Nonparametric statistical inference
Gibbons, Jean Dickinson
2010-01-01
Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente
Nonparametric statistical inference
Gibbons, Jean Dickinson
2014-01-01
Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.
Decision support using nonparametric statistics
Beatty, Warren
2018-01-01
This concise volume covers nonparametric statistics topics that most are most likely to be seen and used from a practical decision support perspective. While many degree programs require a course in parametric statistics, these methods are often inadequate for real-world decision making in business environments. Much of the data collected today by business executives (for example, customer satisfaction opinions) requires nonparametric statistics for valid analysis, and this book provides the reader with a set of tools that can be used to validly analyze all data, regardless of type. Through numerous examples and exercises, this book explains why nonparametric statistics will lead to better decisions and how they are used to reach a decision, with a wide array of business applications. Online resources include exercise data, spreadsheets, and solutions.
Nonparametric statistics for social and behavioral sciences
Kraska-MIller, M
2013-01-01
Introduction to Research in Social and Behavioral SciencesBasic Principles of ResearchPlanning for ResearchTypes of Research Designs Sampling ProceduresValidity and Reliability of Measurement InstrumentsSteps of the Research Process Introduction to Nonparametric StatisticsData AnalysisOverview of Nonparametric Statistics and Parametric Statistics Overview of Parametric Statistics Overview of Nonparametric StatisticsImportance of Nonparametric MethodsMeasurement InstrumentsAnalysis of Data to Determine Association and Agreement Pearson Chi-Square Test of Association and IndependenceContingency
Introduction to nonparametric statistics for the biological sciences using R
MacFarland, Thomas W
2016-01-01
This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...
Teaching Nonparametric Statistics Using Student Instrumental Values.
Anderson, Jonathan W.; Diddams, Margaret
Nonparametric statistics are often difficult to teach in introduction to statistics courses because of the lack of real-world examples. This study demonstrated how teachers can use differences in the rankings and ratings of undergraduate and graduate values to discuss: (1) ipsative and normative scaling; (2) uses of the Mann-Whitney U-test; and…
Nonparametric predictive inference in statistical process control
Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.
2000-01-01
New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on
Nonparametric predictive inference in statistical process control
Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.
2004-01-01
Statistical process control (SPC) is used to decide when to stop a process as confidence in the quality of the next item(s) is low. Information to specify a parametric model is not always available, and as SPC is of a predictive nature, we present a control chart developed using nonparametric
2nd Conference of the International Society for Nonparametric Statistics
Manteiga, Wenceslao; Romo, Juan
2016-01-01
This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers...
Nonparametric statistics with applications to science and engineering
Kvam, Paul H
2007-01-01
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provide...
Recent Advances and Trends in Nonparametric Statistics
Akritas, MG
2003-01-01
The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection o
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
Application of nonparametric statistic method for DNBR limit calculation
International Nuclear Information System (INIS)
Dong Bo; Kuang Bo; Zhu Xuenong
2013-01-01
Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)
Methodology in robust and nonparametric statistics
Jurecková, Jana; Picek, Jan
2012-01-01
Introduction and SynopsisIntroductionSynopsisPreliminariesIntroductionInference in Linear ModelsRobustness ConceptsRobust and Minimax Estimation of LocationClippings from Probability and Asymptotic TheoryProblemsRobust Estimation of Location and RegressionIntroductionM-EstimatorsL-EstimatorsR-EstimatorsMinimum Distance and Pitman EstimatorsDifferentiable Statistical FunctionsProblemsAsymptotic Representations for L-Estimators
Statistical decisions under nonparametric a priori information
International Nuclear Information System (INIS)
Chilingaryan, A.A.
1985-01-01
The basic module of applied program package for statistical analysis of the ANI experiment data is described. By means of this module tasks of choosing theoretical model most adequately fitting to experimental data, selection of events of definte type, identification of elementary particles are carried out. For mentioned problems solving, the Bayesian rules, one-leave out test and KNN (K Nearest Neighbour) adaptive density estimation are utilized
Nonparametric statistics a step-by-step approach
Corder, Gregory W
2014-01-01
"…a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught."" -CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical powerSPSS® (Version 21) software and updated screen ca
Application of nonparametric statistics to material strength/reliability assessment
International Nuclear Information System (INIS)
Arai, Taketoshi
1992-01-01
An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)
STATCAT, Statistical Analysis of Parametric and Non-Parametric Data
International Nuclear Information System (INIS)
David, Hugh
1990-01-01
1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required
Categorical and nonparametric data analysis choosing the best statistical technique
Nussbaum, E Michael
2014-01-01
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain
1st Conference of the International Society for Nonparametric Statistics
Lahiri, S; Politis, Dimitris
2014-01-01
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the wo...
Nonparametric Analyses of Log-Periodic Precursors to Financial Crashes
Zhou, Wei-Xing; Sornette, Didier
We apply two nonparametric methods to further test the hypothesis that log-periodicity characterizes the detrended price trajectory of large financial indices prior to financial crashes or strong corrections. The term "parametric" refers here to the use of the log-periodic power law formula to fit the data; in contrast, "nonparametric" refers to the use of general tools such as Fourier transform, and in the present case the Hilbert transform and the so-called (H, q)-analysis. The analysis using the (H, q)-derivative is applied to seven time series ending with the October 1987 crash, the October 1997 correction and the April 2000 crash of the Dow Jones Industrial Average (DJIA), the Standard & Poor 500 and Nasdaq indices. The Hilbert transform is applied to two detrended price time series in terms of the ln(tc-t) variable, where tc is the time of the crash. Taking all results together, we find strong evidence for a universal fundamental log-frequency f=1.02±0.05 corresponding to the scaling ratio λ=2.67±0.12. These values are in very good agreement with those obtained in earlier works with different parametric techniques. This note is extracted from a long unpublished report with 58 figures available at , which extensively describes the evidence we have accumulated on these seven time series, in particular by presenting all relevant details so that the reader can judge for himself or herself the validity and robustness of the results.
Examples of the Application of Nonparametric Information Geometry to Statistical Physics
Directory of Open Access Journals (Sweden)
Giovanni Pistone
2013-09-01
Full Text Available We review a nonparametric version of Amari’s information geometry in which the set of positive probability densities on a given sample space is endowed with an atlas of charts to form a differentiable manifold modeled on Orlicz Banach spaces. This nonparametric setting is used to discuss the setting of typical problems in machine learning and statistical physics, such as black-box optimization, Kullback-Leibler divergence, Boltzmann-Gibbs entropy and the Boltzmann equation.
Nonparametric Bayesian predictive distributions for future order statistics
Richard A. Johnson; James W. Evans; David W. Green
1999-01-01
We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...
Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.
1979-12-01
also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970
Effects of dating errors on nonparametric trend analyses of speleothem time series
Directory of Open Access Journals (Sweden)
M. Mudelsee
2012-10-01
Full Text Available A fundamental problem in paleoclimatology is to take fully into account the various error sources when examining proxy records with quantitative methods of statistical time series analysis. Records from dated climate archives such as speleothems add extra uncertainty from the age determination to the other sources that consist in measurement and proxy errors. This paper examines three stalagmite time series of oxygen isotopic composition (δ^{18}O from two caves in western Germany, the series AH-1 from the Atta Cave and the series Bu1 and Bu4 from the Bunker Cave. These records carry regional information about past changes in winter precipitation and temperature. U/Th and radiocarbon dating reveals that they cover the later part of the Holocene, the past 8.6 thousand years (ka. We analyse centennial- to millennial-scale climate trends by means of nonparametric Gasser–Müller kernel regression. Error bands around fitted trend curves are determined by combining (1 block bootstrap resampling to preserve noise properties (shape, autocorrelation of the δ^{18}O residuals and (2 timescale simulations (models StalAge and iscam. The timescale error influences on centennial- to millennial-scale trend estimation are not excessively large. We find a "mid-Holocene climate double-swing", from warm to cold to warm winter conditions (6.5 ka to 6.0 ka to 5.1 ka, with warm–cold amplitudes of around 0.5‰ δ^{18}O; this finding is documented by all three records with high confidence. We also quantify the Medieval Warm Period (MWP, the Little Ice Age (LIA and the current warmth. Our analyses cannot unequivocally support the conclusion that current regional winter climate is warmer than that during the MWP.
Riihimäki, Jaakko; Sund, Reijo; Vehtari, Aki
2010-06-01
Effective utilisation of limited resources is a challenge for health care providers. Accurate and relevant information extracted from the length of stay distributions is useful for management purposes. Patient care episodes can be reconstructed from the comprehensive health registers, and in this paper we develop a Bayesian approach to analyse the length of care episode after a fractured hip. We model the large scale data with a flexible nonparametric multilayer perceptron network and with a parametric Weibull mixture model. To assess the performances of the models, we estimate expected utilities using predictive density as a utility measure. Since the model parameters cannot be directly compared, we focus on observables, and estimate the relevances of patient explanatory variables in predicting the length of stay. To demonstrate how the use of the nonparametric flexible model is advantageous for this complex health care data, we also study joint effects of variables in predictions, and visualise nonlinearities and interactions found in the data.
Energy Technology Data Exchange (ETDEWEB)
Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Itoh, Hiroto, E-mail: ito.hiroto@jaea.go.jp; Nishiyama, Yutaka, E-mail: nishiyama.yutaka93@jaea.go.jp
2016-10-15
In order to understand neutron irradiation embrittlement in high fluence regions, statistical analysis using the Bayesian nonparametric (BNP) method was performed for the Japanese surveillance and material test reactor irradiation database. The BNP method is essentially expressed as an infinite summation of normal distributions, with input data being subdivided into clusters with identical statistical parameters, such as mean and standard deviation, for each cluster to estimate shifts in ductile-to-brittle transition temperature (DBTT). The clusters typically depend on chemical compositions, irradiation conditions, and the irradiation embrittlement. Specific variables contributing to the irradiation embrittlement include the content of Cu, Ni, P, Si, and Mn in the pressure vessel steels, neutron flux, neutron fluence, and irradiation temperatures. It was found that the measured shifts of DBTT correlated well with the calculated ones. Data associated with the same materials were subdivided into the same clusters even if neutron fluences were increased.
Statistical reliability analyses of two wood plastic composite extrusion processes
International Nuclear Information System (INIS)
Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.
2011-01-01
Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.
The application of non-parametric statistical method for an ALARA implementation
International Nuclear Information System (INIS)
Cho, Young Ho; Herr, Young Hoi
2003-01-01
The cost-effective reduction of Occupational Radiation Dose (ORD) at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORD data of existing plants. Through the data analysis, it is required to identify what are the jobs of repetitive high ORD at the nuclear power plant. In this study, Percentile Rank Sum Method (PRSM) is proposed to identify repetitive high ORD jobs, which is based on non-parametric statistical theory. As a case study, the method is applied to ORD data of maintenance and repair jobs at Kori units 3 and 4 that are pressurized water reactors with 950 MWe capacity and have been operated since 1986 and 1987, respectively in Korea. The results was verified and validated, and PRSM has been demonstrated to be an efficient method of analyzing the data
Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations
International Nuclear Information System (INIS)
Arimescu, V.E.; Heins, L.
2001-01-01
Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect
International Nuclear Information System (INIS)
Frepoli, Cesare; Oriani, Luca
2006-01-01
In recent years, non-parametric or order statistics methods have been widely used to assess the impact of the uncertainties within Best-Estimate LOCA evaluation models. The bounding of the uncertainties is achieved with a direct Monte Carlo sampling of the uncertainty attributes, with the minimum trial number selected to 'stabilize' the estimation of the critical output values (peak cladding temperature (PCT), local maximum oxidation (LMO), and core-wide oxidation (CWO A non-parametric order statistics uncertainty analysis was recently implemented within the Westinghouse Realistic Large Break LOCA evaluation model, also referred to as 'Automated Statistical Treatment of Uncertainty Method' (ASTRUM). The implementation or interpretation of order statistics in safety analysis is not fully consistent within the industry. This has led to an extensive public debate among regulators and researchers which can be found in the open literature. The USNRC-approved Westinghouse method follows a rigorous implementation of the order statistics theory, which leads to the execution of 124 simulations within a Large Break LOCA analysis. This is a solid approach which guarantees that a bounding value (at 95% probability) of the 95 th percentile for each of the three 10 CFR 50.46 ECCS design acceptance criteria (PCT, LMO and CWO) is obtained. The objective of this paper is to provide additional insights on the ASTRUM statistical approach, with a more in-depth analysis of pros and cons of the order statistics and of the Westinghouse approach in the implementation of this statistical methodology. (authors)
Directory of Open Access Journals (Sweden)
Elias Chaibub Neto
Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.
A contingency table approach to nonparametric testing
Rayner, JCW
2000-01-01
Most texts on nonparametric techniques concentrate on location and linear-linear (correlation) tests, with less emphasis on dispersion effects and linear-quadratic tests. Tests for higher moment effects are virtually ignored. Using a fresh approach, A Contingency Table Approach to Nonparametric Testing unifies and extends the popular, standard tests by linking them to tests based on models for data that can be presented in contingency tables.This approach unifies popular nonparametric statistical inference and makes the traditional, most commonly performed nonparametric analyses much more comp
[Do we always correctly interpret the results of statistical nonparametric tests].
Moczko, Jerzy A
2014-01-01
Mann-Whitney, Wilcoxon, Kruskal-Wallis and Friedman tests create a group of commonly used tests to analyze the results of clinical and laboratory data. These tests are considered to be extremely flexible and their asymptotic relative efficiency exceeds 95 percent. Compared with the corresponding parametric tests they do not require checking the fulfillment of the conditions such as the normality of data distribution, homogeneity of variance, the lack of correlation means and standard deviations, etc. They can be used both in the interval and or-dinal scales. The article presents an example Mann-Whitney test, that does not in any case the choice of these four nonparametric tests treated as a kind of gold standard leads to correct inference.
International Nuclear Information System (INIS)
Veglia, A.
