follow: penicillin (79.2%, ciprofloxacin (53.2%, ceftriaxone(3.8%, spectinomycin(2.5%, cefixime(12.9%, co-trimoxazole(93.5%, tetracycline(88.3% and gentamicin(29.8%. In the meanwhile, 83.1 percent of penicillin resistant isolates produced penicillinase enzyme. Discussion: Ceftriaxone, spectinomycin and cefixime are the sole antibiotics that could be considered as selective drugs. Quinolones which were regarded as an effective group of antibiotics recently have lost their importance. Resistance against other antibiotics is rapidly developing, thus, conducting experimental tests and determination of minimum inhibitory concentration and clinical trial studies at fixed intervals can contribute to diagnosis of resistance of gonococci and rapid and successful treatment of their infections in Zahedan region.

  8. Natural transformation and phase variation modulation in Neisseria meningitidis.

    Science.gov (United States)

    Alexander, Heather L; Richardson, Anthony R; Stojiljkovic, Igor

    2004-05-01

    Neisseria meningitidis has evolved the ability to control the expression-state of numerous genes by phase variation. It has been proposed that the process aids this human pathogen in coping with the diversity of microenvironments and host immune systems. Therefore, increased frequencies of phase variation may augment the organism's adaptability and virulence. In this study, we found that DNA derived from various neisserial co-colonizers of the human nasopharynx increased N. meningitidis switching frequencies, indicating that heterologous neisserial DNA modulates phase variation in a transformation-dependent manner. In order to determine whether the effect of heterologous DNA was specific to the Hb receptor, HmbR, we constructed a Universal Rates of Switching cassette (UROS). With this cassette, we demonstrated that heterologous DNA positively affects phase variation throughout the meningococcal genome, as UROS phase variation frequencies were also increased in the presence of neisserial DNA. Overexpressing components of the neisserial mismatch repair system partially alleviated DNA-induced changes in phase variation frequencies, thus implicating mismatch repair titration as a cause of these transformation-dependent increases in switching. The DNA-dependent effect on phase variation was transient and may serve as a mechanism for meningococcal genetic variability that avoids the fitness costs encountered by global mutators.

  9. Functional analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen that is responsible for the sexually-transmitted disease gonorrhea. N. gonorrhoeae encodes a T4SS within the Gonococcal Genetic Island (GGI, which secretes ssDNA directly into the external milieu. Type IV secretion systems (T4SSs play a role in horizontal gene transfer and delivery of effector molecules into target cells. We demonstrate that GGI-like T4SSs are present in other β-proteobacteria, as well as in α- and γ-proteobacteria. Sequence comparison of GGI-like T4SSs reveals that the GGI-like T4SSs form a highly conserved unit that can be found located both on chromosomes and on plasmids. To better understand the mechanism of DNA secretion by N. gonorrhoeae, we performed mutagenesis of all genes encoded within the GGI, and studied the effects of these mutations on DNA secretion. We show that genes required for DNA secretion are encoded within the yaa-atlA and parA-parB regions, while genes encoded in the yfeB-exp1 region could be deleted without any effect on DNA secretion. Genes essential for DNA secretion are encoded within at least four different operons.

  10. Ciprofloxacin-resistant Neisseria meningitidis in Canada: likely imported strains.

    Science.gov (United States)

    Tsang, Raymond S W; Law, Dennis K S; Deng, Saul; Hoang, Linda

    2017-03-01

    The prevalence of ciprofloxacin-resistant Neisseria meningitidis in Canada was studied by testing 346 isolates received at the National Microbiology Laboratory during the calendar years 2013 to 2015. Of the 277 individual invasive and 69 noninvasive isolates tested, only 2 serogroup C (MenC) isolates were found to be resistant to ciprofloxacin. Both MenC were typed as sequence type (ST)-4821, a unique clone found mainly in China, thus suggesting both isolates might be from travel-related or imported cases. This prompted us to also examine 6 serogroup A (MenA) isolates in our collection, since MenA is not currently endemic in Canada. Three MenA from 2006 were resistant to ciprofloxacin and they were typed as ST-4789. A ciprofloxacin-resistant MenA strain of ST-4789 was responsible for a meningococcal disease outbreak in Delhi, India, in 2005 to 2006. The 2 MenC and 3 MenA ciprofloxacin-resistant N. meningitidis were from patients residing in British Columbia.

  11. Fournier’s Gangrene in a Heterosexual Man: A Complication of Neisseria meningitidis Urethritis

    Directory of Open Access Journals (Sweden)

    Tariq A. Khemees

    2012-01-01

    Full Text Available A 55-year-old heterosexual male presented to the emergency department with a symptomatology consistent with urethritis and Fournier’s gangrene. Urethral swab and operative tissue cultures were positive for coagulase-negative Staphylococcus and an intracellular Gram-negative diplococcus. The latter was initially thought to be Neisseria gonorrhea; however, DNA sequencing technique confirmed it to be Neisseria meningitidis. The patient required three separate surgical debridements to control widespread necrotizing infection. Following documentation of sterile wound healing with appropriate antibiotics, four reconstructive surgeries were necessary to manage the resultant wound defects. To our knowledge, Neisseria meningitidis as a causative organism in Fournier’s gangrene has not been reported in the literature.

  12. Identification of problem Neisseria gonorrhoeae cultures by standard and experimental tests.

    Science.gov (United States)

    Arko, R J; Finley-Price, K G; Wong, K H; Johnson, S R; Reising, G

    1982-01-01

    Standard and experimental tests were used by a reference diagnostic laboratory to determine the identity of 182 "suspected" Neisseria gonorrhoeae isolates submitted by state health departments because of inconclusive laboratory results. More than 97% of these cultures were subsequently identified by a rapid microcarbohydrate test in conjunction with confirmatory immunological procedures. The experimental rapid slide agglutination test using rough-lipopolysaccharide antibody, the Phadebact co-agglutination test, and fluorescent antibody test identified 49.3 to 94.1% of these cultures. Because of frequent problems with carbohydrate utilization, Neisseria meningitidis and Branhamella catarrhalis were the two microorganisms most often confused with N. gonorrhoeae by submitting laboratories. PMID:6804485

  13. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins

    Directory of Open Access Journals (Sweden)

    André Zapun

    2016-09-01

    Full Text Available Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP, in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  14. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  15. Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Cesar D Bordenave

    Full Text Available Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with Pseudomonas syringae DC3000 pv. tomato. Our analysis demonstrated that this bacterial strain is unable to cause disease in these accessions, even though the defense mechanisms triggered in these ecotypes might differ. Thus, disease tolerance in MG-20 was characterized by bacterial multiplication, chlorosis and desiccation at the infiltrated tissues. In turn, Gifu B-129 plants did not show any symptom at all and were completely successful in restricting bacterial growth. We performed a microarray based analysis of these responses and determined the regulation of several genes that could play important roles in plant defense. Interestingly, we were also able to identify a set of defense genes with a relative high expression in Gifu B-129 plants under non-stress conditions, what could explain its higher tolerance. The participation of these genes in plant defense is discussed. Our results position the L. japonicus-P. syringae interaction as a interesting model to study defense mechanisms in legume species.

  16. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene.

    Directory of Open Access Journals (Sweden)

    Mark T Anderson

    Full Text Available Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae

  17. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions.

    Science.gov (United States)

    McClure, Ryan; Tjaden, Brian; Genco, Caroline

    2014-01-01

    In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the "sRNAome" of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.

  18. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914.

    Science.gov (United States)

    Kern, Gunther; Palmer, Tiffany; Ehmann, David E; Shapiro, Adam B; Andrews, Beth; Basarab, Gregory S; Doig, Peter; Fan, Jun; Gao, Ning; Mills, Scott D; Mueller, John; Sriram, Shubha; Thresher, Jason; Walkup, Grant K

    2015-08-21

    We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467-474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.

  19. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene.

    Science.gov (United States)

    Anderson, Mark T; Seifert, H Steven

    2013-01-01

    Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating

  20. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease.

    Science.gov (United States)

    Hill, Darryl J; Griffiths, Natalie J; Borodina, Elena; Virji, Mumtaz

    2010-02-09

    The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through

  1. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914*

    Science.gov (United States)

    Kern, Gunther; Palmer, Tiffany; Ehmann, David E.; Shapiro, Adam B.; Andrews, Beth; Basarab, Gregory S.; Doig, Peter; Fan, Jun; Gao, Ning; Mills, Scott D.; Mueller, John; Sriram, Shubha; Thresher, Jason; Walkup, Grant K.

    2015-01-01

    We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β. PMID:26149691

  2. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic E. coli from Young Tanzanian Children

    Directory of Open Access Journals (Sweden)

    Jessica Couvillion Seidman

    2016-09-01

    Full Text Available Enteroaggregative, enteropathogenic, and enterotoxigenic E. coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to 6 antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 month period. Enteroaggregative, enteropathogenic, and enterotoxigenic E. coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to 6 antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 month period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3- and 6 months following azithromycin treatment. We compared resistance to 6 antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%. Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p≤0.001 within fecal specimens and overall. Azithromycin mass treatment

  3. Emergence of fluoroquinolone-resistant Neisseria gonorrhoeae in São Paulo, Brazil Emergência de Neisseria gonorrhoeae resistente à fluoroquinolona em São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Walter Belda Junior

    2007-06-01

    Full Text Available Continued monitoring of antimicrobial resistance patterns is essential in order for Sexually Transmitted Diseases (STD treatment to be effective. Gonococci isolates from 65 patients in São Paulo were submitted to susceptibility testing, and a decreased susceptibility or resistance to ciprofloxacin was observed in 8.7% of these patients, indicating that Neisseria gonorrhoeae fluoroquinolone resistance is emerging in Brazil.O monitoramento contínuo de resistência antimicrobiana é essencial para a efetividade do tratamento das Doenças Sexualmente Transmissíveis (DST. Gonococosisolados de 65 pacientes de São Paulo foram submetidos a teste de susceptibilidade verificando-se que 8,7% apresentavam susceptibilidade diminuída ou resistência ao ciprofloxacino, o que indica que a resistência da Neisseria gonorrhoeae às fluoroquinolonas é emergente no Brasil.

  4. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Mustapha M. Mustapha

    2015-10-01

    Full Text Available Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W sequence type (ST 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone. It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution.

  5. Neisseria meningitidis Adhesin NadA Targets β1 Integrins

    Science.gov (United States)

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Jiménez-Soto, Luisa F.; Kurzai, Oliver; Ackermann, Nikolaus

    2011-01-01

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Because of the enormous diversity of neisserial cell adhesins the analysis of the specific contribution of NadA in meningococcal host interactions is limited. Therefore, we used a non-invasive Y. enterocolitica mutant as carrier to study the role of NadA in host cell interaction. NadA was shown to be efficiently produced and localized in its oligomeric form on the bacterial surface of Y. enterocolitica. Additionally, NadA mediated a β1 integrin-dependent adherence with subsequent internalization of yersiniae by a β1 integrin-positive cell line. Using recombinant NadA24–210 protein and human and murine β1 integrin-expressing cell lines we could demonstrate the role of the β1 integrin subunit as putative receptor for NadA. Subsequent inhibition assays revealed specific interaction of NadA24–210 with the human β1 integrin subunit. Cumulatively, these results indicate that Y. enterocolitica is a suitable toolbox system for analysis of the adhesive properties of NadA, revealing strong evidence that β1 integrins are important receptors for NadA. Thus, this study demonstrated for the first time a direct interaction between the Oca-family member NadA and human β1 integrins. PMID:21471204

  6. History and epidemiology of antibiotic susceptibilities of Neisseria gonorrhoeae.

    Science.gov (United States)

    Shigemura, Katsumi; Fujisawa, Masato

    2015-01-01

    Neisseria gonorrhoeae is a common causative microorganism of male urethritis. The most important problem with this infectious disease is antibiotic resistance. For instance, in the 1980's-1990's, most studies showed almost 100% susceptibility of N. gonorrhoeae to the representative cephalosporins, cefixime and cefpodoxime. By the late 1990s, the reported susceptibility decreased to 93.3-100% and further decreased to 82.9-100% in the early 2000's. However, reported susceptibility was revived to 95.8-100% in the late 2000's to 2010's. The susceptibility of N. gonorrhoeae to penicillins varied in different countries and regions. A 2002 Japanese study showed a resistance ratio of about 30% and while Laos, China and Korea showed 80-100% resistance. Fluoroquinolones have shown a dramatic change in their effect on N. gonorrhoeae. In the early 1990's, 0.3-1.3% of N. gonorrhoeae showed low susceptibility or resistance to ciprofloxacin in the US but this figure jumped to 9.5% by 1999. In Asia, N. gonorrhoeae ciprofloxacin resistance or lower susceptibility was about 80-90% in the early 2000's and this trend continues to the present day. Azithromycin is currently the possible last weapon for N. gonorrhoeae treatment per oral administration. The susceptibility of N. gonorrhoeae to azithromycin was 100% in Indonesia in 2004 and the latest study from Germany showed 6% resistance in strains from 2010-2011. This review summarizes the history and epidemiology of N. gonorrhoeae antibiotic susceptibilities, for which the most frequently used antibiotics vary between countries or regions.

  7. Toxicity and immunogenicity of Neisseria meningitidis lipopolysaccharide incorporated into liposomes.

    Science.gov (United States)

    Petrov, A B; Semenov, B F; Vartanyan, Y P; Zakirov, M M; Torchilin, V P; Trubetskoy, V S; Koshkina, N V; L'Vov, V L; Verner, I K; Lopyrev, I V

    1992-09-01

    To obtain nontoxic and highly immunogenic lipopolysaccharide (LPS) for immunization, we incorporated Neisseria meningitidis LPS into liposomes. Native LPS and its salts were incorporated by the method of dehydration-rehydration of vesicles or prolonged cosonication. The most complete incorporation of LPS into liposomes and a decrease in toxicity were achieved by the method of dehydration-rehydration of vesicles. Three forms of LPS (H+ form, Mg2+ salt, and triethanolamine salt) showed different solubilities in water, the acidic form of LPS, with the most pronounced hydrophobic properties, being capable of practically complete association with liposomal membranes. An evaluation of the activity of liposomal LPS in vitro (by the Limulus amoebocyte test) and in vivo (by monitoring the pyrogenic reaction in rabbits) revealed a decrease in endotoxin activity of up to 1,000-fold. In addition, the pyrogenic activity of liposomal LPS was comparable to that of a meningococcal polysaccharide vaccine. Liposomes had a pronounced adjuvant effect on the immune response to LPS. Thus, the level of anti-LPS plaque-forming cells in the spleens of mice immunized with liposomal LPS was 1 order of magnitude higher and could be observed for a longer time (until day 21, i.e., the term of observation) than in mice immunized with free LPS. The same regularity was revealed in a study done with an enzyme-linked immunosorbent assay. This study also established that antibodies induced by immunization belonged to the immunoglobulin M and G classes, which are capable of prolonged circulation. Moreover, liposomal LPS induced a pronounced immune response in CBA/N mice (defective in B lymphocytes of the LyB-5+ subpopulation). The latter results indicate that the immunogenic action of liposomal LPS occurs at an early age.

  8. Neisseria meningitidis endocarditis: a case report and review of the literature.

    LENUS (Irish Health Repository)

    Ali, Mohammed

    2012-02-01

    Neisseria meningitidis is the leading cause of bacterial meningitis in children and young adults, with an overall mortality rate of up to 25%, but it is a rare cause of infective endocarditis. We present herein a case of N. meningitidis meningitis complicated with infective endocarditis.

  9. Complete Genome Sequences of Neisseria gonorrhoeae with Coresistance to First-Line Antimicrobials

    Science.gov (United States)

    Bharat, Amrita; Martin, Irene; Demczuk, Walter; Allen, Vanessa; Haldane, David; Hoang, Linda

    2016-01-01

    Neisseria gonorrhoeae strains with coresistance to the first-line antimicrobial treatments azithromycin and ceftriaxone are an emerging public health threat. Here, we present the complete genome sequences of three strains of N. gonorrhoeae, including one susceptible strain and two strains with coresistance to ceftriaxone and azithromycin. PMID:27609929

  10. Gonococcal aneurysm of the ascending aorta: case report and review of Neisseria gonorrhoeae endovascular infections.

    Science.gov (United States)

    Markowicz, Samuel; Anstey, James Richards; Hites, Maya; Montesinos, Isabel; Roisin, Sandrine; Keyzer, Caroline; Jacobs, Frederique

    2014-02-01

    We present the case of a man with a bicuspid aortic valve who presented with persistent fever. Blood cultures yielded Neisseria gonorrhoeae, and the diagnosis of infected mycotic aneurysm was confirmed by detection of the bacterial genome in the aortic wall. The patient was cured with surgery and intravenous ceftriaxone.

  11. Ciprofloxacin treatment of bacterial peritonitis associated with chronic ambulatory peritoneal dialysis caused by Neisseria cinerea.

    Science.gov (United States)

    Taegtmeyer, M; Saxena, R; Corkill, J E; Anijeet, H; Parry, C M

    2006-08-01

    Bacterial peritonitis is a well-recognized complication of chronic ambulatory peritoneal dialysis (CAPD) in patients with end-stage renal failure. We present a case of peritonitis due to an unusual pathogen, Neisseria cinerea, unresponsive to the standard intraperitoneal (i.p.) vancomycin and gentamicin, which responded rapidly to oral ciprofloxacin.

  12. Serotype distribution, antibiotic susceptibility, and genetic relatedness of Neisseria meningitidis strains recently isolated in Italy.

    Science.gov (United States)

    Mastrantonio, Paola; Stefanelli, Paola; Fazio, Cecilia; Sofia, Tonino; Neri, Arianna; La Rosa, Giuseppina; Marianelli, Cinzia; Muscillo, Michele; Caporali, Maria Grazia; Salmaso, Stefania

    2003-02-15

    The availability of new polysaccharide-protein conjugate vaccines against Neisseria meningitidis serogroup C prompted European National Health authorities to carefully monitor isolate characteristics. In Italy, during 1999-2001, the average incidence was 0.4 cases per 100,000 inhabitants. Serogroup B was predominant and accounted for 75% of the isolates, followed by serogroup C with 24%. Serogroup C was isolated almost twice as frequently in cases of septicemia than in cases of meningitis, and the most common phenotypes were C:2a:P1.5 and C:2b:P1.5. Among serogroup B meningococci, the trend of predominant phenotypes has changed from year to year, with a recent increase in the frequency of B:15:P1.4. Only a few meningococci had decreased susceptibility to penicillin, and, in the penA gene, all of these strains had exogenous DNA blocks deriving from the DNA of commensal Neisseria flavescens, Neisseria cinerea, and Neisseria perflava/sicca. Fluorescent amplified fragment-length polymorphism analysis revealed the nonclonal nature of the strains with decreased susceptibility to penicillin.

  13. Towards an improved Neisseria meningitidis B vaccine: vesicular PorA formulations

    NARCIS (Netherlands)

    Arigita Maza, C. (Carmen)

    2003-01-01

    There is a great need for vaccines against Neisseria meningitidis serogroup B. This is especially important in Western European countries, were approximately two thirds of the cases of meningococcal disease can be attributed to serogroup B strains. Against this serogroup, traditional vaccines based

  14. Rapid change in the ciprofloxacin resistance pattern among Neisseria gonorrhoeae strains in Nuuk, Greenland

    DEFF Research Database (Denmark)

    Skjerbæk Rolskov, Anne; Bjorn-Mortensen, Karen; Mulvad, Gert;

    2015-01-01

    OBJECTIVES: Sexually transmitted infections (STIs), including infections with Neisseria gonorrhoeae (GC), are highly incident in Greenland. Since January 2011, GC testing has been performed on urine with nucleic acid amplification tests (NAATs) by strand displacement amplification (Becton Dickinson...... treatments has changed. Continued monitoring and rethinking of primary and secondary preventive initiatives is highly recommended in this high GC incidence setting....

  15. Crystallization and preliminary X-ray studies of recombinant amylosucrase from Neisseria polysaccharea

    DEFF Research Database (Denmark)

    Skov, L K; Mirza, Osman Asghar; Henriksen, A;

    2000-01-01

    Recombinant amylosucrase from Neisseria polysaccharea was crystallized by the vapour-diffusion procedure in the presence of polyethylene glycol 6000. The crystals belong to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 95.7, b = 117.2, c = 62.1 A, and diffract to 1.6 A re...

  16. A first meningococcal meningitis case caused by serogroup Ⅹ Neisseria meningitidis strains in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; UANG Ying-chun; ZHANG Tie-gang; HE Jing-guo; WU Jiang; CHEN Li-juan; LIU Jun-feng; PANG Xing-huo; YANG Jie; SHAO Zhu-jun

    2008-01-01

    @@ Neisseria meningitidis is the leading cause of bacterial meningitis and classified into 13 serogroups based on the immunological reactivity of the capsular polysaccharide.1 Serogroups A,B,C,W135 and Y are the most common causes of meningitis.2

  17. Complete Genome Sequences of Neisseria gonorrhoeae with Coresistance to First-Line Antimicrobials

    OpenAIRE

    Bharat, Amrita; Martin, Irene; Demczuk, Walter; Allen, Vanessa; Haldane, David; Hoang, Linda; Mulvey, Michael R.

    2016-01-01

    Neisseria gonorrhoeae strains with coresistance to the first-line antimicrobial treatments azithromycin and ceftriaxone are an emerging public health threat. Here, we present the complete genome sequences of three strains of N. gonorrhoeae, including one susceptible strain and two strains with coresistance to ceftriaxone and azithromycin.

  18. Neisseria gonorrhoeae: testing, typing and treatment in an era of increased antimicrobial resistance

    NARCIS (Netherlands)

    Wind, C.M.

    2017-01-01

    This thesis discusses the management of Neisseria gonorrhoeae infections while under threat of emerging antimicrobial resistance. It focuses on improved diagnostics, and antimicrobial resistance to current and future therapies. We describe a new method of targeted deferred culture, using nucleic aci

  19. Neisseria meningitidis endocarditis: A case report and review of the literature.

    LENUS (Irish Health Repository)

    Ali, Mohammed

    2011-04-08

    Abstract Neisseria meningitidis is the leading cause of bacterial meningitis in children and young adults, with an overall mortality rate of up to 25%, but it is a rare cause of infective endocarditis. We present herein a case of N. meningitidis meningitis complicated with infective endocarditis.

  20. Azithromycin Resistance and Decreased Ceftriaxone Susceptibility in Neisseria gonorrhoeae, Hawaii, USA.

    Science.gov (United States)

    Papp, John R; Abrams, A Jeanine; Nash, Evelyn; Katz, Alan R; Kirkcaldy, Robert D; O'Connor, Norman P; O'Brien, Pamela S; Harauchi, Derek H; Maningas, Eloisa V; Soge, Olusegun O; Kersh, Ellen N; Komeya, Alan; Tomas, Juval E; Wasserman, Glenn M; Kunimoto, Gail Y; Trees, David L; Whelen, A Christian

    2017-05-01

    During 2016, eight Neisseria gonorrhoeae isolates from 7 patients in Hawaii were resistant to azithromycin; 5 had decreased in vitro susceptibility to ceftriaxone. Genomic analysis demonstrated a distinct phylogenetic clade when compared with local contemporary strains. Continued evolution and widespread transmission of these strains might challenge the effectiveness of current therapeutic options.

  1. An intragenic distribution bias of DNA uptake sequences in Pasteurellaceae and Neisseriae

    NARCIS (Netherlands)

    Passel, van M.W.J.

    2008-01-01

    Most sequenced strains from Pasteurellaceae and Neisseriae contain hundreds to thousands of uptake sequence (US) motifs in their genome, which are associated with natural competence for DNA uptake. The mechanism of their recognition is still unclear, and I searched for intragenic location patterns o

  2. Epidemiology of Neisseria gonorrhoeae Gyrase A Genotype, Los Angeles, California, USA.

    Science.gov (United States)

    Bhatti, Ashima A; Allan-Blitz, Lao-Tzu; Castrejon, Mariana; Humphries, Romney M; Hemarajata, Peera; Klausner, Jeffrey D

    2017-09-01

    We investigated the epidemiology of the mutant gyrase A gene, a reliable predictor of ciprofloxacin resistance, in Neisseria gonorrhoeae infections at UCLA Health in Los Angeles, California, USA, during November 1, 2015-August 31, 2016. Among 110 patients with N. gonorrhoeae infections, 48 (44%) had the mutant gyrase A gene.

  3. Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase

    DEFF Research Database (Denmark)

    Albenne, Cécile; Skov, Lars; Mirza, Osman Asghar;

    2004-01-01

    Amylosucrase from Neisseria polysaccharea is a remarkable transglucosidase from family 13 of the glycoside-hydrolases that synthesizes an insoluble amylose-like polymer from sucrose in the absence of any primer. Amylosucrase shares strong structural similarities with alpha-amylases. Exactly how t...

  4. NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis

    NARCIS (Netherlands)

    Carlier, L.P.A.; Köhler, Christian; Veggi, D.; Pizza, M.; Soriani, M.; Boelens, R.; Bonvin, A.M.J.J.

    2011-01-01

    NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the ADP-ribosyltransferase family and catalyses the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria

  5. Survivors of septic shock caused by Neisseria meningitidis in childhood : Psychosocial outcomes in young adulthood

    NARCIS (Netherlands)

    Vermunt, Lindy C.; Buysse, Corinne M.; Joosten, Koen F.; Duivenvoorden, Hugo J.; Hazelzet, Jan A.; Verhulst, Frank C.; Utens, Elisabeth M.

    2011-01-01

    Objective: To investigate long-term psychosocial outcomes in young adults who survived septic shock caused by Neisseria meningitidis (meningococcal septic shock) during childhood. Design: A cross-sectional study. Setting: The psychological investigation took place in the department of Child and Adol

  6. Assessment of vaccine potential of the Neisseria-specific protein NMB0938.

    Science.gov (United States)

    Sardiñas, Gretel; Climent, Yanet; Rodríguez, Yaindrys; González, Sonia; García, Darién; Cobas, Karem; Caballero, Evelin; Pérez, Yusleydis; Brookes, Charlotte; Taylor, Stephen; Gorringe, Andrew; Delgado, Maité; Pajón, Rolando; Yero, Daniel

    2009-11-16

    The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.

  7. Decline in Decreased Cephalosporin Susceptibility and Increase in Azithromycin Resistance in Neisseria gonorrhoeae, Canada.

    Science.gov (United States)

    Martin, I; Sawatzky, P; Liu, G; Allen, V; Lefebvre, B; Hoang, L; Drews, S; Horsman, G; Wylie, J; Haldane, D; Garceau, R; Ratnam, S; Wong, T; Archibald, C; Mulvey, M R

    2016-01-01

    Antimicrobial resistance profiles were determined for Neisseria gonorrhoeae strains isolated in Canada during 2010-2014. The proportion of isolates with decreased susceptibility to cephalosporins declined significantly between 2011 and 2014, whereas azithromycin resistance increased significantly during that period. Continued surveillance of antimicrobial drug susceptibilities is imperative to inform treatment guidelines.

  8. Two Cases of Neisseria meningitidis Proctitis in HIV-Positive Men Who Have Sex with Men

    Science.gov (United States)

    Gutierrez-Fernandez, José; Medina, Verónica; Hidalgo-Tenorio, Carmen

    2017-01-01

    We report 2 cases from Spain of infectious proctitis caused by Neisseria meningitidis in HIV-positive men who have sex with men. Genetic characterization of the isolates showed that they are unusual strains not found in other more frequent meningococcal locations. This finding suggests an association between specific strains and anogenital tract colonization. PMID:28221124

  9. Resurgence of Neisseria meningitidis serogroup W ST-11 (cc11 in Madagascar, 2015–2016

    Directory of Open Access Journals (Sweden)

    Saïda Rasoanandrasana

    2017-02-01

    Full Text Available The resurgence of invasive meningococcal disease caused by Neisseria meningitidis serogroup W with sequence type ST-11 (cc11 was observed in Madagascar in 2015–2016. Three cases were investigated in this study. Molecular characterization of the strains suggests the local transmission of a single genotype that may have been circulating for years.

  10. Examination of Neisseria Gonorrhoeae Opacity Protein Expression During Experimental Murine Genital Tract Infection

    Science.gov (United States)

    2005-01-01

    E., M. Virji, K. Zak and J. N. Fletcher (1987). "Immunobiology of gonococcal outer membrane protein I." Antonie Van Leeuwenhoek 53(6): 461-4. 88...pathogenic Neisseriae." Antonie Van Leeuwenhoek 53(6): 435-40. 146. Murphy, G. L., T. D. Connell, D. S. Barritt, M. Koomey and J. G. Cannon (1989

  11. Towards an improved Neisseria meningitidis B vaccine: vesicular PorA formulations

    NARCIS (Netherlands)

    Arigita Maza, C. (Carmen)

    2003-01-01

    There is a great need for vaccines against Neisseria meningitidis serogroup B. This is especially important in Western European countries, were approximately two thirds of the cases of meningococcal disease can be attributed to serogroup B strains. Against this serogroup, traditional vaccines based

  12. Improved Production Process for Native Outer Membrane Vesicle Vaccine against Neisseria meningitidis

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Wijffels, R.H.; Zomer, G.; Kaaijk, P.; Ruiterkamp, N.; Dobbelsteen, van den G.J.M.; Pol, van der L.A.

    2013-01-01

    An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable

  13. Neisseria meningitidis ST11 Complex Isolates Associated with Nongonococcal Urethritis, Indiana, USA, 2015–2016

    Science.gov (United States)

    Toh, Evelyn; Gangaiah, Dharanesh; Batteiger, Byron E.; Williams, James A.; Arno, Janet N.; Tai, Albert; Batteiger, Teresa A.

    2017-01-01

    At a clinic in Indianapolis, Indiana, USA, we observed an increase in Neisseria gonorrhoeae–negative men with suspected gonococcal urethritis who had urethral cultures positive for N. meningitidis. We describe genomes of 2 of these N. meningitidis sequence type 11 complex urethritis isolates. Clinical evidence suggests these isolates may represent an emerging urethrotropic clade. PMID:28098538

  14. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis

    DEFF Research Database (Denmark)

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna

    2016-01-01

    Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the Neisseria meningitidis proton-coupled oligopeptide transporter (NmPOT). It ...

  15. NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis

    NARCIS (Netherlands)

    Carlier, L.P.A.; Köhler, Christian; Veggi, D.; Pizza, M.; Soriani, M.; Boelens, R.; Bonvin, A.M.J.J.

    2011-01-01

    NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the ADP-ribosyltransferase family and catalyses the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria u

  16. Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England.

    Science.gov (United States)

    Ladhani, Shamez N; Giuliani, Marzia Monica; Biolchi, Alessia; Pizza, Mariagrazia; Beebeejaun, Kazim; Lucidarme, Jay; Findlow, Jamie; Ramsay, Mary E; Borrow, Ray

    2016-02-01

    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain.

  17. Flagellins of Salmonella Typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages.

    Science.gov (United States)

    Yang, Jingyi; Zhang, Ejuan; Liu, Fang; Zhang, Yan; Zhong, Maohua; Li, Yaoming; Zhou, Dihan; Chen, Yaoqing; Cao, Yuan; Xiao, Yang; He, Benxia; Yang, Yi; Sun, Ying; Lu, Mengji; Yan, Huimin

    2014-01-01

    Flagellin is recognized by both Toll-like receptor (TLR)5 and NAIP5/NLRC4 inflammasome receptors. We hypothesized that the flagellins derived from different bacteria might differentially activate TLR5 and/or NAIP5/NLRC4 signal pathways. To test this, the immune recognition of recombinant flagellins derived from pathogenic Salmonella Typhi (SF) and the nonpathogenic Escherichia coli K12 strain MG1655 (KF) were examined by the activation of TLR5 and NLRC4 pathways in various cell types. While flagellins SF and KF were not distinguishable in activating the TLR5 pathway, KF induced significantly less interleukin-1β production and pyroptotic cell death in peritoneal macrophages than SF, and showed markedly lower efficiency in activating caspase-1 through the NLRC4 pathway than SF. Macrophages may differentially recognize flagellins by intracellular sensors and thereby initiate the immune response to invading pathogenic bacteria. Our findings suggest an active role of flagellin as an important determinant in host differential immune recognition and for the control of bacteria infection.

  18. Cloning of Genomic DNA Flanking Transposon in the Nonpathogenic Mutant of Xanthomonas axonopodis pv. glycines M715

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA RUSMANA

    2005-06-01

    Full Text Available The objective of this work is to clone flanking DNA derived from Tn-5 mutagenesis of wild type strain Xanthomonas axonopodis pv. glycines as first step to clone and to identify the gene involved in pathogenicity mechanism. We have localized the flanking DNA fragment from a nonpathogenic mutant of Xag M715. Southern hybridization analysis using 2.8 kb EcoRI from pYR103 as a probe showed that the fragment is located within 2.0 kb PstI fragment. A 0.7 kb flanking DNA was amplified using inverse PCR technique, and inserted into pGEM-T Easy vector generating a 3.7 kb recombinant plasmid (pAA01. Southern hybridization analysis of the wild type (YR32 with pAA01 as a probe indicated a hybridization signal located at approximately 3.0 kb PstI fragment. DNA sequence analysis revealed that the DNA fragment has a 64% identity to a vir gene of Bacillus anthracis.

  19. The non-pathogenic Henipavirus Cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2.

    Science.gov (United States)

    Lieu, Kim G; Marsh, Glenn A; Wang, Lin-Fa; Netter, Hans J

    2015-12-01

    Immune evasion by the lethal henipaviruses, Hendra (HeV) and Nipah virus, is mediated by its interferon (IFN) antagonist P gene products, phosphoprotein (P), and the related V and W proteins, which can target the signal transducer and activator of transcription 1 (STAT1) and STAT2 proteins to inhibit IFN/STAT signaling. However, it is not clear if the recently identified non-pathogenic Henipavirus, Cedar paramyxovirus (CedPV), is also able to antagonize the STAT proteins. We performed comparative studies between the HeV P gene products (P/V/W) and CedPV-P (CedPV does not encode V or W) and demonstrate that differences exist in their ability to engage the STAT proteins using immunoprecipitation and quantitative confocal microscopic analysis. In contrast to HeV-P gene encoded proteins, the ability of CedPV-P to interact with and relocalize STAT1 or STAT2 is compromised, correlating with a reduced capacity to inhibit the mRNA synthesis of IFN-inducible gene MxA. Furthermore, infection studies with HeV and CedPV demonstrate that HeV is more potent than CedPV in inhibiting the IFN-α-mediated nuclear accumulation of STAT1. These results strongly suggest that the ability of CedPV to counteract the IFN/STAT response is compromised compared to HeV.

  20. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, P; Mukherjee, P K; Kale, S P [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Roy, M; Mandal, B P; Tyagi, A K [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dey, G K [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghatak, J [Institute of Physics, Bhubaneswar 751005 (India)], E-mail: sharadkale@gmail.com

    2008-02-20

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO{sub 3} turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at {approx}410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  1. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia.

    Science.gov (United States)

    Kube, Michael; Migdoll, Alexander Michael; Müller, Ines; Kuhl, Heiner; Beck, Alfred; Reinhardt, Richard; Geider, Klaus

    2008-09-01

    The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.

  2. Biological control of crown gall on grapevine and root colonization by nonpathogenic Rhizobium vitis strain ARK-1.

    Science.gov (United States)

    Kawaguchi, Akira

    2013-01-01

    A nonpathogenic strain of Rhizobium vitis ARK-1 was tested as a biological control agent for grapevine crown gall. When grapevine roots were soaked in a cell suspension of strain ARK-1 before planting in the field, the number of plants with tumors was reduced. The results from seven field trials from 2009 to 2012 were combined in a meta-analysis. The integrated relative risk after treatment with ARK-1 was 0.15 (95% confidence interval: 0.07-0.29, P0.001), indicating that the disease incidence was significantly reduced by ARK-1. In addition, the results from four field trials from 2007 to 2009 using R. vitis VAR03-1, a previously reported biological control agent for grapevine crown gall, were combined in a meta-analysis. The integrated relative risk after treatment with VAR03-1 was 0.24 (95% confidence interval: 0.11-0.53, P0.001), indicating the superiority of ARK-1 in inhibiting grapevine crown gall over VAR03-1 under field conditions. ARK-1 did not cause necrosis on grapevine shoot explants. ARK-1 established populations on roots of grapevine tree rootstock and persisted inside roots for two years.

  3. Atividade in vitro de cinco drogas antimicrobianas contra Neisseria gonorrhoeae Activity of five antimicrobial agents in vitro against Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Walter Belda Júnior

    2002-12-01

    Full Text Available FUNDAMENTOS: A utilização de antimicrobianos no tratamento da gonorréia iniciou-se em 1930 com a utilização das sulfonamidas. No decorrer dos anos outras drogas passaram a ser utilizadas em seu tratamento, como a penicilina, a espectinomicina, as tetraciclinas e outras. Embora altamente eficazes no início, essas drogas, ao longo do tempo, passaram a não mais apresentar o resultado terapêutico esperado em virtude do aparecimento de quadros de resistência cromossômica e plasmidial. Assim sendo, para se estabelecer um programa de combate e controle de determinada morbidade bacteriana, é necessária a realização de um programa de vigilância epidemiológica estadiando o comportamento de sensibilidade dos agentes etiológicos aos diferentes agentes terapêuticos. OBJETIVOS E MÉTODOS: Este trabalho teve por objetivo avaliar a sensibilidade das cepas de Neisseria gonorrhoeae às cinco drogas mais utilizadas no tratamento da gonorréia no Brasil (penicilina; cefoxitina; tetraciclina; tianfenicol e espectinomicina, através da concentração inibitória mínima. RESULTADOS E CONCLUSÃO: Concluímos que drogas como a cefoxitina, o tianfenicol e a espectinomicina ainda constituem excelentes fármacos para o tratamento da gonorréia. A penicilina, embora ainda eficaz, enseja maiores cuidados na sua utilização, frente ao surgimento de cepas resistentes, e a tetraciclina deve ser sobremaneira contra-indicada no tratamento da gonorréia.BACKGROUND: The use of antimicrobial drugs in the treatment of gonorrhea began in 1930 with the use of sulfonamides. Through the years, other drugs such as penicillin, spectinomycin, tetracycline among others, came into use. Although highly efficient at first, with the passing of time these drugs began to present untoward therapeutic results, because of the appearance of cases with chromosomic and plasmidial resistance. Because of this, in order to establish a program to combat and control a determined bacterial

  4. Vannellid Species Isolated from Freshwater Source in a Park in Jamaica, West Indies

    Science.gov (United States)

    Todd, Cheridah D.; Reyes-Batlle, María; Valladares, Basilio; Lindo, John F.; Lorenzo-Morales, Jacob

    2015-01-01

    Free-living amoebae (FLA) occupy a wide range of freshwater, marine, and soil habitats, and are opportunistic pathogens in human beings. While Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris are well-known opportunistic organisms, Vannella epipetala is nonpathogenic. Sediments were collected from a freshwater source from a park in Jamaica to investigate the presence of FLA. Acanthamoeba and Naegleria spp. were not recovered; however, a Vannellid species identified by microscopy and PCR analysis as V. epipetala was isolated. These nonpathogens pose a threat to human beings as they may act as Trojan horses for microsporidian parasites and other pathogens, thereby facilitating their transmission to human beings. PMID:26512204

  5. Porphyrin-based compounds exert antibacterial action against the sexually transmitted pathogens Neisseria gonorrhoeae and Haemophilus ducreyi.

    Science.gov (United States)

    Bozja, J; Yi, K; Shafer, W M; Stojiljkovic, I

    2004-12-01

    A series of porphyrin based compounds without (nMP) or with (MP) metals were found to have potent bactericidal action in vitro against the sexually transmitted pathogens Neisseria gonorrhoeae and Haemophilus ducreyi. nMP and MP did not show bactericidal activity against five species of lactobacilli. An MP containing gallium had the capacity to block a gonococcal infection in a murine vaginal model, indicating that its development as a topical microbicide to block sexually transmitted bacterial infections is warranted. In contrast to other bacterial species, loss of the gonococcal haemoglobin uptake system encoded by hpuB or energy supplied through the TonB-ExbB-ExbD system did not significantly affect levels of MP-susceptibility in gonococci. In contrast, mutations in gonococci that inactivate the mtrCDE-encoded efflux pump were found to enhance gonococcal susceptibility to nMPs and MPs while over-production of this efflux pump decreased levels of gonococcal susceptibility to these compounds.

  6. Evaluation of a fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae.

    Science.gov (United States)

    Cano, R J; Palomares, J C; Torres, M J; Klem, R E

    1992-07-01

    This study evaluates a four-hour fluorescent DNA hybridization assay using both known bacterial isolates and clinical specimens. A biotinylated oligonucleotide probe from a sequence of the plasmid-encoded gene cppB was used. Hybrids were detected by addition of a streptavidin-alkaline phosphatase conjugate, followed by incubation for 30 min in a fluorescent substrate for alkaline phosphatase. The level of detection of the fluorescent assay was 0.1 pg of cryptic plasmid DNA or 200 cfu of the plasmid-containing strain NG 34/85 of Neisseria gonorrhoeae. A total of 119 reference strains of Neisseria gonorrhoeae and other related bacteria were tested for reactivity with the probe. All Neisseria gonorrhoeae strains, including eight plasmid-free strains, hybridized with the probe. Fluorescence ratios were 2.67 for plasmid-free strains and 3.85 for plasmid-containing strains. Of the heterologous microorganisms tested, only one of six strains of Neisseria cinerea gave a fluorescence ratio above the 2.0 cut-off value for positivity with the probe at a cell density of 1 x 10(4) cfu. The probe was also evaluated using clinical specimens from 100 patients attending a clinic for sexually transmitted diseases. The sensitivity of the assay was 100% while the specificity was 97.5%. Positive and negative predictive values were 91.2% and 100%, respectively. The fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae described here thus appears to be a highly specific and sensitive assay.

  7. Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan

    Science.gov (United States)

    Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

    2013-01-01

    Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber. PMID:23762289

  8. Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    Science.gov (United States)

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and he...

  9. Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant.

    Science.gov (United States)

    Bottazzi, Barbara; Santini, Laura; Savino, Silvana; Giuliani, Marzia M; Dueñas Díez, Ana I; Mancuso, Giuseppe; Beninati, Concetta; Sironi, Marina; Valentino, Sonia; Deban, Livija; Garlanda, Cecilia; Teti, Giuseppe; Pizza, Mariagrazia; Rappuoli, Rino; Mantovani, Alberto

    2015-01-01

    Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.

  10. Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis Implications for Vaccine Development

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Zomer, G.; IJssel, van den J.; Keulen, van L.; Eppink, M.H.M.; Ley, de P.; Pol, van der L.A.

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use

  11. Persistence of Neisseria gonorrhoeae DNA following treatment for pharyngeal and rectal gonorrhea is influenced by antibiotic susceptibility and reinfection

    National Research Council Canada - National Science Library

    Bissessor, Melanie; Whiley, David M; Fairley, Christopher K; Bradshaw, Catriona S; Lee, David M; Snow, Anthony S; Lahra, Monica M; Hocking, Jane S; Chen, Marcus Y

    To guide interpretation of gonorrhea tests of cure using nucleic acid amplification testing, this study examined the persistence of Neisseria gonorrhoeae DNA following treatment for pharyngeal and rectal gonorrhea...

  12. Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant.

    Directory of Open Access Journals (Sweden)

    Barbara Bottazzi

    Full Text Available Long pentraxin 3 (PTX3 is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091. PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.

  13. Diagnosis of Neisseria gonorrhoeae among pregnant women by culture method and PCR on cppB gene

    OpenAIRE

    Jalal Mardaneh; Parvin Hasanzadeh; Mohammad Motamedifar; Khadijeh Ahmadi; Farhad Nikkhahi

    2013-01-01

    Background: Neisseria gonorrhoeae is a human obligate pathogen and the etiological agent of gonorrhea. Health irreparable complications resulting from gonorrhea disease occur mainly in pregnant women and neonates. Aim of this study was diagnosis of Neisseria gonorrhoeae among pregnant women with using culture and molecular method by amplification of cppB gene with PCR. Material and Methods: In this cross-sectional study, two endocervical swab specimens were obtained from 1100 pregnant women w...

  14. Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen

    Science.gov (United States)

    Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G.; Rafati, Sima

    2014-01-01

    Background Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Methodology/Principal Findings Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. Conclusion/Significance The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis. PMID:24675711

  15. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen.

    Directory of Open Access Journals (Sweden)

    Farnaz Zahedifard

    2014-03-01

    Full Text Available BACKGROUND: Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. CONCLUSION/SIGNIFICANCE: The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15 and represents a novel promising vaccination approach against leishmaniasis.

  16. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears.

    Science.gov (United States)

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W

    2014-11-01

    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.

  17. Distribution and prevalence of the Australian non-pathogenic rabbit calicivirus is correlated with rainfall and temperature.

    Science.gov (United States)

    Liu, June; Fordham, Damien A; Cooke, Brian D; Cox, Tarnya; Mutze, Greg; Strive, Tanja

    2014-01-01

    Australia relies heavily on rabbit haemorrhagic disease virus (RHDV) for the biological control of introduced European wild rabbits Oryctolagus cuniculus, which are significant economic and environmental pests. An endemic non-pathogenic rabbit calicivirus termed RCV-A1 also occurs in wild rabbits in Australian and provides partial protection against lethal RHDV infection, thus interfering with effective rabbit control. Despite its obvious importance for rabbit population management, little is known about the epidemiology of this benign rabbit calicivirus. We determined the continent-wide distribution and prevalence of RCV-A1 by analysing 1,805 serum samples from wild rabbit populations at 78 sites across Australia for the presence of antibodies to RCV-A1 using a serological test that specifically detects RCV-A1 antibodies and does not cross-react with co-occurring RHDV antibodies. We also investigated possible correlation between climate variables and prevalence of RCV-A1 by using generalised linear mixed effect models. Antibodies to RCV-A1 were predominantly detected in rabbit populations in cool, high rainfall areas of the south-east and south-west of the continent. There was strong support for modelling RCV-A1 prevalence as a function of average annual rainfall and minimum temperature. The best ranked model explained 26% of the model structural deviance. According to this model, distribution and prevalence of RCV-A1 is positively correlated with periods of above average rainfall and negatively correlated with periods of drought. Our statistical model of RCV-A1 prevalence will greatly increase our understanding of RCV-A1 epidemiology and its interaction with RHDV in Australia. By defining the environmental conditions associated with the prevalence of RCV-A1, it also contributes towards understanding the distribution of similar viruses in New Zealand and Europe.

  18. Distribution and prevalence of the Australian non-pathogenic rabbit calicivirus is correlated with rainfall and temperature.

    Directory of Open Access Journals (Sweden)

    June Liu

    Full Text Available BACKGROUND: Australia relies heavily on rabbit haemorrhagic disease virus (RHDV for the biological control of introduced European wild rabbits Oryctolagus cuniculus, which are significant economic and environmental pests. An endemic non-pathogenic rabbit calicivirus termed RCV-A1 also occurs in wild rabbits in Australian and provides partial protection against lethal RHDV infection, thus interfering with effective rabbit control. Despite its obvious importance for rabbit population management, little is known about the epidemiology of this benign rabbit calicivirus. METHODS: We determined the continent-wide distribution and prevalence of RCV-A1 by analysing 1,805 serum samples from wild rabbit populations at 78 sites across Australia for the presence of antibodies to RCV-A1 using a serological test that specifically detects RCV-A1 antibodies and does not cross-react with co-occurring RHDV antibodies. We also investigated possible correlation between climate variables and prevalence of RCV-A1 by using generalised linear mixed effect models. RESULTS: Antibodies to RCV-A1 were predominantly detected in rabbit populations in cool, high rainfall areas of the south-east and south-west of the continent. There was strong support for modelling RCV-A1 prevalence as a function of average annual rainfall and minimum temperature. The best ranked model explained 26% of the model structural deviance. According to this model, distribution and prevalence of RCV-A1 is positively correlated with periods of above average rainfall and negatively correlated with periods of drought. IMPLICATIONS: Our statistical model of RCV-A1 prevalence will greatly increase our understanding of RCV-A1 epidemiology and its interaction with RHDV in Australia. By defining the environmental conditions associated with the prevalence of RCV-A1, it also contributes towards understanding the distribution of similar viruses in New Zealand and Europe.

  19. Diagnosis of Neisseria gonorrhoeae among pregnant women by culture method and PCR on cppB gene

    Directory of Open Access Journals (Sweden)

    Jalal Mardaneh

    2013-11-01

    Full Text Available Background: Neisseria gonorrhoeae is a human obligate pathogen and the etiological agent of gonorrhea. Health irreparable complications resulting from gonorrhea disease occur mainly in pregnant women and neonates. Aim of this study was diagnosis of Neisseria gonorrhoeae among pregnant women with using culture and molecular method by amplification of cppB gene with PCR. Material and Methods: In this cross-sectional study, two endocervical swab specimens were obtained from 1100 pregnant women who referred to Shiraz Hospitals. Culture on nonselective and selective media and nucleic acid amplification test (NAAT were performed for detection of Neisseria gonorrhoeae cppB gene. Results: All endocervical swabs cultures on selective and nonselective media were negative for Neisseria gonorrhoeae. Among examined endocervical swabs, 13samples (1.18% were positive by nucleic acid amplification of Neisseria gonorrgoeae cppB gene. Conclusion: Negative results of culture and positive results of PCR in this study indicate that however culture is gold standard method for detection of Neisseria gonorrhoeae but due to bacterial autolysis, poor sampling techniques and improper specimen storage and transport, its value decline as compared with Nucleic acid amplification test (NAAT.

  20. Genetic organization and molecular characterization of secA2 locus in Listeria species.

    Science.gov (United States)

    Mishra, Krishna K; Mendonca, Marcelo; Aroonnual, Amornrat; Burkholder, Kristin M; Bhunia, Arun K

    2011-12-10

    The translocation of proteins across the bacterial cell wall is carried out by the general secretory (Sec) system. Most bacteria have a single copy of the secA gene, with the exception of a few Gram-positive bacteria, which have an additional copy of secA, designated secA2. secA2 is present in Listeria monocytogenes and is responsible for secretion and translocation of several proteins including virulence factors; however, little is known about the secA2 gene and its genetic organization in nonpathogenic members of the genus Listeria. The goal of this study was to determine the presence of secA2 locus and analyze the genetic relatedness among pathogenic and nonpathogenic Listeria species. Cloning experiments revealed that secA2 is present in all analyzed pathogenic (L. monocytogenes and L. ivanovii) and nonpathogenic (L. welshimeri, L. innocua, L. seeligeri, L. grayi and L. marthii) Listeria species except L. rocourtiae. Likewise, SecA2 transcripts were also detected in all species. Sequence analysis further revealed that 2331 nucleotides (776 amino acids) are conserved in L. monocytogenes, L. welshimeri, L. innocua and L. marthii. Three nucleotides are deleted in L. ivanovii and L. seeligeri and six in L. grayi, resulting in amino acid counts of 775, 775 and 774, respectively. secA2 is flanked upstream by iap (encoding p60) and downstream by a putative membrane protein (lmo0583, lmo f2365_0613) in all analyzed Listeria species, demonstrating conserved genetic organization of the secA2 locus in pathogenic and nonpathogenic species. Deletion of secA2 in L. innocua impaired accumulation of SecA2 substrate, N-acetyl muramidase (NamA) in the cell wall, providing evidence for the presence of functional SecA2 in nonpathogenic Listeria.

  1. Use of the Directigen Latex Agglutination Test for Detection of Haemphilus influenzae, Streptococcus pneumoniae, and Neisseria meningitidis Antigens in Cerebrospinal Fluid from Meningitis Patients,

    Science.gov (United States)

    Reprint: Use of the Directigen Latex Agglutination Test for Detection of Haemphilus influenzae, Streptococcus pneumoniae , and Neisseria meningitidis Antigens in Cerebrospinal Fluid from Meningitis Patients.

  2. The frequency of Neisseria gonorrhoeae endocervical infection among female carrier and changing trends of antimicrobial susceptibility patterns in Kashan, Iran.

    Directory of Open Access Journals (Sweden)

    Shima Afrasiabi

    2014-06-01

    Full Text Available Neisseria gonorrhoeae is the second most sexually transmitted diseases agents in developing countries. Antimicrobial resistance strains have created serious health concern. The aim of this study was to determine the frequency of endocervical gonococcal infection and antimicrobial susceptibility of N. gonorrhoeae in Kashan, Iran.In this study, 294 endocervical swabs were collected from married women referred to the obstetrics and gynecology clinics in Kashan from December 2012 to May 2013. The samples were cultured in modified Thayer Martin in 37°C with 5-10% CO2 for 72 hours. Gram staining, oxidase, catalase and carbohydrate utilization tests were used to identify the isolated species. All isolates were tested for their susceptibilities to antimicrobials using the Kirby Bauer-disk diffusion techniques.N. gonorrhoeae was detected in 2.38% of studied cases (95% confidence interval [CI] 1.5-3.26%. All isolates were resistance to ceftriaxone, penicillin G, ciprofloxacin, cefepime, and two isolate (28.5% showed intermediate sensitivity to tetracycline.Continued monitoring of prevalence of N. gonorrhoeae is important for preventing the dissemination of this microorganism. The present study emphasizes the importance of surveillance of antimicrobial resistance of N. gonorrhoeae in order to manage the rate of resistant strains and to revise the treatment policies.

  3. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Bas van de Waterbeemd

    Full Text Available Outer membrane vesicles (OMV contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV, which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation. Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.

  4. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development.

    Science.gov (United States)

    van de Waterbeemd, Bas; Zomer, Gijsbert; van den Ijssel, Jan; van Keulen, Lonneke; Eppink, Michel H; van der Ley, Peter; van der Pol, Leo A

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.

  5. Review of 2005 Public Health Laboratory Network Neisseria gonorrhoeae nucleic acid amplification tests guidelines.

    Science.gov (United States)

    Whiley, David M; Lahra, Monica M

    2015-03-31

    At the request of the Public Health Laboratory Network (PHLN), the National Neisseria Network (NNN) met to discuss the 2009 PHLN Neisseria gonorrhoeae nucleic acid amplification test (NAAT) guidelines and the need for supplementary testing. A central point of discussion at this NNN meeting, which took place in May 2013, was the potential for N. gonorrhoeae supplementary testing to lead to false-negative results. Data were presented at the meeting that questioned the sensitivity of commonly used in-house supplementary methods as compared with later generation commercial NAAT systems. It was the opinion of the NNN that supplementary testing remains best practice, but that caution should be used when reporting negative results. The NNN recommends that urogenital samples providing a positive result in a screening method and a negative result by a supplemental method should not be reported as negative for N. gonorrhoeae without an appropriate explanatory comment indicating that gonococcal infection cannot be excluded.

  6. Transcriptional and Functional Analysis of the Neisseria gonorrhoeae Fur Regulon▿ †

    OpenAIRE

    Jackson, Lydgia A.; Ducey, Thomas F.; Day, Michael W.; Zaitshik, Jeremy B.; Orvis, Joshua; Dyer, David W.

    2009-01-01

    To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator Fur regulates metabolism through transcriptional control of iron-responsive genes by binding conserved Fur box (FB) sequences in promoters during iron-replete growth. Our previous studies showed that Fur also controls the transcription of secondary regulators that may, in turn, control pathways important to pathogenesis, indicating an in...

  7. Isolation and partial characterization of the reduction-modifiable protein of Neisseria gonorrhoeae

    OpenAIRE

    1986-01-01

    We have isolated and purified the reduction-modifiable protein (protein III) from several strains of Neisseria gonorrhoeae. We have found them to be basic proteins (pI 8.6) and virtually identical. A similar but not identical protein was isolated from a meningococcal strain. Antibodies raised against this purified protein would absorb to whole bacteria, confirming that the protein is exposed on the surface of the organism.

  8. Resurgence of Neisseria meningitidis serogroup W ST-11 (cc11) in Madagascar, 2015-2016.

    Science.gov (United States)

    Rasoanandrasana, Saïda; Raberahona, Mihaja; Milenkov, Milen; Rakotomahefa Narison, Mbolanirina Lala; Ranaivo Rabetokotany, Felana; Rakotovao, Luc; Randria, Mamy Jean de Dieu; Hong, Eva; Paranhos-Baccalà, Glaucia; Taha, Muhamed-Kheir; Rakoto-Andrianarivelo, Mala

    2017-02-01

    The resurgence of invasive meningococcal disease caused by Neisseria meningitidis serogroup W with sequence type ST-11 (cc11) was observed in Madagascar in 2015-2016. Three cases were investigated in this study. Molecular characterization of the strains suggests the local transmission of a single genotype that may have been circulating for years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Neisseria meningitidis Adhesin NadA Targets β1 Integrins: FUNCTIONAL SIMILARITY TO YERSINIA INVASIN*

    OpenAIRE

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Luisa F Jiménez-Soto; Kurzai, Oliver; Ackermann, Nikolaus

    2011-01-01

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Becaus...

  10. [Cloning and prokaryotic expression of the outer membrane protein gene PorB of Neisseria gonorrhoeae].

    Science.gov (United States)

    Wang, Yan; Zhang, Lei; Zhang, Li; Wang, Han

    2011-07-01

    To construct a fused expression vector of the outer membrane protein gene PorB of Neisseria gonorrhoeae, express the fusion protein in the prokaryotic system, and obtain a gene recombination protein, for the purpose of preparing the ground for further research on the pathopoiesis and immune protective response of PorB. A pair of primers were designed according to the known sequence of the PorB gene, and the PorB gene was amplified by PCR from the genome of Neisseria gonorrhoeae 29403 and cloned into the prokaryotic expression plasmid pGEX-4T-1 to generate pGEX-4T-PorB recombinants. The recombinant plasmid pGEX4T-PorB was transferred into competent cells E. coli BL21. After confirmed by restriction endonuclease digestion, PCR and DNA sequencing analysis, the recombinant protein was induced to express by isopropyl-beta-D-thiogalactoside (IPTG), and examined by SDS-PAGE and Western blotting. Restriction endonuclease digestion, PCR amplification and DNA sequencing analysis showed that the PorB gene of 1 047 bp was amplified from Neisseria gonorrhoeae DNA, and the recombinant plasmid pGEX-4T-PorB was successfully constructed and highly expressed in E. coli. The prokaryotic expression vector of pGEX-4T-PorB was successfully constructed and efficiently expressed in the prokaryotic system, which has provided a basis for further study on the biological activity of the PorB protein, as well as animal immune experiment and detection of Neisseria gonorrhoeae, and its application as a mucosal immune vaccine.