1981-08-01
In cases where sets of data are obviously not normally distributed, the application of a nonparametric method for the estimation of a confidence interval for the mean seems to be more suitable than some other methods because such a method requires few assumptions about the population of data. A two-step statistical method is proposed which can be applied to any set of analytical results: elimination of outliers by a nonparametric method based on Tchebycheff's inequality, and determination of a confidence interval for the mean by a non-parametric method based on binominal distribution. The method is appropriate only for samples of size n>=10
SOCR Analyses: Implementation and Demonstration of a New Graphical Statistics Educational Toolkit
Directory of Open Access Journals (Sweden)
Annie Chu
2009-04-01
Full Text Available The web-based, Java-written SOCR (Statistical Online Computational Resource toolshave been utilized in many undergraduate and graduate level statistics courses for sevenyears now (Dinov 2006; Dinov et al. 2008b. It has been proven that these resourcescan successfully improve students' learning (Dinov et al. 2008b. Being rst publishedonline in 2005, SOCR Analyses is a somewhat new component and it concentrate on datamodeling for both parametric and non-parametric data analyses with graphical modeldiagnostics. One of the main purposes of SOCR Analyses is to facilitate statistical learn-ing for high school and undergraduate students. As we have already implemented SOCRDistributions and Experiments, SOCR Analyses and Charts fulll the rest of a standardstatistics curricula. Currently, there are four core components of SOCR Analyses. Linearmodels included in SOCR Analyses are simple linear regression, multiple linear regression,one-way and two-way ANOVA. Tests for sample comparisons include t-test in the para-metric category. Some examples of SOCR Analyses' in the non-parametric category areWilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, Kolmogorov-Smirno testand Fligner-Killeen test. Hypothesis testing models include contingency table, Friedman'stest and Fisher's exact test. The last component of Analyses is a utility for computingsample sizes for normal distribution. In this article, we present the design framework,computational implementation and the utilization of SOCR Analyses.
Performances of non-parametric statistics in sensitivity analysis and parameter ranking
International Nuclear Information System (INIS)
Saltelli, A.
1987-01-01
Twelve parametric and non-parametric sensitivity analysis techniques are compared in the case of non-linear model responses. The test models used are taken from the long-term risk analysis for the disposal of high level radioactive waste in a geological formation. They describe the transport of radionuclides through a set of engineered and natural barriers from the repository to the biosphere and to man. The output data from these models are the dose rates affecting the maximum exposed individual of a critical group at a given point in time. All the techniques are applied to the output from the same Monte Carlo simulations, where a modified version of Latin Hypercube method is used for the sample selection. Hypothesis testing is systematically applied to quantify the degree of confidence in the results given by the various sensitivity estimators. The estimators are ranked according to their robustness and stability, on the basis of two test cases. The conclusions are that no estimator can be considered the best from all points of view and recommend the use of more than just one estimator in sensitivity analysis
Directory of Open Access Journals (Sweden)
Jun Zhang
2013-12-01
Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”.
Inferential, non-parametric statistics to assess the quality of probabilistic forecast systems
Maia, A.H.N.; Meinke, H.B.; Lennox, S.; Stone, R.C.
2007-01-01
Many statistical forecast systems are available to interested users. To be useful for decision making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and its statistical manifestation have been firmly established, the forecasts must
Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.
2017-12-01
Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.
Incorporating Nonparametric Statistics into Delphi Studies in Library and Information Science
Ju, Boryung; Jin, Tao
2013-01-01
Introduction: The Delphi technique is widely used in library and information science research. However, many researchers in the field fail to employ standard statistical tests when using this technique. This makes the technique vulnerable to criticisms of its reliability and validity. The general goal of this article is to explore how…
Nonparametric and group-based person-fit statistics : a validity study and an empirical example
Meijer, R.R.
1994-01-01
In person-fit analysis, the object is to investigate whether an item score pattern is improbable given the item score patterns of the other persons in the group or given what is expected on the basis of a test model. In this study, several existing group-based statistics to detect such improbable
Statistical analyses of extreme food habits
International Nuclear Information System (INIS)
Breuninger, M.; Neuhaeuser-Berthold, M.
2000-01-01
This report is a summary of the results of the project ''Statistical analyses of extreme food habits'', which was ordered from the National Office for Radiation Protection as a contribution to the amendment of the ''General Administrative Regulation to paragraph 45 of the Decree on Radiation Protection: determination of the radiation exposition by emission of radioactive substances from facilities of nuclear technology''. Its aim is to show if the calculation of the radiation ingested by 95% of the population by food intake, like it is planned in a provisional draft, overestimates the true exposure. If such an overestimation exists, the dimension of it should be determined. It was possible to prove the existence of this overestimation but its dimension could only roughly be estimated. To identify the real extent of it, it is necessary to include the specific activities of the nuclides, which were not available for this investigation. In addition to this the report shows how the amounts of food consumption of different groups of foods influence each other and which connections between these amounts should be taken into account, in order to estimate the radiation exposition as precise as possible. (orig.) [de
DEFF Research Database (Denmark)
A methodology is presented that combines modelling based on first principles and data based modelling into a modelling cycle that facilitates fast decision-making based on statistical methods. A strong feature of this methodology is that given a first principles model along with process data......, the corresponding modelling cycle model of the given system for a given purpose. A computer-aided tool, which integrates the elements of the modelling cycle, is also presented, and an example is given of modelling a fed-batch bioreactor....
On Cooper's Nonparametric Test.
Schmeidler, James
1978-01-01
The basic assumption of Cooper's nonparametric test for trend (EJ 125 069) is questioned. It is contended that the proper assumption alters the distribution of the statistic and reduces its usefulness. (JKS)
Applied statistics a handbook of BMDP analyses
Snell, E J
1987-01-01
This handbook is a realization of a long term goal of BMDP Statistical Software. As the software supporting statistical analysis has grown in breadth and depth to the point where it can serve many of the needs of accomplished statisticians it can also serve as an essential support to those needing to expand their knowledge of statistical applications. Statisticians should not be handicapped by heavy computation or by the lack of needed options. When Applied Statistics, Principle and Examples by Cox and Snell appeared we at BMDP were impressed with the scope of the applications discussed and felt that many statisticians eager to expand their capabilities in handling such problems could profit from having the solutions carried further, to get them started and guided to a more advanced level in problem solving. Who would be better to undertake that task than the authors of Applied Statistics? A year or two later discussions with David Cox and Joyce Snell at Imperial College indicated that a wedding of the proble...
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most
Dickhaus, Thorsten
2018-01-01
This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.
Lee, L.; Helsel, D.
2007-01-01
Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.
Directory of Open Access Journals (Sweden)
Charles Onyutha
2017-10-01
Full Text Available Some of the problems in drought assessments are that: analyses tend to focus on coarse temporal scales, many of the methods yield skewed indices, a few terminologies are ambiguously used, and analyses comprise an implicit assumption that the observations come from a stationary process. To solve these problems, this paper introduces non-stationary frequency analyses of quantiles. How to use non-parametric rescaling to obtain robust indices that are not (or minimally skewed is also introduced. To avoid ambiguity, some concepts on, e.g., incidence, extremity, etc., were revisited through shift from monthly to daily time scale. Demonstrations on the introduced methods were made using daily flow and precipitation insufficiency (precipitation minus potential evapotranspiration from the Blue Nile basin in Africa. Results show that, when a significant trend exists in extreme events, stationarity-based quantiles can be far different from those when non-stationarity is considered. The introduced non-parametric indices were found to closely agree with the well-known standardized precipitation evapotranspiration indices in many aspects but skewness. Apart from revisiting some concepts, the advantages of the use of fine instead of coarse time scales in drought assessment were given. The links for obtaining freely downloadable tools on how to implement the introduced methods were provided.
Nonparametric tests for censored data
Bagdonavicus, Vilijandas; Nikulin, Mikhail
2013-01-01
This book concerns testing hypotheses in non-parametric models. Generalizations of many non-parametric tests to the case of censored and truncated data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. The incorrect use of many tests applying most statistical software is highlighted and discussed.
A weighted U-statistic for genetic association analyses of sequencing data.
Wei, Changshuai; Li, Ming; He, Zihuai; Vsevolozhskaya, Olga; Schaid, Daniel J; Lu, Qing
2014-12-01
With advancements in next-generation sequencing technology, a massive amount of sequencing data is generated, which offers a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, the high-dimensional sequencing data poses a great challenge for statistical analysis. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a Weighted U Sequencing test, referred to as WU-SEQ, for the high-dimensional association analysis of sequencing data. Based on a nonparametric U-statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used sequence kernel association test (SKAT) method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-SEQ to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol. © 2014 WILEY PERIODICALS, INC.
Statistical Analysis of Data for Timber Strengths
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Hoffmeyer, P.
Statistical analyses are performed for material strength parameters from approximately 6700 specimens of structural timber. Non-parametric statistical analyses and fits to the following distributions types have been investigated: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...
Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA
Thorndahl, S.; Smith, J. A.; Krajewski, W. F.
2012-04-01
During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise the question if it is possible to derive general characteristics of the space-time structures of these heavy storms. This is important in order to understand hydrometeorological features, e.g. how storms evolve and with what frequency we can expect extreme storms to occur. In the literature, most studies of extreme rainfall are based on point measurements (rain gauges). However, with high resolution and quality radar observation periods exceeding more than two decades, it is possible to do long-term spatio-temporal statistical analyses of extremes. This makes it possible to link return periods to distributed rainfall estimates and to study precipitation structures which cause floods. However, doing these statistical frequency analyses of rainfall based on radar observations introduces some different challenges, converting radar reflectivity observations to "true" rainfall, which are not problematic doing traditional analyses on rain gauge data. It is for example difficult to distinguish reflectivity from high intensity rain from reflectivity from other hydrometeors such as hail, especially using single polarization radars which are used in this study. Furthermore, reflectivity from bright band (melting layer) should be discarded and anomalous propagation should be corrected in order to produce valid statistics of extreme radar rainfall. Other challenges include combining observations from several radars to one mosaic, bias correction against rain gauges, range correction, ZR-relationships, etc. The present study analyzes radar rainfall observations from 1996 to 2011 based the American NEXRAD network of radars over an area covering parts of Iowa, Wisconsin, Illinois, and
Nonparametric regression using the concept of minimum energy
International Nuclear Information System (INIS)
Williams, Mike
2011-01-01
It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.
Statistical analyses of conserved features of genomic islands in bacteria.
Guo, F-B; Xia, Z-K; Wei, W; Zhao, H-L
2014-03-17
We performed statistical analyses of five conserved features of genomic islands of bacteria. Analyses were made based on 104 known genomic islands, which were identified by comparative methods. Four of these features include sequence size, abnormal G+C content, flanking tRNA gene, and embedded mobility gene, which are frequently investigated. One relatively new feature, G+C homogeneity, was also investigated. Among the 104 known genomic islands, 88.5% were found to fall in the typical length of 10-200 kb and 80.8% had G+C deviations with absolute values larger than 2%. For the 88 genomic islands whose hosts have been sequenced and annotated, 52.3% of them were found to have flanking tRNA genes and 64.7% had embedded mobility genes. For the homogeneity feature, 85% had an h homogeneity index less than 0.1, indicating that their G+C content is relatively uniform. Taking all the five features into account, 87.5% of 88 genomic islands had three of them. Only one genomic island had only one conserved feature and none of the genomic islands had zero features. These statistical results should help to understand the general structure of known genomic islands. We found that larger genomic islands tend to have relatively small G+C deviations relative to absolute values. For example, the absolute G+C deviations of 9 genomic islands longer than 100,000 bp were all less than 5%. This is a novel but reasonable result given that larger genomic islands should have greater restrictions in their G+C contents, in order to maintain the stable G+C content of the recipient genome.
International Nuclear Information System (INIS)
Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe
2013-01-01
Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)
Methodology development for statistical evaluation of reactor safety analyses
International Nuclear Information System (INIS)
Mazumdar, M.; Marshall, J.A.; Chay, S.C.; Gay, R.
1976-07-01
In February 1975, Westinghouse Electric Corporation, under contract to Electric Power Research Institute, started a one-year program to develop methodology for statistical evaluation of nuclear-safety-related engineering analyses. The objectives of the program were to develop an understanding of the relative efficiencies of various computational methods which can be used to compute probability distributions of output variables due to input parameter uncertainties in analyses of design basis events for nuclear reactors and to develop methods for obtaining reasonably accurate estimates of these probability distributions at an economically feasible level. A series of tasks was set up to accomplish these objectives. Two of the tasks were to investigate the relative efficiencies and accuracies of various Monte Carlo and analytical techniques for obtaining such estimates for a simple thermal-hydraulic problem whose output variable of interest is given in a closed-form relationship of the input variables and to repeat the above study on a thermal-hydraulic problem in which the relationship between the predicted variable and the inputs is described by a short-running computer program. The purpose of the report presented is to document the results of the investigations completed under these tasks, giving the rationale for choices of techniques and problems, and to present interim conclusions
Nonparametric Statistics Test Software Package.
1983-09-01
25 I1l,lCELL WRITE (NCF,12 ) IvE (I ,RCCT(I) 122 FORMAT(IlXt 3(H5 9 1) IF( IeLT *NCELL) WRITE (NOF1123 J PARTV(I1J 123 FORMAT( Xll----’,FIo.3J 25 CONT...the user’s entries. Its purpose is to write two types of files needed by the program Crunch: the data file, and the option file. 211 Iuill rateLchiavar...data file and communicate the choice of test and test parameters to Crunch. After a data file is written, Lochinvar prompts the writing of the
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Non-Statistical Methods of Analysing of Bankruptcy Risk
Directory of Open Access Journals (Sweden)
Pisula Tomasz
2015-06-01
Full Text Available The article focuses on assessing the effectiveness of a non-statistical approach to bankruptcy modelling in enterprises operating in the logistics sector. In order to describe the issue more comprehensively, the aforementioned prediction of the possible negative results of business operations was carried out for companies functioning in the Polish region of Podkarpacie, and in Slovakia. The bankruptcy predictors selected for the assessment of companies operating in the logistics sector included 28 financial indicators characterizing these enterprises in terms of their financial standing and management effectiveness. The purpose of the study was to identify factors (models describing the bankruptcy risk in enterprises in the context of their forecasting effectiveness in a one-year and two-year time horizon. In order to assess their practical applicability the models were carefully analysed and validated. The usefulness of the models was assessed in terms of their classification properties, and the capacity to accurately identify enterprises at risk of bankruptcy and healthy companies as well as proper calibration of the models to the data from training sample sets.
A weighted U statistic for association analyses considering genetic heterogeneity.
Wei, Changshuai; Elston, Robert C; Lu, Qing
2016-07-20
Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Statistical and extra-statistical considerations in differential item functioning analyses
Directory of Open Access Journals (Sweden)
G. K. Huysamen
2004-10-01
Full Text Available This article briefly describes the main procedures for performing differential item functioning (DIF analyses and points out some of the statistical and extra-statistical implications of these methods. Research findings on the sources of DIF, including those associated with translated tests, are reviewed. As DIF analyses are oblivious of correlations between a test and relevant criteria, the elimination of differentially functioning items does not necessarily improve predictive validity or reduce any predictive bias. The implications of the results of past DIF research for test development in the multilingual and multi-cultural South African society are considered. Opsomming Hierdie artikel beskryf kortliks die hoofprosedures vir die ontleding van differensiële itemfunksionering (DIF en verwys na sommige van die statistiese en buite-statistiese implikasies van hierdie metodes. ’n Oorsig word verskaf van navorsingsbevindings oor die bronne van DIF, insluitend dié by vertaalde toetse. Omdat DIF-ontledings nie die korrelasies tussen ’n toets en relevante kriteria in ag neem nie, sal die verwydering van differensieel-funksionerende items nie noodwendig voorspellingsgeldigheid verbeter of voorspellingsydigheid verminder nie. Die implikasies van vorige DIF-navorsingsbevindings vir toetsontwikkeling in die veeltalige en multikulturele Suid-Afrikaanse gemeenskap word oorweeg.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Using statistical inference for decision making in best estimate analyses
International Nuclear Information System (INIS)
Sermer, P.; Weaver, K.; Hoppe, F.; Olive, C.; Quach, D.
2008-01-01
For broad classes of safety analysis problems, one needs to make decisions when faced with randomly varying quantities which are also subject to errors. The means for doing this involves a statistical approach which takes into account the nature of the physical problems, and the statistical constraints they impose. We describe the methodology for doing this which has been developed at Nuclear Safety Solutions, and we draw some comparisons to other methods which are commonly used in Canada and internationally. Our methodology has the advantages of being robust and accurate and compares favourably to other best estimate methods. (author)
Additional methodology development for statistical evaluation of reactor safety analyses
International Nuclear Information System (INIS)
Marshall, J.A.; Shore, R.W.; Chay, S.C.; Mazumdar, M.
1977-03-01
The project described is motivated by the desire for methods to quantify uncertainties and to identify conservatisms in nuclear power plant safety analysis. The report examines statistical methods useful for assessing the probability distribution of output response from complex nuclear computer codes, considers sensitivity analysis and several other topics, and also sets the path for using the developed methods for realistic assessment of the design basis accident
Nonparametric predictive inference in reliability
International Nuclear Information System (INIS)
Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.
2002-01-01
We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere
Nonparametric analysis of blocked ordered categories data: some examples revisited
Directory of Open Access Journals (Sweden)
O. Thas
2006-08-01
Full Text Available Nonparametric analysis for general block designs can be given by using the Cochran-Mantel-Haenszel (CMH statistics. We demonstrate this with four examples and note that several well-known nonparametric statistics are special cases of CMH statistics.
Statistical reporting errors and collaboration on statistical analyses in psychological science
Veldkamp, C.L.S.; Nuijten, M.B.; Dominguez Alvarez, L.; van Assen, M.A.L.M.; Wicherts, J.M.
2014-01-01
Statistical analysis is error prone. A best practice for researchers using statistics would therefore be to share data among co-authors, allowing double-checking of executed tasks just as co-pilots do in aviation. To document the extent to which this ‘co-piloting’ currently occurs in psychology, we
Nonparametric Inference for Periodic Sequences
Sun, Ying
2012-02-01
This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.
Statistical Reporting Errors and Collaboration on Statistical Analyses in Psychological Science.
Veldkamp, Coosje L S; Nuijten, Michèle B; Dominguez-Alvarez, Linda; van Assen, Marcel A L M; Wicherts, Jelte M
2014-01-01
Statistical analysis is error prone. A best practice for researchers using statistics would therefore be to share data among co-authors, allowing double-checking of executed tasks just as co-pilots do in aviation. To document the extent to which this 'co-piloting' currently occurs in psychology, we surveyed the authors of 697 articles published in six top psychology journals and asked them whether they had collaborated on four aspects of analyzing data and reporting results, and whether the described data had been shared between the authors. We acquired responses for 49.6% of the articles and found that co-piloting on statistical analysis and reporting results is quite uncommon among psychologists, while data sharing among co-authors seems reasonably but not completely standard. We then used an automated procedure to study the prevalence of statistical reporting errors in the articles in our sample and examined the relationship between reporting errors and co-piloting. Overall, 63% of the articles contained at least one p-value that was inconsistent with the reported test statistic and the accompanying degrees of freedom, and 20% of the articles contained at least one p-value that was inconsistent to such a degree that it may have affected decisions about statistical significance. Overall, the probability that a given p-value was inconsistent was over 10%. Co-piloting was not found to be associated with reporting errors.
Nonparametric functional mapping of quantitative trait loci.
Yang, Jie; Wu, Rongling; Casella, George
2009-03-01
Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping, thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by examples.
"What If" Analyses: Ways to Interpret Statistical Significance Test Results Using EXCEL or "R"
Ozturk, Elif
2012-01-01
The present paper aims to review two motivations to conduct "what if" analyses using Excel and "R" to understand the statistical significance tests through the sample size context. "What if" analyses can be used to teach students what statistical significance tests really do and in applied research either prospectively to estimate what sample size…
Single versus mixture Weibull distributions for nonparametric satellite reliability
International Nuclear Information System (INIS)
Castet, Jean-Francois; Saleh, Joseph H.
2010-01-01
Long recognized as a critical design attribute for space systems, satellite reliability has not yet received the proper attention as limited on-orbit failure data and statistical analyses can be found in the technical literature. To fill this gap, we recently conducted a nonparametric analysis of satellite reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we provide an advanced parametric fit, based on mixture of Weibull distributions, and compare it with the single Weibull distribution model obtained with the Maximum Likelihood Estimation (MLE) method. We demonstrate that both parametric fits are good approximations of the nonparametric satellite reliability, but that the mixture Weibull distribution provides significant accuracy in capturing all the failure trends in the failure data, as evidenced by the analysis of the residuals and their quasi-normal dispersion.
Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures
Energy Technology Data Exchange (ETDEWEB)
Udey, Ruth Norma [Michigan State Univ., East Lansing, MI (United States)
2013-01-01
Analytical and bioanalytical chemistry measurement results are most meaningful when interpreted using rigorous statistical treatments of the data. The same data set may provide many dimensions of information depending on the questions asked through the applied statistical methods. Three principal projects illustrated the wealth of information gained through the application of statistical data analyses to diverse problems.
Nonparametric identification of copula structures
Li, Bo
2013-06-01
We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric and based on the asymptotic distribution of the empirical copula process.We perform simulation experiments to evaluate our test and conclude that our method is reliable and powerful for assessing common assumptions on the structure of copulas, particularly when the sample size is moderately large. We illustrate our testing approach on two datasets. © 2013 American Statistical Association.
Nonparametric Transfer Function Models
Liu, Jun M.; Chen, Rong; Yao, Qiwei
2009-01-01
In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
2016-05-31
Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics: Integration of Neural...Transfer N/A Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded
A Structural Labor Supply Model with Nonparametric Preferences
van Soest, A.H.O.; Das, J.W.M.; Gong, X.
2000-01-01
Nonparametric techniques are usually seen as a statistic device for data description and exploration, and not as a tool for estimating models with a richer economic structure, which are often required for policy analysis.This paper presents an example where nonparametric flexibility can be attained
CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions
Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.
Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
Quantal Response: Nonparametric Modeling
2017-01-01
capture the behavior of observed phenomena. Higher-order polynomial and finite-dimensional spline basis models allow for more complicated responses as the...flexibility as these are nonparametric (not constrained to any particular functional form). These should be useful in identifying nonstandard behavior via... deviance ∆ = −2 log(Lreduced/Lfull) is defined in terms of the likelihood function L. For normal error, Lfull = 1, and based on Eq. A-2, we have log
Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael
2013-12-01
During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
Kanda, Junya
2016-01-01
The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.
Sequi, Marco; Campi, Rita; Clavenna, Antonio; Bonati, Maurizio
2013-03-01
To evaluate the quality of data reporting and statistical methods performed in drug utilization studies in the pediatric population. Drug utilization studies evaluating all drug prescriptions to children and adolescents published between January 1994 and December 2011 were retrieved and analyzed. For each study, information on measures of exposure/consumption, the covariates considered, descriptive and inferential analyses, statistical tests, and methods of data reporting was extracted. An overall quality score was created for each study using a 12-item checklist that took into account the presence of outcome measures, covariates of measures, descriptive measures, statistical tests, and graphical representation. A total of 22 studies were reviewed and analyzed. Of these, 20 studies reported at least one descriptive measure. The mean was the most commonly used measure (18 studies), but only five of these also reported the standard deviation. Statistical analyses were performed in 12 studies, with the chi-square test being the most commonly performed test. Graphs were presented in 14 papers. Sixteen papers reported the number of drug prescriptions and/or packages, and ten reported the prevalence of the drug prescription. The mean quality score was 8 (median 9). Only seven of the 22 studies received a score of ≥10, while four studies received a score of statistical methods and reported data in a satisfactory manner. We therefore conclude that the methodology of drug utilization studies needs to be improved.
Nonparametric tests for equality of psychometric functions.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2017-12-07
Many empirical studies measure psychometric functions (curves describing how observers' performance varies with stimulus magnitude) because these functions capture the effects of experimental conditions. To assess these effects, parametric curves are often fitted to the data and comparisons are carried out by testing for equality of mean parameter estimates across conditions. This approach is parametric and, thus, vulnerable to violations of the implied assumptions. Furthermore, testing for equality of means of parameters may be misleading: Psychometric functions may vary meaningfully across conditions on an observer-by-observer basis with no effect on the mean values of the estimated parameters. Alternative approaches to assess equality of psychometric functions per se are thus needed. This paper compares three nonparametric tests that are applicable in all situations of interest: The existing generalized Mantel-Haenszel test, a generalization of the Berry-Mielke test that was developed here, and a split variant of the generalized Mantel-Haenszel test also developed here. Their statistical properties (accuracy and power) are studied via simulation and the results show that all tests are indistinguishable as to accuracy but they differ non-uniformly as to power. Empirical use of the tests is illustrated via analyses of published data sets and practical recommendations are given. The computer code in MATLAB and R to conduct these tests is available as Electronic Supplemental Material.
Nonparametric combinatorial sequence models.
Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa
2011-11-01
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.
Bayesian Nonparametric Longitudinal Data Analysis.
Quintana, Fernando A; Johnson, Wesley O; Waetjen, Elaine; Gold, Ellen
2016-01-01
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
Statistical analyses in the study of solar wind-magnetosphere coupling
International Nuclear Information System (INIS)
Baker, D.N.
1985-01-01
Statistical analyses provide a valuable method for establishing initially the existence (or lack of existence) of a relationship between diverse data sets. Statistical methods also allow one to make quantitative assessments of the strengths of observed relationships. This paper reviews the essential techniques and underlying statistical bases for the use of correlative methods in solar wind-magnetosphere coupling studies. Techniques of visual correlation and time-lagged linear cross-correlation analysis are emphasized, but methods of multiple regression, superposed epoch analysis, and linear prediction filtering are also described briefly. The long history of correlation analysis in the area of solar wind-magnetosphere coupling is reviewed with the assessments organized according to data averaging time scales (minutes to years). It is concluded that these statistical methods can be very useful first steps, but that case studies and various advanced analysis methods should be employed to understand fully the average response of the magnetosphere to solar wind input. It is clear that many workers have not always recognized underlying assumptions of statistical methods and thus the significance of correlation results can be in doubt. Long-term averages (greater than or equal to 1 hour) can reveal gross relationships, but only when dealing with high-resolution data (1 to 10 min) can one reach conclusions pertinent to magnetospheric response time scales and substorm onset mechanisms
Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations
Energy Technology Data Exchange (ETDEWEB)
Kleijnen, J.P.C.; Helton, J.C.
1999-04-01
The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (1) linear relationships with correlation coefficients, (2) monotonic relationships with rank correlation coefficients, (3) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (4) trends in variability as defined by variances and interquartile ranges, and (5) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are considered for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (1) Type I errors are unavoidable, (2) Type II errors can occur when inappropriate analysis procedures are used, (3) physical explanations should always be sought for why statistical procedures identify variables as being important, and (4) the identification of important variables tends to be stable for independent Latin hypercube samples.
International Nuclear Information System (INIS)
Clerc, F; Njiki-Menga, G-H; Witschger, O
2013-01-01
Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a
Speaker Linking and Applications using Non-Parametric Hashing Methods
2016-09-08
nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and
Statistical analyses of the data on occupational radiation expousure at JPDR
International Nuclear Information System (INIS)
Kato, Shohei; Anazawa, Yutaka; Matsuno, Kenji; Furuta, Toshishiro; Akiyama, Isamu
1980-01-01
In the statistical analyses of the data on occupational radiation exposure at JPDR, statistical features were obtained as follows. (1) The individual doses followed log-normal distribution. (2) In the distribution of doses from one job in controlled area, the logarithm of the mean (μ) depended on the exposure rate (γ(mR/h)), and the σ correlated to the nature of the job and normally distributed. These relations were as follows. μ = 0.48 ln r-0.24, σ = 1.2 +- 0.58 (3) For the data containing different groups, the distribution of doses showed a polygonal line on the log-normal probability paper. (4) Under the dose limitation, the distribution of the doses showed asymptotic curve along the limit on the log-normal probability paper. (author)
arXiv Statistical Analyses of Higgs- and Z-Portal Dark Matter Models
Ellis, John; Marzola, Luca; Raidal, Martti
2018-06-12
We perform frequentist and Bayesian statistical analyses of Higgs- and Z-portal models of dark matter particles with spin 0, 1/2 and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana or Dirac fermion dark matter particles, and Z-portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing $\\gtrsim 100$ GeV. Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z-portal models with Majorana or Dirac fermion dark matter particles.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
Directory of Open Access Journals (Sweden)
Jordi Marcé-Nogué
2017-10-01
Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
Directory of Open Access Journals (Sweden)
H. Kojima
1999-01-01
Full Text Available We present the characteristics of the Electrostatic Solitary Waves (ESW observed by the Geotail spacecraft in the plasma sheet boundary layer based on the statistical analyses. We also discuss the results referring to a model of ESW generation due to electron beams, which is proposed by computer simulations. In this generation model, the nonlinear evolution of Langmuir waves excited by electron bump-on-tail instabilities leads to formation of isolated electrostatic potential structures corresponding to "electron hole" in the phase space. The statistical analyses of the Geotail data, which we conducted under the assumption that polarity of ESW potentials is positive, show that most of ESW propagate in the same direction of electron beams, which are observed by the plasma instrument, simultaneously. Further, we also find that the ESW potential energy is much smaller than the background electron thermal energy and that the ESW potential widths are typically shorter than 60 times of local electron Debye length when we assume that the ESW potentials travel in the same velocity of electron beams. These results are very consistent with the ESW generation model that the nonlinear evolution of electron bump-on-tail instability leads to the formation of electron holes in the phase space.