  11. Recurrent bacterial peritonitis caused by Neisseria cinerea in a chronic ambulatory peritoneal dialysis (CAPD) patient.

    Science.gov (United States)

    George, M J; DeBin, J A; Preston, K E; Chiu, C; Haqqie, S S

    1996-10-01

    We present an unusual case of recurrent (chronic ambulatory peritoneal dialysis) CAPD-associated peritonitis caused by Neisseria cinerea. Using DNA restriction fragment length polymorphism (RFLP) analysis, we determined that the recurrent infection was caused by reinfection with a different N. cinerea strain rather than relapse with the index strain and that the probable origin of the reinfecting organism was the patient's upper respiratory tract.

  12. Penicillinase-producing plasmid types in Neisseria gonorrhoeae clinical isolates from Australia.

    Science.gov (United States)

    Whiley, David; Trembizki, Ella; Buckley, Cameron; Freeman, Kevin; Lawrence, Andrew; Limnios, Athena; Pearson, Julie; Smith, Helen; Stevens, Kerrie; Lahra, Monica M

    2014-12-01

    Penicillinase-producing Neisseria gonorrhoeae (PPNG) carrying the blaTEM-135 gene is of particular concern, as it is considered a stepping stone toward resistance to extended-spectrum cephalosporins. Here, we sought to characterize plasmid types and the occurrence of the blaTEM-135 gene for N. gonorrhoeae clinical isolates from Australia. We found that blaTEM-135 was prevalent in Australian PPNG and was detected on all three major plasmid types.

  13. Novel anti-infective potential of salvianolic acid B against human serious pathogen Neisseria meningitidis

    OpenAIRE

    Huttunen, Sanna; Toivanen, Marko; Liu, Chenghai; Tikkanen-Kaukanen, Carina

    2016-01-01

    Background Epidemics of meningococcal meningitis cause significant health problems especially in Sub-Saharan Africa. Novel anti-infective candidates are needed. In modern anti-adhesion therapy initial attachment of bacteria to host cells is prevented. Our unique studies have revealed anti-adhesive candidates from natural products, namely milk and berries, against Neisseria meningitidis adhesion. In the present study against N. meningitidis adhesion, a novel binding inhibitor was found; salvia...

  14. Prosthetic valve endocarditis due to Neisseria elongata subsp. elongata in a patient with Klinefelter's syndrome.

    Science.gov (United States)

    Evans, Morgan; Yazdani, Farah; Malnick, Henry; Shah, Jayesh J; Turner, David P J

    2007-06-01

    A case is reported of prosthetic valve endocarditis due to Neisseria elongata subsp. elongata in a patient with Klinefelter's syndrome. This is believed to be only the third case of endocarditis reported due to this subspecies. N. elongata is difficult to identify, and is morphologically and biochemically similar to Kingella spp. Sequencing of the 16S rRNA gene is useful for identification. The patient was successfully treated with amoxicillin and gentamicin, followed by ceftriaxone.

  15. In Vitro selection of Neisseria gonorrhoeae mutants with elevated MIC values and increased resistance to cephalosporins.

    Science.gov (United States)

    Johnson, Steven R; Grad, Yonatan; Ganakammal, Satishkumar Ranganathan; Burroughs, Mark; Frace, Mike; Lipsitch, Marc; Weil, Ryan; Trees, David

    2014-11-01

    Strains of Neisseria gonorrhoeae with mosaic penA genes bearing novel point mutations in penA have been isolated from ceftriaxone treatment failures. Such isolates exhibit significantly higher MIC values to third-generation cephalosporins. Here we report the in vitro isolation of two mutants with elevated MICs to cephalosporins. The first possesses a point mutation in the transpeptidase region of the mosaic penA gene, and the second contains an insertion mutation in pilQ.

  16. Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.

    OpenAIRE

    Gregory, M.R.; Gregory, W W; Bruns, D E; Zakowski, J J

    1983-01-01

    Highly purified salivary alpha-amylase inhibited the growth of fresh isolates of Neisseria gonorrhoeae on GC agar base medium supplemented with 2% IsoVitaleX (BBL Microbiology Systems). Hydrolysis of starch in the medium by amylase resulted in a negative starch-iodine test. However, purified amylase did not inhibit gonococcal growth on agar plates that contained hemoglobin (chocolate agar). This effect was not caused by inhibition of amylase, since amylase activity was the same in the presenc...

  17. The in-vitro activity of pristinamycin against Haemophilus influenzae and Neisseria meningitidis.

    Science.gov (United States)

    Lafaix, C; Bouvet, E; Dublanchet, A; Dabernat, H; Carrere, C; Picq, J J; Etienne, J

    1985-07-01

    The in-vitro activity of erythromycin, oleandomycin, spiramycin, josamycin and pristinamycin was tested by a plate-dilution method against strains of Haemophilus influenzae and Neisseria meningitidis. Pristinamycin was the most active product tested with minimal inhibitory concentrations (MIC) ranging between 0.5 and 4 mg/l for H. influenzae (modal value 1 mg/l) and between 0.03 and 0.12 mg/l for N. meningitidis (modal value 0.06 mg/l).

  18. Neisseria meningitidis Adhesin NadA Targets β1 Integrins: FUNCTIONAL SIMILARITY TO YERSINIA INVASIN*

    OpenAIRE

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Jiménez-Soto, Luisa F.; Kurzai, Oliver; Ackermann, Nikolaus

    2011-01-01

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Becaus...

  19. Purification and partial characterization of the opacity-associated proteins of Neisseria gonorrhoeae

    OpenAIRE

    1984-01-01

    Gonococci, grown on agar, frequently give rise to opaque colonies. This opacity phenotype is associated with the presence of one or more outer membrane proteins of approximately 28,000 mol weight. These proteins are included within a class of proteins named proteins II. A method is described to isolate and purify the opacity-associated proteins from Neisseria gonorrhoeae. This method uses high concentrations of calcium and a zwitterionic detergent at pH 4.0. Under these conditions proteins II...

  20. Neisseria meningitidis serogroup B meningitis relapse after five days of cefotaxime treatment: what went wrong?

    Science.gov (United States)

    Lanoix, Jean-Philippe; Lecerf, Celine; El Samad, Youssef; Rousseau, Florence; Tchaoussoff, Jean; Schmit, Jean-Luc

    2011-10-01

    The authors describe a case of relapse of Neisseria meningitidis serogroup B meningitis in a 21-y-old male, 48 h after a 5-day treatment with cefotaxime 215 mg/kg per day. Brain magnetic resonance imaging (MRI) excluded the hypothesis of cerebral abscess or central venous septic thrombosis, and transthoracic echocardiography excluded bacterial endocarditis. Complement, properdin, and protein electrophoresis were normal. The plausible explanations for this relapse and the implications for other similar cases are discussed.

  1. Distinct expression profiles of TGF-β1 signaling mediators in pathogenic SIVmac and non-pathogenic SIVagm infections

    Directory of Open Access Journals (Sweden)

    Butor Cécile

    2006-06-01

    Full Text Available Abstract Background The generalized T-cell activation characterizing HIV-1 and SIVmac infections in humans and macaques (MACs is not found in the non-pathogenic SIVagm infection in African green monkeys (AGMs. We have previously shown that TGF-β1, Foxp3 and IL-10 are induced very early after SIVagm infection. In SIVmac-infected MACs, plasma TGF-β1 induction persists during primary infection 1. We raised the hypothesis that MACs are unable to respond to TGF-β1 and thus cannot resorb virus-driven inflammation. We therefore compared the very early expression dynamics of pro- and anti-inflammatory markers as well as of factors involved in the TGF-β1 signaling pathway in SIV-infected AGMs and MACs. Methods Levels of transcripts encoding for pro- and anti-inflammatory markers (tnf-α, ifn-γ, il-10, t-bet, gata-3 as well as for TGF-β1 signaling mediators (smad3, smad4, smad7 were followed by real time PCR in a prospective study enrolling 6 AGMs and 6 MACs. Results During primary SIVmac infection, up-regulations of tnf-α, ifn-γ and t-bet responses (days 1–16 p.i. were stronger whereas il-10 response was delayed (4th week p.i. compared to SIVagm infection. Up-regulation of smad7 (days 3–8 p.i., a cellular mediator inhibiting the TGF-β1 signaling cascade, characterized SIV-infected MACs. In AGMs, we found increases of gata-3 but not t-bet, a longer lasting up-regulation of smad4 (days 1–21 p.i, a mediator enhancing TGF-β1 signaling, and no smad7 up-regulations. Conclusion Our data suggest that the inability to resorb virus-driven inflammation and activation during the pathogenic HIV-1/SIVmac infections is associated with an unresponsiveness to TGF-β1.

  2. Mechanisms of Action and Dose-Response Relationships Governing Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.

    Science.gov (United States)

    Larkin, R P; Fravel, D R

    1999-12-01

    ABSTRACT Three isolates of nonpathogenic Fusarium spp. (CS-1, CS-20, and Fo47), previously shown to reduce the incidence of Fusarium wilt diseases of multiple crops, were evaluated to determine their mechanisms of action and antagonist-pathogen inoculum density relationships. Competition for nutrients, as represented by a reduction in pathogen saprophytic growth in the presence of the biocontrol isolates, was observed to be an important mechanism of action for isolate Fo47, but not for isolates CS-1 and CS-20. All three biocontrol isolates demonstrated some degree of induced systemic resistance in tomato (Lycopersicon esculentum) and watermelon (Citrullus lanatus) plants, as determined by split-root tests, but varied in their relative abilities to reduce disease. Isolate CS-20 provided the most effective control (39 to 53% disease reduction), while Fo47 provided the least effective control (23 to 25% reduction) in split-root tests. Dose-response relationships also differed considerably among the three biocon-trol isolates, with CS-20 significantly reducing disease incidence at antagonist doses as low as 100 chlamydospores per g of soil (cgs) and at pathogen densities up to 10(5) cgs. Isolate CS-1 also was generally effective at antagonist densities of 100 to 5,000 cgs, but only when pathogen densities were below 10(4) cgs. Isolate Fo47 was effective only at antagonist densities of 10(4) to 10(5) cgs, regardless of pathogen density. Epidemiological dose-response models (described by linear, negative exponential, hyperbolic saturation [HS], and logistic [LG] functions) fit to the observed data were used to quantify differences among the biocontrol isolates and establish biocontrol characteristics. Each isolate required a different model to best describe its dose-response characteristics, with the HS/HS, LG/HS, and LG/LG models (pathogen/biocontrol components) providing the best fit for isolates CS-1, CS-20, and Fo47, respectively. Model parameters (defining effective

  3. Is Demodex really non-pathogenic? O Demodex é realmente não patogênico?

    Directory of Open Access Journals (Sweden)

    Gil Patrus PENA

    2000-06-01

    Full Text Available Although usually considered a non-pathogenic parasite in parasitological textbooks, Demodex folliculorum has been implicated as a causative agent for some dermatological conditions, such as rosacea-like eruptions and some types of blepharitis. Several anecdotal reports have demonstrated unequivocal tissue damage directly related to the presence of the parasite. However, this seems to be exceedingly rare, in contrast with the marked prevalence of this infestation. We have had the opportunity to observe one of such cases. A 38-year-old woman presented with rosacea-like papular lesions in her right cheek. Histopathological examination revealed granulomatous dermal inflammation with a well-preserved mite phagocytized by a multinucleated giant cell. This finding may be taken as an evidence for the pathogenicity of the parasite, inasmuch as it does not explain how such a common parasite is able to produce such a rare disease.Embora geralmente considerado um parasita não patogênico nos livros-texto de parasitologia, Demodex folliculorum tem sido implicado como agente causal de algumas condições dermatológicas, como erupções tipo rosácea e alguns tipos de blefarite. Vários relatos isolados têm demonstrado alterações teciduais sem dúvida relacionadas diretamente à presença do parasita. Entretanto, esses achados são extremamente raros, ao contrário da enorme prevalência da infestação. Tivemos a oportunidade de observar um destes casos. Paciente do sexo feminino, com 38 anos, apresentou lesões papulosas rosaceiformes, na região zigomática direita. O exame histopatológico revelou inflamação dérmica granulomatosa, com um ácaro bem preservado, fagocitado por uma célula gigante. Esse achado pode ser considerado como evidência a favor da patogenicidade do parasita, embora não explique como um parasita tão comum pode ser capaz de produzir alteração tão rara.

  4. Construtcion of Neisseria Gonorrhoeae Porin B Plasmid Recombinant and Its Expression in E.coli

    Institute of Scientific and Technical Information of China (English)

    SONG Qifa; LIAO Fang; YE Siying; CUI Bing; XIONG Ping

    2005-01-01

    Summary: A prokaryotic expression recombinant plasmid pET-PIB to express porin B (PIB) of Neisseria gonorrhoeae in E.coli DE3 was constructed in order to provide a basis of research in detection, prophylactic and therapeutic vaccine against the pathogen infection. The gene encoding PIB was amplified by PCR from Neisseria gonorrhoeae and cloned into prokaryotic expression plasmid pET-28a(+) to construct a pET-PIB recombinant, which was verified by restriction endonuclease and DNA sequencing. Protein PIB was expressed in E.coli DE3 induced with IPTG. The antigenicity of the expressed protein was evaluated by indirect ELISA. Rabbits were immunized with the protein and serum was collected after immunization. To assess the immunogenicity of the protein, the titer of serum to protein PIB was determined by ELISA. DNA sequence analysis showed that the nucleic acid sequence of PIB gene was 99.28 % of homology compared with that (NGPIB18) published in GenBank. A 41 kD fused protein was detected by SDS-PAGE and was proven to have reactivity with anti-PIB polyclonal antibody from mouse. A polyclonal antibody to PIB of 1:4000 titer determined by indirect ELISA was obtained from rabbit immunized with the purified product. Recombinant plasmid encoding PIB of Neisseria gonorrhoeae was constructed. Protein PIB with antigenicity and immunogenicity was successfully expressed.

  5. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea.

    Science.gov (United States)

    Yoon, K S; Min, K J; Jung, Y J; Kwon, K Y; Lee, J K; Oh, S W

    2008-08-01

    Vibrio parahaemolyticus is recognized as the leading cause of human gastroenteritis associated with the consumption of seafood. The objective of this study was to model the growth kinetics of pathogenic and nonpathogenic V. parahaemolyticus in broth and oyster slurry. Primary growth models of V. parahaemolyticus in broth and oyster slurry fit well to a modified Gomperz equation (broth R(2)=0.99; oyster slurry R(2)=0.96). The lag time (LT), specific growth rate (SGR), and maximum population density (MPD) of each primary model were compared. The growth of nonpathogenic V. parahaemolyticus was found to be more rapid than that of pathogenic V. parahaemolyticus, regardless of the model medium. In addition, significant (P<0.05) differences in the growth kinetics between pathogenic and nonpathogenic V. parahaemolyticus in broth were observed at 10 degrees C. When compared to growth in broth, the growth of V. parahaemolyticus was delayed in oyster slurry, and growth was not observed at 10 or 15 degrees C. The Davey and square root models were identified as appropriate secondary models for predicting the LT and SGR, respectively. For the broth model, the average B(f) and A(f) values for LT were found to be 0.97 and 1.3, respectively, whereas the average B(f) and A(f) values for SGR were 1.05 and 1.11, respectively. The model generated in this study predicted an LT that was shorter and an SGR that was similar to those that were actually observed, which indicates that these models provide a reliable and safe prediction of V. parahaemolyticus growth.

  6. Comparative genomics of Listeria species.

    Science.gov (United States)

    Glaser, P; Frangeul, L; Buchrieser, C; Rusniok, C; Amend, A; Baquero, F; Berche, P; Bloecker, H; Brandt, P; Chakraborty, T; Charbit, A; Chetouani, F; Couvé, E; de Daruvar, A; Dehoux, P; Domann, E; Domínguez-Bernal, G; Duchaud, E; Durant, L; Dussurget, O; Entian, K D; Fsihi, H; García-del Portillo, F; Garrido, P; Gautier, L; Goebel, W; Gómez-López, N; Hain, T; Hauf, J; Jackson, D; Jones, L M; Kaerst, U; Kreft, J; Kuhn, M; Kunst, F; Kurapkat, G; Madueno, E; Maitournam, A; Vicente, J M; Ng, E; Nedjari, H; Nordsiek, G; Novella, S; de Pablos, B; Pérez-Diaz, J C; Purcell, R; Remmel, B; Rose, M; Schlueter, T; Simoes, N; Tierrez, A; Vázquez-Boland, J A; Voss, H; Wehland, J; Cossart, P

    2001-10-26

    Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.

  7. Resistencia de Neisseria gonorrhoeae a ciprofloxacina según hábitos sexuales Ciprofloxacin resistance of Neisseria gonorrhoeae according to sexual habits

    Directory of Open Access Journals (Sweden)

    Susana García

    2008-10-01

    Full Text Available En la Argentina los primeros hallazgos de Neisseria gonorrhoeae resistentes a las fluorquinolonas se documentaron en el año 2000. Desde enero de 2005 hasta junio de 2007, se evaluaron 595 hombres que tienen sexo con hombres (HSH y 571 varones heterosexuales para investigar la presencia de N. gonorrhoeae y la resistencia a los antimicrobianos. La prevalencia de gonorrea en HSH y varones heterosexuales fue 0.091(91/1000 en ambos grupos y el % de N. gonorrhoeae resistente a ciprofloxacina (NGRC fue 20.0% y 3.8% respectivamente (p: 0.0416. Trece de 106 aislamientos fueron NGRC, correspondieron a 11 HSH y 2 varones heterosexuales. Seis HSH presentaron uretritis, uno de ellos con localización simultánea en recto y cinco pacientes fueron asintomáticos (recto, 2; faringe, 2; uretra, 1. No se pudo demostrar relación epidemiológica entre ellos. Dos varones heterosexuales presentaron uretritis. Los 8 pacientes sintomáticos fueron tratados empíricamente con ciprofloxacina y se documentó fracaso de tratamiento. Estos y los portadores de NGRC recibieron tratamiento con 500 mg de ceftriaxona IM. Los controles postratamiento demostraron la erradicación del microorganismo. Los aislamientos de NGRC presentaron CIM de ciprofloxacina entre 2 y 32 µg/ml, todos fueron beta-lactamasa negativos, 4/13 presentaron resistencia cromosómica a penicilina (CIM= 1 µg/ml, y los rangos de CIM (µg/ml para los siguientes antibióticos fueron: penicilina: 0.016-1; tetraciclina: 0.125-2; ceftriaxona: 0.004-0.008; eritromicina: 0.032-2; azitromicina: 0.032-0.5; espectinomicina: 8-32. Dado el elevado porcentaje de aislamientos de NGRC en HSH en nuestro hospital, debería utilizarse otro antimicrobiano para el tratamiento empírico en estos pacientes.The first isolates of Neisseria gonorrhoeae resistant to fluorquinolones in Argentina were reported in 2000. Since January 2005 to June 2007 Neisseria gonorrhoeae was studied in 595 men who have sex with men (MSM and 571

  8. Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase.

    Science.gov (United States)

    Zhu, W; Wilks, A; Stojiljkovic, I

    2000-12-01

    A full-length heme oxygenase gene from the gram-negative pathogen Neisseria meningitidis was cloned and expressed in Escherichia coli. Expression of the enzyme yielded soluble catalytically active protein and caused accumulation of biliverdin within the E. coli cells. The purified HemO forms a 1:1 complex with heme and has a heme protein spectrum similar to that previously reported for the purified heme oxygenase (HmuO) from the gram-positive pathogen Corynebacterium diphtheriae and for eukaryotic heme oxygenases. The overall sequence identity between HemO and these heme oxygenases is, however, low. In the presence of ascorbate or the human NADPH cytochrome P450 reductase system, the heme-HemO complex is converted to ferric-biliverdin IXalpha and carbon monoxide as the final products. Homologs of the hemO gene were identified and characterized in six commensal Neisseria isolates, Neisseria lactamica, Neisseria subflava, Neisseria flava, Neisseria polysacchareae, Neisseria kochii, and Neisseria cinerea. All HemO orthologs shared between 95 and 98% identity in amino acid sequences with functionally important residues being completely conserved. This is the first heme oxygenase identified in a gram-negative pathogen. The identification of HemO as a heme oxygenase provides further evidence that oxidative cleavage of the heme is the mechanism by which some bacteria acquire iron for further use.

  9. Characterization of invasive Neisseria meningitidis from Atlantic Canada, 2009 to 2013: With special reference to the nonpolysaccharide vaccine targets (PorA, factor H binding protein, Neisseria heparin-binding antigen and Neisseria adhesin A)

    Science.gov (United States)

    Tsang, Raymond SW; Law, Dennis KS; Gad, Rita R; Mailman, Tim; German, Gregory; Needle, Robert

    2015-01-01

    BACKGROUND: Serogroup B Neisseria meningitidis (MenB) has always been a major cause of invasive meningococcal disease (IMD) in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB. OBJECTIVE: To investigate IMD case isolates in Atlantic Canada from 2009 to 2013. Data were analyzed to determine the potential coverage of the newly licensed MenB vaccine. METHODS: Serogroup, serotype and serosubtype antigens were determined from IMD case isolates. Clonal analysis was performed using multilocus sequence typing. The protein-based vaccine antigen genes were sequenced and the predicted peptides were investigated. RESULTS: The majority of the IMD isolates were MenB (82.5%, 33 of 40) and, in particular, sequence type (ST)-154 B:4:P1.4 was responsible for 47.5% (19 of 40) of all IMD case isolates in Atlantic Canada. Isolates of this clone expressed the PorA antigen P1.4 and possessed the nhba genes encoding for Neisseria heparin-binding antigen peptide 2, which together matched exactly with two of the four components of the new four-component meningococcal B vaccine. Nineteen MenB isolates had two antigenic matches, another five MenB and one meningitis Y isolate had one antigenic match. This provided 75.8% (25 of 33) potential coverage for MenB, or a 62.5% (25 of 40) overall potential coverage for IMD. CONCLUSION: From 2009 to 2013, IMD in Atlantic Canada was mainly caused by MenB and, in particular, the B:4:P1.4 ST-154 clone, which accounted for 47.5% of all IMD case isolates. The new four-component meningococcal B vaccine appeared to offer adequate coverage against MenB in Atlantic Canada. PMID:26744586

  10. A misleading false-negative result using Neisseria gonorrhoeae opa MGB multiplex PCR assay in patient's rectal sample due to partial mutations of the opa gene.

    Science.gov (United States)

    Vahidnia, Ali; van Empel, Pieter Jan; Costa, Sandra; Oud, Rob T N; van der Straaten, Tahar; Bliekendaal, Harry; Spaargaren, Joke

    2015-07-01

    A 53-year-old homosexual man presented at his general practitioner (GP) practice with a suspicion of sexually transmitted infection. Initial NAAT screening was performed for Chlamydia trachomatis and Neisseria gonorrhoeae. The patient was positive for Neisseria gonorrhoeae both for his urine and rectal sample. The subsequent confirmation test for Neisseria gonorrhoeae by a second laboratory was only confirmed for the urine sample and the rectal sample was negative. We report a case of a potential false-negative diagnosis of Neisseria gonorrhoeae due to mutations of DNA sequence in the probe region of opa-MGB assay of the rectal sample. The patient did not suffer any discomfort as diagnosis of Neisseria gonorrhoeae in his urine sample had already led to treatment by prescribing the patient with Ceftriaxone 500 mg IV dissolved in 1 ml lidocaine 2% and 4 mL saline. The patient also received a prescription for Azithromycin (2x500 mg).

  11. Microbial Quality and Direct PCR Identification of Lactic Acid Bacteria and Nonpathogenic Staphylococci from Artisanal Low-Acid Sausages

    OpenAIRE

    Aymerich, T.; B. Martín; Garriga, M.; Hugas, M

    2005-01-01

    Detection of six species of lactic acid bacteria and six species of gram-positive catalase-positive cocci from low-acid fermented sausages (fuets and chorizos) was assessed by species-specific PCR. Without enrichment, Lactobacillus sakei and Lactobacillus curvatus were detected in 11.8% of the samples, and Lactobacillus plantarum and Staphylococcus xylosus were detected in 17.6%. Enriched samples allowed the detection of L. sakei and S. xylosus in all of the samples (100%) and of Enterococcus...

  12. Potential impact of vaccination against Neisseria meningitidis on Neisseria gonorrhoeae in the United States: results from a decision-analysis model.

    Science.gov (United States)

    Régnier, Stéphane A; Huels, Jasper

    2014-01-01

    Components in 4CMenB vaccine against Neisseria meningitidis serogroup B have shown to potentially cross-react with Neisseria gonorrhoeae. We modeled the theoretical impact of a US 4CMenB vaccination program on gonorrhea outcomes. A decision-analysis model was populated using published healthcare utilization and cost data. A two-dose adolescent vaccination campaign was assumed, with protective immunity starting at age 15 years and a base-case efficacy against gonorrhea of 20%. The 20%-efficacy level is an assumption since no clinical data have yet quantified the efficacy of 4CMenB against Neisseria gonorrhoea. Key outcome measures were reductions in gonorrhea and HIV infections, reduction in quality-adjusted life-years (QALYs) lost, and the economically justifiable price assuming a willingness-to-pay threshold of $75,000 per QALY gained. Adolescent vaccination with 4CMenB would prevent 83,167 (95% credible interval [CrI], 44,600-134,600) gonorrhea infections and decrease the number of HIV infections by 55 (95% CrI, 2-129) per vaccinated birth cohort in the USA. Excluding vaccination costs, direct medical costs for gonorrhea would reduce by $28.7 million (95% CrI, $6.8-$70.0 million), and income and productivity losses would reduce by $40.0 million (95% CrI, $8.2-$91.7 million). Approximately 83% of the reduction in lost productivity is generated by avoiding HIV infections. At a cost of $75,000 per QALY gained, and incremental to the vaccine's effect on meningococcal disease, a price of $26.10 (95% CrI, $9.10-$57.20) per dose, incremental to the price of the meningococcal vaccine, would be justified from the societal perspective. At this price, the net cost per infection averted would be $1,677 (95% CrI, $404-$2,564). Even if the cross-immunity of 4CMenB vaccine and gonorrhea is only 20%, the reduction in gonorrhea infections and associated costs would be substantial.

  13. Neonatal sepsis and meningitis caused by Neisseria meningitidis: a case report Sepse e meningite neonatal por Neisseria meningitidis: relato de caso

    Directory of Open Access Journals (Sweden)

    Mário Cícero Falcão

    2007-06-01

    Full Text Available OBJECTIVE: To report a full-term newborn infant that developed a sepsis associated to meningitis caused by Neisseria meningitidis serogroup C on the 14th day of life. CASE DESCRIPTION: The patient was a term female infant, born to a mother with Systemic Lupus Erythematosus, with birth weight of 2,610g, Apgar Score 1, 4 and 8, who needed mechanical ventilation for 24 hours. On the 7th day of life, the neonate was discharged from the hospital with good overall condition. On the 15th day of life, the newborn infant presented fever and respiratory failure. The cerebrospinal fluid showed 1042 cells/mm³, with neutrophilic predominance, protein of 435 mg/dL, and glucose OBJETIVO: Relatar o caso de um recém-nascido de termo que apresentou no 14º dia de vida sepse associada à meningite, cujo agente etiológico foi a Neisseria meningitidis sorotipo C. DESCRIÇÃO DO CASO: recém-nascido de termo, cuja mãe é portadora de lupus eritematoso sistêmico, feminino, peso de nascimento de 2610g, Escala de Apgar 1, 4 e 8, sendo intubado e ventilado por 24 horas. Recebeu alta no 7º dia de vida em boas condições. No 15º dia de vida apresentou febre e desconforto respiratório. O líquido cefalorraquidiano mostrou 1042 células/mm³, com predomínio de neutrófilos, proteinorraquia de 435 mg/dL e glicorraquia < 10 mg/dL; a bacterioscopia revelou a presença de diplococos. Foi internado na Terapia Intensiva Neonatal, necessitou de ventilação mecânica e de drogas vasoativas. A hemocultura e a cultura do líquido cefalorraquidiano foram positivas para Neisseria meningitidis C. O recém-nascido foi tratado por 21 dias com penicilina cristalina. Recebeu alta hospitalar em boas condições, em aleitamento materno exclusivo e sem seqüelas neurológicas. O caso descrito apresenta como peculiaridades: etiologia incomum de meningite neonatal e evolução favorável, apesar dos relatos em literatura mostrarem seqüelas neurológicas. Destaca-se ainda, a

  14. Neisseria meningitidis. Lipopolysakkariders patofysiologiske rolle ved meningokoksygdom og septisk shock

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Pedersen, Dan Sonne; Pedersen, Michael

    2008-01-01

    A major pro-inflammatory and toxic component of N. meningitidis is lipopolysaccharide (LPS). LPS contributes to severe symptoms of meningococcal disease, septic shock and severe coagulopathy, in part by increasing pro-inflammatory mechanisms and reactive oxygen species. Recent technologies have...