Nonparametric identification of copula structures
Li, Bo; Genton, Marc G.
2013-01-01
We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Directory of Open Access Journals (Sweden)
Sunando Roy
2009-10-01
Full Text Available Feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals, and the "immune profiles" that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNgamma, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual
DEFF Research Database (Denmark)
Linnet, Kristian
2005-01-01
Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors......Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors...
DEFF Research Database (Denmark)
Frandsen, Tove Faber; Nicolaisen, Jeppe
2017-01-01
Using statistical methods to analyse digital material for patterns makes it possible to detect patterns in big data that we would otherwise not be able to detect. This paper seeks to exemplify this fact by statistically analysing a large corpus of references in systematic reviews. The aim...
Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.
2015-12-01
Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley
Statistical analyses to support guidelines for marine avian sampling. Final report
Kinlan, Brian P.; Zipkin, Elise; O'Connell, Allan F.; Caldow, Chris
2012-01-01
distribution to describe counts of a given species in a particular region and season. 4. Using a large database of historical at-sea seabird survey data, we applied this technique to identify appropriate statistical distributions for modeling a variety of species, allowing the distribution to vary by season. For each species and season, we used the selected distribution to calculate and map retrospective statistical power to detect hotspots and coldspots, and map pvalues from Monte Carlo significance tests of hotspots and coldspots, in discrete lease blocks designated by the U.S. Department of Interior, Bureau of Ocean Energy Management (BOEM). 5. Because our definition of hotspots and coldspots does not explicitly include variability over time, we examine the relationship between the temporal scale of sampling and the proportion of variance captured in time series of key environmental correlates of marine bird abundance, as well as available marine bird abundance time series, and use these analyses to develop recommendations for the temporal distribution of sampling to adequately represent both shortterm and long-term variability. We conclude by presenting a schematic “decision tree” showing how this power analysis approach would fit in a general framework for avian survey design, and discuss implications of model assumptions and results. We discuss avenues for future development of this work, and recommendations for practical implementation in the context of siting and wildlife assessment for offshore renewable energy development projects.
Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support
Czech Academy of Sciences Publication Activity Database
Kalina, Jan; Zvárová, Jana
2017-01-01
Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability
Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.
Schmitt, M; Grub, J; Heib, F
2015-06-01
Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
A nonparametric mixture model for cure rate estimation.
Peng, Y; Dear, K B
2000-03-01
Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.
Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database
International Nuclear Information System (INIS)
Lam, Chio; Zhou, Wenxing
2016-01-01
This article reports statistical analyses of the mileage and pipe-related incidents data corresponding to the onshore gas transmission pipelines in the US between 2002 and 2013 collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The analysis indicates that there are approximately 480,000 km of gas transmission pipelines in the US, approximately 60% of them more than 45 years old as of 2013. Eighty percent of the pipelines are Class 1 pipelines, and about 20% of the pipelines are Classes 2 and 3 pipelines. It is found that the third-party excavation, external corrosion, material failure and internal corrosion are the four leading failure causes, responsible for more than 75% of the total incidents. The 12-year average rate of rupture equals 3.1 × 10"−"5 per km-year due to all failure causes combined. External corrosion is the leading cause for ruptures: the 12-year average rupture rate due to external corrosion equals 1.0 × 10"−"5 per km-year and is twice the rupture rate due to the third-party excavation or material failure. The study provides insights into the current state of gas transmission pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines. - Highlights: • Analyze PHMSA pipeline mileage and incident data between 2002 and 2013. • Focus on gas transmission pipelines. • Leading causes for pipeline failures are identified. • Provide baseline failure statistics for risk assessments of gas transmission pipelines.
Csillik, O.; Evans, I. S.; Drăguţ, L.
2015-03-01
Automated procedures are developed to alleviate long tails in frequency distributions of morphometric variables. They minimize the skewness of slope gradient frequency distributions, and modify the kurtosis of profile and plan curvature distributions toward that of the Gaussian (normal) model. Box-Cox (for slope) and arctangent (for curvature) transformations are tested on nine digital elevation models (DEMs) of varying origin and resolution, and different landscapes, and shown to be effective. Resulting histograms are illustrated and show considerable improvements over those for previously recommended slope transformations (sine, square root of sine, and logarithm of tangent). Unlike previous approaches, the proposed method evaluates the frequency distribution of slope gradient values in a given area and applies the most appropriate transform if required. Sensitivity of the arctangent transformation is tested, showing that Gaussian-kurtosis transformations are acceptable also in terms of histogram shape. Cube root transformations of curvatures produced bimodal histograms. The transforms are applicable to morphometric variables and many others with skewed or long-tailed distributions. By avoiding long tails and outliers, they permit parametric statistics such as correlation, regression and principal component analyses to be applied, with greater confidence that requirements for linearity, additivity and even scatter of residuals (constancy of error variance) are likely to be met. It is suggested that such transformations should be routinely applied in all parametric analyses of long-tailed variables. Our Box-Cox and curvature automated transformations are based on a Python script, implemented as an easy-to-use script tool in ArcGIS.
International Nuclear Information System (INIS)
Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard
2015-01-01
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single
Energy Technology Data Exchange (ETDEWEB)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Petersen, Claus [Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen (Denmark); Scheutz, Charlotte; Astrup, Thomas Fruergaard [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)
2015-02-15
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single
Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.
Deng, Yangqing; Pan, Wei
2017-12-01
There is growing interest in testing genetic pleiotropy, which is when a single genetic variant influences multiple traits. Several methods have been proposed; however, these methods have some limitations. First, all the proposed methods are based on the use of individual-level genotype and phenotype data; in contrast, for logistical, and other, reasons, summary statistics of univariate SNP-trait associations are typically only available based on meta- or mega-analyzed large genome-wide association study (GWAS) data. Second, existing tests are based on marginal pleiotropy, which cannot distinguish between direct and indirect associations of a single genetic variant with multiple traits due to correlations among the traits. Hence, it is useful to consider conditional analysis, in which a subset of traits is adjusted for another subset of traits. For example, in spite of substantial lowering of low-density lipoprotein cholesterol (LDL) with statin therapy, some patients still maintain high residual cardiovascular risk, and, for these patients, it might be helpful to reduce their triglyceride (TG) level. For this purpose, in order to identify new therapeutic targets, it would be useful to identify genetic variants with pleiotropic effects on LDL and TG after adjusting the latter for LDL; otherwise, a pleiotropic effect of a genetic variant detected by a marginal model could simply be due to its association with LDL only, given the well-known correlation between the two types of lipids. Here, we develop a new pleiotropy testing procedure based only on GWAS summary statistics that can be applied for both marginal analysis and conditional analysis. Although the main technical development is based on published union-intersection testing methods, care is needed in specifying conditional models to avoid invalid statistical estimation and inference. In addition to the previously used likelihood ratio test, we also propose using generalized estimating equations under the
Schmitt, M; Groß, K; Grub, J; Heib, F
2015-06-01
Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Directory of Open Access Journals (Sweden)
Sean Ekins
Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
McKinley, C. C.; Scudder, R.; Thomas, D. J.
2016-12-01
The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential
Review of Statistical Analyses Resulting from Performance of HLDWD-DWPF-005
International Nuclear Information System (INIS)
Beck, R.S.
1997-01-01
The Engineering Department at the Defense Waste Processing Facility (DWPF) has reviewed two reports from the Statistical Consulting Section (SCS) involving the statistical analysis of test results for analysis of small sample inserts (references 1 ampersand 2). The test results cover two proposed analytical methods, a room temperature hydrofluoric acid preparation (Cold Chem) and a sodium peroxide/sodium hydroxide fusion modified for insert samples (Modified Fusion). The reports support implementation of the proposed small sample containers and analytical methods at DWPF. Hydragard sampler valve performance was typical of previous results (reference 3). Using an element from each major feed stream. lithium from the frit and iron from the sludge, the sampler was determined to deliver a uniform mixture in either sample container.The lithium to iron ratios were equivalent for the standard 15 ml vial and the 3 ml insert.The proposed method provide equivalent analyses as compared to the current methods. The biases associated with the proposed methods on a vitrified basis are less than 5% for major elements. The sum of oxides for the proposed method compares favorably with the sum of oxides for the conventional methods. However, the average sum of oxides for the Cold Chem method was 94.3% which is below the minimum required recovery of 95%. Both proposed methods, cold Chem and Modified Fusion, will be required at first to provide an accurate analysis which will routinely meet the 95% and 105% average sum of oxides limit for Product Composition Control System (PCCS).Issued to be resolved during phased implementation are as follows: (1) Determine calcine/vitrification factor for radioactive feed; (2) Evaluate covariance matrix change against process operating ranges to determine optimum sample size; (3) Evaluate sources for low sum of oxides; and (4) Improve remote operability of production versions of equipment and instruments for installation in 221-S.The specifics of
Lowe, David J.; Pearce, Nicholas J. G.; Jorgensen, Murray A.; Kuehn, Stephen C.; Tryon, Christian A.; Hayward, Chris L.
2017-11-01
We define tephras and cryptotephras and their components (mainly ash-sized particles of glass ± crystals in distal deposits) and summarize the basis of tephrochronology as a chronostratigraphic correlational and dating tool for palaeoenvironmental, geological, and archaeological research. We then document and appraise recent advances in analytical methods used to determine the major, minor, and trace elements of individual glass shards from tephra or cryptotephra deposits to aid their correlation and application. Protocols developed recently for the electron probe microanalysis of major elements in individual glass shards help to improve data quality and standardize reporting procedures. A narrow electron beam (diameter ∼3-5 μm) can now be used to analyze smaller glass shards than previously attainable. Reliable analyses of 'microshards' (defined here as glass shards T2 test). Randomization tests can be used where distributional assumptions such as multivariate normality underlying parametric tests are doubtful. Compositional data may be transformed and scaled before being subjected to multivariate statistical procedures including calculation of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may make the assumption of multivariate normality more appropriate. A sequential procedure using Mahalanobis distance and the Hotelling two-sample T2 test is illustrated using glass major element data from trachytic to phonolitic Kenyan tephras. All these methods require a broad range of high-quality compositional data which can be used to compare 'unknowns' with reference (training) sets that are sufficiently complete to account for all possible correlatives, including tephras with heterogeneous glasses that contain multiple compositional groups. Currently, incomplete databases are tending to limit correlation efficacy. The development of an open, online global database to facilitate progress towards integrated, high
Papageorgiou, Spyridon N; Papadopoulos, Moschos A; Athanasiou, Athanasios E
2014-02-01
Ideally meta-analyses (MAs) should consolidate the characteristics of orthodontic research in order to produce an evidence-based answer. However severe flaws are frequently observed in most of them. The aim of this study was to evaluate the statistical methods, the methodology, and the quality characteristics of orthodontic MAs and to assess their reporting quality during the last years. Electronic databases were searched for MAs (with or without a proper systematic review) in the field of orthodontics, indexed up to 2011. The AMSTAR tool was used for quality assessment of the included articles. Data were analyzed with Student's t-test, one-way ANOVA, and generalized linear modelling. Risk ratios with 95% confidence intervals were calculated to represent changes during the years in reporting of key items associated with quality. A total of 80 MAs with 1086 primary studies were included in this evaluation. Using the AMSTAR tool, 25 (27.3%) of the MAs were found to be of low quality, 37 (46.3%) of medium quality, and 18 (22.5%) of high quality. Specific characteristics like explicit protocol definition, extensive searches, and quality assessment of included trials were associated with a higher AMSTAR score. Model selection and dealing with heterogeneity or publication bias were often problematic in the identified reviews. The number of published orthodontic MAs is constantly increasing, while their overall quality is considered to range from low to medium. Although the number of MAs of medium and high level seems lately to rise, several other aspects need improvement to increase their overall quality.
Energy Technology Data Exchange (ETDEWEB)
Amidan, Brett G.; Pulsipher, Brent A.; Matzke, Brett D.
2009-12-17
number of zeros. Using QQ plots these data characteristics show a lack of normality from the data after contamination. Normality is improved when looking at log(CFU/cm2). Variance component analysis (VCA) and analysis of variance (ANOVA) were used to estimate the amount of variance due to each source and to determine which sources of variability were statistically significant. In general, the sampling methods interacted with the across event variability and with the across room variability. For this reason, it was decided to do analyses for each sampling method, individually. The between event variability and between room variability were significant for each method, except for the between event variability for the swabs. For both the wipes and vacuums, the within room standard deviation was much larger (26.9 for wipes and 7.086 for vacuums) than the between event standard deviation (6.552 for wipes and 1.348 for vacuums) and the between room standard deviation (6.783 for wipes and 1.040 for vacuums). Swabs between room standard deviation was 0.151, while both the within room and between event standard deviations are less than 0.10 (all measurements in CFU/cm2).
Nonparametric factor analysis of time series
Rodríguez-Poo, Juan M.; Linton, Oliver Bruce
1998-01-01
We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.
Adaptive nonparametric Bayesian inference using location-scale mixture priors
Jonge, de R.; Zanten, van J.H.
2010-01-01
We study location-scale mixture priors for nonparametric statistical problems, including multivariate regression, density estimation and classification. We show that a rate-adaptive procedure can be obtained if the prior is properly constructed. In particular, we show that adaptation is achieved if
Essentials of Excel, Excel VBA, SAS and Minitab for statistical and financial analyses
Lee, Cheng-Few; Chang, Jow-Ran; Tai, Tzu
2016-01-01
This introductory textbook for business statistics teaches statistical analysis and research methods via business case studies and financial data using Excel, MINITAB, and SAS. Every chapter in this textbook engages the reader with data of individual stock, stock indices, options, and futures. One studies and uses statistics to learn how to study, analyze, and understand a data set of particular interest. Some of the more popular statistical programs that have been developed to use statistical and computational methods to analyze data sets are SAS, SPSS, and MINITAB. Of those, we look at MINITAB and SAS in this textbook. One of the main reasons to use MINITAB is that it is the easiest to use among the popular statistical programs. We look at SAS because it is the leading statistical package used in industry. We also utilize the much less costly and ubiquitous Microsoft Excel to do statistical analysis, as the benefits of Excel have become widely recognized in the academic world and its analytical capabilities...