  15. Use of Heme Compounds as Iron Sources by Pathogenic Neisseriae Requires the Product of the hemO Gene

    OpenAIRE

    2000-01-01

    Heme compounds are an important source of iron for neisseriae. We have identified a neisserial gene, hemO, that is essential for heme, hemoglobin (Hb), and haptoglobin-Hb utilization. The hemO gene is located 178 bp upstream of the hmbR Hb receptor gene in Neisseria meningitidis isolates. The product of the hemO gene is homologous to enzymes that degrade heme; 21% of its amino acid residues are identical, and 44% are similar, to those of the human heme oxygenase-1. DNA sequences homologous to...

  16. Neisseria lactamica Causing a Lung Cavity and Skin Rash in a Renal Transplant Patient: First Report from India

    Directory of Open Access Journals (Sweden)

    Khalid Hamid Changal

    2016-01-01

    Full Text Available Neisseria lactamica, a commensal, has been very rarely reported to cause diseases in immunocompromised hosts. In medical literature, there is only one report of a cavitatory lung lesion caused by it. The patient was a kidney transplant recipient. Neisseria lactamica was found to be the cause of his pulmonary cavity and a desquamating rash on feet. With the rapidly spreading medical advance, more and more patients are getting organ transplants, so the population of immunocompromised people is on the rise. We expect more sinister and less expected organisms to cause diseases in patients who have organ transplants.

  17. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    OpenAIRE

    Elza FT Belo; Farhat,Calil K; De Gaspari,Elizabeth N.

    2010-01-01

    Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic). The dot-ELISA is based on the same principles as the standard ELISA and is useful...

  18. FREKUENSI KUMAN Neisseriae gonorrhoeae YANG MENGINFEKSI WANITA USIA ANAK DI PADANG

    Directory of Open Access Journals (Sweden)

    Elizabeth Bahar

    2008-09-01

    Full Text Available AbstrakInfeksi traktus reproduksi wanita dapat disebabkan oleh penyakit hubungan seksual (sifilis, gonore, trikhomonas dan sebagainya. Dari semua penyakit kelamin insidens gonore merupakan yang tertinggi. Gonore penyakit yang disebabkan oleh kuman Neisseriae gonorrhoea atau disebut juga Coccus Gram negatif sampai saat ini merupakan suatu penyakit yang banyak menimbulkan problem bukan saja di negara berkembang, tetapi juga merupakan masalah di negara super power (adikuasa bahkan di seluruh dunia. Selain mempengaruhi kesehatan reproduksi erat sekali hubungannya dengan perilaku seks. Dari sudut psikologi sosial sebagian besar perilaku seks adalah perilaku sosial.Telah dilakukan penelitian dengan pengumpulan sampel secara cross sectional sampling dari wanita usia anak di Padang untuk mengetahui adanya kuman Neisseriae gonorrhoeae. Penelitian deskriptif dengan menggunakan metoda pewarnaan Gram mikroskopis langsung. Dari 18 sampel, ditemukan frekuensi penderita terinfeksi kuman Neisseriae gonorrhoeae 11 (61% dan 7 (38,9% non N gonorrhoeae. Dari variable-variable yang diuji anak sebagai sample yang terinfeksi kuman gonore berusia 1 – 3 tahun 4 (22,2 %, 4 – 7 tahun 6 (33,3%, 8 – 11 tahun 1 (5,5%} dan 12 – 15 tahun 0 (0%, di mana di lihat tingkat usia pendidikan anak pra sekolah dan sekolah. Orang tua si anak, ibu dan ayah pendidikan mencakup SD 0 (0%, SLP 0 (0%, SLA 14 (77,8 dan 7 (38,9% dan PT 4 (22,2% dan 10 (55,5 %. Kemudian pekerjaan orang tua anak meliputi RT 9 (50%, PNS/Swasta 8 (44,4% dan 14 (77,8%. Dagang 1 (5,6% dan 2 (11,1% dan sopir 2 (11,1%. Kesimpulannya penderita wanita usia anak di Padang cukup tinggi terinfeksi kuman N gonorrhoeae.Kata Kunci : gonore, wanita usia anak-anak, resistensi antibiotika.AbstractFemale genital infection may causes by sexual transmitted diseases (Syphilis, gonorrhoea, ect. From all vebereal diseases, incidence of gonorrhoeae is the highest. Current gonorrhoeae caused by Neisseriae gonorrhoeae or Gram

  19. Draft Genome Sequence of the Dimorphic Fungus Sporothrix pallida, a Nonpathogenic Species Belonging to Sporothrix, a Genus Containing Agents of Human and Feline Sporotrichosis

    NARCIS (Netherlands)

    D'Alessandro, Enrico; Giosa, Domenico; Huang, Lilin; Zhang, Jing; Gao, Wenchao; Brankovics, Balazs; Oliveira, Manoel Marques Evangelista; Scordino, Fabio; Lo Passo, Carla; Criseo, Giuseppe; van Diepeningen, Anne D; Huang, Huaiqiu; de Hoog, G Sybren; Romeo, Orazio

    2016-01-01

    Sporothrix pallidais considered to be a mostly avirulent environmental fungus, phylogenetically closely related to the well-known pathogenSporothrix schenckii Here, we present the first assembly of its genome, which provides a valuable resource for future comparative genomic studies between nonpatho

  20. Clinical evaluation of a loop-mediated isothermal amplification (LAMP assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    DoKyung Lee

    Full Text Available Neisseria meningitidis (Nm is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients' cerebrospinal fluid (CSF is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF.We developed a meningococcal LAMP assay (Nm LAMP that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR. The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively.Compared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.

  1. Purification and biochemical characterization of DnaK and its transcriptional activator RpoH from Neisseria gonorrhoeae.

    Science.gov (United States)

    Narayanan, Shalini; Beckham, Simone A; Davies, John K; Roujeinikova, Anna

    2014-12-01

    DnaK plays a central role in stress response in the important human pathogen Neisseria gonorrhoeae. The genes encoding the DnaK chaperone machine (DnaK/DnaJ/GrpE) in N. gonorrhoeae are transcribed from RpoH (σ(32))-dependent promoters. In this study, we cloned, purified and biochemically characterised N. gonorrhoeae DnaK (NgDnaK) and RpoH. The NgDnaK and RpoH sequences are 73 and 50 % identical to the sequences of their respective E. coli counterparts. Similar to EcDnaK, nucleotide-free NgDnaK exists as a mix of monomers, dimers and higher oligomeric species in solution, and dissociates into monomers on addition of ATP. Like E. coli σ(32), RpoH of N. gonorrhoeae is monomeric in solution. Kinetic analysis of the basal ATPase activity of purified NgDnaK revealed a V max of 193 pmol phosphate released per minute per microgram DnaK (which is significantly higher than reported basal ATPase activity of EcDnaK), and the turnover number against ATP was 0.4 min(-1) under our assay conditions. Nucleotide-free NgDnaK bound a short model substrate, NR-peptide, with micromolar affinity close to that reported for EcDnaK. Our analysis showed that interaction between N. gonorrhoeae RpoH and DnaK appears to be ATP-dependent and non-specific, in stark contrast to the E. coli DnaK system where σ(32) and DnaK interact as monomers even in the absence of ATP. Sequence comparison showed that the DnaK-binding site of σ(32) is not conserved in RpoH. Our findings suggest that the mechanism of DnaK/RpoH recognition in N. gonorrhoeae is different from that in E. coli.

  2. The gonococcal genetic island and type IV secretion in the pathogenic Neisseria

    Directory of Open Access Journals (Sweden)

    Meghan E Ramsey

    2011-04-01

    Full Text Available Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57 kb gonococcal genetic island (GGI. The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS. Type IV secretion systems are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA-protein complexes. In N. gonorrhoeae, the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae. During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis.

  3. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    P>Major pathogenic clonal complexes (cc) of Neisseria meningitidis differ substantially in their point prevalence among healthy carriers. We show that frequently carried pathogenic cc (e.g. sequence type ST-41/44 cc and ST-32 cc) depend on extracellular DNA (eDNA) to initiate in vitro biofilm for....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  4. Control of Neisseria gonorrhoeae in the era of evolving antimicrobial resistance.

    Science.gov (United States)

    Barbee, Lindley A; Dombrowski, Julia C

    2013-12-01

    Neisseria gonorrhoeae has developed resistance to all previous first-line antimicrobial therapies over the past 75 years. Today the cephalosporins, the last available antibiotic class that is sufficiently effective, are also threatened by evolving resistance. Screening for asymptomatic gonorrhea in women and men who have sex with men, treating with a dual antibiotic regimen, ensuring effective partner therapy, and remaining vigilant for treatment failures constitute critical activities for clinicians in responding to evolving antimicrobial resistance. This article reviews the epidemiology, history of antimicrobial resistance, current screening and treatment guidelines, and future treatment options for gonorrhea.

  5. Poor performance of BACTEC NR 730 blood culture system in early detection of Neisseria meningitidis.

    OpenAIRE

    1989-01-01

    During an 8-month period at Children's Hospital, Oakland, Calif., a 9% rate for positive blood culture for children with Neisseria meningitidis meningitis was identified. The blood culture system used in each case was the BACTEC NR 730. This rate seemed significantly lower than previous rates (33 to 55%) (P.R. Dodge and M.N. Swartz, N. Engl. J. Med. 272:1003-1010, 1965; A.L. Hoyne and R.H. Brown, Ann. Intern. Med. 28:248-259, 1948; S. Levin and M.B. Painter, Ann. Intern. Med. 64:1049-1057, 19...

  6. In Vitro Activities of Sparfloxacin, Ceftriaxone, Penicillin, Tetracycline and Doxycycline against Chlamydia trachomatis and Neisseria gonhorrhoeae

    Directory of Open Access Journals (Sweden)

    Hazel Talbot

    1992-01-01

    Full Text Available In vitro sparfloxacin was highly active against 223 penicillin-susceptible isolates of Neisseria gonorrhoeae with a 90% minimal inhibitory concentration (MIC90 of 0.004 μg/mL. Resistant strains of N gonorrhoeae totalled 55; 32 were penicillinase-producing and 23 chromosomally resistant. The MIC90 for these isolates was 0.004 μg/mL and 0.008 μg/mL, respectively. Chlamydia trachomatis was also very susceptible with an MIC50 of 0.063 μg/mL and a 50% minimal bactericidal concentration of 0.032 μg/mL for 11 isolates.

  7. First antimicrobial resistance data and genetic characteristics of Neisseria gonorrhoeae isolates from Estonia, 2009–2013

    Directory of Open Access Journals (Sweden)

    D. Golparian

    2014-09-01

    Full Text Available Gonorrhoea is a sexually transmitted infection with major public health implications and Neisseria gonorrhoeae has developed resistance to all antimicrobials introduced for treatment. Enhanced surveillance of antimicrobial resistance in N. gonorrhoeae is crucial globally. This is the first internationally reported antimicrobial resistance data for N. gonorrhoeae from Estonia (44 isolates cultured in 2009–2013. A high prevalence of resistance was observed for azithromycin, ciprofloxacin and tetracycline. One and two isolates with resistance and decreased susceptibility to the last remaining first-line treatment option ceftriaxone, respectively, were identified. It is crucial to implement surveillance of gonococcal antimicrobial resistance (ideally also treatment failures in Estonia.

  8. Prevalence of cervical Chlamydia trachomatis and Neisseria gonorrhoeae in female adolescents.

    Science.gov (United States)

    Fraser, J J; Rettig, P J; Kaplan, D W

    1983-03-01

    The prevalence of cervical infection with Chlamydia trachomatis and Neisseria gonorrhoeae was examined in 125 girls receiving primary gynecologic care in a general adolescent clinic. C trachomatis was isolated in 8% of the patients using a microtiter tissue-culture method, and N gonorrhoeae was found in 12%. A significant association was found between the use of oral contraceptives and positive chlamydial cultures. Patients with Chlamydia-positive cultures were frequently asymptomatic and exhibited no positive findings on physical examination. Three of ten women with cervical chlamydial infection developed pelvic inflammatory disease. These results support the use of cervical screening for both of these pathogens in sexually active adolescents.

  9. Neisseria gonorrhoeae Identification in Direct Smears by a Fluorescent Antibody-Counterstain Method

    Science.gov (United States)

    White, Lendell A.; Kellogg, Douglas S.

    1965-01-01

    Direct smears from female patients have been considered unreliable for the detection of Neisseria gonorrhoeae by fluorescent-antibody (FA) methods because of inadequate background contrast of the fluorescent-stained smears and a scarcity of organisms on the smear. Evans blue dye employed as a counterstain eliminated the nonspecific background staining and increased the reliability of the direct FA procedure. Direct smears demonstrating positive fluorescence were obtained from 86% of a group of culturally positive named female contacts. The FA-counterstain technique is as sensitive as the presently recommended cultural procedures. PMID:14325874

  10. Neisseria meningitidis serogroup C sepsis and septic arthritis in an HIV-positive man.

    Science.gov (United States)

    Fox-Lewis, A; Eades, C P; Manson, J J; Morris-Jones, S; Miller, R F

    2017-08-01

    A patient with well-controlled HIV-1 infection presented with fever and rigors, a widespread maculopapular rash, and severe generalised arthralgia. Sepsis of unknown aetiology was diagnosed, and treatment with broad-spectrum antimicrobials commenced. Following initial clinical improvement, a right knee septic arthritis developed. Microscopy and culture of the joint aspirate were negative for organisms but 16S rDNA PCR identified Neisseria meningitidis DNA, subsequently verified as capsular genogroup C, thus confirming a diagnosis of disseminated meningococcal sepsis with secondary septic arthritis.

  11. Effect of Atmospheric Pressure Non-equilibrium Plasmas on Neisseria gonorrhoeae

    Institute of Scientific and Technical Information of China (English)

    涂亚庭; 许莉; 俞莺; 谭明; 李娟; 陈宏翔

    2010-01-01

    In this study,the sterilizing effect of atmospheric pressure nonequilibrium plasmas(APNPs) on Neisseria gonorrhoeae(N.gonorrhoeae) was preliminarily examined and the possible mechanisms were explored.N.gonorrhoeae FA1090,FA19 and MS11 were treated by APNPs and their survival rate was analyzed by using CFUs counting and structurally studied by laser scanning confocal microscopy.The morphological changes of bacterial cell membrane and wall were studied under TEM.Our results showed that APNPs had strong steril...

  12. In-vitro activity of 21 antimicrobial agents against Neisseria gonorrhoeae in Brussels.

    OpenAIRE

    Gordts, B; Vanhoof, R; Hubrechts, J M; Dierickx, R; Coignau, H; Butzler, J P

    1982-01-01

    The minimum inhibitory concentrations (MIC) of 21 antimicrobial agents was measured for 80 strains of Neisseria gonorrhoeae isolated in Brussels in 1978. Bimodal distributions were found for penicillin G, ampicillin, amoxycillin, carbenicillin, and cephalexin. Of the strains, 17.5% were relatively resistant to penicillin G (MIC greater than 0.08 microgram/ml) 27.5% to ampicillin (MIC greater than 0.16 microgram/ml), 23.8% to amoxycillin, and 43.3% to carbenicillin. Cefotaxime was the most act...

  13. Safety review: two outer membrane vesicle (OMV) vaccines against systemic Neisseria meningitidis serogroup B disease.

    Science.gov (United States)

    Nøkleby, H; Aavitsland, P; O'Hallahan, J; Feiring, B; Tilman, S; Oster, P

    2007-04-20

    MenBvac is an OMV vaccine against systemic serogroup B Neisseria meningitidis disease. MenBvac was developed for control of a B:15:P1.7,16 subtype epidemic in Norway and administered to 180,000 subjects in 28 clinical studies. MeNZB, a daughter vaccine of MenBvac, was developed for a clonal B:4:P1.7b,4 epidemic in New Zealand and administered to 1 million people OMV-based vaccines containing 25 microg antigen can be considered safe for use in all age groups.

  14. Molecular characterizations of serogroup B Neisseria meningitidis strains circulating in Beijing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-gang; CHEN Chao; HE Jing-guo; WU Jiang; CHEN Li-juan; PANG Xing-huo; YANG Jie; SHAO Zhu-jun; HUANG Ying-chun

    2009-01-01

    @@ Neisseria meningitidis (N. Meningitidis) is classified into 13 serogroups based on the immunological reactivity of the capsular polysaccharide.1 Serogourps A,B and C are responsible for over 90% of meningococcal disease.2In developed countries, endemic disease is generally caused by serogroups B and C. Epidemics due to serogroup B have also occurred in Brazil, Chile, Cuba,Norway and, more recently, in New Zealand.2 In China,serogroup A is the most common cause of epidemics. In recent years, the number of meningococcal meningitis cases in China attributed to serogroups B and C has substantially increased.3,4

  15. Molecular detection and confirmation of Neisseria gonorrhoeae in urogenital and extragenital specimens using the Abbott CT/NG RealTime assay and an in-house assay targeting the porA pseudogene.

    LENUS (Irish Health Repository)

    Walsh, A

    2011-04-01

    Culture for detection of Neisseria gonorrhoeae (NG) is being replaced by molecular assays, but difficulties are observed with false positive and negatives results, especially for extragenital samples. This study evaluates the Abbott CT\\/NG Real-Time assay and a real-time porA pseudogene assay. Samples (n = 600) from a mixed prevalence Irish population include 164 male urines with corresponding urethral swabs, 58 endocervical swabs, 173 male pharyngeal swabs, 205 male rectal swabs, 36 NG clinical isolates and 26 commensal Neisseria species isolates. There was a 100% concordance between the Abbott CT\\/NG Real-Time and the porA assay. The positivity rate was 1.2%, 1.7%, 8.1% and 5.8% for FVU\\/urethral swabs, endocervical, pharyngeal and rectal swabs, respectively. These results were compared to culture and discrepancies were found with nine pharyngeal and three rectal swabs. Seven of the 12 discrepant positive samples were sequenced and were confirmed "true positives". The sensitivity and specificity of the molecular assays was 100%. The sensitivity of the culture-based testing was 100% for urogenital samples but 36% and 75% for pharyngeal and rectal swabs, respectively. The combined Abbott CT\\/NG and porA assays provide a valuable alternative to culture and also generate a significant increase in the diagnosis of pharyngeal and rectal NG infection.

  16. Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain.

    Science.gov (United States)

    Huang, Jian-Ming; Lin, Wei-Chen; Li, Sung-Chou; Shih, Min-Hsiu; Chan, Wen-Ching; Shin, Jyh-Wei; Huang, Fu-Chin

    2016-07-01

    Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK.

  17. Expression of the nfa1 gene cloned from pathogenic Naegleria fowleri in nonpathogenic N. gruberi enhances cytotoxicity against CHO target cells in vitro.

    Science.gov (United States)

    Jeong, Seok-Ryoul; Lee, Sang-Chul; Song, Kyoung-Ju; Park, Sun; Kim, Kyongmin; Kwon, Myung-Hee; Im, Kyung-Il; Shin, Ho-Joon

    2005-07-01

    The pathogenic amoeba Naegleria fowleri has a 360-bp nfa1 gene that encodes the Nfa1 protein (13.1 kDa), which is located in the pseudopodia of the amoeba, and an anti-Nfa1 antibody reduces N. fowleri-induced mammalian-cell cytotoxicity in vitro. In contrast, an anti-Nfa1 antibody cannot detect Nfa1 protein expression in the nonpathogenic amoeba Naegleria gruberi, which also possesses the nfa1 gene. In the present study, the nfa1 gene cloned from pathogenic N. fowleri was transfected into nonpathogenic N. gruberi to determine whether it was related to pathogenicity. The nfa1 gene was initially inserted into a eukaryotic transfection vector, pEGFP-C2, containing a cytomegalovirus promoter and the green fluorescent protein (GFP) gene, and was designed as pEGFP-C2/nfa1UTR (nfa1UTR contains 5' upstream regions, the nfa1 open reading frame, and 3' downstream regions). After transfection, the green fluorescence was observed in the cytoplasm of N. gruberi trophozoites. These transfectants were preserved for more than 9 months after selection. The transfected nfa1 gene was observed by PCR using nfa1- and vector-specific primers in the genomic DNA of N. gruberi transfected with the pEGFP-C2/nfa1UTR vector. In addition, the nfa1 and GFP genes were identified by reverse transcription-PCR in transgenic N. gruberi. The Nfa1 protein expressed in transgenic N. gruberi was identified as a 13.1-kDa band by Western blotting using an anti-Nfa1 antibody. Finally, N. gruberi transfected with the pEGFP-C2/nfa1UTR vector was found to have enhanced cytotoxicity against CHO cells compared with naïve N. gruberi.

  18. The isolation and identification of Pantoea dispersa strain JFS as a non-pathogenic surrogate for Salmonella Typhimurium phage type 42 in flour.

    Science.gov (United States)

    Fudge, James; Dunn, Michael; Pike, Oscar; Robison, Richard; Steele, Frost

    2016-02-16

    Salmonella is a common pathogen which has been the cause of foodborne illness outbreaks implicating a variety of commodities, including low-moisture foods such as flour. Salmonella costs more than any other pathogen in the United States in terms of health care expenses and time of lost work. Heat treatment can be used to reduce Salmonella and other pathogens in flour to safe levels. However, in low-moisture foods, process times must be increased to achieve adequate lethality, possibly resulting in changes in the flour's functionality such as changes in the gluten quality, vitamin content, and the level of starch gelatinization. There is a need to determine the minimal heat treatment required to achieve desired lethality in flour and other low-moisture foods, with the goal of retaining the flour's functionality. Currently there is no published data about a nonpathogenic bacterial surrogate for Salmonella in flour. In this study, a surrogate, which closely matches the thermal death rate of Salmonella in flour, has been isolated. The surrogate was identified following an evaluation of thermal death curves of ten different strains of bacteria isolated from heat-treated flour and two nonpathogenic surrogates used in other commodities. Flour samples were inoculated with Salmonella or one of the twelve bacterial isolates, and then subjected to heat (70, 75, and 80 °C) for 12-60 min. The heat tolerance for each organism was determined by plating out at least four different time points for each temperature and comparing the death curve to those from Salmonella. The death curve from Pantoea dispersa was not statistically different (p<0.05) than the death curve of Salmonella. This strain of P. dispersa (strain JFS) can be used as a conservative, slightly more heat resistant, surrogate for Salmonella. It can be used to verify the combination of heat and time necessary to kill Salmonella in flour using a commercial heat-treatment process. Copyright © 2015 Elsevier B.V. All

  19. USE OF THE CHICK EMBRYO IN MAINTAINING AND RESTORING VIRULENCE OF NEISSERIA GONORRHOEAE

    Science.gov (United States)

    Walsh, Martin J.; Brown, Bobby C.; Brown, Leonard; Pirkle, Carl I.

    1963-01-01

    Walsh, Martin J. (Communicable Disease Center, Atlanta, Ga.), Bobby C. Brown, Leonard Brown, and Carl I. Pirkle. Use of the chick embryo in maintaining and restoring virulence of Neisseria gonorrhoeae. J. Bacteriol. 86:478–481. 1963.—Data based on its capabilities of producing acute urethritis in human male volunteers showed that Neisseria gonorrhoeae rapidly decreased in virulence after repeated subculture on chocolate agar medium. Cultures of a particular strain (GCM13) in the allantoic cavity of a developing chick embryo maintained virulence after 82 successive transfers. Another strain (GCF62), after loss of virulence through repeated subculture on chocolate agar, was again able to produce infection after 15 consecutive transfers in chick embryo. Thus, chick embryo apparently had the capability not only to maintain the virulence factor but also to reconstitute virulence. It is postulated that chick embryo serves as a selective medium for the growth of virulent gonococci, permitting rapid multiplication of these organisms and suppressing growth of the nonvirulent organisms. PMID:14066424

  20. Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N. gonorrhoeae showed a double ring structure with a 14-15-fold symmetry in the central ring, and a 14-fold symmetry of the peripheral ring with 7 spikes protruding. In secretin complexes of N. meningitidis, the spikes were absent and the peripheral ring was partly or completely lacking. When present, it had a 19-fold symmetry. The structures of the complexes in several pil mutants were determined. Structures obtained from the pilC1/C2 adhesin and the pilW minor pilin deletion strains were similar to wild-type, whereas deletion of the homologue of N. meningitidis PilW resulted in the absence of secretin structures. Remarkably, the pilE pilin subunit and pilP lipoprotein deletion mutants showed a change in the symmetry of the peripheral ring from 14 to 19 and loss of spikes. The pilF ATPase mutant also lost the spikes, but maintained 14-fold symmetry. These results show that secretin complexes contain previously unidentified large and flexible extra domains with a probable role in stabilization or assembly of type IV pili.

  1. Pili-mediated Interactions between Neisseria Gonorrhoeae Bacteria are the Driving Mechanism of Microcolony Merging

    Science.gov (United States)

    Poenisch, Wolfram; Weber, Christoph; Alzurqa, Khaled; Nasrollahi, Hadi; Biais, Nicolas; Zaburdaev, Vasily; Collective Dynamics of Cells Team; Mechano-Micro-Biology Lab Team

    2015-03-01

    During the early infection with Neisseria gonorrhoeae the bacteria form microcolonies consisting of a few hundreds to a few thousands of cells. The formation of colonies is mediated by type IV pili, thin and long filaments that are also involved in the motion of single cells over a substrate. A related process causes attractive cell-cell-interactions. While the motion of single cells has been extensively studied during the past years, the physical principles driving the growth of these colonies are poorly understood. One key mechanism of colony growth is coalescence of smaller colonies. Therefore we experimentally examine the process of merging of two Neisseria gonorrhoeae colonies. We develop a theoretical microscopic model of single cells interacting solely by their pili. The experimental data and the results obtained from our model are in excellent quantitative agreement. We observe a fast initial approach of the two merging colonies within a few minutes, that is followed by a slow relaxation of the colony shape with a characteristic time of several hours. These findings suggest that pili-mediated interactions are the primary driving mechanism of the microcolony merging process.

  2. 16th International Pathogenic Neisseria Conference: recent progress towards effective meningococcal disease vaccines.

    Science.gov (United States)

    Gorringe, Andrew R; van Alphen, Loek

    2009-02-01

    The report describes developments in meningococcal disease vaccines presented at the 16th International Pathogenic Neisseria Conference, Rotterdam, 7-12 September 2008. Great progress has been made by the Meningitis Vaccine Project to provide an affordable and effective serogroup A conjugate vaccine for use in the meningitis belt of Sub-Saharan Africa. The vaccine has been shown to be safe and to produce excellent immune response in phase 2 clinical trials in India and Africa in the target populations and will be rolled out to the worst affected countries from 2009. This vaccine has the potential to make a huge impact on public health in this region. This conference heard that the use of an epidemic strain-specific outer membrane vesicle (OMV) vaccine in New Zealand has been discontinued. Views for and against this decision were presented. Several MenB vaccines have progressed to clinical evaluation. The most advanced are the Novartis five recombinant protein variants and the Wyeth vaccine based on two factor H binding protein variants. Promising results from both vaccines with genetically-detoxified lipooligosaccharide and overexpressed heterologous antigens, OMV's from Neisseria lactamica and recombinant Opa proteins.

  3. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    Science.gov (United States)

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR.

  4. Comparison of Neisseria gonorrhoeae MICs obtained by Etest and agar dilution for ceftriaxone, cefpodoxime, cefixime and azithromycin.

    Science.gov (United States)

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-12-01

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.

  5. Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis Implications for Vaccine Development

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Zomer, G.; IJssel, van den J.; Keulen, van L.; Eppink, M.H.M.; Ley, de P.; Pol, van der L.A.

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use a

  6. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    Science.gov (United States)

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector.

  7. Multidrug-resistant Neisseria gonorrhoeae with reduced cefotaxime susceptibility is increasingly common in men who have sex with men, Amsterdam, the Netherlands

    NARCIS (Netherlands)

    de Vries, H.J.C.; van der Helm, J.J.; Schim van der Loeff, M.F.; van Dam, A.P.

    2009-01-01

    Antimicrobial resistance is an increasing problem in Neisseria gonorrhoeae (NG) treatment. Presently, third-generation parenteral cephalosporins, like ceftriaxone and cefotaxime, are the first option. Resistance to oral, but not to parenteral, third-generation cephalosporins has been reported previo

  8. Neisseria gonorrhoeae False-Positive Result Obtained from a Pharyngeal Swab by Using the Roche cobas 4800 CT/NG Assay in New Zealand in 2012

    OpenAIRE

    Upton, Arlo; Bromhead, Collette; Whiley, David M

    2013-01-01

    The Roche cobas 4800 CT/NG assay is a commonly used commercial system for screening for Neisseria gonorrhoeae infection, and previous studies have shown the method to be highly sensitive and specific for urogenital samples. We present the first confirmed clinical N. gonorrhoeae false-positive result using the cobas 4800 NG assay, obtained from testing a pharyngeal swab sample and caused by cross-reaction with a commensal Neisseria strain.

  9. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone.