Energy Technology Data Exchange (ETDEWEB)
NONE
2011-07-01
This report is an assessment of the current model and presentation form of bio energy statistics. It appears proposed revision and enhancement of both collection and data representation. In the context of market development both in general for energy and particularly for bio energy and government targets, a good bio energy statistics form the basis to follow up the objectives and means.(eb)
Jeffrey P. Prestemon
2009-01-01
Timber product markets are subject to large shocks deriving from natural disturbances and policy shifts. Statistical modeling of shocks is often done to assess their economic importance. In this article, I simulate the statistical power of univariate and bivariate methods of shock detection using time series intervention models. Simulations show that bivariate methods...
Directory of Open Access Journals (Sweden)
Maria João Nunes
2005-03-01
Full Text Available In atmospheric aerosol sampling, it is inevitable that the air that carries particles is in motion, as a result of both externally driven wind and the sucking action of the sampler itself. High or low air flow sampling speeds may lead to significant particle size bias. The objective of this work is the validation of measurements enabling the comparison of species concentration from both air flow sampling techniques. The presence of several outliers and increase of residuals with concentration becomes obvious, requiring non-parametric methods, recommended for the handling of data which may not be normally distributed. This way, conversion factors are obtained for each of the various species under study using Kendall regression.
Buttigieg, Pier Luigi; Ramette, Alban Nicolas
2014-01-01
The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynami...
DEFF Research Database (Denmark)
Denwood, M.J.; McKendrick, I.J.; Matthews, L.
Introduction. There is an urgent need for a method of analysing FECRT data that is computationally simple and statistically robust. A method for evaluating the statistical power of a proposed FECRT study would also greatly enhance the current guidelines. Methods. A novel statistical framework has...... been developed that evaluates observed FECRT data against two null hypotheses: (1) the observed efficacy is consistent with the expected efficacy, and (2) the observed efficacy is inferior to the expected efficacy. The method requires only four simple summary statistics of the observed data. Power...... that the notional type 1 error rate of the new statistical test is accurate. Power calculations demonstrate a power of only 65% with a sample size of 20 treatment and control animals, which increases to 69% with 40 control animals or 79% with 40 treatment animals. Discussion. The method proposed is simple...
International Nuclear Information System (INIS)
Kaufmann, R.K.; Kauppi, H.; Stock, J.H.
2006-01-01
Comparing statistical estimates for the long-run temperature effect of doubled CO2 with those generated by climate models begs the question, is the long-run temperature effect of doubled CO2 that is estimated from the instrumental temperature record using statistical techniques consistent with the transient climate response, the equilibrium climate sensitivity, or the effective climate sensitivity. Here, we attempt to answer the question, what do statistical analyses of the observational record measure, by using these same statistical techniques to estimate the temperature effect of a doubling in the atmospheric concentration of carbon dioxide from seventeen simulations run for the Coupled Model Intercomparison Project 2 (CMIP2). The results indicate that the temperature effect estimated by the statistical methodology is consistent with the transient climate response and that this consistency is relatively unaffected by sample size or the increase in radiative forcing in the sample
Exact nonparametric inference for detection of nonlinear determinism
Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene
2005-01-01
We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Statistical analyses of the magnet data for the advanced photon source storage ring magnets
International Nuclear Information System (INIS)
Kim, S.H.; Carnegie, D.W.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.
1995-01-01
The statistics of the measured magnetic data of 80 dipole, 400 quadrupole, and 280 sextupole magnets of conventional resistive designs for the APS storage ring is summarized. In order to accommodate the vacuum chamber, the curved dipole has a C-type cross section and the quadrupole and sextupole cross sections have 180 degrees and 120 degrees symmetries, respectively. The data statistics include the integrated main fields, multipole coefficients, magnetic and mechanical axes, and roll angles of the main fields. The average and rms values of the measured magnet data meet the storage ring requirements
Nonparametric predictive pairwise comparison with competing risks
International Nuclear Information System (INIS)
Coolen-Maturi, Tahani
2014-01-01
In reliability, failure data often correspond to competing risks, where several failure modes can cause a unit to fail. This paper presents nonparametric predictive inference (NPI) for pairwise comparison with competing risks data, assuming that the failure modes are independent. These failure modes could be the same or different among the two groups, and these can be both observed and unobserved failure modes. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. The focus is on the lower and upper probabilities for the event that the lifetime of a future unit from one group, say Y, is greater than the lifetime of a future unit from the second group, say X. The paper also shows how the two groups can be compared based on particular failure mode(s), and the comparison of the two groups when some of the competing risks are combined is discussed
Ellis, Barbara G.; Dick, Steven J.
1996-01-01
Employs the statistics-documentation portion of a word-processing program's grammar-check feature together with qualitative analyses to determine that Henry Watterson, long-time editor of the "Louisville Courier-Journal," was probably the South's famed Civil War correspondent "Shadow." (TB)
International Nuclear Information System (INIS)
Beck, W.
1984-01-01
From the complexity of computer programs for the solution of scientific and technical problems results a lot of questions. Typical questions concern the strength and weakness of computer programs, the propagation of incertainties among the input data, the sensitivity of input data on output data and the substitute of complex models by more simple ones, which provide equivalent results in certain ranges. Those questions have a general practical meaning, principle answers may be found by statistical methods, which are based on the Monte Carlo Method. In this report the statistical methods are chosen, described and valuated. They are implemented into the modular program system STAR, which is an own component of the program system RSYST. The design of STAR considers users with different knowledge of data processing and statistics. The variety of statistical methods, generating and evaluating procedures. The processing of large data sets in complex structures. The coupling to other components of RSYST and RSYST foreign programs. That the system can be easily modificated and enlarged. Four examples are given, which demonstrate the application of STAR. (orig.) [de
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
International Nuclear Information System (INIS)
Kleijnen, J.P.C.; Helton, J.C.
1999-01-01
Procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses are described and illustrated. These procedures attempt to detect increasingly complex patterns in scatterplots and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. A sequence of example analyses with a large model for two-phase fluid flow illustrates how the individual procedures can differ in the variables that they identify as having effects on particular model outcomes. The example analyses indicate that the use of a sequence of procedures is a good analysis strategy and provides some assurance that an important effect is not overlooked
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
Statistical Modelling of Synaptic Vesicles Distribution and Analysing their Physical Characteristics
DEFF Research Database (Denmark)
Khanmohammadi, Mahdieh
transmission electron microscopy is used to acquire images from two experimental groups of rats: 1) rats subjected to a behavioral model of stress and 2) rats subjected to sham stress as the control group. The synaptic vesicle distribution and interactions are modeled by employing a point process approach......This Ph.D. thesis deals with mathematical and statistical modeling of synaptic vesicle distribution, shape, orientation and interactions. The first major part of this thesis treats the problem of determining the effect of stress on synaptic vesicle distribution and interactions. Serial section...... on differences of statistical measures in section and the same measures in between sections. Three-dimensional (3D) datasets are reconstructed by using image registration techniques and estimated thicknesses. We distinguish the effect of stress by estimating the synaptic vesicle densities and modeling...
Statistic analyses of the color experience according to the age of the observer.
Hunjet, Anica; Parac-Osterman, Durdica; Vucaj, Edita
2013-04-01
Psychological experience of color is a real state of the communication between the environment and color, and it will depend on the source of the light, angle of the view, and particular on the observer and his health condition. Hering's theory or a theory of the opponent processes supposes that cones, which are situated in the retina of the eye, are not sensible on the three chromatic domains (areas, fields, zones) (red, green and purple-blue), but they produce a signal based on the principle of the opposed pairs of colors. A reason of this theory depends on the fact that certain disorders of the color eyesight, which include blindness to certain colors, cause blindness to pairs of opponent colors. This paper presents a demonstration of the experience of blue and yellow tone according to the age of the observer. For the testing of the statistically significant differences in the omission in the color experience according to the color of the background we use following statistical tests: Mann-Whitnney U Test, Kruskal-Wallis ANOVA and Median test. It was proven that the differences are statistically significant in the elderly persons (older than 35 years).
Statistical analyses of the performance of Macedonian investment and pension funds
Directory of Open Access Journals (Sweden)
Petar Taleski
2015-10-01
Full Text Available The foundation of the post-modern portfolio theory is creating a portfolio based on a desired target return. This specifically applies to the performance of investment and pension funds that provide a rate of return meeting payment requirements from investment funds. A desired target return is the goal of an investment or pension fund. It is the primary benchmark used to measure performances, dynamic monitoring and evaluation of the risk–return ratio on investment funds. The analysis in this paper is based on monthly returns of Macedonian investment and pension funds (June 2011 - June 2014. Such analysis utilizes the basic, but highly informative statistical characteristic moments like skewness, kurtosis, Jarque–Bera, and Chebyishev’s Inequality. The objective of this study is to perform a trough analysis, utilizing the above mentioned and other types of statistical techniques (Sharpe, Sortino, omega, upside potential, Calmar, Sterling to draw relevant conclusions regarding the risks and characteristic moments in Macedonian investment and pension funds. Pension funds are the second largest segment of the financial system, and has great potential for further growth due to constant inflows from pension insurance. The importance of investment funds for the financial system in the Republic of Macedonia is still small, although open-end investment funds have been the fastest growing segment of the financial system. Statistical analysis has shown that pension funds have delivered a significantly positive volatility-adjusted risk premium in the analyzed period more so than investment funds.
International Nuclear Information System (INIS)
Allen, Bruce; Creighton, Jolien D.E.; Flanagan, Eanna E.; Romano, Joseph D.
2003-01-01
In a previous paper (paper I), we derived a set of near-optimal signal detection techniques for gravitational wave detectors whose noise probability distributions contain non-Gaussian tails. The methods modify standard methods by truncating or clipping sample values which lie in those non-Gaussian tails. The methods were derived, in the frequentist framework, by minimizing false alarm probabilities at fixed false detection probability in the limit of weak signals. For stochastic signals, the resulting statistic consisted of a sum of an autocorrelation term and a cross-correlation term; it was necessary to discard 'by hand' the autocorrelation term in order to arrive at the correct, generalized cross-correlation statistic. In the present paper, we present an alternative derivation of the same signal detection techniques from within the Bayesian framework. We compute, for both deterministic and stochastic signals, the probability that a signal is present in the data, in the limit where the signal-to-noise ratio squared per frequency bin is small, where the signal is nevertheless strong enough to be detected (integrated signal-to-noise ratio large compared to 1), and where the total probability in the non-Gaussian tail part of the noise distribution is small. We show that, for each model considered, the resulting probability is to a good approximation a monotonic function of the detection statistic derived in paper I. Moreover, for stochastic signals, the new Bayesian derivation automatically eliminates the problematic autocorrelation term
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
The Use of Statistical Process Control Tools for Analysing Financial Statements
Directory of Open Access Journals (Sweden)
Niezgoda Janusz
2017-06-01
Full Text Available This article presents the proposed application of one type of the modified Shewhart control charts in the monitoring of changes in the aggregated level of financial ratios. The control chart x̅ has been used as a basis of analysis. The examined variable from the sample in the mentioned chart is the arithmetic mean. The author proposes to substitute it with a synthetic measure that is determined and based on the selected ratios. As the ratios mentioned above, are expressed in different units and characters, the author applies standardisation. The results of selected comparative analyses have been presented for both bankrupts and non-bankrupts. They indicate the possibility of using control charts as an auxiliary tool in financial analyses.
Statistical methods for analysing the relationship between bank profitability and liquidity
Boguslaw Guzik
2006-01-01
The article analyses the most popular methods for the empirical estimation of the relationship between bank profitability and liquidity. Owing to the fact that profitability depends on various factors (both economic and non-economic), a simple correlation coefficient, two-dimensional (profitability/liquidity) graphs or models where profitability depends only on liquidity variable do not provide good and reliable results. Quite good results can be obtained only when multifactorial profitabilit...
Dispersal of potato cyst nematodes measured using historical and spatial statistical analyses.
Banks, N C; Hodda, M; Singh, S K; Matveeva, E M
2012-06-01
Rates and modes of dispersal of potato cyst nematodes (PCNs) were investigated. Analysis of records from eight countries suggested that PCNs spread a mean distance of 5.3 km/year radially from the site of first detection, and spread 212 km over ≈40 years before detection. Data from four countries with more detailed histories of invasion were analyzed further, using distance from first detection, distance from previous detection, distance from nearest detection, straight line distance, and road distance. Linear distance from first detection was significantly related to the time since the first detection. Estimated rate of spread was 5.7 km/year, and did not differ statistically between countries. Time between the first detection and estimated introduction date varied between 0 and 20 years, and differed among countries. Road distances from nearest and first detection were statistically significantly related to time, and gave slightly higher estimates for rate of spread of 6.0 and 7.9 km/year, respectively. These results indicate that the original site of introduction of PCNs may act as a source for subsequent spread and that this may occur at a relatively constant rate over time regardless of whether this distance is measured by road or by a straight line. The implications of this constant radial rate of dispersal for biosecurity and pest management are discussed, along with the effects of control strategies.
Nonparametric correlation models for portfolio allocation
DEFF Research Database (Denmark)
Aslanidis, Nektarios; Casas, Isabel
2013-01-01
This article proposes time-varying nonparametric and semiparametric estimators of the conditional cross-correlation matrix in the context of portfolio allocation. Simulations results show that the nonparametric and semiparametric models are best in DGPs with substantial variability or structural ...... currencies. Results show the nonparametric model generally dominates the others when evaluating in-sample. However, the semiparametric model is best for out-of-sample analysis....