    Science.gov (United States)

    Osaka, Kazuyoshi; Takakura, Tadakazu; Narukawa, Kayo; Takahata, Masahiro; Endo, Katsuhisa; Kiyota, Hiroshi; Onodera, Shoichi

    2008-06-01

    Neisseria gonorrhoeae strains with reduced susceptibility to cefixime and ceftriaxone, with minimum inhibitory concentrations (MICs) of cefixime of 0.125-0.25 microg/ml and ceftriaxone of 0.031-0.125 microg/ml, were isolated from male urethritis patients in Tokyo, Japan, in 2006. The amino acid sequences of PenA, penicillin-binding protein 2, in these strains were of two types: PenA mosaic and nonmosaic strains. In the PenA mosaic strain, some regions in the transpeptidase-encoding domain in PenA were similar to those of Neisseria perflava/sicca, Neisseria cinerea, Neisseria flavescens, Neisseria polysaccharea, and Neisseria meningitidis. In the PenA nonmosaic strain, there was a mutation of Ala-501 to Val in PenA. In addition, we performed homology modeling of PenA wild-type and mosaic strains and compared them. The results of the modeling studies suggested that reduced susceptibility to cephems such as cefixime and ceftriaxone is due to a conformational alteration of the beta-lactam-binding pocket. These results also indicated that the mosaic structures and the above point mutation in PenA make a major contribution to the reduced susceptibility to cephem antibiotics.

  10. Role of transition metal exporters in virulence: the example of Neisseria meningitidis.

    Science.gov (United States)

    Guilhen, Cyril; Taha, Muhamed-Kheir; Veyrier, Frédéric J

    2013-01-01

    Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.

  11. Purification of capsular polysaccharide from Neisseria meningitidis serogroup C by liquid chromatography.

    Science.gov (United States)

    Pato, Tânia Pinheiro; Barbosa, Antonio de Pádua R; da Silva Junior, José Godinho

    2006-03-07

    Neisseria meningitidis serogroup C capsular polysaccharide (MenCPS) is an important antigen against meningococcal infection. This paper describes a new purification methodology employing liquid chromatography that resulted in a polysaccharide showing the characteristics recommended by the World Health Organization for vaccine purposes. In this method, steps of the traditional procedure that yield low recovery and use toxic materials were modified. The present process consists in the following steps: (1) continuous flow centrifugation of the culture for removal of the cells; (2) supernatant concentration by tangential filtration (100 kDa cutoff); (3) addition of 0.5% DOC, heating to 55 degrees C during 30 min and tangential filtration (100 kDa cutoff); (4) anion exchange chromatography (Source 15Q) and (5) size exclusion chromatography (Sepharose CL-4B). The polysaccharide C fraction obtained in that way was dialyzed and freeze-dried. The structural identity of the polysaccharide was demonstrated by (1)H-NMR spectrometry.

  12. Genotyping of two Neisseria gonorrhoeae fluroquinolone-resistant strains in the Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    William Antunes Ferreira

    2011-08-01

    Full Text Available We report two ciprofloxacin and ofloxacin-resistant Neisseria gonorrhoeae strains that were isolated from the urethral discharge of male patients at the sexually transmitted diseases outpatient clinic of the Alfredo da Matta Foundation (Manaus, state of Amazonas, Brazil. The gonococci displayed minimal inhibitory concentrations (> 32.00 µg/mL and three mutations in the quinolone resistance-determining region (S91F and D95G in GyrA and S87R in ParC. Both isolates were genotyped using N. gonorrhoeae multi-antigen sequence typing and the analysis showed that the ST225 which represented an emerging widespread multi-resistant clone that has also been associated with reduced susceptibility to ceftriaxone. We recommend continued surveillance of this pathogen to assess the efficacy of anti-gonococcal antibiotics in Brazil.

  13. Relationship between Mutation of IR in the mtr System of Neisseria Gonorrhoeae and Multiple Antibiotic Resistance

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lixia; LIN Nengxing; HUANG Changzheng; CHEN Hongxiang; LIN Yun; TU Yating

    2006-01-01

    To study the relationship between mutation of the inverted repeat sequence (IR) in the multiple transferable resistant system (mtr) of Neisseria gonorrhoeae (NG) and itsmultiple antibiotic resistance, minimal inhibitory concentrations (MICs) for the clinically isolated strains were tested by agar-dilution-method. The mtr system's IR gene of NG was sequenced after amplification by polymerase chain reaction (PCR). Either two susce ptive or five penicillin-resistant strains had no base mutation in IR gene, while all of the 13 strains with multiple-antibiotic-resistance had a singlebase deletion (A/T). The result suggests that a single-base deletion of the thirteen-base IR sequence in mtr system of NG might result in multiple antibiotic resistance but is not associated with single antibiotic resistance.

  14. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent.

    Science.gov (United States)

    Niebla, O; Alvarez, A; Martín, A; Rodríguez, A; Delgado, M; Falcón, V; Guillén, G

    2001-05-14

    The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions.

  15. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Stevens, Jacqueline S; Apicella, Michael A; Criss, Alison K

    2015-07-15

    Acute gonorrhea is characterized by neutrophilic inflammation that is insufficient to clear Neisseria gonorrhoeae. Activated neutrophils release extracellular traps (NETs), which are composed of chromatin and decorated with antimicrobial proteins. The N. gonorrhoeae NG0969 open reading frame contains a gene (nuc) that encodes a putatively secreted thermonuclease (Nuc) that contributes to biofilm remodeling. Here, we report that Nuc degrades NETs to help N. gonorrhoeae resist killing by neutrophils. Primary human neutrophils released NETs after exposure to N. gonorrhoeae, but NET integrity declined over time with Nuc-containing bacteria. Recombinant Nuc and conditioned medium from Nuc-containing N. gonorrhoeae degraded human neutrophil DNA and NETs. NETs were found to have antimicrobial activity against N. gonorrhoeae, and Nuc expression enhanced N. gonorrhoeae survival in the presence of neutrophils that released NETs. We propose that Nuc enables N. gonorrhoeae to escape trapping and killing by NETs during symptomatic infection, highlighting Nuc as a multifunctional virulence factor for N. gonorrhoeae.

  16. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Directory of Open Access Journals (Sweden)

    Daniel O Connor

    Full Text Available Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  17. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  18. In vitro potency and combination testing of antimicrobial agents against Neisseria gonorrhoeae.

    Science.gov (United States)

    Bharat, Amrita; Martin, Irene; Zhanel, George G; Mulvey, Michael R

    2016-03-01

    Antimicrobial resistant Neisseria gonorrhoeae is a major concern to public health due to decreased susceptibility to frontline antimicrobials. To find agents that are active against N. gonorrhoeae, we tested antimicrobials alone or in combination by Etest gradient strips. The potencies (as assessed by minimum inhibitory concentrations) of twenty-five antimicrobials were evaluated against nine reference strains of N. gonorrhoeae (WHO F, G, K, L, M, N, O, P and ATCC 49226). Potency was greatest for netilmicin, quinupristin-dalfopristin, ceftriaxone, ertapenem and piperacillin-tazobactam. Combinations of azithromycin, moxifloxacin, or gentamicin with ceftriaxone, doripenem, or aztreonam were tested against reference isolates and the fractional inhibitory concentration index (FICI) was calculated. All nine combinations resulted in indifference (>0.5 FICI ≤ 4). Combinations with FICI gonorrhoeae. These data on antimicrobials with higher potency and combinations that did not show antagonism can help to guide larger scale susceptibility studies for antimicrobial resistant N. gonorrhoeae.

  19. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Science.gov (United States)

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  20. Phenotypic and genotypic characterization of prolyliminopeptidase-negative Neisseria gonorrhoeae isolates in Denmark

    DEFF Research Database (Denmark)

    Fjeldsøe-Nielsen, H; Unemo, M; Fredlund, H;

    2005-01-01

    In the study presented here 26 recent Danish clinical isolates of prolyliminopeptidase (PIP)-negative Neisseria gonorrhoeae were phenotypically and genotypically characterized to investigate whether one or more PIP-negative strains are circulating in the Danish community. The profiles...... of these isolates were compared with those of three isolates from a recent outbreak of PIP-negative N. gonorrhoeae infection in the UK. Twenty-five of the Danish isolates and all three UK isolates had similar antibiograms and were designated serovar IB-4. Genotypic characterization by pulsed-field gel...... electrophoresis, porB1b gene sequencing, and opa-typing revealed that these isolates were indistinguishable or closely related. The results indicate that at least one PIP-negative N. gonorrhoeae strain is currently circulating in the Danish community, and this strain is indistinguishable from the one that caused...

  1. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Matthew N. Ezewudo

    2015-03-01

    Full Text Available Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2 from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime were mostly found in two of the five population subgroups.

  2. Typing and susceptibility to penicillin of Neisseria meningitidis isolated from patients in Cuba (1993-1999

    Directory of Open Access Journals (Sweden)

    Jorge Sosa

    2001-05-01

    Full Text Available The susceptibility to penicillin of 111 Neisseria meningitidis strains was assessed by the agar-dilution procedure and serosubtypes were determined by a whole-cell enzyme-linked immunoassay using monoclonal antibodies reagents. Thirty-five isolates showed reduced sensitivity to penicillin (MIC > or = 0.1 mg/l and <= 1 mg/l and no resistant strains were detected. The most common phenotype was B:4:P1.15 (77.5% and a rising trend of non-typeable and non-subtypeable strains was detected. The increase in levels of minimal inhibitory concentrations of meningococci to penicillin gives cause for concern and the increase in non-typeable and non-subtypeable isolation demand the use of molecular biology techniques for their typing.

  3. Nuclease enhancement of specific cell agglutination in a serodiagnostic test for Neisseria gonorrhoeae.

    Science.gov (United States)

    Arko, R J; Wong, K H; Peacock, W L

    1979-01-01

    Antiserum to a purified type R lipopolysaccharide antigen isolated from Neisseria gonorrhoeae was used in a slide agglutination test and compared with conventional carbohydrate utilization and fluorescent antibody tests to confirm the identity of laboratory cultures classified as typical or "atypical" N. gonorrhoeae. Cultures of Corynebacterium vaginalis, N. meningitidis, N. catarrhalis, N. sicca, and N. lactamicus were also tested in the slide agglutination procedure. The addition of both deoxyribonuclease and ribonuclease (1 mg/ml) to the cell suspension medium of phosphate-buffered saline improved the sensitivity and specificity of the agglutination reaction for N. gonorrhoeae. Problems relating to the agglutination test as an aid in identification of N. gonorrhoeae are discussed. PMID:110830

  4. Effects of tampon components on growth and dissemination of Neisseria gonorrhoeae.

    Science.gov (United States)

    Arko, R J; Wong, K H; Finley-Price, K G; Rasheed, J K

    1982-01-01

    Six components used in vaginal tampons were tested for their effects on a strain of Neisseria gonorrhoeae isolated from a patient with disseminated infection. Tampon components containing carboxymethyl cellulose or its derivative prolonged the in-vitro survival of gonococci and, when injected with mucin into mice, significantly (P less than 0.0001) increased the dissemination of gonococci from the peritoneal cavity. In contrast, a component extracted from rayon tampons reduced in-vitro survival and appeared to suppress gonococcal dissemination in mice. Since tampons are used by a large number of women at a time when the risk of developing complications from venereal infections are increased, their effects on potential urogenital pathogens warrant further study. PMID:6802439

  5. An intragenic distribution bias of DNA uptake sequences in Pasteurellaceae and Neisseriae

    Directory of Open Access Journals (Sweden)

    van Passel Mark WJ

    2008-03-01

    Full Text Available Abstract Most sequenced strains from Pasteurellaceae and Neisseriae contain hundreds to thousands of uptake sequence (US motifs in their genome, which are associated with natural competence for DNA uptake. The mechanism of their recognition is still unclear, and I searched for intragenic location patterns of these motifs for clues about their distribution. In all cases, one orientation of the US has a higher occurrence in the reading frame, and in all Pasteurellaceae, the US and the reverse complement motifs are biased towards the gene termini. These findings could help design experimental set-ups to study preferential DNA uptake, thereby further unravelling the phenomenon of natural competence. Reviewers This article was reviewed by Arcady Mushegian and I. King Jordan.

  6. Crystal structure of outer membrane protein NMB0315 from Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Xiangyu Wang

    Full Text Available NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD at a resolution of 2.4 Å and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases.

  7. In-vitro comparison of macrolides, lincosamides and synergistins on Neisseria gonorrhoeae.

    Science.gov (United States)

    Thabaut, A; Meyran, M; Huerre, M

    1985-07-01

    The MIC of erythromycin, oleandomycin, spiramycin, josamycin, lincomycin and pristinamycin was determined for 100 strains of Neisseria gonorrhoeae isolated from cases of acute urethritis in men. The method of dilution in agar was used: blood agar with the addition of 'Polyvitex' and an innoculum of 10(3)-10(4) bacteria per spot. With respect to the break points defined by the C.F.A. all the strains of N. gonorrhoeae studied are sensitive to erythromycin, spiramycin, josamycin and pristinamycin, 12% strains are resistant to oleandomycin and 75% to lincomycin. The active antibiotics are classified as follows according to the active weight expressed by the MIC50: erythromycin, pristinamycin, 0.125 mg/l; josamycin, 0.5 mg/l; spiramycin, oleandomycin, 2 mg/l.

  8. Epidemiological markers in Neisseria meningitidis: an estimate of the performance of genotyping vs phenotyping

    DEFF Research Database (Denmark)

    Weis, N; Lind, I

    1998-01-01

    In order to estimate the performance of genotypic vs phenotypic characterization of Neisseria meningitidis, 2 methods, DNA fingerprinting and multilocus enzyme electrophoresis (MEE), were assessed as regards applicability, reproducibility and discriminating capacity. 50 serogroup B and 52 serogroup...... defined by DNA fingerprinting and MEE as compared to that defined by phenotypic characteristics (serogroup, serotype, serosubtype and sulphonamide resistance) was as follows: for serogroup B strains from patients, 11 and 12 vs 8; for serogroup C strains from patients, 10 and 15 vs 8; and for serogroup C...... carrier strains, 12 and 19 genotypes vs 10 phenotypes were defined. By use of both DNA fingerprinting and MEE the number of genotypes defined for the 3 groups of strains was 14, 17 and 19, respectively. DNA fingerprinting and MEE showed a discriminating capacity superior to that of phenotyping...

  9. Role of Transition Metal Exporters In Virulence: The Example of Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Cyril eGuilhen

    2013-12-01

    Full Text Available Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate nonfunctional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.

  10. Attenuation of the Type IV Pilus Retraction Motor Influences Neisseria gonorrhoeae Social and Infection Behavior

    Science.gov (United States)

    Hutchens, Danielle M.; Agellon, Al

    2016-01-01

    ABSTRACT Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilTL201C). Purified PilTL201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilTL201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilTL201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilTL201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. PMID:27923924

  11. SIGNIFICATIVE ANO PROBLEM BASED LEARNING IN IMMUNOLOGY: OBTAINING A KIT TO TYPE NEISSERIA GONORRHOEAE

    Directory of Open Access Journals (Sweden)

    Marina Miguez

    2003-06-01

    Full Text Available Neisseria gonorrhoeae (Ng have been classified serologically on the basis of the antigenicity of the major porin (Por. Por! occurs in two immunochemically distinct serogroups: PorlA and Porffi. Because the diagnostic, therapeutic, social, and legal corisequences of misidentification of a nongonococcal Neisseria isolate as Ng can be substantial, the accurate and rapid identification of this organism is important. Typifying of Ng is done by techniques baséd on phenotypic characteristics and plasmidic content that individually don't reach an adequate discrimination, and so combination of techniques ·must be used. The aim of this work is to obtain polyclonal specificAb that discriminate Ng types Por!Aand Porffi. For this purpose, weimmunized two rabbits with sonicated PorlA and Porm strains ofNg (isolated from clínica! samples and serologically classified. The Ab response was analyzed along the protocol by ELISAand by direct agglutination with latex coated with sonicated Ng. With these data, we selected the bleeding providing the serum with maximum specific Ab ti ter to prepare the typing reagents. Unwanted Ab directed against shared epitopes were removed by adsorption with Ng latex. The typing reagents were obtained by coating latex with each depleted sera. Our results suggest that high titers of specific Ab be obtained for both strains ofNg and the depleted sera be discriminated between both strains. These results suggest that these diagnostic reagents could be useful to confirrn presumptive identification by a simple and rapid method.

  12. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase.

    Science.gov (United States)

    Nóbrega, Cláudia S; Saraiva, Ivo H; Carreira, Cíntia; Devreese, Bart; Matzapetakis, Manolis; Pauleta, Sofia R

    2016-02-01

    Neisseria gonorrhoeae colonizes the genitourinary track, and in these environments, especially in the female host, the bacteria are subjected to low levels of oxygen, and reactive oxygen and nitrosyl species. Here, the biochemical characterization of N. gonorrhoeae Laz is presented, as well as, the solution structure of its soluble domain determined by NMR. N. gonorrhoeae Laz is a type 1 copper protein of the azurin-family based on its spectroscopic properties and structure, with a redox potential of 277±5 mV, at pH7.0, that behaves as a monomer in solution. The globular Laz soluble domain adopts the Greek-key motif, with the copper center located at one end of the β-barrel coordinated by Gly48, His49, Cys113, His118 and Met122, in a distorted trigonal geometry. The edge of the His118 imidazole ring is water exposed, in a surface that is proposed to be involved in the interaction with its redox partners. The heterologously expressed Laz was shown to be a competent electron donor to N. gonorrhoeae cytochrome c peroxidase. This is an evidence for its involvement in the mechanism of protection against hydrogen peroxide generated by neighboring lactobacilli in the host environment.

  13. Characterization of the novel DNA gyrase inhibitor AZD0914: low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Alm, Richard A; Lahiri, Sushmita D; Kutschke, Amy; Otterson, Linda G; McLaughlin, Robert E; Whiteaker, James D; Lewis, Lisa A; Su, Xiaohong; Huband, Michael D; Gardner, Humphrey; Mueller, John P

    2015-03-01

    The unmet medical need for novel intervention strategies to treat Neisseria gonorrhoeae infections is significant and increasing, as rapidly emerging resistance in this pathogen is threatening to eliminate the currently available treatment options. AZD0914 is a novel bacterial gyrase inhibitor that possesses potent in vitro activities against isolates with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins, and it is currently in clinical development for the treatment of N. gonorrhoeae infections. The propensity to develop resistance against AZD0914 was examined in N. gonorrhoeae and found to be extremely low, a finding supported by similar studies with Staphylococcus aureus. The genetic characterization of both first-step and second-step mutants that exhibited decreased susceptibilities to AZD0914 identified substitutions in the conserved GyrB TOPRIM domain, confirming DNA gyrase as the primary target of AZD0914 and providing differentiation from fluoroquinolones. The analysis of available bacterial gyrase and topoisomerase IV structures, including those bound to fluoroquinolone and nonfluoroquinolone inhibitors, has allowed the rationalization of the lack of cross-resistance that AZD0914 shares with fluoroquinolones. Microbiological susceptibility data also indicate that the topoisomerase inhibition mechanisms are subtly different between N. gonorrhoeae and other bacterial species. Taken together, these data support the progression of AZD0914 as a novel treatment option for the oral treatment of N. gonorrhoeae infections.

  14. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Susannah ePiek

    2012-12-01

    Full Text Available The Gram-negative bacterial cell envelope consists of an inner membrane (IM that surrounds the cytoplasm, and an asymmetrical outer-membrane (OM that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS, phospholipids, outer membrane proteins (OMPs and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the correct biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation and isomerisation pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, these conserved pathways have been modified to suit the lifestyle of each organism.

  15. Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum.

    Science.gov (United States)

    Venard, C; Vaillancourt, L

    2007-01-01

    The maize anthracnose stalk-rot fungus Colletotrichum graminicola infects its host primarily through wounds in the stalks that are caused by insects. However it also can cause stalk-rot disease without wounding. It is not known how the pathogen enters stalks in the absence of wounds. Studies have suggested that direct invasion through the highly lignified rind tissues is not a viable means of entry. A cytological approach was used to investigate the ability of C. graminicola to penetrate and colonize intact maize stalks. The pathogen had a significant capacity for direct penetration, but this mechanism of infection was much slower and less efficient than penetration through wounds. The fungus breached the lignified rind fibers by passing through small openings in the cell walls via narrow hyphal connections. Epidermal cells and rind fiber cells did not appear to become rotted. Rotting only occurred once the pathogen had penetrated into the pith parenchyma cells. To our surprise the closely related fungus C. sublineolum, which is not normally a pathogen of maize, also was capable of infecting intact maize stalks, although to a lesser degree than C. graminicola. The two species also were observed on intact roots and leaves, and C. sublineolum was incapable of infecting those tissues whereas C. graminicola efficiently colonized both. This suggests the interesting possibility that nonhost resistance to C. sublineolum is conditional and perhaps also tissue-specific.

  16. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  17. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  18. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis.

    Science.gov (United States)

    Muñoz-Bodnar, Alejandra; Perez-Quintero, Alvaro L; Gomez-Cano, Fabio; Gil, Juliana; Michelmore, Richard; Bernal, Adriana; Szurek, Boris; Lopez, Camilo

    2014-11-01

    An RNAseq-based analysis of the cassava plants inoculated with Xam allowed the identification of transcriptional upregulation of genes involved in jasmonate metabolism, phenylpropanoid biosynthesis and putative targets for a TALE. Cassava bacterial blight, a disease caused by the gram-negative bacterium Xanthomonas axonopodis pv. manihotis (Xam), is a major limitation to cassava production worldwide and especially in developing countries. The molecular mechanisms underlying cassava susceptibility to Xam are currently unknown. To identify host genes and pathways leading to plant susceptibility, we analyzed the transcriptomic responses occurring in cassava plants challenged with either the non-pathogenic Xam strain ORST4, or strain ORST4(TALE1 Xam ) which is pathogenic due to the major virulence transcription activator like effector TALE1 Xam . Both strains triggered similar responses, i.e., induction of genes related to photosynthesis and phenylpropanoid biosynthesis, and repression of genes related to jasmonic acid signaling. Finally, to search for TALE1 Xam virulence targets, we scanned the list of cassava genes induced upon inoculation of ORST4(TALE1 Xam ) for candidates harboring a predicted TALE1 Xam effector binding element in their promoter. Among the six genes identified as potential candidate targets of TALE1 Xam a gene coding for a heat shock transcription factor stands out as the best candidate based on their induction in presence of TALE1 Xam and contain a sequence putatively recognized by TALE1 Xam .

  19. Group C Neisseria meningitidis as a Cause of Septic Arthritis in a Native Shoulder Joint: A Case Report

    Directory of Open Access Journals (Sweden)

    Amy J. Garner

    2011-01-01

    Full Text Available Septic arthritis is an Orthopaedic emergency, threatening the joint within hours of onset. Up to 10% of cases of meningococcaemia have an associated septic arthritis. The aetiology of acute meningococcaemia in a variety of clinical syndromes is well documented in the literature. The pathogen Neisseria meningitidis can cause both primary and secondary manifestations of disseminated infection. Broad-range 16S rDNA PCR is a relatively new technique, useful in identifying aetiological agents in septic patients with negative blood cultures. Here, we describe the rare clinical scenario of a 76-year-old woman with primary meningococcal septic arthritis of a native shoulder joint without associated meningococcal bloodstream infection. We discuss the role of 16s rDNA Polymerase Chain Reaction (PCR in the identification of the infectious agent, Neisseria meningitidis, and the role of this technique in guiding subsequent management.

  20. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity.

    Directory of Open Access Journals (Sweden)

    Maria Valeri

    Full Text Available Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.

  1. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated from Guangzhou, China, 2000 to 2005 and 2008 to 2013.

    Science.gov (United States)

    Cao, Wen-Ling; Liang, Jing-Yao; Li, Xiao-Dong; Bi, Chao; Yang, Ri-Dong; Liang, Yan-Hua; Li, Ping; Zhong, Dao-Qing; Ye, Xing-Dong; Zhang, Xi-Bao

    2015-01-01

    A total of 1224 Neisseria gonorrhoeae isolates from Guangzhou in 2 periods (2000-2005 and 2008-2013) were subjected to antimicrobial susceptibility testing. The percentage of penicillin- and ciprofloxacin-resistant isolates increased from 71.1% (473/665) to 90.9% (508/559) and 88.9% (591/665) to 98.0% (548/559), respectively. All isolates remain susceptible to spectinomycin and ceftriaxone, with increasing minimum inhibitory concentrations.

  2. Assessment of Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycobacterium tuberculosis infections in women undergoing laparoscopy: the role of peritoneal fluid sampling

    OpenAIRE

    Miroslav Dragic; Patrizia Posteraro; Carla Marani; Maria Emanuela Natale; Alessia Vecchioni; Maurizio Sanguinetti; Chiara de Waure; Brunella Posteraro

    2016-01-01

    Background. Aim of this study was to assess the role of peritoneal fluid sampling for detection of bacterial infections due to Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Mycobacterium tuberculosis (MT) in women undergoing laparoscopic investigation. The potential link between microbiological positive result(s) and types of gynecological pathology was also evaluated. Materials and Methods. A large sample of women (n=1377) with their peritoneal fluids taken laparoscopically was...

  3. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR.

    Science.gov (United States)

    Farrell, D J

    1999-02-01

    Certain strains of Neisseria subflava and Neisseria cinerea are known to produce false-positive results with the AMPLICOR Neisseria gonorrhoeae PCR (Roche Diagnostic Systems, Branchburg, N.J.). The analytical sensitivity and analytical specificity of three PCR tests were assessed with 3 geographically diverse N. gonorrhoeae strains and 30 non-N. gonorrhoeae Neisseria spp. The sensitivities of the in-house nested cppB gene and the 16S rRNA PCR methods were greater than that of the AMPLICOR N. gonorrhoeae PCR with purified DNA from all 3 N. gonorrhoeae strains. Six of 14 clinical strains of N. subflava (1 from a vaginal swab, 5 from respiratory sites) produced false-positive AMPLICOR N. gonorrhoeae PCR results and were negative by the two other PCR methods. When applied to 207 clinical specimens selected from a population with a high prevalence ( approximately 9%) of infection, the results for 15 of 96 (15.6%) AMPLICOR-positive specimens and 14 of 17 (82.3%) AMPLICOR-equivocal specimens were not confirmed by the more sensitive nested cppB PCR method. Only 2 of 94 (2.1%) of AMPLICOR N. gonorrhoeae PCR-negative specimens from the same population tested positive by the nested cppB method. These results suggest that for this population the AMPLICOR N. gonorrhoeae PCR test is suitable as a screening test only and all positive results should be confirmed by a PCR method that is more specific and at least as sensitive. This study also illustrates that caution should be used when introducing commercially available nucleic acid amplification-based diagnostic tests into the regimens of tests used for populations not previously tested with these products.

  4. Five years of experience with a national external quality control program for the culture and identification of Neisseria gonorrhoeae.

    OpenAIRE

    Griffin, C W; Mehaffey, M A; Cook, E C

    1983-01-01

    In response to a need for monitoring the proficiency of public health laboratories in isolating and identifying Neisseria gonorrhoeae, a national external quality control program was developed. Essentially, three types of freeze-dried samples, representing different levels of challenge for identification, were sent to laboratories for testing. The quality of the samples was confirmed by external reference laboratories, and stability of the samples was confirmed by thermal degradation tests be...

  5. recA and catalase in H sub 2 O sub 2 -mediated toxicity in Neisseria gonorrhoeae

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Charniga, L.; Cohen, M.S. (Univ. of North Carolina, Chapel Hill (USA))

    1990-12-01

    Neisseria gonorrhoeae cells defective in the biosynthesis of the recA gene product are no more sensitive to hydrogen peroxide than wild-type cells. Although gonococci possess nearly 100-fold-greater catalase levels than Escherichia coli, they are more susceptible to hydrogen peroxide than this organism. The natural niche of gonococci undoubtedly results in exposure to oxidant stress; however, they do not demonstrate particularly efficient antioxidant defense systems.

  6. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr;

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism...... of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-kappaB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial...... in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation...

  7. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr;

    2004-01-01

    of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-kappaB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial......-kappaB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally enteric bacteria.......We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism...

  8. Study of 138 Neisseria meningitidis strains isolated from blood or cerebrospinal fluid in Lombardy between 2007 and 2010

    Directory of Open Access Journals (Sweden)

    Laura Daprai

    2012-06-01

    Full Text Available Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b cause the majority of cases of bacterial septicaemia in children and young adults. Disease epidemiology is evolving rapidly due to the introduction of vaccines and changing in bacterial antibiotic-resistance patterns. (Asymptomatic nasopharyngeal colonization with Neisseria meningitides occurs in 5-10% of adult. The aim of this study was to calculate the frequency of each serogroup of this pathogens involved in invasive infection and to study susceptibility to antibiotics of these strains. Between March 2007 and June 2010 we received, from 43 hospitals of Lombardy, 138 strains of Neisseria meningitidis, from 138 patients aged (2-80yrs. The most frequent serogroup was B (58%, followed by serogroup C (34%, serogroup G (4% and W 135 (2%. Serogroup A end X accounted for 1% of invasive infection, each. We observed a decrease in susceptibility towards penicillin in 38% of strains. In addition we studied, by REP- PCR, genotype of 9 strains selected on the basis of epidemiological data.Among these strains, 3 different clusters according to the 3 small epidemic outbreaks occurred between June and September 2009, were recognised. Seven of these strains, although belonged to the same serogroup, brought about two different clusters. The present findings demonstrated that phenotypic data are not sufficient to define epidemic clusters, therefore molecular genotyping is required.