Directory of Open Access Journals (Sweden)
Mohammad D. AL-Tahat
2012-01-01
Full Text Available This paper provides a review and introduction on agile manufacturing. Tactics of agile manufacturing are mapped into different production areas (eight-construct latent: manufacturing equipment and technology, processes technology and know-how, quality and productivity improvement, production planning and control, shop floor management, product design and development, supplier relationship management, and customer relationship management. The implementation level of agile manufacturing tactics is investigated in each area. A structural equation model is proposed. Hypotheses are formulated. Feedback from 456 firms is collected using five-point-Likert-scale questionnaire. Statistical analysis is carried out using IBM SPSS and AMOS. Multicollinearity, content validity, consistency, construct validity, ANOVA analysis, and relationships between agile components are tested. The results of this study prove that the agile manufacturing tactics have positive effect on the overall agility level. This conclusion can be used by manufacturing firms to manage challenges when trying to be agile.
DEFF Research Database (Denmark)
Edjabou, Vincent Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona
2015-01-01
Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both...... comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub......-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10-50 waste fractions, organised according to a three-level (tiered approach) facilitating,comparison of the waste data between individual sub-areas with different fractionation (waste...
Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples
Energy Technology Data Exchange (ETDEWEB)
Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J
2007-10-24
Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
International Nuclear Information System (INIS)
Tsuji, Hirokazu; Yokoyama, Norio; Nakajima, Hajime; Kondo, Tatsuo
1993-05-01
Statistical analyses were conducted by using the cyclic crack growth rate data for pressure vessel steels stored in the JAERI Material Performance Database (JMPD), and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and by ΔK-constant type tests. Based on the results of the statistical analyses, it was concluded that ΔK-constant type tests are generally superior to the commonly used ΔK-increasing type ones from the viewpoint of variability and/or reproducibility of the data. Such a tendency was more pronounced in the tests conducted in simulated LWR primary coolants than those in air. (author)
International Nuclear Information System (INIS)
Bithell, J.F.; Stone, R.A.
1989-01-01
This paper sets out to show that epidemiological methods most commonly used can be improved. When analysing geographical data it is necessary to consider location. The most obvious quantification of location is ranked distance, though other measures which may be more meaningful in relation to aetiology may be substituted. A test based on distance ranks, the ''Poisson maximum test'', depends on the maximum of observed relative risk in regions of increasing size, but with significance level adjusted for selection. Applying this test to data from Sellafield and Sizewell shows that the excess of leukaemia incidence observed at Seascale, near Sellafield, is not an artefact due to data selection by region, and that the excess probably results from a genuine, if as yet unidentified cause (there being little evidence of any other locational association once the Seascale cases have been removed). So far as Sizewell is concerned, geographical proximity to the nuclear power station does not seen particularly important. (author)
Siegel, Joshua S; Power, Jonathan D; Dubis, Joseph W; Vogel, Alecia C; Church, Jessica A; Schlaggar, Bradley L; Petersen, Steven E
2014-05-01
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Copyright © 2013 Wiley Periodicals, Inc.
Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies.
Taylor, Sandra L; Leiserowitz, Gary S; Kim, Kyoungmi
2013-12-01
Mass spectrometry is an important high-throughput technique for profiling small molecular compounds in biological samples and is widely used to identify potential diagnostic and prognostic compounds associated with disease. Commonly, this data generated by mass spectrometry has many missing values resulting when a compound is absent from a sample or is present but at a concentration below the detection limit. Several strategies are available for statistically analyzing data with missing values. The accelerated failure time (AFT) model assumes all missing values result from censoring below a detection limit. Under a mixture model, missing values can result from a combination of censoring and the absence of a compound. We compare power and estimation of a mixture model to an AFT model. Based on simulated data, we found the AFT model to have greater power to detect differences in means and point mass proportions between groups. However, the AFT model yielded biased estimates with the bias increasing as the proportion of observations in the point mass increased while estimates were unbiased with the mixture model except if all missing observations came from censoring. These findings suggest using the AFT model for hypothesis testing and mixture model for estimation. We demonstrated this approach through application to glycomics data of serum samples from women with ovarian cancer and matched controls.
Nonparametric Bayesian inference in biostatistics
Müller, Peter
2015-01-01
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...
Nonparametric e-Mixture Estimation.
Takano, Ken; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2016-12-01
This study considers the common situation in data analysis when there are few observations of the distribution of interest or the target distribution, while abundant observations are available from auxiliary distributions. In this situation, it is natural to compensate for the lack of data from the target distribution by using data sets from these auxiliary distributions-in other words, approximating the target distribution in a subspace spanned by a set of auxiliary distributions. Mixture modeling is one of the simplest ways to integrate information from the target and auxiliary distributions in order to express the target distribution as accurately as possible. There are two typical mixtures in the context of information geometry: the [Formula: see text]- and [Formula: see text]-mixtures. The [Formula: see text]-mixture is applied in a variety of research fields because of the presence of the well-known expectation-maximazation algorithm for parameter estimation, whereas the [Formula: see text]-mixture is rarely used because of its difficulty of estimation, particularly for nonparametric models. The [Formula: see text]-mixture, however, is a well-tempered distribution that satisfies the principle of maximum entropy. To model a target distribution with scarce observations accurately, this letter proposes a novel framework for a nonparametric modeling of the [Formula: see text]-mixture and a geometrically inspired estimation algorithm. As numerical examples of the proposed framework, a transfer learning setup is considered. The experimental results show that this framework works well for three types of synthetic data sets, as well as an EEG real-world data set.
Directory of Open Access Journals (Sweden)
A. V. Nikitenko
2014-04-01
Full Text Available Purpose. Defining and analysis of the probabilistic and spectral characteristics of random current in regenerative braking mode of DC electric rolling stock are observed in this paper. Methodology. The elements and methods of the probability theory (particularly the theory of stationary and non-stationary processes and methods of the sampling theory are used for processing of the regenerated current data arrays by PC. Findings. The regenerated current records are obtained from the locomotives and trains in Ukraine railways and trams in Poland. It was established that the current has uninterrupted and the jumping variations in time (especially in trams. For the random current in the regenerative braking mode the functions of mathematical expectation, dispersion and standard deviation are calculated. Histograms, probabilistic characteristics and correlation functions are calculated and plotted down for this current too. It was established that the current of the regenerative braking mode can be considered like the stationary and non-ergodic process. The spectral analysis of these records and “tail part” of the correlation function found weak periodical (or low-frequency components which are known like an interharmonic. Originality. Firstly, the theory of non-stationary random processes was adapted for the analysis of the recuperated current which has uninterrupted and the jumping variations in time. Secondly, the presence of interharmonics in the stochastic process of regenerated current was defined for the first time. And finally, the patterns of temporal changes of the correlation current function are defined too. This allows to reasonably apply the correlation functions method in the identification of the electric traction system devices. Practical value. The results of probabilistic and statistic analysis of the recuperated current allow to estimate the quality of recovered energy and energy quality indices of electric rolling stock in the
Measurements and statistical analyses of indoor radon concentrations in Tokyo and surrounding areas
International Nuclear Information System (INIS)
Sugiura, Shiroharu; Suzuki, Takashi; Inokoshi, Yukio
1995-01-01
Since the UNSCEAR report published in 1982, radiation exposure to the respiratory tract due to radon and its progeny has been regarded as the single largest contributor to the natural radiation exposure of the general public. In Japan, the measurement of radon gas concentrations in many types of buildings have been surveyed by national and private institutes. We also carried out the measurement of radon gas concentrations in different types of residential buildings in Tokyo and its adjoining prefectures from October 1988 to September 1991, to evaluate the potential radiation risk of the people living there. One or two simplified passive radon monitors were set up in each of the 34 residential buildings located in the above-mentioned area for an exposure period of 3 months each. Comparing the average concentrations in the buildings of different materials and structures, those in the concrete steel buildings were always higher than those in the wooden and the prefabricated mortared buildings. The radon concentrations were proved to become higher in autumn and winter, and lower in spring and summer. Radon concentrations in an underground room of a concrete steel building showed the highest value throughout our investigation, and statistically significant seasonal variation was detected by the X-11 method developed by the U.S. Bureau of Census. The values measured in a room at the first floor of the same concrete steel building also showed seasonal variation, but the phase of variation was different. Another multivariate analysis suggested that the building material and structure are the most important factors concerning the levels of radon concentration among other factors such as the age of the building and the use of ventilators. (author)
Directory of Open Access Journals (Sweden)
Le Bao
2014-11-01
Full Text Available Endogenous retroviruses (ERVs are a class of transposable elements found in all vertebrate genomes that contribute substantially to genomic functional and structural diversity. A host species acquires an ERV when an exogenous retrovirus infects a germ cell of an individual and becomes part of the genome inherited by viable progeny. ERVs that colonized ancestral lineages are fixed in contemporary species. However, in some extant species, ERV colonization is ongoing, which results in variation in ERV frequency in the population. To study the consequences of ERV colonization of a host genome, methods are needed to assign each ERV to a location in a species’ genome and determine which individuals have acquired each ERV by descent. Because well annotated reference genomes are not widely available for all species, de novo clustering approaches provide an alternative to reference mapping that are insensitive to differences between query and reference and that are amenable to mobile element studies in both model and non-model organisms. However, there is substantial uncertainty in both identifying ERV genomic position and assigning each unique ERV integration site to individuals in a population. We present an analysis suitable for detecting ERV integration sites in species without the need for a reference genome. Our approach is based on improved de novo clustering methods and statistical models that take the uncertainty of assignment into account and yield a probability matrix of shared ERV integration sites among individuals. We demonstrate that polymorphic integrations of a recently identified endogenous retrovirus in deer reflect contemporary relationships among individuals and populations.
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality
Directory of Open Access Journals (Sweden)
Zhanchao Li
2013-01-01
Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Analysing the Severity and Frequency of Traffic Crashes in Riyadh City Using Statistical Models
Directory of Open Access Journals (Sweden)
Saleh Altwaijri
2012-12-01
Full Text Available Traffic crashes in Riyadh city cause losses in the form of deaths, injuries and property damages, in addition to the pain and social tragedy affecting families of the victims. In 2005, there were a total of 47,341 injury traffic crashes occurred in Riyadh city (19% of the total KSA crashes and 9% of those crashes were severe. Road safety in Riyadh city may have been adversely affected by: high car ownership, migration of people to Riyadh city, high daily trips reached about 6 million, high rate of income, low-cost of petrol, drivers from different nationalities, young drivers and tremendous growth in population which creates a high level of mobility and transport activities in the city. The primary objective of this paper is therefore to explore factors affecting the severity and frequency of road crashes in Riyadh city using appropriate statistical models aiming to establish effective safety policies ready to be implemented to reduce the severity and frequency of road crashes in Riyadh city. Crash data for Riyadh city were collected from the Higher Commission for the Development of Riyadh (HCDR for a period of five years from 1425H to 1429H (roughly corresponding to 2004-2008. Crash data were classified into three categories: fatal, serious-injury and slight-injury. Two nominal response models have been developed: a standard multinomial logit model (MNL and a mixed logit model to injury-related crash data. Due to a severe underreporting problem on the slight injury crashes binary and mixed binary logistic regression models were also estimated for two categories of severity: fatal and serious crashes. For frequency, two count models such as Negative Binomial (NB models were employed and the unit of analysis was 168 HAIs (wards in Riyadh city. Ward-level crash data are disaggregated by severity of the crash (such as fatal and serious injury crashes. The results from both multinomial and binary response models are found to be fairly consistent but
International Nuclear Information System (INIS)
Kleijnen, J.P.C.; Helton, J.C.
1999-01-01
The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are considered for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (i) Type I errors are unavoidable, (ii) Type II errors can occur when inappropriate analysis procedures are used, (iii) physical explanations should always be sought for why statistical procedures identify variables as being important, and (iv) the identification of important variables tends to be stable for independent Latin hypercube samples
International Conference on Robust Rank-Based and Nonparametric Methods
McKean, Joseph
2016-01-01
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Screen Wars, Star Wars, and Sequels: Nonparametric Reanalysis of Movie Profitability
W. D. Walls
2012-01-01
In this paper we use nonparametric statistical tools to quantify motion-picture profit. We quantify the unconditional distribution of profit, the distribution of profit conditional on stars and sequels, and we also model the conditional expectation of movie profits using a non- parametric data-driven regression model. The flexibility of the non-parametric approach accommodates the full range of possible relationships among the variables without prior specification of a functional form, thereb...
Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.
Deshwar, Amit G; Vembu, Shankar; Morris, Quaid
2015-01-01
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
Essays on nonparametric econometrics of stochastic volatility
Zu, Y.
2012-01-01
Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.
Nonparametric methods for volatility density estimation
Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.
2009-01-01
Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on
Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja
Taskinen, Sara
2015-01-01
Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.
Hopewell, Sally; Witt, Claudia M; Linde, Klaus; Icke, Katja; Adedire, Olubusola; Kirtley, Shona; Altman, Douglas G
2018-01-11
Selective reporting of outcomes in clinical trials is a serious problem. We aimed to investigate the influence of the peer review process within biomedical journals on reporting of primary outcome(s) and statistical analyses within reports of randomised trials. Each month, PubMed (May 2014 to April 2015) was searched to identify primary reports of randomised trials published in six high-impact general and 12 high-impact specialty journals. The corresponding author of each trial was invited to complete an online survey asking authors about changes made to their manuscript as part of the peer review process. Our main outcomes were to assess: (1) the nature and extent of changes as part of the peer review process, in relation to reporting of the primary outcome(s) and/or primary statistical analysis; (2) how often authors followed these requests; and (3) whether this was related to specific journal or trial characteristics. Of 893 corresponding authors who were invited to take part in the online survey 258 (29%) responded. The majority of trials were multicentre (n = 191; 74%); median sample size 325 (IQR 138 to 1010). The primary outcome was clearly defined in 92% (n = 238), of which the direction of treatment effect was statistically significant in 49%. The majority responded (1-10 Likert scale) they were satisfied with the overall handling (mean 8.6, SD 1.5) and quality of peer review (mean 8.5, SD 1.5) of their manuscript. Only 3% (n = 8) said that the editor or peer reviewers had asked them to change or clarify the trial's primary outcome. However, 27% (n = 69) reported they were asked to change or clarify the statistical analysis of the primary outcome; most had fulfilled the request, the main motivation being to improve the statistical methods (n = 38; 55%) or avoid rejection (n = 30; 44%). Overall, there was little association between authors being asked to make this change and the type of journal, intervention, significance of the
Directory of Open Access Journals (Sweden)
Viviane Moura Rocha
2015-04-01
Full Text Available This paper presents a topographic analysis of the fields of consumer loyalty and loyalty programs, vastly studied in the last decades and still relevant in the marketing literature. After the identification of 250 scientific papers that were published in the last ten years in indexed journals, a subset of 76 were chosen and their 3223 references were extracted. The journals in which these papers were published, their key words, abstracts, authors, institutions of origin and citation patterns were identified and analyzed using bibliometrics, spatial statistics techniques and network analyses. The results allow the identification of the central components of the field, as well as its main authors, journals, institutions and countries that intermediate the diffusion of knowledge, which contributes to the understanding of the constitution of the field by researchers and students.