  9. Increasing Trend of Resistance to Penicillin, Tetracycline, and Fluoroquinolone Resistance in Neisseria gonorrhoeae from Pakistan (1992–2009

    Directory of Open Access Journals (Sweden)

    Kauser Jabeen

    2011-01-01

    Full Text Available Emergence and spread of drug resistant Neisseria gonorrhoeae is global concern. We evaluated trends of antimicrobial resistance in Neisseria gonorrhoeae over years 1992–2009 in Pakistan. Resistance rates were compared between years (2007–2009 and (1992–2006. Antimicrobial susceptibility testing was performed and interpreted according to Clinical Laboratory Standards Institute (CLSI criteria using the disk diffusion methodology against penicillin, ceftriaxone, tetracycline and ofloxacin. Additional antibiotics tested in 100 strains isolated during 2007–2009, included cefotaxime, cefoxitin, cefuroxime, cefipime, ceftazidime, ceftizoxime, cefixime, cefpodoxime, spectinomycin and azithromycin. Neisseria gonorrhoeae ATCC 49226 was used as control. Chi-square for trend analysis was conducted to assess resistance trend over the study period. During study period significant increase in combined resistance to penicillin, tetracycline and ofloxacin was observed (P value <0.01. Resistance rates during the two study period also increased significantly (P value <0.01. Ceftriaxone resistance was not observed. None of the isolates were found to be resistant or with intermediate sensitivity to additional antibiotics. Our findings suggest that penicillin, ciprofloxacin, tetracycline should not be used in the empirical treatment of gonorrhea in Pakistan. Ceftriaxone and cefixime should be the first line therapy; however periodic MICs should be determined to identify emergence of strains with reduced susceptibility.

  10. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro.

    Science.gov (United States)

    Gong, Zijian; Lai, Wei; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-04-01

    The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry.

  11. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria.

    Science.gov (United States)

    Hooda, Yogesh; Lai, Christine Chieh-Lin; Judd, Andrew; Buckwalter, Carolyn M; Shin, Hyejin Esther; Gray-Owen, Scott D; Moraes, Trevor F

    2016-02-29

    Lipoproteins decorate the surface of many Gram-negative bacterial pathogens, playing essential roles in immune evasion and nutrient acquisition. In Neisseria spp., the causative agents of gonorrhoea and meningococcal meningitis, surface lipoproteins (SLPs) are required for virulence and have been extensively studied as prime candidates for vaccine development. However, the machinery and mechanism that allow for the surface display of SLPs are not known. Here, we describe a transposon (Tn5)-based search for the proteins required to deliver SLPs to the surface of Neisseria meningitidis, revealing a family of proteins that we have named the surface lipoprotein assembly modulator (Slam). N. meningitidis contains two Slam proteins, each exhibiting distinct substrate preferences. The Slam proteins are sufficient to reconstitute SLP transport in laboratory strains of Escherichia coli, which are otherwise unable to efficiently display these lipoproteins on their cell surface. Immunoprecipitation and domain probing experiments suggest that the SLP, TbpB, interacts with Slam during the transit process; furthermore, the membrane domain of Slam is sufficient for selectivity and proper surface display of SLPs. Rather than being a Neisseria-specific factor, our bioinformatic analysis shows that Slam can be found throughout proteobacterial genomes, indicating a conserved but until now unrecognized virulence mechanism.

  12. Construction of Prokaryotic Expression Plasmid of mtrC Protein of Neisseria gonorrhoeae and Its Expression in E. Coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to provide a rational research basis for detection of resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents and study on the resistant mechanism of multiple transferable resistance (mtr) efflux system, plasmid pET-28a(+) encoding mtrC gene was constructed and the related target protein was expressed in Escherichia coli (E. coli) DE3. The fragments of mtrC gene of Neisseria gonorrhoeae from the standard strains were amplified and cloned into prokaryotic expression plasmid pET-28a(+) with restriction endonuclease to construct recombinant pET-mtrC which was verified by restriction endonuclease and DNA sequencing. The recombinant was transformed into E. coli DE3 to express the protein mtrC induced by IPTG. The results showed mtrC DNA fragment was proved correct through restriction endonuclease and DNA sequencing. Its sequence was 99.5 % homologus to that published on GeneBank (U14993). A 48.5 kD fusion protein which was induced by IPTG was detected by SDS-PAGE. It was concluded that the construction of prokaryotic expression plasmid of mtrC protein of Neisseria gonorrhoeae was correct and the fusion protein was successively expressed in E. coli.

  13. Morphologic and Molecular Characterization of a Demodex (Acari: Demodicidae) Species from White-Tailed Deer (Odocoileus virginianus)

    OpenAIRE

    Yabsley, Michael J.; Clay, Sarah E.; Gibbs, Samantha E. J.; Cunningham, Mark W.; Austel, Michaela G.

    2013-01-01

    Demodex mites, although usually nonpathogenic, can cause a wide range of dermatological lesions ranging from mild skin irritation and alopecia to severe furunculosis. Recently, a case of demodicosis from a white-tailed deer (Odocoileus virginianus) revealed a Demodex species morphologically distinct from Demodex odocoilei. All life cycle stages were considerably larger than D. odocoilei and although similar in size to D. kutzeri and D. acutipes from European cervids, numerous morphometrics di...

  14. Bacterial Genome Adaptation to Niches: Divergence of the Potential Virulence Genes in Three Burkholderia Species of Different Survival Strategies

    Science.gov (United States)

    2005-12-01

    species For comparative genomic analysis with pathogenic Bm and Bp, we produced finished sequence of the closely related nonpathogenic soil bacterium...1999. 11. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG: Multilocus sequence typing and evolutionary rela- tionships...5223):496-512. 34. Waterman MS: Computer analysis of nucleic acid sequences . Methods Enzymol 1988, 164:765-793. 35. Bateman A, Birney E, Durbin R, Eddy

  15. Development of an internal amplification control system for a real-time PCR assay for detection of Neisseria meningitidis in CSF and EDTA blood.

    Science.gov (United States)

    McIver, Christopher J; Bell, Sydney M; Er, Noel

    2014-06-01

    The aim of this study was to assemble and assess a non-competitive internal amplification control (IAC) system targeting the Escherichia coli alanine racemase (alr) gene to include in a real-time polymerase chain reaction (PCR) assay for Neisseria meningitidis. Primers and hybridisation probes specific for the IAC were designed and assessed for specificity. Amplification efficiency and limit of detection for the assembled assay was extrapolated using standard curves constructed with serial dilutions of N. meningitidis in saline, pooled cerebrospinal fluid (CSF) and EDTA blood. The 95% confidence limits (CI) were calculated for IAC crossing-points recorded for assays for N. meningitidis ctrA in saline (negative blank), and N. meningitides-negative samples of CSF and EDTA blood. These limits served as a reference range against which the IAC crossing-points recorded for prospective assays are compared to detect sample inhibition. This system was used in testing consecutive EDTA blood samples from two cases of meningococcal disease. The IAC system is specific for Escherichia coli and Shigella species. The amplification efficiency of the assembled assay for N. meningitidis and ability to detect low target DNA levels was not compromised with the inclusion of the IAC system. The IAC crossing-points varied in clinical samples of CSF and EDTA blood. The elucidated reference range for EDTA blood was used to detect sample inhibition in one of the two clinical cases investigated.The IAC system monitors the performance of all processes in the assembled assay for N. meningitidis. Measuring IAC crossing-points serves as an indicator of sample stability and inhibitory properties when testing single or multiple samples from the same patient. Specificity for E. coli and Shigella species enables inclusion in assays of different targets within the same laboratory. Reporting PCR assay results in the context of the IAC crossing-points and reference ranges validates against sample

  16. Mosaic-like structure of penicillin-binding protein 2 Gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime.

    Science.gov (United States)

    Ameyama, Satoshi; Onodera, Shoichi; Takahata, Masahiro; Minami, Shinzaburo; Maki, Nobuko; Endo, Katsuhisa; Goto, Hirokazu; Suzuki, Hiroo; Oishi, Yukihiko

    2002-12-01

    Neisseria gonorrhoeae strains with reduced susceptibility to cefixime (MICs, 0.25 to 0.5 micro g/ml) were isolated from male urethritis patients in Tokyo, Japan, in 2000 and 2001. The resistance to cephems including cefixime and penicillin was transferred to a susceptible recipient, N. gonorrhoeae ATCC 19424, by transformation of the penicillin-binding protein 2 gene (penA) that had been amplified by PCR from a strain with reduced susceptibility to cefixime (MIC, 0.5 micro g/ml). The sequences of penA in the strains with reduced susceptibilities to cefixime were different from those of other susceptible isolates and did not correspond to the reported N. gonorrhoeae penA gene sequences. Some regions in the transpeptidase-encoding domain in this penA gene were similar to those in the penA genes of Neisseria perflava (N. sicca), Neisseria cinerea, Neisseria flavescens, and Neisseria meningitidis. These results showed that a mosaic-like structure in the penA gene conferred reductions in the levels of susceptibility of N. gonorrhoeae to cephems and penicillin in a manner similar to that found for N. meningitidis and Streptococcus pneumoniae.

  17. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011

    Directory of Open Access Journals (Sweden)

    Olsen Birgitta

    2013-01-01

    Full Text Available Abstract Background Antimicrobial resistance (AMR in Neisseria gonorrhoeae is a major public health concern worldwide. In Vietnam, knowledge regarding N. gonorrhoeae prevalence and AMR is limited, and data concerning genetic characteristics of N. gonorrhoeae is totally lacking. Herein, we investigated the phenotypic AMR (previous, current and possible future treatment options, genetic resistance determinants for extended-spectrum cephalosporins (ESCs, and genotypic distribution of N. gonorrhoeae isolated in 2011 in Hanoi, Vietnam. Methods N. gonorrhoeae isolates from Hanoi, Vietnam isolated in 2011 (n = 108 were examined using antibiograms (Etest for 10 antimicrobials, Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST, and sequencing of ESC resistance determinants (penA, mtrR and penB. Results The levels of in vitro resistance were as follows: ciprofloxacin 98%, tetracycline 82%, penicillin G 48%, azithromycin 11%, ceftriaxone 5%, cefixime 1%, and spectinomycin 0%. The MICs of gentamicin (0.023-6 mg/L, ertapenem (0.002-0.125 mg/L and solithromycin (penA mosaic alleles were found, however, 78% of the isolates contained an alteration of amino acid A501 (A501V (44% and A501T (34% in the encoded penicillin-binding protein 2. A single nucleotide (A deletion in the inverted repeat of the promoter region of the mtrR gene and amino acid alterations in MtrR was observed in 91% and 94% of the isolates, respectively. penB resistance determinants were detected in 87% of the isolates. Seventy-five different NG-MAST STs were identified, of which 59 STs have not been previously described. Conclusions In Vietnam, the highly diversified gonococcal population displayed high in vitro resistance to antimicrobials previously recommended for gonorrhoea treatment (with exception of spectinomycin, but resistance also to the currently recommended ESCs were found. Nevertheless, the MICs of three potential future treatment options were low. It is

  18. Neisseria gonorrhoeae Induces a Tolerogenic Phenotype in Macrophages to Modulate Host Immunity

    Directory of Open Access Journals (Sweden)

    Alejandro Escobar

    2013-01-01

    Full Text Available Neisseria gonorrhoeae is the etiological agent of gonorrhoea, which is a sexually transmitted disease widespread throughout the world. N. gonorrhoeae does not improve immune response in patients with reinfection, suggesting that gonococcus displays several mechanisms to evade immune response and survive in the host. N. gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and dendritic cells. In this study, we determined whether N. gonorrhoeae directly conditions the phenotype of RAW 264.7 murine macrophage cell line and its response. We established that gonococcus was effectively phagocytosed by the RAW 264.7 cells and upregulates production of immunoregulatory cytokines (IL-10 and TGF-β1 but not the production of proinflammatory cytokine TNF-α, indicating that gonococcus induces a shift towards anti-inflammatory cytokine production. Moreover, N. gonorrhoeae did not induce significant upregulation of costimulatory CD86 and MHC class II molecules. We also showed that N. gonorrhoeae infected macrophage cell line fails to elicit proliferative CD4+ response. This implies that macrophage that can phagocytose gonococcus do not display proper antigen-presenting functions. These results indicate that N. gonorrhoeae induces a tolerogenic phenotype in antigen-presenting cells, which seems to be one of the mechanisms to induce evasion of immune response.

  19. Antimicrobial susceptibility/resistance and molecular epidemiological characteristics of Neisseria gonorrhoeae in 2009 in Belarus.

    Science.gov (United States)

    Glazkova, Slavyana; Golparian, Daniel; Titov, Leonid; Pankratova, Nataliya; Suhabokava, Nataliya; Shimanskaya, Irina; Domeika, Marius; Unemo, Magnus

    2011-08-01

    Increased antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global concern, and ultimately gonorrhoea may become untreatable. Nonetheless, AMR data from East-Europe are scarce beyond Russia, and no AMR data or other characteristics of gonococci have been reported from Belarus for more than 20 years. The aim was to describe the prevalence of AMR, and report molecular epidemiological characteristics of gonococci circulating in 2009 in Belarus. In a sample of 80 isolates, resistance prevalences to antimicrobials used for gonorrhoea treatment in Belarus were: Ceftriaxone 0%, spectinomycin 0%, azithromycin 17.3%, tetracycline 25.9%, ciprofloxacin 34.6% and erythromycin 59.2%. The isolates displayed no penA mosaic alleles, 38 porB gene sequences and 35 N. gonorrhoeae multiantigen sequence types, of which 20 have not been described before worldwide. Due to the high levels of antimicrobial resistance, only ceftriaxone and spectinomycin can be recommended for empirical treatment of gonorrhoea in Belarus according to WHO recommendations. Continuous gonococcal AMR surveillance in Eastern Europe is crucial. This is now initiated in Belarus using WHO protocols.

  20. Protocol for the molecular detection of antibiotic resistance mechanisms in Neisseria gonorrhoeae.

    Science.gov (United States)

    Goire, Namraj; Sloots, Theo P; Nissen, Michael D; Whiley, David M

    2012-01-01

    Gonorrhoea is no longer an easily treatable ailment but rather is now a challenging disease in terms of antimicrobial resistance (AMR) with treatment options rapidly diminishing. The causative agent of gonorrhoea, Neisseria gonorrhoeae, has managed to develop resistance to almost every single drug used against it with the sole exception of extended spectrum cephalosporins. The situation is further exacerbated by the fact that not only are the rates of gonococcal infections on a steady rise globally, but tracking AMR is being undermined by the growing popularity of molecular methods at the expense of traditional bacterial culture in diagnostic laboratories. Recently, concerns have been raised over the emergence of a multi-resistant gonococci and the potential for untreatable gonorrhoea. Maintaining optimal epidemiological surveillance of gonococcal AMR remains an important aspect of gonorrhoea control. The development of molecular tools for tracking AMR in N. gonorrhoeae has the potential to further enhance such surveillance. In this chapter, we discuss nucleic acid amplification-based detection of AMR in gonorrhoea with a particular emphasis on chromosomal-mediated resistance to beta-lactam antibiotics.

  1. Urethral exudates of men with Neisseria gonorrhoeae infections select a restricted lipooligosaccharide phenotype during transmission.

    Science.gov (United States)

    McLaughlin, Stephanie E; Cheng, Hui; Ghanem, Khalil G; Yang, Zhijie; Melendez, Johan; Zenilman, Jonathan; Griffiss, J McLeod

    2012-10-01

    Neisseria gonorrhoeae lipooligosaccharides (LOSs) induce immunoglobulin G that protects men from experimental infection. This raises the possibility that an LOS vaccine might prevent gonorrhea. Gonococci make different LOS molecules, depending on whether 3 genes, lgtA, lgtC, and lgtD, are in frame (IF) or out of frame (OOF). Mispairing of polymeric guanine (polyG) tracts within each gene determines its frame during replication. We amplified lgtA, lgtC, and lgtD from diagnostic slides of urethral exudates and sequenced their polyG tracts. We found that lgtA in exudative bacteria is IF and that lgtC is OOF. The frame of lgtD varied widely: it was OOF in most but not all cases. This genotype would result in synthesis of polylactosamine α chains that could be sialylated. Polylactosamine α chains would enhance virulence, and their sialylation would enable gonococci to survive within polymorphonuclear cells; however, an active LgtD in a few bacteria could provide a survival advantage in other sites of infection.

  2. Polymerase chain reaction-based screening for the ceftriaxone-resistant Neisseria gonorrhoeae F89 strain.

    Science.gov (United States)

    Goire, N; Lahra, M M; Ohnishi, M; Hogan, T; Liminios, A E; Nissen, M D; Sloots, T P; Whiley, D M

    2013-04-04

    Emergence and spread of Neisseria gonorrhoeae resistant to extended spectrum cephalosporins is a major problem threatening treatment of gonorrhoea and is further highlighted by the recent report of a second ceftriaxone-resistant N. gonorrhoeae strain (F89) in Europe, initially observed in France and subsequently identified in Spain. N. gonorrhoeae antimicrobial resistance (AMR) surveillance has acquired new importance and molecular tools have the potential to enhance bacterial culture-based methods. In this study, we established a polymerase chain reaction (PCR) protocol for direct detection of the F89 strain. A key component of this screening protocol was the development of a hybridisation probe-based melting curve analysis assay (mosaic501-hybPCR) to detect the presence of an A501P substitution on the N. gonorrhoeae mosaic penicillin binding protein 2 (PBP2) sequence, an important characteristic of the F89 strain. The mosaic501-hybPCR was evaluated using plasmid-derived positive controls (n=3) and characterised gonococcal (n=33) and non-gonococcal (n=58) isolates. The protocol was then applied to 159 clinical specimens from Sydney, Australia, collected during the first half of the year 2012 that were N. gonorrhoeae PCR-positive. Overall, the results indicate that the PCR-based protocol is suitable for direct detection of the N. gonorrhoeae F89 strain in non-cultured clinical samples. It therefore provides an additional tool to aid investigations into the potential spread of F89 strain throughout Europe and elsewhere.

  3. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.

  4. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  5. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Ilina, Elena N; Malakhova, Maya V; Bodoev, Ivan N; Oparina, Nina Y; Filimonova, Alla V; Govorun, Vadim M

    2013-01-01

    Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10(-5) colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT).

  6. In vitro activity of tigecycline alone and antimicrobial combinations against clinical Neisseria gonorrhoeae isolates.

    Science.gov (United States)

    Lee, Hyukmin; Kim, Hyunsoo; Seo, Young Hee; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Younsop

    2017-02-01

    In this study, we determined the in vitro activity of various combinations of antimicrobial agents against 54 Neisseria gonorrhoeae isolates. The combined activity of ceftriaxone (CRO) and azithromycin (AZM), CRO and doxycycline (DOX), CRO and spectinomycin (SPT), cefixime (CFX) and AZM, CFX and DOX, and CFX and SPT was determined using a checkerboard method. The fractional inhibitory concentration index (FICI) values for all combinations were either additive or indifferent, and no synergistic or antagonistic effects were found. The FICI comparison in each combination did not show any difference according to the N.gonorrhoeae-resistant phenotypes and genotypic characteristics, including penicillinase-producing N. gonorrhoeae, tetracycline-resistant N. gonorrhoeae, stratified MIC of all antibiotics, and N. gonorrhoeae multiantigen sequence typing. MIC50 and MIC90 of tigecycline by agar dilution were 0.5 mg/L and 0.5 mg/L, respectively, which were lower than that of tetracycline and DOX. Additive/indifference results could suggest that combinations that include CRO may be used safely without a significant likelihood of generating resistance.

  7. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Directory of Open Access Journals (Sweden)

    Hong Sjölinder

    Full Text Available Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  8. A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis

    Science.gov (United States)

    Herbst de Cortina, Sasha; Bristow, Claire C.; Joseph Davey, Dvora; Klausner, Jeffrey D.

    2016-01-01

    Objectives. Systematic review of point of care (POC) diagnostic tests for sexually transmitted infections: Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Trichomonas vaginalis (TV). Methods. Literature search on PubMed for articles from January 2010 to August 2015, including original research in English on POC diagnostics for sexually transmitted CT, NG, and/or TV. Results. We identified 33 publications with original research on POC diagnostics for CT, NG, and/or TV. Thirteen articles evaluated test performance, yielding at least one test for each infection with sensitivity and specificity ≥90%. Each infection also had currently available tests with sensitivities <60%. Three articles analyzed cost effectiveness, and five publications discussed acceptability and feasibility. POC testing was acceptable to both providers and patients and was also demonstrated to be cost effective. Fourteen proof of concept articles introduced new tests. Conclusions. Highly sensitive and specific POC tests are available for CT, NG, and TV, but improvement is possible. Future research should focus on acceptability, feasibility, and cost of POC testing. While pregnant women specifically have not been studied, the results available in nonpregnant populations are encouraging for the ability to test and treat women in antenatal care to prevent adverse pregnancy and neonatal outcomes. PMID:27313440

  9. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential.

    Directory of Open Access Journals (Sweden)

    Michiel Stork

    Full Text Available Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract.

  10. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-01

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  11. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  12. The prevalences of Neisseria gonorrhoeae and Chlamydia trachomatis infections among female sex workers in China

    Directory of Open Access Journals (Sweden)

    Chen Xiang-Sheng

    2013-02-01

    Full Text Available Abstract Background Sexually transmitted infections (STIs have become a major public health problem among female sex workers (FSWs in China. There have been many studies on prevalences of HIV and syphilis but the data about Neisseria gonorrhoeae (NG and Chlamydia trachomatis (CT infections are limited in this population in China. Methods A cross-sectional study was performed among FSWs recruited from different types of venues in 8 cities in China. An interview with questionnaire was conducted, followed by collection of a blood and cervical swab specimens for tests of HIV, syphilis, NG and CT infections. Results A total of 3,099 FSWs were included in the study. The overall prevalence rates of HIV, syphilis, NG and CT were 0.26%, 6.45%, 5.91% and 17.30%, respectively. Being a FSW from low-tier venue (adjusted odds ratios [AOR]=1.39 had higher risk and being age of ≥ 21 years (AOR=0.60 for 21–25 years; AOR=0.29 for 26–30 years; AOR=0.35 for 31 years or above had lower risk for CT infection; and having CT infection was significantly associated with NG infection. Conclusions The high STI prevalence rates found among FSWs, especially among FSWs in low-tier sex work venues, suggest that the comprehensive prevention and control programs including not only behavioral interventions but also screening and medical care are needed to meet the needs of this population.

  13. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  14. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages.

    Science.gov (United States)

    Château, Alice; Seifert, H Steven

    2016-04-01

    The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.

  15. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps.

    Science.gov (United States)

    Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2015-04-07

    Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  16. Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages.

    Directory of Open Access Journals (Sweden)

    Susu M Zughaier

    Full Text Available Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA addition to the 4' position of the lipid A (PEA-lipid A moiety of the lipooligosaccharide (LOS produced by gonococci performs a critical role in this pathogen's ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense peptides, complement-mediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses.

  17. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Science.gov (United States)

    Li, Guocai; Xie, Rushan; Zhu, Xiaoping; Mao, Yanli; Liu, Shuangxi; Jiao, Hongmei; Yan, Hua; Xiong, Kun; Ji, Mingchun

    2014-01-01

    Neisseria gonorrhoeae (N. gonorrhoeae) outer membrane protein reduction modifiable protein (Rmp) has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  18. Effects of multi-walled carbon nanotubes (MWCNT under Neisseria meningitidis transformation process

    Directory of Open Access Journals (Sweden)

    Mattos Ives B

    2011-11-01

    Full Text Available Abstract Background This study aimed at verifying the action of multi-walled carbon nanotubes (MWCNT under the naturally transformable Neisseria meningitidis against two different DNA obtained from isogenic mutants of this microorganism, an important pathogen implicated in the genetic horizontal transfer of DNA, causing the escape of the principal vaccination measured worldwide by the capsular switching process. Materials and methods The bacterium receptor strain C2135 was cultivated and had its mutant DNA donor M2 and M6, which received a receptor strain and MWCNT at three different concentrations. The inhibition effect of DNAse on the DNA in contact with nanoparticles was evaluated. Results The results indicated an in increase in the transformation capacity of N. meninigtidis in different concentrations of MWCNT when compared with negative control without nanotubes. A final analysis of the interaction between DNA and MWCNT was carried out using Raman Spectroscopy. Conclusion These increases in the transformation capacity mediated by MWCNT, in meningococci, indicate the interaction of these particles with the virulence acquisition of these bacteria, as well as with the increase in the vaccination escape process.

  19. Antimicrobial susceptibility and genotyping analysis of Hungarian Neisseria gonorrhoeae strains in 2013.

    Science.gov (United States)

    Nemes-Nikodém, Éva; Brunner, Alexandra; Pintér, Dóra; Mihalik, Noémi; Lengyel, György; Marschalkó, Márta; Kárpáti, Sarolta; Szabó, Dóra; Ostorházi, Eszter

    2014-12-01

    Emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is a major public health concern worldwide. The current study aims to determine the antimicrobial resistance in N. gonorrhoeae and associated molecular typing to enhance gonococcal antimicrobial surveillance in Hungary. In the National N. gonorrhoeae Reference Laboratory of Hungary 187 N. gonorrhoeae infections were detected in 2013, antibiograms were determined for all the isolated strains, and 52 (one index strain from every sexually contact related group) of them were also analysed by the N. gonorrhoeae multi-antigen sequence typing (NG-MAST) method. Twenty-two different NG-MAST sequence types (STs) were identified, of which 8 STs had not been previously described. In Hungary, the highly diversified gonococcal population displayed high resistance to penicillin, ciprofloxacin and tetracycline (the antimicrobials previously recommended for gonorrhoea treatment). Resistance to the currently recommended extended spectrum cephalosporines were rare: only two of the expected strains, an ST 1407 and an ST 210, had cefixime MIC above the resistance breakpoint. By the revision of our National Treatment Guideline, it must be considered, that the azithromycin resistance is about 60% among the four most frequently isolated STs in Hungary.

  20. Binding of S protein by Neisseria gonorrhoeae and potential role in invasion.

    Science.gov (United States)

    Arko, R J; Chen, C Y; Schalla, W O; Sarafian, S K; Taylor, C L; Knapp, J S; Morse, S A

    1991-01-01

    An agglutination assay was used to examine the binding of purified human S protein (vitronectin, serum spreading factor) to 201 clinical isolates of Neisseria gonorrhoeae. Strains belonging to the protein IA serovars were significantly (P less than 0.001) more reactive in agglutination tests with human S protein and were more serum resistant than strains belonging to the protein IB serovars. The strains from patients with disseminated infections belonged predominantly to the IA serovar (19 of 23) and, with the exception of IA-4 and certain IB serovars, avidly agglutinated with S protein. The serovar IA-4 and IB strains isolated from joint or cerebrospinal fluid failed to agglutinate with S protein and appeared to be less serum resistant than most other IA isolates. Cysteine hydrochloride or 2-mercaptoethanol inhibited agglutination of S protein and a more than twofold increase in resistance to killing by fresh human serum following preincubation with S protein; the serum-sensitive parent strain did not agglutinate S protein, and serum resistance was not increased following preincubation with this protein. Binding of S protein by gonococci may represent a novel pathogenic mechanism that can contribute to serum resistance. Images PMID:1704384

  1. Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae.

    Science.gov (United States)

    Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila

    2015-04-01

    In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae.

  2. Toxicological Assessment of the Cochleate Derived from Neisseria meningitidis Proteoliposome in Sprague Dawley Rats

    Science.gov (United States)

    Infante-Bourzac, Juan Francisco; Sifontes-Rodríguez, Sergio; Arencibia-Arrebola, Daniel Francisco; Hernández-Salazar, Tamara; Fariñas-Medina, Mildrey; Pérez, Oliver

    2012-01-01

    Background: The AFCo1 cochleate is a potential novel adjuvant derived from Neisseria meningitidis B proteoliposome. Aim: The aim was to assessing the safety of AFCo1 by single and repeated doses in Sprague Dawley rats. Materials and Methods: Rats were grouped for treatment with AFCo1, placebo formulation or control. The first study was a single intranasal dose of 100 μl and monitoring body weight, water, and food intakes as well as clinical symptoms. Fourteen days later the rats were killed and anatomopathological studies were conducted. In a second study, four similar doses of the test substance were instilled every 5 days. Clinical observations were carried out as for the single dose study and a number of rats from each group were killed 3 and 14 days after the last dose in order to conduct hematological, hemochemical, and anatomopathological studies. Results: No variable showed differences of toxicological relevance; the histological changes found were mild and similarly frequently in the three groups. According to the irritability index calculated form histology of the nasal region, AFCo1 was also classified as nonirritating. Conclusion: AFCo1 is potentially safe for human use by nasal route as evidenced by the absence of local and systemic signs of toxicity in Sprague Dawley rats. PMID:22454827

  3. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR.