Buttigieg, Pier Luigi; Ramette, Alban
2014-12-01
The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.
2012-12-01
Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2015-05-01
Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality
Li, Zhanchao; Gu, Chongshi; Wu, Zhongru
2013-01-01
The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...
Nonparametric statistics: a step-by-step approach
National Research Council Canada - National Science Library
Corder, Gregory W; Foreman, Dale I
2014-01-01
.... The book continues to follow the same format in all chapters to aid in reader comprehension, and each chapter begins with a general introduction and a list of the chapter's main learning objectives...
Multivariate nonparametric regression and visualization with R and applications to finance
Klemelä, Jussi
2014-01-01
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio
Wang, W. L.; Tsui, K. L.; Lo, S. M.; Liu, S. B.
2018-01-01
Crowded transportation hubs such as metro stations are thought as ideal places for the development and spread of epidemics. However, for the special features of complex spatial layout, confined environment with a large number of highly mobile individuals, it is difficult to quantify human contacts in such environments, wherein disease spreading dynamics were less explored in the previous studies. Due to the heterogeneity and dynamic nature of human interactions, increasing studies proved the importance of contact distance and length of contact in transmission probabilities. In this study, we show how detailed information on contact and exposure patterns can be obtained by statistical analyses on microscopic crowd simulation data. To be specific, a pedestrian simulation model-CityFlow was employed to reproduce individuals' movements in a metro station based on site survey data, values and distributions of individual contact rate and exposure in different simulation cases were obtained and analyzed. It is interesting that Weibull distribution fitted the histogram values of individual-based exposure in each case very well. Moreover, we found both individual contact rate and exposure had linear relationship with the average crowd densities of the environments. The results obtained in this paper can provide reference to epidemic study in complex and confined transportation hubs and refine the existing disease spreading models.
Statistical Analysis of Data for Timber Strengths
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2003-01-01
Statistical analyses are performed for material strength parameters from a large number of specimens of structural timber. Non-parametric statistical analysis and fits have been investigated for the following distribution types: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...... fits to the data available, especially if tail fits are used whereas the Log Normal distribution generally gives a poor fit and larger coefficients of variation, especially if tail fits are used. The implications on the reliability level of typical structural elements and on partial safety factors...... for timber are investigated....
Cafri, Guy; Kromrey, Jeffrey D.; Brannick, Michael T.
2010-01-01
This article uses meta-analyses published in "Psychological Bulletin" from 1995 to 2005 to describe meta-analyses in psychology, including examination of statistical power, Type I errors resulting from multiple comparisons, and model choice. Retrospective power estimates indicated that univariate categorical and continuous moderators, individual…
International Nuclear Information System (INIS)
Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T.; Van Laere, K.; Jamart, J.; D'Asseler, Y.; Minoshima, S.
2009-01-01
Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine 99m Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)
Nonparametric conditional predictive regions for time series
de Gooijer, J.G.; Zerom Godefay, D.
2000-01-01
Several nonparametric predictors based on the Nadaraya-Watson kernel regression estimator have been proposed in the literature. They include the conditional mean, the conditional median, and the conditional mode. In this paper, we consider three types of predictive regions for these predictors — the
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...
Nonparametric estimation in models for unobservable heterogeneity
Hohmann, Daniel
2014-01-01
Nonparametric models which allow for data with unobservable heterogeneity are studied. The first publication introduces new estimators and their asymptotic properties for conditional mixture models. The second publication considers estimation of a function from noisy observations of its Radon transform in a Gaussian white noise model.
Nonparametric estimation of location and scale parameters
Potgieter, C.J.; Lombard, F.
2012-01-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal
A Bayesian Nonparametric Approach to Factor Analysis
DEFF Research Database (Denmark)
Piatek, Rémi; Papaspiliopoulos, Omiros
2018-01-01
This paper introduces a new approach for the inference of non-Gaussian factor models based on Bayesian nonparametric methods. It relaxes the usual normality assumption on the latent factors, widely used in practice, which is too restrictive in many settings. Our approach, on the contrary, does no...
Melsen, W G; Rovers, M M; Bonten, M J M; Bootsma, M C J|info:eu-repo/dai/nl/304830305
Variance between studies in a meta-analysis will exist. This heterogeneity may be of clinical, methodological or statistical origin. The last of these is quantified by the I(2) -statistic. We investigated, using simulated studies, the accuracy of I(2) in the assessment of heterogeneity and the
Intuitive introductory statistics
Wolfe, Douglas A
2017-01-01
This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course. The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonp...
A non-parametric method for correction of global radiation observations
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Perers, Bengt
2013-01-01
in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...
Directory of Open Access Journals (Sweden)
Rabia Ece OMAY
2013-06-01
Full Text Available In this study, relationship between gross domestic product (GDP per capita and sulfur dioxide (SO2 and particulate matter (PM10 per capita is modeled for Turkey. Nonparametric fixed effect panel data analysis is used for the modeling. The panel data covers 12 territories, in first level of Nomenclature of Territorial Units for Statistics (NUTS, for period of 1990-2001. Modeling of the relationship between GDP and SO2 and PM10 for Turkey, the non-parametric models have given good results.
Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system
Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.
Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.
2018-03-01
We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
Directory of Open Access Journals (Sweden)
Jinchao Feng
2018-03-01
Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
Parametric and Non-Parametric System Modelling
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg
1999-01-01
the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...
Nonparametric Bayes Modeling of Multivariate Categorical Data.
Dunson, David B; Xing, Chuanhua
2012-01-01
Modeling of multivariate unordered categorical (nominal) data is a challenging problem, particularly in high dimensions and cases in which one wishes to avoid strong assumptions about the dependence structure. Commonly used approaches rely on the incorporation of latent Gaussian random variables or parametric latent class models. The goal of this article is to develop a nonparametric Bayes approach, which defines a prior with full support on the space of distributions for multiple unordered categorical variables. This support condition ensures that we are not restricting the dependence structure a priori. We show this can be accomplished through a Dirichlet process mixture of product multinomial distributions, which is also a convenient form for posterior computation. Methods for nonparametric testing of violations of independence are proposed, and the methods are applied to model positional dependence within transcription factor binding motifs.
Statistical analysis applied to safety culture self-assessment
International Nuclear Information System (INIS)
Macedo Soares, P.P.
2002-01-01
Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)
Network structure exploration via Bayesian nonparametric models
International Nuclear Information System (INIS)
Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z
2015-01-01
Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)
portfolio optimization based on nonparametric estimation methods
Directory of Open Access Journals (Sweden)
mahsa ghandehari
2017-03-01
Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.
Nonparametric Mixture Models for Supervised Image Parcellation.
Sabuncu, Mert R; Yeo, B T Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polina
2009-09-01
We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.
Robustifying Bayesian nonparametric mixtures for count data.
Canale, Antonio; Prünster, Igor
2017-03-01
Our motivating application stems from surveys of natural populations and is characterized by large spatial heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure. This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding clusters. The application and a simulation study for different scenarios yield also some general methodological implications. Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at both levels, the kernel and the mixing measure. © 2016, The International Biometric Society.
Nonparametric Bayesian density estimation on manifolds with applications to planar shapes.
Bhattacharya, Abhishek; Dunson, David B
2010-12-01
Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics, medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean quotient manifolds. To conduct nonparametric inferences, one may define notions of centre and spread on this manifold and work with their estimates. However, it is useful to consider full likelihood-based methods, which allow nonparametric estimation of the probability density. This article proposes a broad class of mixture models constructed using suitable kernels on a general compact metric space and then on the planar shape space in particular. Following a Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained under which the Kullback-Leibler property holds, implying large support and weak posterior consistency. Gibbs sampling methods are developed for posterior computation, and the methods are applied to problems in density estimation and classification with shape-based predictors. Simulation studies show improved estimation performance relative to existing approaches.
NParCov3: A SAS/IML Macro for Nonparametric Randomization-Based Analysis of Covariance
Directory of Open Access Journals (Sweden)
Richard C. Zink
2012-07-01
Full Text Available Analysis of covariance serves two important purposes in a randomized clinical trial. First, there is a reduction of variance for the treatment effect which provides more powerful statistical tests and more precise confidence intervals. Second, it provides estimates of the treatment effect which are adjusted for random imbalances of covariates between the treatment groups. The nonparametric analysis of covariance method of Koch, Tangen, Jung, and Amara (1998 defines a very general methodology using weighted least-squares to generate covariate-adjusted treatment effects with minimal assumptions. This methodology is general in its applicability to a variety of outcomes, whether continuous, binary, ordinal, incidence density or time-to-event. Further, its use has been illustrated in many clinical trial settings, such as multi-center, dose-response and non-inferiority trials.NParCov3 is a SAS/IML macro written to conduct the nonparametric randomization-based covariance analyses of Koch et al. (1998. The software can analyze a variety of outcomes and can account for stratification. Data from multiple clinical trials will be used for illustration.
International Nuclear Information System (INIS)
Mizokami, Shinya; Hotta, Akitoshi; Kudo, Yoshiro; Yonehara, Tadashi; Watada, Masayuki; Sakaba, Hiroshi
2009-01-01
Current licensing practice in Japan consists of using conservative boundary and initial conditions(BIC), assumptions and analytical codes. The safety analyses for licensing purpose are inherently deterministic. Therefore, conservative BIC and assumptions, such as single failure, must be employed for the analyses. However, using conservative analytical codes are not considered essential. The standard committee of Atomic Energy Society of Japan(AESJ) has drawn up the standard for using best estimate codes for safety analyses in 2008 after three-years of discussions reflecting domestic and international recent findings. (author)
Data analysis with small samples and non-normal data nonparametrics and other strategies
Siebert, Carl F
2017-01-01
Written in everyday language for non-statisticians, this book provides all the information needed to successfully conduct nonparametric analyses. This ideal reference book provides step-by-step instructions to lead the reader through each analysis, screenshots of the software and output, and case scenarios to illustrate of all the analytic techniques.
A non-parametric framework for estimating threshold limit values
Directory of Open Access Journals (Sweden)
Ulm Kurt
2005-11-01
Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.
Tay, Louis; Drasgow, Fritz
2012-01-01
Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…
Santos, José António; Galante-Oliveira, Susana; Barroso, Carlos
2011-03-01
The current work presents an innovative statistical approach to model ordinal variables in environmental monitoring studies. An ordinal variable has values that can only be compared as "less", "equal" or "greater" and it is not possible to have information about the size of the difference between two particular values. The example of ordinal variable under this study is the vas deferens sequence (VDS) used in imposex (superimposition of male sexual characters onto prosobranch females) field assessment programmes for monitoring tributyltin (TBT) pollution. The statistical methodology presented here is the ordered logit regression model. It assumes that the VDS is an ordinal variable whose values match up a process of imposex development that can be considered continuous in both biological and statistical senses and can be described by a latent non-observable continuous variable. This model was applied to the case study of Nucella lapillus imposex monitoring surveys conducted in the Portuguese coast between 2003 and 2008 to evaluate the temporal evolution of TBT pollution in this country. In order to produce more reliable conclusions, the proposed model includes covariates that may influence the imposex response besides TBT (e.g. the shell size). The model also provides an analysis of the environmental risk associated to TBT pollution by estimating the probability of the occurrence of females with VDS ≥ 2 in each year, according to OSPAR criteria. We consider that the proposed application of this statistical methodology has a great potential in environmental monitoring whenever there is the need to model variables that can only be assessed through an ordinal scale of values.
Nonparametric Estimation of Distributions in Random Effects Models
Hart, Jeffrey D.
2011-01-01
We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.
Nonparametric estimation of benchmark doses in environmental risk assessment
Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen
2013-01-01
Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133
Monaco, E.; Memmolo, V.; Ricci, F.; Boffa, N. D.; Maio, L.
2015-03-01
Maintenance approaches based on sensorised structures and Structural Health Monitoring systems could represent one of the most promising innovations in the fields of aerostructures since many years, mostly when composites materials (fibers reinforced resins) are considered. Layered materials still suffer today of drastic reductions of maximum allowable stress values during the design phase as well as of costly and recurrent inspections during the life cycle phase that don't permit of completely exploit their structural and economic potentialities in today aircrafts. Those penalizing measures are necessary mainly to consider the presence of undetected hidden flaws within the layered sequence (delaminations) or in bonded areas (partial disbonding); in order to relax design and maintenance constraints a system based on sensors permanently installed on the structure to detect and locate eventual flaws can be considered (SHM system) once its effectiveness and reliability will be statistically demonstrated via a rigorous Probability Of Detection function definition and evaluation. This paper presents an experimental approach with a statistical procedure for the evaluation of detection threshold of a guided waves based SHM system oriented to delaminations detection on a typical wing composite layered panel. The experimental tests are mostly oriented to characterize the statistical distribution of measurements and damage metrics as well as to characterize the system detection capability using this approach. Numerically it is not possible to substitute part of the experimental tests aimed at POD where the noise in the system response is crucial. Results of experiments are presented in the paper and analyzed.
Non-parametric smoothing of experimental data
International Nuclear Information System (INIS)
Kuketayev, A.T.; Pen'kov, F.M.
2007-01-01
Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving
Decompounding random sums: A nonparametric approach
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted; Pitts, Susan M.
Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...
A Nonparametric Test for Seasonal Unit Roots
Kunst, Robert M.
2009-01-01
Abstract: We consider a nonparametric test for the null of seasonal unit roots in quarterly time series that builds on the RUR (records unit root) test by Aparicio, Escribano, and Sipols. We find that the test concept is more promising than a formalization of visual aids such as plots by quarter. In order to cope with the sensitivity of the original RUR test to autocorrelation under its null of a unit root, we suggest an augmentation step by autoregression. We present some evidence on the siz...
Wei, Jiawei
2011-07-01
We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.
Directory of Open Access Journals (Sweden)
Putnik-Delić Marina I.