    Science.gov (United States)

    Edwards, Vonetta L; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C; Song, Wenxia

    2013-06-01

    Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.

  4. Global analysis of neutrophil responses to Neisseria gonorrhoeae reveals a self-propagating inflammatory program.

    Directory of Open Access Journals (Sweden)

    Anna Sintsova

    2014-09-01

    Full Text Available An overwhelming neutrophil-driven response causes both acute symptoms and the lasting sequelae that result from infection with Neisseria gonorrhoeae. Neutrophils undergo an aggressive opsonin-independent response to N. gonorrhoeae, driven by the innate decoy receptor CEACAM3. CEACAM3 is exclusively expressed by human neutrophils, and drives a potent binding, phagocytic engulfment and oxidative killing of Opa-expressing bacteria. In this study, we sought to explore the contribution of neutrophils to the pathogenic inflammatory process that typifies gonorrhea. Genome-wide microarray and biochemical profiling of gonococcal-infected neutrophils revealed that CEACAM3 engagement triggers a Syk-, PKCδ- and Tak1-dependent signaling cascade that results in the activation of an NF-κB-dependent transcriptional response, with consequent production of pro-inflammatory cytokines. Using an in vivo model of N. gonorrhoeae infection, we show that human CEACAM-expressing neutrophils have heightened migration toward the site of the infection where they may be further activated upon Opa-dependent binding. Together, this study establishes that the role of CEACAM3 is not restricted to the direct opsonin-independent killing by neutrophils, since it also drives the vigorous inflammatory response that typifies gonorrhea. By carrying the potential to mobilize increasing numbers of neutrophils, CEACAM3 thereby represents the tipping point between protective and pathogenic outcomes of N. gonorrhoeae infection.

  5. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  6. Antibacterial activity of resazurin-based compounds against Neisseria gonorrhoeae in vitro and in vivo.

    Science.gov (United States)

    Schmitt, Deanna M; Connolly, Kristie L; Jerse, Ann E; Detrick, Melinda S; Horzempa, Joseph

    2016-10-01

    Neisseria gonorrhoeae is the cause of the second most common sexually transmitted bacterial infection, with ca. 80 million new cases of gonorrhoea reported annually. The recent emergence of clinical isolates resistant to the last monotherapy against this bacterium, the cephalosporins, illustrates the need for new antigonococcal agents. Here we have characterised a new group of antimicrobials based on the compound resazurin that exhibits robust activity against N. gonorrhoeae in vitro. Resazurin inhibits the growth of a broad range of N. gonorrhoeae isolates, including those resistant to multiple antibiotics. Furthermore, treatment of human endometrial cells infected with N. gonorrhoeae with resazurin significantly reduces the number of intracellular bacteria. Whilst resazurin exhibited potent in vitro antimicrobial activity, in vivo resazurin did not limit the colonisation of mice with N. gonorrhoeae following vaginal infection. The ineffectiveness of resazurin in vivo is likely due to its interaction with serum albumin, which completely diminishes its antimicrobial activity. However, treatment of mice with a resazurin analogue (resorufin pentyl ether) that maintains its antimicrobial activity in the presence of serum albumin approached a significant decrease in the percentage of mice vaginally colonised. This treatment also decreased vaginal colonisation by N. gonorrhoeae over time. Together, these data suggest that resazurin derivatives have potential for the treatment of gonorrhoea.

  7. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.

  8. Synthesis and immunological evaluation of protein conjugates of Neisseria meningitidis X capsular polysaccharide fragments

    Directory of Open Access Journals (Sweden)

    Laura Morelli

    2014-10-01

    Full Text Available A vaccine to prevent infections from the emerging Neisseria meningitidis X (MenX is becoming an urgent issue. Recently MenX capsular polysaccharide (CPS fragments conjugated to CRM197 as carrier protein have been confirmed at preclinical stage as promising candidates for vaccine development. However, more insights about the minimal epitope required for the immunological activity of MenX CPS are needed. We report herein the chemical conjugation of fully synthetic MenX CPS oligomers (monomer, dimer, and trimer to CRM197. Moreover, improvements in some crucial steps leading to the synthesis of MenX CPS fragments are described. Following immunization with the obtained neoglycoconjugates, the conjugated trimer was demonstrated as the minimal fragment possessing immunogenic activity, even though significantly lower than a pentadecamer obtained from the native polymer and conjugated to the same protein. This finding suggests that oligomers longer than three repeating units are possibly needed to mimic the activity of the native polysaccharide.

  9. Methods for identifying Neisseria meningitidis carriers: a multi-center study in the African meningitis belt.

    Directory of Open Access Journals (Sweden)

    Nicole E Basta

    Full Text Available Detection of meningococcal carriers is key to understanding the epidemiology of Neisseria meningitidis, yet no gold standard has been established. Here, we directly compare two methods for collecting pharyngeal swabs to identify meningococcal carriers.We conducted cross-sectional surveys of schoolchildren at multiple sites in Africa to compare swabbing the posterior pharynx behind the uvula (U to swabbing the posterior pharynx behind the uvula plus one tonsil (T. Swabs were cultured immediately and analyzed using molecular methods.One thousand and six paired swab samples collected from schoolchildren in four countries were analyzed. Prevalence of meningococcal carriage was 6.9% (95% CI: 5.4-8.6% based on the results from both swabs, but the observed prevalence was lower based on one swab type alone. Prevalence based on the T swab or the U swab alone was similar (5.2% (95% CI: 3.8-6.7% versus 4.9% (95% CI: 3.6-6.4% respectively (p=0.6. The concordance between the two methods was 96.3% and the kappa was 0.61 (95% CI: 0.50-0.73, indicating good agreement.These two commonly used methods for collecting pharyngeal swabs provide consistent estimates of the prevalence of carriage, but both methods misclassified carriers to some degree, leading to underestimates of the prevalence.

  10. Prevention of Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae Using a Fatty Acid-Based Formulation

    Directory of Open Access Journals (Sweden)

    Colin P. Churchward

    2017-07-01

    Full Text Available Ophthalmia neonatorum, also called neonatal conjunctivitis, acquired during delivery can occur in the first 28 days of life. Commonly caused by the bacterial pathogen Neisseria gonorrhoeae, infection can lead to corneal scarring, perforation of the eye, and blindness. One approach that can be taken to prevent the disease is the use of an ophthalmic prophylaxis, which kills the bacteria on the surface of the eye shortly after birth. Current prophylaxes are based on antibiotic ointments. However, N. gonorrhoeae is resistant to many antibiotics and alternative treatments must be developed before the condition becomes untreatable. This study focused on developing a fatty acid-based prophylaxis. For this, 37 fatty acids or fatty acid derivatives were screened in vitro for fast antigonococcal activity. Seven candidates were identified as bactericidal at 1 mM. These seven were subjected to irritation testing using three separate methods: the bovine corneal opacity and permeability (BCOP test; the hen’s egg test—chorioallantoic membrane (HET-CAM; and the red blood cell (RBC lysis assay. The candidates were also tested in artificial tear fluid to determine whether they were effective in this environment. Four of the candidates remained effective. Among these, two lead candidates, monocaprin and myristoleic acid, displayed the best potential as active compounds in the development of a fatty acid-based prophylaxis for prevention of ophthalmia neonatorum.

  11. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Lan-Hui Li

    Full Text Available The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226. Silver nanoparticles (Ag NPs, 120 nm showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.

  12. Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages.

    Science.gov (United States)

    Zughaier, Susu M; Kandler, Justin L; Balthazar, Jacqueline T; Shafer, William M

    2015-01-01

    Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA) addition to the 4' position of the lipid A (PEA-lipid A) moiety of the lipooligosaccharide (LOS) produced by gonococci performs a critical role in this pathogen's ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense) peptides, complement-mediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses.

  13. In-vitro activity of 21 antimicrobial agents against Neisseria gonorrhoeae in Brussels.

    Science.gov (United States)

    Gordts, B; Vanhoof, R; Hubrechts, J M; Dierickx, R; Coignau, H; Butzler, J P

    1982-02-01

    The minimum inhibitory concentrations (MIC) of 21 antimicrobial agents was measured for 80 strains of Neisseria gonorrhoeae isolated in Brussels in 1978. Bimodal distributions were found for penicillin G, ampicillin, amoxycillin, carbenicillin, and cephalexin. Of the strains, 17.5% were relatively resistant to penicillin G (MIC greater than 0.08 microgram/ml) 27.5% to ampicillin (MIC greater than 0.16 microgram/ml), 23.8% to amoxycillin, and 43.3% to carbenicillin. Cefotaxime was the most active antibiotic, with MICs in the nanogram range; 3.8% and 5% of the strains were relatively resistant to cephaloridine and cephalexin respectively, but no strains were resistant to cefazolin, cefuroxime, or cefotaxime. Resistance to tetracycline, doxycycline, minocycline, erythromycin, and spiramycin (MIC greater than 1 microgram/ml) was found in 6.3%, 2.5%, 5%, and 51.3% of the strains respectively. A very good correlation was present between chloramphenicol and thiamphenicol, with 16.3% and 10% of relatively resistant strains respectively. Only two isolates showed an MIC greater than 1.25 microgram/ml for rifampicin, and 10% of the strains needed greater than or equal to 12 microgram/ml of spectinomycin for complete inhibition of growth. A very high energy was found for the 20 : 1 combination of sulphamethoxazole and trimethoprim, with only one isolate resistant to this combination. None of the strains tested produced beta-lactamase.

  14. Metronidazole and spiramycin therapy of mixed Bacteroides spp. and Neisseria gonorrhoeae infection in mice.

    Science.gov (United States)

    Brook, I

    1989-01-01

    The in vitro and in vivo activity of metronidazole and spiramycin, used singly or in combination, was tested in the eradication of infection caused by Bacteroides spp. and Neisseria gonorrhoeae alone or in combination. The in vitro tests consisted of determinations of the minimal inhibitory concentrations (MIC), carried out with or without the addition of a constant amount of the other antimicrobials. The MIC of both Bacteroides bivius and Bacteroides fragilis for metronidazole were significantly reduced by the addition of spiramycin (from 0.5 to 0.125 micrograms/ml). The in vivo tests were carried out in mice and consisted of measurements of the effects of the antimicrobial agents on the bacterial contents of abscesses induced by subcutaneous injection of bacterial suspension. Synergism between metronidazole and spiramycin was noted against Bacteroides spp. in abscesses caused by either Bacteroides spp. alone, or in combination with N. gonorrhoeae. Furthermore, an additional reduction in the number of N gonorrhoeae was noted in mixed infection with Bacteroides that was treated with metronidazole alone. This study demonstrates the in vitro and in vivo efficacy of the combination of metronidazole and spiramycin in the treatment of infections caused by either Bacteroides spp. alone or in combination with N. gonorrhoeae.

  15. In vitro Comparison of Disk Diffusion and Agar Dilution Antibiotic Susceptibility Test Methods for Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Marta C de Castillo

    1998-07-01

    Full Text Available At present, most Neisseria gonorrhoeae testing is done with ß-lactamase and agar dilution tests with common therapeutic agents. Generally, in bacteriological diagnosis laboratories in Argentina, study of antibiotic susceptibility of N.gonorrhoeae is based on ß-lactamase determination and agar dilution method with common therapeutic agents. The National Committee for Clinical Laboratory Standards (NCCLS has recently described a disk diffusion test that produces results comparable to the reference agar dilution method for antibiotic susceptibility of N.gonorrhoeae, using a dispersion diagram for analyzing the correlation between both techniques. We obtained 57 gonococcal isolates from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina. Antibiotic susceptibility tests using agar dilution and disk diffusion techniques were compared. The established NCCLS interpretive criteria for both susceptibility methods appeared to be applicable to domestic gonococcal strains. The correlation between the MIC's and the zones of inhibition was studied for penicillin, ampicillin, cefoxitin, spectinomycin, cefotaxime, cephaloridine, cephalexin, tetracycline, norfloxacin and kanamycin. Dispersion diagrams showed a high correlation between both methods.

  16. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  17. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  18. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.

    Science.gov (United States)

    Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado

    2012-09-14

    Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.

    Science.gov (United States)

    van de Waterbeemd, Bas; Zomer, Gijsbert; Kaaijk, Patricia; Ruiterkamp, Nicole; Wijffels, René H; van den Dobbelsteen, Germie P J M; van der Pol, Leo A

    2013-01-01

    An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines.

  20. Next-generation outer membrane vesicle vaccines against Neisseria meningitidis based on nontoxic LPS mutants.

    Science.gov (United States)

    van der Ley, Peter; van den Dobbelsteen, Germie

    2011-08-01

    Outer membrane vesicles (OMVs) have been used extensively as experimental vaccines against Neisseria meningitidis. Classical meningococcal OMV vaccines contain wildtype lipopolysaccharide (LPS) with a hexa-acylated lipid A moiety, which is a very potent activator of the TLR4 receptor. While this may make the LPS an effective "internal" adjuvant, it also contributes to vaccine reactogenicity. Reduction of endotoxic activity has therefore been essential for the application of meningococcal OMV vaccines in humans. Classical OMV vaccines have a reduced LPS content as a result of detergent extraction, mostly with deoxycholate. An alternative method is the use of meningococcal strains with genetically detoxified LPS, in particular where mutation in the lpxL1 gene has resulted in penta-acylated lipid A with strongly attenuated endotoxic activity. This allows the use of native OMVs without any need for LPS removal by detergent extraction, making it a much easier to produce and more versatile vaccine platform. Several groups have now started the development of native OMV vaccines based on non-toxic LPS mutants, and this Commentary provides an overview of the various approaches and results thus far.

  1. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Bas van de Waterbeemd

    Full Text Available An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines.

  2. Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA).

    Science.gov (United States)

    Franzoso, Susanna; Mazzon, Cristina; Sztukowska, Maryta; Cecchini, Paola; Kasic, Tihana; Capecchi, Barbara; Tavano, Regina; Papini, Emanuele

    2008-05-01

    Specific surface proteins of Neisseria meningitidis have been proposed to stimulate leukocytes during tissue invasion and septic shock. In this study, we demonstrate that the adhesin N. meningitidis Adhesin A (NadA) involved in the colonization of the respiratory epithelium by hypervirulent N. meningitidis B strains also binds to and activates human monocytes/macrophages. Expression of NadA on the surface on Escherichia coli does not increase bacterial-monocyte association, but a NadA-positive strain induced a significantly higher amount of TNF-alpha and IL-8 compared with the parental NadA-negative strain, suggesting that NadA has an intrinsic stimulatory action on these cells. Consistently, highly pure, soluble NadA(Delta351-405), a proposed component of an antimeningococcal vaccine, efficiently stimulates monocytes/macrophages to secrete a selected pattern of cytokines and chemotactic factors characterized by high levels of IL-8, IL-6, MCP-1, and MIP-1alpha and low levels of the main vasoactive mediators TNF-alpha and IL-1. NadA(Delta351-405) also inhibited monocyte apoptosis and determined its differentiation into a macrophage-like phenotype.

  3. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  4. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses.

    Directory of Open Access Journals (Sweden)

    Sandra J van Vliet

    2009-10-01

    Full Text Available Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4(+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.

  5. Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Chih-Chia Su

    2015-04-01

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  6. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants

    Science.gov (United States)

    Juica, Natalia E.; Rodas, Paula I.; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A.

    2017-01-01

    Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection. PMID:28932707

  7. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants

    Directory of Open Access Journals (Sweden)

    Natalia E. Juica

    2017-09-01

    Full Text Available Background:Neisseria gonorrhoeae (Ngo is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs, which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs, their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues.Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05 was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection.Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.

  8. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications.

  9. Nasopharyngeal Carriage Rate and Serogroups of Neisseria meningitidis in Turkish recruits upon entry to the military

    Directory of Open Access Journals (Sweden)

    Ahmet Basustaoglu

    2011-08-01

    Full Text Available Aim: The aim of this study was to determine nasopharyngeal carriage rate and serogroup of Neisseria meningitidis strains isolated from Turkish recruits upon entry to the military. Material and Methods: Nasopharyngeal swab samples were obtained from 1995 soldiers and were inoculated immediately on BBL-modified Thayer-Martin medium plates. The plates were examined for the presence of colonies showing the typical morphology of N. meningitidis. Suspect colonies were screened for oxidase reactivity, and positive colonies were Gram stained. If Gram-negative diplococci were present, a biochemical profile by the API NH system was used for confirmation. Serogrouping of the meningococcal isolates was performed by a slide agglutination technique. Findings: The nasopharyngeal carriage rate of N. meningitidis was found to be 4.2% (n=83. Of these meningococci, 15.6% (n=13 were serogroup Y, 10.8% (n=9 were serogroup W-135, 9.6% (n=8 were serogroup C, 6.1% (n=5 were serogroup B, 2.4% (n=2 were serogroup A. The 46 isolates (55.4% were detected as nonserogroupable. Conclusion: Since serogroup Y and W-135 are predominant in this study population, it was suggest that Turkish recruits should be vaccinated by quadrivalent vaccine (A,C,Y, and W-135 upon the military instead of A+C polysaccharide vaccine and now quadrivalent vaccine has been carried out. [TAF Prev Med Bull 2011; 10(4.000: 447-450

  10. CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway.

    Science.gov (United States)

    Hauck, C R; Meyer, T F; Lang, F; Gulbins, E

    1998-01-15

    The interaction of Neisseria gonorrhoeae with human phagocytes is a hallmark of gonococcal infections. Recently, CD66 molecules have been characterized as receptors for Opa52-expressing gonococci on human neutrophils. Here we show that Opa52-expressing gonococci or Escherichia coli or F(ab) fragments directed against CD66, respectively, activate a signalling cascade from CD66 via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-terminal kinase. The induced signal is distinct from Fcgamma-receptor-mediated signalling and is specific for Opa52, since piliated Opa- gonococci, commensal Neisseria cinerea or E.coli do not stimulate this signalling pathway. Inhibition of Src-like kinases or Rac1 prevents the uptake of Opa52 bacteria, demonstrating the crucial role of this signalling cascade for the opsonin-independent, Opa52/CD66-mediated phagocytosis of pathogenic Neisseria.

  11. Enfermedad por meningococo, Neisseria meningitidis: perspectiva epidemiológica, clínica y preventiva Meningococcal disease caused by Neisseria meningitidis: epidemiological, clinical, and preventive perspectives

    Directory of Open Access Journals (Sweden)

    Lourdes Almeida-González

    2004-10-01

    Full Text Available La meningitis bacteriana continúa siendo uno de los grandes problemas de la salud pública mundial. En particular, la infección por Neisseria meningitidis afecta tanto a países desarrollados como subdesarrollados, y se presenta en formas endémicas y epidémicas. La enfermedad meningocóccica se puede manifestar clínicamente no sólo como meningitis, sino con cuadros fulminantes de meningococcemia. La persistencia de N. meningitidis se debe al gran porcentaje de portadores y a la dinámica de transmisión de la bacteria. Aproximadamente 500 millones de personas en el mundo son portadoras de N. meningitidis en la nasofaringe. Los factores de transmisiblidad identificados han sido el tabaquismo activo o pasivo, la presencia de infecciones virales del tracto respiratorio superior, épocas de sequía, y el hacinamiento. Por lo anterior, se han descrito brotes de enfermedad meningocóccica en cuarteles militares, escuelas, cárceles y dormitorios. Algunos determinantes que permiten la invasión sistémica incluyen daños en la mucosa nasofaríngea de portadores, cepas virulentas con formación de cápsula, ausencia de anticuerpos bactericidas y deficiencias del sistema del complemento. El control de la enfermedad meningocóccica en circunstancias endémicas y epidémicas se logra por el tratamiento de casos con antibióticos adecuados (penicilina, ceftriaxona o cloranfenicol, la quimioprofilaxis de contactos cercanos (ciprofloxacina, rifampicina o ceftriaxona, y la vigilancia clínica de éstos. Sin embargo, es fundamental subrayar que la clave para el control efectivo de la enfermedad meningocóccica es la inmunoprofilaxis. Las vacunas disponibles incluyen las de polisacáridos monovalentes o bivalentes (serogrupos A y C, tetravalentes (A, C, Y, W-135, la conjugada (C o la combinada de proteínas de membrana celular y polisacárido (B y C. Recientemente nos hemos visto forzados a establecer planes nacionales de respuesta que incluyen la

  12. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK

    Directory of Open Access Journals (Sweden)

    Carl S. Regan

    2014-07-01

    Full Text Available The aim of this study was to determine the prevalence of amoebic infection in non-human primates (NHPs from six Zoological gardens in the United Kingdom. Initially, 126 faecal samples were collected from 37 individually identified NHPs at Twycross Zoo, UK, and were subjected to microscopic examination. A subsequent, nationwide experiment included 350 faecal samples from 89 individually identified NHPs and 73 unidentified NHPs from a number of UK captive wildlife facilities: Twycross Zoo (n = 60, Colchester Zoo (n = 3, Edinburgh Zoo (n = 6, Port Lympne Wild Animal Park (n = 58, Howletts Wild Animal Park (n = 31, and Cotswold Wildlife Park (n = 4. Samples were examined by PCR and sequencing using four specific primer sets designed to differentiate between the pathogenic E. histolytica, the non-pathogenic E. dispar, and non-pathogenic uninucleate cyst-producing Entamoeba species. In the first experiment, Entamoeba was detected in 30 primates (81.1%. Six (16.2% primates were infected with E. histolytica species complex. The highest carriage of Entamoeba species was found in Old World Colobinae primates. In the nationwide experiment, molecular analysis of faecal samples revealed notable rates of Entamoeba infection (101 samples, 28.9%, including one sample infected with E. histolytica, 14 samples with E. dispar, and 86 samples with uninucleated-cyst producing Entamoeba species. Sequences of positive uninucleated-cyst producing Entamoeba samples from Twycross Zoo clustered with the E. polecki reference sequences ST4 reported in Homo sapiens, and are widely separated from other Entamoeba species. These findings suggest a low prevalence of the pathogenic Entamoeba infection, but notable prevalence of non-pathogenic E. polecki infection in NHPs in the UK.

  13. Prevalencia de anticuerpos anti-Chlamydia trachomatis y anti-Neisseria gonorrhoeae en grupos de individuos de la población mexicana Prevalence of antibodies against Chlamydia trachomatis and Neisseria gonorrhoeae in Mexican populations

    OpenAIRE

    María del Carmen Cravioto; Oscar Matamoros; Yvonne Villalobos-Zapata; Oscar Peña; Enrique García-Lara; Maribel Martínez; Julio Castelo; José Sifuentes-Osornio

    2003-01-01

    OBJETIVO: Estimar la prevalencia de infección por Chlamydia trachomatis (CT) y Neisseria gonorrhoeae (NG) en grupos de individuos con diferente riesgo para infecciones de transmisión sexual. MATERIAL Y MÉTODOS: Estudio transversal multicéntrico efectuado en el Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, de la Ciudad de México, de enero de 1992 a diciembre de 1993, en el que se estudiaron 945 individuos en edad reproductiva, 585 mujeres y 360 hombres. Según su riesgo p...

  14. 淋病奈瑟球菌的耐药性分析%Analysis of drug resistance of Neisseria gonorrhoeae

    Institute of Scientific and Technical Information of China (English)

    马建飞; 李刚; 张薏女

    2015-01-01

    目的:对228例淋病患者淋病奈瑟球菌的耐药性进行探讨分析。方法:对淋病奈瑟球菌采用纸片扩散法(K -B 法)进行检测,对β内酰胺酶采用头孢硝噻吩纸片法进行检测。结果:228株淋病奈瑟球菌中,来自宁海县中医医院的有72株,其中β内酰胺酶检测阳性的有19株;来自湖州市妇幼保健院的有156株,其中β内酰胺酶检测阳性的有41株。所有检测为阳性的菌株在228株菌株中占26.32%。来自所有的淋病奈瑟球菌菌株对5种抗菌药物的耐药性有明显的区别,菌株对四环素、青霉素和环丙沙星的耐药性比较高,对头孢曲松、大观霉素的耐药性比较低一些。结论:根据研究数据,在临床上应当避免使用四环素、青霉素等作为抗菌的首选药物,应适当选取头孢曲松、大观霉素作为临床治疗淋病奈瑟球菌感染的首选药物。%Objectives:To analyze the Neisseria gonorrhoeae resistance of gonorrhea among 228 patients. Methods:Disk diffusion method (KB method)was used to detect Neisseria gonorrhoeae.The nitrocefin paper method was used to detect β-lactamase.Results:Among the 228 Neisseria gonorrhoeae,there were 72 from Ning-hai County Chinese Medicine Hospital,among which 19 positive β-lactamase were tested;156 Neisseria gonor-rhoeae were from Huzhou City,MCH,among which 41 positive β-lactamase were tested.Positive detection rate in 228 strains accounted for 26.32%.The resistance of all strains for Neisseria gonorrhoeae to five kinds of antibacteri-al drugs had significant difference.Resistance to tetracycline,penicillin and ciprofloxacin resistance was relatively high and resistance to ceftriaxone,spectinomycin was relatively low.Conclusion:According to research data,tetra-cycline,penicillin and other drugs should be avoided as the preferred antibacterial drugs in clinic,while ceftriaxone and spectinomycin should be properly selected as the first drug choice for

  15. Survival and Persistence of Nonpathogenic Escherichia coli and Attenuated Escherichia coli O157:H7 in Soils Amended with Animal Manure in a Greenhouse Environment.

    Science.gov (United States)

    Sharma, Manan; Millner, Patricia D; Hashem, Fawzy; Camp, Mary; Whyte, Celia; Graham, Lorna; Cotton, Corrie P

    2016-06-01

    Animal manure provides benefits to agriculture but may contain pathogens that contaminate ready-to-eat produce. U.S. Food and Drug Administration standards include 90- or 120-day intervals between application of manure and harvest of crop to minimize risks of pathogen contamination of fresh produce. Data on factors affecting survival of Escherichia coli in soils under greenhouse conditions are needed. Three separate studies were conducted to evaluate survival of nonpathogenic E. coli (gEc) and attenuated E. coli O157:H7 (attO157) inoculated at either low (4 log CFU/ml) or high (6 log CFU/ml) populations over 56 days. Studies involved two pot sizes (small, 398 cm(3); large, 89 liters), three soil types (sandy loam, SL; clay loam, CL; silt loam, SIL), and four amendments (poultry litter, PL; dairy manure liquids, DML; horse manure, HM; unamended). Amendments were applied to the surface of the soil in either small or large containers. Study 1, conducted in regularly irrigated small containers, showed that populations of gEc and attO157 (2.84 to 2.88 log CFU/g) in PL-amended soils were significantly (P < 0.05) greater than those in DML-amended (0.29 to 0.32 log CFU/g [dry weight] [gdw]) or unamended (0.25 to 0.28 log CFU/gdw) soils; soil type did not affect E. coli survival. Results from study 2, in large pots with CL and SIL, showed that PL-amended soils supported significantly higher attO157 and gEc populations compared with HM-amended or unamended soils. Study 3 compared results from small and large containers that received high inoculum simultaneously. Overall, in both small and large containers, PLamended soils supported higher gEc and attO157 populations compared with HM-amended and unamended soils. Populations of attO157 were significantly greater in small containers (1.83 log CFU/gdw) than in large containers (0.65 log CFU/gdw) at week 8, perhaps because small containers received more regular irrigation than large pots. Regular irrigation of small pots may have

  16. Characterization of a non-pathogenic H5N1 influenza virus isolated from a migratory duck flying from Siberia in Hokkaido, Japan, in October 2009

    Directory of Open Access Journals (Sweden)

    Okamatsu Masatoshi

    2011-02-01

    Full Text Available Abstract Background Infection with H5N1 highly pathogenic avian influenza viruses (HPAIVs of domestic poultry and wild birds has spread to more than 60 countries in Eurasia and Africa. It is concerned that HPAIVs may be perpetuated in the lakes in Siberia where migratory water birds nest in summer. To monitor whether HPAIVs circulate in migratory water birds, intensive surveillance of avian influenza has been performed in Mongolia and Japan in autumn each year. Until 2008, there had not been any H5N1 viruses isolated from migratory water birds that flew from their nesting lakes in Siberia. In autumn 2009, A/mallard/Hokkaido/24/09 (H5N1 (Mal/Hok/24/09 was isolated from a fecal sample of a mallard (Anas platyrhynchos that flew from Siberia to Hokkaido, Japan. The isolate was assessed for pathogenicity in chickens, domestic ducks, and quails and analyzed antigenically and phylogenetically. Results No clinical signs were observed in chickens inoculated intravenously with Mal/Hok/24/09 (H5N1. There was no viral replication in chickens inoculated intranasally with the isolate. None of the domestic ducks and quails inoculated intranasally with the isolate showed any clinical signs. There were no multiple basic amino acid residues at the cleavage site of the hemagglutinin (HA of the isolate. Each gene of Mal/Hok/24/09 (H5N1 is phylogenetically closely related to that of influenza viruses isolated from migratory water birds that flew from their nesting lakes in autumn. Additionally, the antigenicity of the HA of the isolate was similar to that of the viruses isolated from migratory water birds in Hokkaido that flew from their northern territory in autumn and different from those of HPAIVs isolated from birds found dead in China, Mongolia, and Japan on the way back to their northern territory in spring. Conclusion Mal/Hok/24/09 (H5N1 is a non-pathogenic avian influenza virus for chickens, domestic ducks, and quails, and is antigenically and genetically

  17. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis.

    Science.gov (United States)

    Mitchell, Kathy; Brown, Ian; Knox, Paul; Mansfield, John

    2015-04-01

    We have investigated the cause of the restricted multiplication of hrp mutant bacteria in leaves of Arabidopsis. Our focus was on early interactions leading to differentiation between virulent wild-type and non-pathogenic hrpA mutant strains of Pseudomonas syringae pv. tomato. An initial drop in recoverable bacteria detected 0-4 h after inoculation with either strain was dependent on a functional FLS2 receptor and H2O2 accumulation in challenged leaves. Wild-type bacteria subsequently multiplied rapidly whereas the hrpA mutant was restricted within 6 h. Despite the early restriction, the hrpA mutant was still viable several days after inoculation. Analysis of intercellular washing fluids (IWFs), showed that high levels of nutrients were readily available to bacteria in the apoplast and that no diffusible inhibitors were produced in response to bacterial challenge. Histochemical and immunocytochemical methods were used to detect changes in polysaccharides (callose, two forms of cellulose, and pectin), arabinogalactan proteins (AGPs), H2O2 and peroxidase. Quantitative analysis showed very similar changes in localisation of AGPs, cellulose epitopes and callose 2 and 4 h after inoculation with either strain. However from 6 to 12 h after inoculation papillae expanded only next to the hrp mutant. In contrast to the similar patterns of secretory activity recorded from mesophyll cells, accumulation of H2O2 and peroxidase was significantly greater around the hrpA mutant within the first 4h after inoculation. A striking differential accumulation of H2O2 was also found in chloroplasts in cells next to the mutant. Ascorbate levels were lower in the IWFs recovered from sites inoculated with the hrp mutant than with wild-type bacteria. The critical response, observed at the right time and place to explain the observed differential behaviour of wild-type and hrpA mutant bacteria was the accumulation of H2O2, probably generated through Type III peroxidase activity and in

  18. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  19. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone.

    Science.gov (United States)

    Ohnishi, Makoto; Golparian, Daniel; Shimuta, Ken; Saika, Takeshi; Hoshina, Shinji; Iwasaku, Kazuhiro; Nakayama, Shu-ichi; Kitawaki, Jo; Unemo, Magnus

    2011-07-01

    Recently, the first Neisseria gonorrhoeae strain (H041) that is highly resistant to the extended-spectrum cephalosporin (ESC) ceftriaxone, the last remaining option for empirical first-line treatment, was isolated. We performed a detailed characterization of H041, phenotypically and genetically, to confirm the finding, examine its antimicrobial resistance (AMR), and elucidate the resistance mechanisms. H041 was examined using seven species-confirmatory tests, antibiograms (30 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of ESC resistance determinants (penA, mtrR, penB, ponA, and pilQ). Transformation, using appropriate recipient strains, was performed to confirm the ESC resistance determinants. H041 was assigned to serovar Bpyust, MLST sequence type (ST) ST7363, and the new NG-MAST ST4220. H041 proved highly resistant to ceftriaxone (2 to 4 μg/ml, which is 4- to 8-fold higher than any previously described isolate) and all other cephalosporins, as well as most other antimicrobials tested. A new penA mosaic allele caused the ceftriaxone resistance. In conclusion, N. gonorrhoeae has now shown its ability to also develop ceftriaxone resistance. Although the biological fitness of ceftriaxone resistance in N. gonorrhoeae remains unknown, N. gonorrhoeae may soon become a true superbug, causing untreatable gonorrhea. A reduction in the global gonorrhea burden by enhanced disease control activities, combined with wider strategies for general AMR control and enhanced understanding of the mechanisms of emergence and spread of AMR, which need to be monitored globally, and public health response plans for global (and national) perspectives are important. Ultimately, the development of new drugs for efficacious gonorrhea treatment is necessary.

  20. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure.

    Science.gov (United States)

    Unemo, Magnus; Golparian, Daniel; Nicholas, Robert; Ohnishi, Makoto; Gallay, Anne; Sednaoui, Patrice

    2012-03-01

    Recently, the first Neisseria gonorrhoeae strain (H041) highly resistant to the expanded-spectrum cephalosporins (ESCs) ceftriaxone and cefixime, which are the last remaining options for first-line gonorrhea treatment, was isolated in Japan. Here, we confirm and characterize a second strain (F89) with high-level cefixime and ceftriaxone resistance which was isolated in France and most likely caused a treatment failure with cefixime. F89 was examined using six species-confirmatory tests, antibiograms (33 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of known gonococcal resistance determinants (penA, mtrR, penB, ponA, and pilQ). F89 was assigned to MLST sequence type 1901 (ST1901) and NG-MAST ST1407, which is a successful gonococcal clone that has spread globally. F89 has high-level resistance to cefixime (MIC = 4 μg/ml) and ceftriaxone (MIC = 1 to 2 μg/ml) and resistance to most other antimicrobials examined. A novel penA mosaic allele (penA-CI), which was penA-XXXIV with an additional A501P alteration in penicillin-binding protein 2, was the primary determinant for high-level ESC resistance, as determined by transformation into a set of recipient strains. N. gonorrhoeae appears to be emerging as a superbug, and in certain circumstances and settings, gonorrhea may become untreatable. Investigations of the biological fitness and enhanced understanding and monitoring of the ESC-resistant clones and their international transmission are required. Enhanced disease control activities, antimicrobial resistance control and surveillance worldwide, and public health response plans for global (and national) perspectives are also crucial. Nevertheless, new treatment strategies and/or drugs and, ideally, a vaccine are essential to develop for efficacious gonorrhea management.

  1. 脑膜炎奈瑟菌的PCR快速诊断%Rapid PCR assay for diagnosis of neisseria meningitidis

    Institute of Scientific and Technical Information of China (English)

    黄亮; 赵丽萍; 张治芳; 马艳霞; 郭瑞玲

    2013-01-01

    目的 建立特异、敏感、快速的脑膜炎奈瑟菌检测方法.方法 应用PCR技术检测流行性脑脊髓膜炎(简称流脑)疑似病例脑脊液和血液标本中脑膜炎奈瑟菌种属(Neisseria meningitides,Nm)及各群的特异性DNA片段.结果 6例流脑疑似病人的脑脊液标本中检出5份Nm CRGA基因阳性,5份含有Nm C群SIAD(C)基因片段;血液标本中检出1份Nm CRGA基因阳性,1份含有Nm C群SIAD (C)基因片段.结论 所建立方法可用于Nm的快速诊断.%Objective To establish a specific, sensitive and rapid method for detection of Neisseria meningiti-des. Method Use the PCR technique to detect neisseria meningitides was detected from cerebrospinal fluid of suspected epidemic cerebrospinal meningitis cases, Joseph nye meningitis strains from blood samples and specific DNA fragments of each group. Results 5 gene positive Nm CRGA were detected from 6 suspected cerebrospinal fluid samples, in which 5 contain Nm C group SIAD ( C) gene fragment. 1 gene positive Nm CRGA was detected from blood samples and one had SAID ( C) gene fragment. Conclusions The method we established can be used in rapid diagnosis of Nm.

  2. Mechanisms of dexamethasone-mediated inhibition of Toll-like receptor signaling induced by Neisseria meningitidis and Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Mogensen, Trine; Berg, Randi S; Paludan, Søren R

    2008-01-01

    significantly reduces mortality and morbidity from bacterial meningitis. Here we investigate the molecular mechanisms behind the inhibitory effect of dexamethasone upon the inflammatory responses evoked by Neisseria meningitidis and Streptococcus pneumoniae, two of the major causes of bacterial meningitis......B alpha synthesis. Our data also revealed that the timing of steroid treatment relative to infection was important for achieving strong inhibition, particularly in response to S. pneumoniae. Altogether, we describe important targets of dexamethasone in the inflammatory responses evoked by N. meningitidis...... and S. pneumoniae, which may contribute to our understanding of the clinical effect and the importance of timing with respect to corticosteroid treatment during bacterial meningitis. Udgivelsesdato: 2008-Jan...

  3. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan.

    Science.gov (United States)

    Nakayama, Shu-Ichi; Shimuta, Ken; Furubayashi, Kei-Ichi; Kawahata, Takuya; Unemo, Magnus; Ohnishi, Makoto

    2016-07-01

    We have characterized in detail a new ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain (FC428) isolated in Japan in 2015. FC428 differed from previous ceftriaxone-resistant strains and contained a novel mosaic penA allele encoding a new mosaic penicillin-binding protein 2 (PBP 2). However, the resistance-determining 3'-terminal region of penA was almost identical to the regions of two previously reported ceftriaxone-resistant strains from Australia and Japan, indicating that both ceftriaxone-resistant strains and conserved ceftriaxone resistance-determining PBP 2 regions might spread.

  4. Effect of Variants of Penicillin-Binding Protein 2 on Cephalosporin and Carbapenem Susceptibilities in Neisseria gonorrhoeae.

    Science.gov (United States)

    Bharat, Amrita; Demczuk, Walter; Martin, Irene; Mulvey, Michael R

    2015-08-01

    To characterize the relationship between penicillin-binding protein 2 (PBP2/penA) and susceptibility to extended-spectrum cephalosporins (ESCs) and carbapenem antibiotics, we compared 17 PBP2 variants in Neisseria gonorrhoeae. Nonmosaic and mosaic variants of PBP2 caused decreased susceptibility to ESCs and, to a lesser extent, to carbapenems. An A501P substitution in mosaic XXXIV_A501P conferred decreased susceptibility to ESCs but restored carbapenem susceptibility to wild-type levels. These results could aid the molecular surveillance of antimicrobial resistance to these agents.

  5. Differentiation of Kingella denitrificans from Neisseria gonorrhoeae by growth on a semisolid medium and sensitivity to amylase.

    Science.gov (United States)

    Odugbemi, T; Arko, R J

    1983-01-01

    All 239 strains of Neisseria gonorrhoeae tested for sensitivity to amylase-impregnated disks showed zones of growth inhibition ranging from 15 to 30 mm in diameter. None of 52 strains of Kingella denitrificans were inhibited by the same amylase test. In addition, all N. gonorrhoeae strains grew well on a gonococcal base medium supplemented with either IsoVitaleX (BBL Microbiology Systems) or Supplement B (Difco Laboratories), whereas K. denitrificans grew adequately only on the medium with IsoVitaleX. The addition of L-cysteine or cystine to the medium with Supplement B enhanced the growth of K. denitrificans. Images PMID:6187768

  6. Molecular epidemiology and emergence of worldwide epidemic clones of Neisseria meningitidis in Taiwan

    Directory of Open Access Journals (Sweden)

    Chang Hsiu-Li

    2006-02-01

    Full Text Available Abstract Background Meningococcal disease is infrequently found in Taiwan, a country with 23 million people. Between 1996 and 2002, 17 to 81 clinical cases of the disease were reported annually. Reported cases dramatically increased in 2001–2002. Our record shows that only serogroup B and W135 meningococci have been isolated from patients with meningococcal disease until 2000. However, serogroup A, C and Y meningococci were detected for the first time in 2001 and continued to cause disease through 2002. Most of serogroup Y meningococcus infections localized in Central Taiwan in 2001, indicating that a small-scale outbreak of meningococcal disease had occurred. The occurrence of a meningococcal disease outbreak and the emergence of new meningococcal strains are of public health concern. Methods Neisseria meningitidis isolates from patients with meningococcal disease from 1996 to 2002 were collected and characterized by serogrouping, pulsed-field gel electrophoresis (PFGE and multilocus sequence typing (MLST. The genetic relatedness and clonal relationship between the isolates were analyzed by using the PFGE patterns and the allelic profiles of the sequence types (STs. Results Serogroups A, B, C, W135, Y, and non-serogroupable Neisseria meningitidis were, respectively, responsible for 2%, 50%, 2%, 35%, 9%, and 2% of 158 culture-confirmed cases of meningococcal disease in 1996–2002. Among 100 N. meningitidis isolates available for PFGE and MLST analyses, 51 different PFGE patterns and 30 STs were identified with discriminatory indices of 0.95 and 0.87, respectively. Of the 30 STs, 21 were newly identified and of which 19 were found in serogroup B isolates. A total of 40 PFGE patterns were identified in 52 serogroup B isolates with the patterns distributed over several distinct clusters. In contrast, the isolates within each of the serogroups A, C, W135, and Y shared high levels of PFGE pattern similarity. Analysis of the allelic profile of the

  7. Transcriptional and Functional Analysis of the Neisseria gonorrhoeae Fur Regulon▿ †

    Science.gov (United States)

    Jackson, Lydgia A.; Ducey, Thomas F.; Day, Michael W.; Zaitshik, Jeremy B.; Orvis, Joshua; Dyer, David W.

    2010-01-01

    To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator Fur regulates metabolism through transcriptional control of iron-responsive genes by binding conserved Fur box (FB) sequences in promoters during iron-replete growth. Our previous studies showed that Fur also controls the transcription of secondary regulators that may, in turn, control pathways important to pathogenesis, indicating an indirect role for Fur in controlling these downstream genes. To better define the iron-regulated cascade of transcriptional control, we combined three global strategies—temporal transcriptome analysis, genomewide in silico FB prediction, and Fur titration assays (FURTA)—to detect genomic regions able to bind Fur in vivo. The majority of the 300 iron-repressed genes were predicted to be of unknown function, followed by genes involved in iron metabolism, cell communication, and intermediary metabolism. The 107 iron-induced genes encoded hypothetical proteins or energy metabolism functions. We found 28 predicted FBs in FURTA-positive clones in the promoters and within the open reading frames of iron-repressed genes. We found lower levels of conservation at critical thymidine residues involved in Fur binding in the FB sequence logos of FURTA-positive clones with intragenic FBs than in the sequence logos generated from FURTA-positive promoter regions. In electrophoretic mobility shift assay studies, intragenic FBs bound Fur with a lower affinity than intergenic FBs. Our findings further indicate that transcription under iron stress is indirectly controlled by Fur through 12 potential secondary regulators. PMID:19854902

  8. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome.

    Directory of Open Access Journals (Sweden)

    Biju Joseph

    Full Text Available BACKGROUND: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH and multilocus sequence typing (MLST of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. PRINCIPAL FINDINGS: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. CONCLUSIONS: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.

  9. Respuesta neuroinmunológica en niños con meningoencefalitis por Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Bárbara Padilla-Docal

    2011-04-01

    Full Text Available La enfermedad meningocócica es una entidad clínica que constituye aún un problema de salud mundial. Esta afecta, sobre todo, a la población infantil ocasionando un cuadro clínico grave, de evolución severa, así como un elevado número de muertes y secuelas. Su agente etiológico, Neisseria meningitidis, habita de forma natural en las membranas mucosas de la nasofaringe humana. Con el objetivo de determinar las características de la respuesta neuroinmunológica en niños con meningoencefalitis por N. meningitidis, se estudiaron 20 niños diagnosticados con esta afección clínica, entre los años 1988- 2009. A estos se les realizó una punción lumbar en el momento del ingreso y se cuantificó la IgA, IgM e IgG, la albúmina y el C3c en el suero y en el líquido cefalorraquídeo. Se confeccionó un reibergrama de acuerdo con los datos obtenidos en la cuantificación. La disfunción de la barrera hematoencefálica se presentó en seis pacientes y hubo síntesis intratecal de las inmunoglobulinas mayores y C3c en 65% y 95%, respectivamente. Se comprobó la ocurrencia de síntesis intratecal de al menos dos inmunoglobulinas mayores asociadas con el componente C3c del complemento, participando estos en los mecanismos involucrados en la respuesta inmune de esta enfermedad.

  10. H-NS suppresses pilE intragenic transcription and antigenic variation in Neisseria gonorrhoeae.

    Science.gov (United States)

    Masters, Thao L; Wachter, Shaun; Wachter, Jenny; Hill, Stuart A

    2016-01-01

    Initially, pilE transcription in Neisseria gonorrhoeae appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single -35/ -10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small pil-specific RNAs (sense as well as antisense) have been identified at the pilE locus as well as at various pilS loci. Using a combination of in vitro transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the pilE gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the pilE ORF. Using strand-specific qRT-PCR analysis, an inverse correlation exists between the level of antisense expression and the amount of sense message. By their nature, promoter sequences tend to be AT-rich. In Escherichia coli, the small DNA-binding protein H-NS binds to AT-rich sequences and inhibits intragenic transcription. In N. gonorrhoeae hns mutants, pilE antisense transcription was increased twofold, with a concomitant decrease in sense transcript levels. However, most noticeably in these mutants, the absence of H-NS protein caused pilE/pilS recombination to increase dramatically when compared with WT values. Consequently, H-NS protein suppresses pilE intragenic transcription as well as antigenic variation through the pilE/pilS recombination system.

  11. Cephalosporin susceptibility among Neisseria gonorrhoeae isolates--United States, 2000-2010.

    Science.gov (United States)

    2011-07-01

    Neisseria gonorrhoeae is a major cause of pelvic inflammatory disease, ectopic pregnancy, and infertility, and it can facilitate human immunodeficiency virus (HIV) transmission. Emergence of gonococcal resistance to penicillin and tetracycline occurred during the 1970s and became widespread during the early 1980s. More recently, resistance to fluoroquinolones developed. Resistance was documented first in Asia, then emerged in the United States in Hawaii followed by other western states. It then became prevalent in all other regions of the United States. In Hawaii, fluoroquinolone resistance was first noted among heterosexuals; however, resistance in the United States initially became prevalent among men who have sex with men (MSM) before generalizing to heterosexuals. This emergence of resistance led CDC, in 2007, to discontinue recommending any fluoroquinolone regimens for the treatment of gonorrhea. CDC now recommends dual therapy for gonorrhea with a cephalosporin (ceftriaxone 250 mg) plus either azithromycin or doxycycline. This report summarizes trends in cephalosporin susceptibility among N. gonorrhoeae isolates in the United States during 2000-2010 using data from the Gonococcal Isolate Surveillance Project (GISP). During that period, the percentage of isolates with elevated minimum inhibitory concentrations (MICs) to cephalosporins (≥0.25 µg/mL for cefixime and ≥0.125 µg/mL for ceftriaxone) increased from 0.2% in 2000 to 1.4% in 2010 for cefixime and from 0.1% in 2000 to 0.3% in 2010 for ceftriaxone. Although cephalosporins remain an effective treatment for gonococcal infections, health-care providers should be vigilant for treatment failure and are requested to report its occurrence to state and local health departments. State and local public health departments should promote maintenance of laboratory capability to culture N. gonorrhoeae to allow testing of isolates for cephalosporin resistance. They also should develop enhanced surveillance and

  12. Pharyngeal Gonorrhoea in Women: An Important Reservoir for Increasing Neisseria gonorrhoea Prevalence in Urban Australian Heterosexuals?

    Directory of Open Access Journals (Sweden)

    M. Josephine Lusk

    2013-01-01

    Full Text Available We aim to characterize sexual behavioral aspects of heterosexual Neisseria gonorrhoea (NG acquisition in two Sexually Transmitted Diseases clinics in Sydney, Australia, in 2008–2012. Of 167 NG cases, 102 were heterosexually acquired with a trend of increasing NG prevalence in heterosexuals from 1.1% (95% CI 0.6–2.1 in 2008 to 3.0% (95% CI 2.0–4.0 in 2012 (P=0.027. Of heterosexual male cases, unprotected fellatio was the likely sexual activity for NG acquisition in 21/69 (30.4% and commercial sex work (CSW contact the likely source in 28/69 (40.6%. NG prevalence overall in CSW (2.2% was not significantly higher than in non-CSW (1.2% (P=0.15, but in 2012 there was a significant increase in NG prevalence in CSW (8.6% compared to non-CSW (1.6% (P<0.001. Pharyngeal NG was found in 9/33 (27.3% female cases. Decreased susceptibility to ceftriaxone (MIC ≥ 0.03 mg/L occurred in 2.5% NG isolates, none heterosexually acquired. All were azithromycin susceptible. A significant trend of increasing prevalence of heterosexual gonorrhoea in an urban Australian STD clinic setting is reported. We advocate maintenance of NG screening in women, including pharyngeal screening in all women with partner change who report fellatio, as pharyngeal NG may be an important reservoir for heterosexual transmission. Outreach to CSW should be enhanced.

  13. Cefixime and ceftriaxone susceptibility of Neisseria gonorrhoeae in Italy from 2006 to 2010.

    Science.gov (United States)

    Carannante, A; Prignano, G; Cusini, M; Matteelli, A; Dal Conte, I; Ghisetti, V; D'Antuono, A; Cavrini, F; Antonetti, R; Stefanelli, P

    2012-06-01

    Neisseria gonorrhoeae resistance to cephalosporins, the currently recommended treatment, and treatment failures with cefixime have been reported worldwide. The purposes of the present study were (i) to examine the susceptibility of N. gonorrhoeae isolates isolated in Italy from 2006 through 2010 to cefixime (n = 293) taking into account both European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical And Laboratory Standards Institute (CLSI) criteria for categorization; (ii) to determine the contribution to decreased/resistant susceptibility of mutations in the penA, mtrR, ponA and porB1b genes in a subsample of isolates; and (iii) to genotype the isolates showing decreased susceptibility or resistance to cefixime, by N. gonorrhoeae multi-antigen sequence typing (NG-MAST) and by pulsed-field gel electrophoresis (PFGE) to identify the predominant genotypes. Minimum inhibitory concentrations (MICs) were determined by the E-test and agar dilution method on 293 isolates and results were interpreted according to both EUCAST 2010 (MIC R >0.12 mg/L) and CLSI 2008 (MIC R >0.25 mg/L) criteria. All isolates showed full susceptibility to ceftriaxone, whereas those with a MIC for cefixime ≥0.125 mg/L were on the increase from 2008 through 2010. The same penA gene alterations were found among isolates with MICs close to the EUCAST breakpoint as the resistant ones, and they belong to ST1407. Seven isolates, belonging to various sequence types, showed a different por allele, though similar to the por 908 allele present in ST1407. PFGE divided strains ST1407 into two main groups confirming their genetic relationship.

  14. A Novel Factor H-Fc Chimeric Immunotherapeutic Molecule against Neisseria gonorrhoeae.

    Science.gov (United States)

    Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A; Golenbock, Douglas T; Reed, George W; Rice, Peter A; Ram, Sanjay

    2016-02-15

    Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including N. gonorrhoeae, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the use of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to N. gonorrhoeae, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc but, unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical N. gonorrhoeae isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10 of 15 (67%) strains, and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant N. gonorrhoeae.

  15. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis.

    Science.gov (United States)

    Mellin, J R; McClure, Ryan; Lopez, Delia; Green, Olivia; Reinhard, Bjorn; Genco, Caroline

    2010-08-01

    In Neisseria meningitidis, iron-responsive gene regulation is mediated primarily by the ferric uptake regulator (Fur) protein. When complexed with iron, Fur represses gene expression by preventing transcription initiation. Fur can also indirectly activate gene expression via the repression of regulatory small RNAs (sRNA). One such Fur- and iron-regulated sRNA, NrrF, was previously identified in N. meningitidis and shown to repress expression of the sdhA and sdhC genes encoding subunits of the succinate dehydrogenase complex. In the majority of Gram-negative bacteria, sRNA-mediated regulation requires a cofactor RNA-binding protein (Hfq) for proper gene regulation and stabilization. In this study, we examined the role of Hfq in NrrF-mediated regulation of the succinate dehydrogenase genes in N. meningitidis and the effect of an hfq mutation on iron-responsive gene regulation more broadly. We first demonstrated that the stability of NrrF, as well as the regulation of sdhC and sdhA in vivo, was unaltered in the hfq mutant. Secondly, we established that iron-responsive gene regulation of the Fur-regulated sodB gene was dependent on Hfq. Finally, we demonstrated that in N. meningitidis, Hfq functions in a global manner to control expression of many ORFs and intergenic regions via iron-independent mechanisms. Collectively these studies demonstrate that in N. meningitidis, iron- and NrrF-mediated regulation of sdhC and sdhA can occur independently of Hfq, although Hfq functions more globally to control regulation of other N. meningitidis genes primarily by iron-independent mechanisms.

  16. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    Directory of Open Access Journals (Sweden)

    Stephanie M Fingerhuth

    2016-05-01

    Full Text Available The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM and men who have sex with men (MSM. We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months. We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW and 3 (MSM months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.

  17. Extragenital Infections Caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A Review of the Literature.

    Science.gov (United States)

    Chan, Philip A; Robinette, Ashley; Montgomery, Madeline; Almonte, Alexi; Cu-Uvin, Susan; Lonks, John R; Chapin, Kimberle C; Kojic, Erna M; Hardy, Erica J

    2016-01-01

    In the United States, sexually transmitted diseases due to Chlamydia trachomatis and Neisseria gonorrhoeae continue to be a major public health burden. Screening of extragenital sites including the oropharynx and rectum is an emerging practice based on recent studies highlighting the prevalence of infection at these sites. We reviewed studies reporting the prevalence of extragenital infections in women, men who have sex with men (MSM), and men who have sex only with women (MSW), including distribution by anatomical site. Among women, prevalence was found to be 0.6-35.8% for rectal gonorrhea (median reported prevalence 1.9%), 0-29.6% for pharyngeal gonorrhea (median 2.1%), 2.0-77.3% for rectal chlamydia (median 8.7%), and 0.2-3.2% for pharyngeal chlamydia (median 1.7%). Among MSM, prevalence was found to be 0.2-24.0% for rectal gonorrhea (median 5.9%), 0.5-16.5% for pharyngeal gonorrhea (median 4.6%), 2.1-23.0% for rectal chlamydia (median 8.9%), and 0-3.6% for pharyngeal chlamydia (median 1.7%). Among MSW, the prevalence was found to be 0-5.7% for rectal gonorrhea (median 3.4%), 0.4-15.5% for pharyngeal gonorrhea (median 2.2%), 0-11.8% for rectal chlamydia (median 7.7%), and 0-22.0% for pharyngeal chlamydia (median 1.6%). Extragenital infections are often asymptomatic and found in the absence of reported risk behaviors, such as receptive anal and oral intercourse. We discuss current clinical recommendations and future directions for research.

  18. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  19. [Detection of rifampicin-resistant strains of Neisseria meningitidis in Uruguay].

    Science.gov (United States)

    Pérez Giffoni, Gabriel; García Gabarrot, Gabriela; Alfonso, Adriana; Pujadas, Mónica; Camou, Teresa

    2011-12-01

    The objective of this study was to characterize the phenotype and genotype of two isolates of rifampicin-resistant Neisseria meningitidis associated with two independent events involving transmission of severe meningococcal meningitis that occurred in September and October 2010 in Montevideo, Uruguay. The most recent 10 years of data from the national antimicrobial resistance surveillance system were reviewed to estimate the frequency of the particular meningococcal features that were characterized. Rifampicin resistance was studied using the epsilometer test. The serotype and serosubtype of the isolates were determined by ELISA, and the genotype was characterized using DNA digestion with Nhel and pulse field gel electrophoresis. The two isolates were identical: B:2a:P1.5. In the collection of 408 strains of N. meningitidis isolated in Uruguay in the past 10 years, the phenotype only appeared in two isolates, which were sensitive to rifampicin. The two isolates studied also shared a single pulse type, which was different from that of two other rifampicin-resistant isolates obtained in 2003 and 2007. Consequently, it was concluded that both cases of transmission were caused by a single rifampicin-resistant strain, which could have been an import from another country or else the result of a drift from serogroup C to B due to selective pressure exerted by vaccines administered to the population. It is essential to maintain and maximize surveillance. However, since this type of finding has been sporadic so far, unless a secondary case is identified, there is no justification for changing the antimicrobial drug currently being administered to contacts as prophylaxis.

  20. Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage.

    Directory of Open Access Journals (Sweden)

    Hélène Omer

    Full Text Available A scientist in our laboratory was accidentally infected while working with Z5463, a Neisseria meningitidis serogroup A strain. She developed severe symptoms (fever, meningism, purpuric lesions that fortunately evolved with antibiotic treatment to complete recovery. Pulse-field gel electrophoresis confirmed that the isolate obtained from the blood culture (Z5463BC was identical to Z5463, more precisely to a fourth subculture of this strain used the week before the contamination (Z5463PI. In order to get some insights into genomic modifications that can occur in vivo, we sequenced these three isolates. All the strains contained a mutated mutS allele and therefore displayed an hypermutator phenotype, consistent with the high number of mutations (SNP, Single Nucleotide Polymorphism detected in the three strains. By comparing the number of SNP in all three isolates and knowing the number of passages between Z5463 and Z5463PI, we concluded that around 25 bacterial divisions occurred in the human body. As expected, the in vivo passage is responsible for several modifications of phase variable genes. This genomic study has been completed by transcriptomic and phenotypic studies, showing that the blood strain used a different haemoglobin-linked iron receptor (HpuA/B than the parental strains (HmbR. Different pilin variants were found after the in vivo passage, which expressed different properties of adhesion. Furthermore the deletion of one gene involved in LOS biosynthesis (lgtB results in Z5463BC expressing a different LOS than the L9 immunotype of Z2491. The in vivo passage, despite the small numbers of divisions, permits the selection of numerous genomic modifications that may account for the high capacity of the strain to disseminate.