2010-01-01
Full Text Available Eleven sugar beet genotypes were tested for their capacity to tolerate drought. Plants were grown in semi-controlled conditions, in the greenhouse, and watered daily. After 90 days, water deficit was imposed by the cessation of watering, while the control plants continued to be watered up to 80% of FWC. Five days later concentration of free proline in leaves was determined. Analysis was done in three replications. Statistical analysis was performed using STATISTICA 9.0, Minitab 15, and R2.11.1. Differences between genotypes were statistically processed by Duncan test. Because of nonormality of the data distribution and heterogeneity of variances in different groups, two types of transformations of row data were applied. For this type of data more appropriate in eliminating nonormality was Johnson transformation, as opposed to Box-Cox. Based on the both transformations it may be concluded that in all genotypes except for 10, concentration of free proline differs significantly between treatment (drought and the control.
Multi-Directional Non-Parametric Analysis of Agricultural Efficiency
DEFF Research Database (Denmark)
Balezentis, Tomas
This thesis seeks to develop methodologies for assessment of agricultural efficiency and employ them to Lithuanian family farms. In particular, we focus on three particular objectives throughout the research: (i) to perform a fully non-parametric analysis of efficiency effects, (ii) to extend...... to the Multi-Directional Efficiency Analysis approach when the proposed models were employed to analyse empirical data of Lithuanian family farm performance, we saw substantial differences in efficiencies associated with different inputs. In particular, assets appeared to be the least efficiently used input...... relative to labour, intermediate consumption and land (in some cases land was not treated as a discretionary input). These findings call for further research on relationships among financial structure, investment decisions, and efficiency in Lithuanian family farms. Application of different techniques...
Statistics Anxiety and Business Statistics: The International Student
Bell, James A.
2008-01-01
Does the international student suffer from statistics anxiety? To investigate this, the Statistics Anxiety Rating Scale (STARS) was administered to sixty-six beginning statistics students, including twelve international students and fifty-four domestic students. Due to the small number of international students, nonparametric methods were used to…
Directory of Open Access Journals (Sweden)
Carles Comas
2015-04-01
Full Text Available Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H as hydrological marker. Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2. We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other. Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern. Main results: Values for Q. ilex (δ18O = –5.3 ± 0.2‰, δ2H = –54.3 ± 0.7‰ were significantly lower than for P. halepensis (δ18O = –1.2 ± 0.2‰, δ2H = –25.1 ± 0.8‰, pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.
Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas
2014-01-01
Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were
Forbes, Valery E; Aufderheide, John; Warbritton, Ryan; van der Hoeven, Nelly; Caspers, Norbert
2007-03-01
This study presents results of the effects of bisphenol A (BPA) on adult egg production, egg hatchability, egg development rates and juvenile growth rates in the freshwater gastropod, Marisa cornuarietis. We observed no adult mortality, substantial inter-snail variability in reproductive output, and no effects of BPA on reproduction during 12 weeks of exposure to 0, 0.1, 1.0, 16, 160 or 640 microg/L BPA. We observed no effects of BPA on egg hatchability or timing of egg hatching. Juveniles showed good growth in the control and all treatments, and there were no significant effects of BPA on this endpoint. Our results do not support previous claims of enhanced reproduction in Marisa cornuarietis in response to exposure to BPA. Statistical power analysis indicated high levels of inter-snail variability in the measured endpoints and highlighted the need for sufficient replication when testing treatment effects on reproduction in M. cornuarietis with adequate power.
International Nuclear Information System (INIS)
Peterson, James R.; Haas, Timothy C.; Lee, Danny C.
2000-01-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network
Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.
Ortolano, Gaetano; Visalli, Roberto; Godard, Gaston; Cirrincione, Rosolino
2018-06-01
We present a new ArcGIS®-based tool developed in the Python programming language for calibrating EDS/WDS X-ray element maps, with the aim of acquiring quantitative information of petrological interest. The calibration procedure is based on a multiple linear regression technique that takes into account interdependence among elements and is constrained by the stoichiometry of minerals. The procedure requires an appropriate number of spot analyses for use as internal standards and provides several test indexes for a rapid check of calibration accuracy. The code is based on an earlier image-processing tool designed primarily for classifying minerals in X-ray element maps; the original Python code has now been enhanced to yield calibrated maps of mineral end-members or the chemical parameters of each classified mineral. The semi-automated procedure can be used to extract a dataset that is automatically stored within queryable tables. As a case study, the software was applied to an amphibolite-facies garnet-bearing micaschist. The calibrated images obtained for both anhydrous (i.e., garnet and plagioclase) and hydrous (i.e., biotite) phases show a good fit with corresponding electron microprobe analyses. This new GIS-based tool package can thus find useful application in petrology and materials science research. Moreover, the huge quantity of data extracted opens new opportunities for the development of a thin-section microchemical database that, using a GIS platform, can be linked with other major global geoscience databases.
Directory of Open Access Journals (Sweden)
Jing-Chzi Hsieh
2016-05-01
Full Text Available The recycled Kevlar®/polyester/low-melting-point polyester (recycled Kevlar®/PET/LPET nonwoven geotextiles are immersed in neutral, strong acid, and strong alkali solutions, respectively, at different temperatures for four months. Their tensile strength is then tested according to various immersion periods at various temperatures, in order to determine their durability to chemicals. For the purpose of analyzing the possible factors that influence mechanical properties of geotextiles under diverse environmental conditions, the experimental results and statistical analyses are incorporated in this study. Therefore, influences of the content of recycled Kevlar® fibers, implementation of thermal treatment, and immersion periods on the tensile strength of recycled Kevlar®/PET/LPET nonwoven geotextiles are examined, after which their influential levels are statistically determined by performing multiple regression analyses. According to the results, the tensile strength of nonwoven geotextiles can be enhanced by adding recycled Kevlar® fibers and thermal treatment.
Yokoyama, Shozo; Takenaka, Naomi
2005-04-01
Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.
Wafer, Lucas; Kloczewiak, Marek; Luo, Yin
2016-07-01
Analytical ultracentrifugation-sedimentation velocity (AUC-SV) is often used to quantify high molar mass species (HMMS) present in biopharmaceuticals. Although these species are often present in trace quantities, they have received significant attention due to their potential immunogenicity. Commonly, AUC-SV data is analyzed as a diffusion-corrected, sedimentation coefficient distribution, or c(s), using SEDFIT to numerically solve Lamm-type equations. SEDFIT also utilizes maximum entropy or Tikhonov-Phillips regularization to further allow the user to determine relevant sample information, including the number of species present, their sedimentation coefficients, and their relative abundance. However, this methodology has several, often unstated, limitations, which may impact the final analysis of protein therapeutics. These include regularization-specific effects, artificial "ripple peaks," and spurious shifts in the sedimentation coefficients. In this investigation, we experimentally verified that an explicit Bayesian approach, as implemented in SEDFIT, can largely correct for these effects. Clear guidelines on how to implement this technique and interpret the resulting data, especially for samples containing micro-heterogeneity (e.g., differential glycosylation), are also provided. In addition, we demonstrated how the Bayesian approach can be combined with F statistics to draw more accurate conclusions and rigorously exclude artifactual peaks. Numerous examples with an antibody and an antibody-drug conjugate were used to illustrate the strengths and drawbacks of each technique.
Gregoire, Alexandre David
2011-07-01
The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.
Nonparametric predictive inference for combining diagnostic tests with parametric copula
Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.
2017-09-01
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.
Exact nonparametric confidence bands for the survivor function.
Matthews, David
2013-10-12
A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.
International Nuclear Information System (INIS)
Kolluri, Srinivas Sahan; Esfahani, Iman Janghorban; Garikiparthy, Prithvi Sai Nadh; Yoo, Chang Kyoo
2015-01-01
Our aim was to analyze, monitor, and predict the outcomes of processes in a full-scale seawater reverse osmosis (SWRO) desalination plant using multivariate statistical techniques. Multivariate analysis of variance (MANOVA) was used to investigate the performance and efficiencies of two SWRO processes, namely, pore controllable fiber filterreverse osmosis (PCF-SWRO) and sand filtration-ultra filtration-reverse osmosis (SF-UF-SWRO). Principal component analysis (PCA) was applied to monitor the two SWRO processes. PCA monitoring revealed that the SF-UF-SWRO process could be analyzed reliably with a low number of outliers and disturbances. Partial least squares (PLS) analysis was then conducted to predict which of the seven input parameters of feed flow rate, PCF/SF-UF filtrate flow rate, temperature of feed water, turbidity feed, pH, reverse osmosis (RO)flow rate, and pressure had a significant effect on the outcome variables of permeate flow rate and concentration. Root mean squared errors (RMSEs) of the PLS models for permeate flow rates were 31.5 and 28.6 for the PCF-SWRO process and SF-UF-SWRO process, respectively, while RMSEs of permeate concentrations were 350.44 and 289.4, respectively. These results indicate that the SF-UF-SWRO process can be modeled more accurately than the PCF-SWRO process, because the RMSE values of permeate flowrate and concentration obtained using a PLS regression model of the SF-UF-SWRO process were lower than those obtained for the PCF-SWRO process.
Energy Technology Data Exchange (ETDEWEB)
Kolluri, Srinivas Sahan; Esfahani, Iman Janghorban; Garikiparthy, Prithvi Sai Nadh; Yoo, Chang Kyoo [Kyung Hee University, Yongin (Korea, Republic of)
2015-08-15
Our aim was to analyze, monitor, and predict the outcomes of processes in a full-scale seawater reverse osmosis (SWRO) desalination plant using multivariate statistical techniques. Multivariate analysis of variance (MANOVA) was used to investigate the performance and efficiencies of two SWRO processes, namely, pore controllable fiber filterreverse osmosis (PCF-SWRO) and sand filtration-ultra filtration-reverse osmosis (SF-UF-SWRO). Principal component analysis (PCA) was applied to monitor the two SWRO processes. PCA monitoring revealed that the SF-UF-SWRO process could be analyzed reliably with a low number of outliers and disturbances. Partial least squares (PLS) analysis was then conducted to predict which of the seven input parameters of feed flow rate, PCF/SF-UF filtrate flow rate, temperature of feed water, turbidity feed, pH, reverse osmosis (RO)flow rate, and pressure had a significant effect on the outcome variables of permeate flow rate and concentration. Root mean squared errors (RMSEs) of the PLS models for permeate flow rates were 31.5 and 28.6 for the PCF-SWRO process and SF-UF-SWRO process, respectively, while RMSEs of permeate concentrations were 350.44 and 289.4, respectively. These results indicate that the SF-UF-SWRO process can be modeled more accurately than the PCF-SWRO process, because the RMSE values of permeate flowrate and concentration obtained using a PLS regression model of the SF-UF-SWRO process were lower than those obtained for the PCF-SWRO process.
Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua
2018-04-01
In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.
Hoover, F. A.; Bowling, L. C.; Prokopy, L. S.
2015-12-01
Urban stormwater is an on-going management concern in municipalities of all sizes. In both combined or separated sewer systems, pollutants from stormwater runoff enter the natural waterway system during heavy rain events. Urban flooding during frequent and more intense storms are also a growing concern. Therefore, stormwater best-management practices (BMPs) are being implemented in efforts to reduce and manage stormwater pollution and overflow. The majority of BMP water quality studies focus on the small-scale, individual effects of the BMP, and the change in water quality directly from the runoff of these infrastructures. At the watershed scale, it is difficult to establish statistically whether or not these BMPs are making a difference in water quality, given that watershed scale monitoring is often costly and time consuming, relying on significant sources of funds, which a city may not have. Hence, there is a need to quantify the level of sampling needed to detect the water quality impact of BMPs at the watershed scale. In this study, a power analysis was performed on data from an urban watershed in Lafayette, Indiana, to determine the frequency of sampling required to detect a significant change in water quality measurements. Using the R platform, results indicate that detecting a significant change in watershed level water quality would require hundreds of weekly measurements, even when improvement is present. The second part of this study investigates whether the difficulty in demonstrating water quality change represents a barrier to adoption of stormwater BMPs. Semi-structured interviews of community residents and organizations in Chicago, IL are being used to investigate residents understanding of water quality and best management practices and identify their attitudes and perceptions towards stormwater BMPs. Second round interviews will examine how information on uncertainty in water quality improvements influences their BMP attitudes and perceptions.
Smooth semi-nonparametric (SNP) estimation of the cumulative incidence function.
Duc, Anh Nguyen; Wolbers, Marcel
2017-08-15
This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected
An Evaluation of Parametric and Nonparametric Models of Fish Population Response.
Energy Technology Data Exchange (ETDEWEB)
Haas, Timothy C.; Peterson, James T.; Lee, Danny C.
1999-11-01
Predicting the distribution or status of animal populations at large scales often requires the use of broad-scale information describing landforms, climate, vegetation, etc. These data, however, often consist of mixtures of continuous and categorical covariates and nonmultiplicative interactions among covariates, complicating statistical analyses. Using data from the interior Columbia River Basin, USA, we compared four methods for predicting the distribution of seven salmonid taxa using landscape information. Subwatersheds (mean size, 7800 ha) were characterized using a set of 12 covariates describing physiography, vegetation, and current land-use. The techniques included generalized logit modeling, classification trees, a nearest neighbor technique, and a modular neural network. We evaluated model performance using out-of-sample prediction accuracy via leave-one-out cross-validation and introduce a computer-intensive Monte Carlo hypothesis testing approach for examining the statistical significance of landscape covariates with the non-parametric methods. We found the modular neural network and the nearest-neighbor techniques to be the most accurate, but were difficult to summarize in ways that provided ecological insight. The modular neural network also required the most extensive computer resources for model fitting and hypothesis testing. The generalized logit models were readily interpretable, but were the least accurate, possibly due to nonlinear relationships and nonmultiplicative interactions among covariates. Substantial overlap among the statistically significant (P<0.05) covariates for each method suggested that each is capable of detecting similar relationships between responses and covariates. Consequently, we believe that employing one or more methods may provide greater biological insight without sacrificing prediction accuracy.
Directory of Open Access Journals (Sweden)
Wang Xiaoqiang
2012-04-01
Full Text Available Abstract Background Quantitative trait loci (QTL detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations. The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location. Results A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i
Directory of Open Access Journals (Sweden)
Deverick J Anderson
Full Text Available The rate of community-acquired Clostridium difficile infection (CA-CDI is increasing. While receipt of antibiotics remains an important risk factor for CDI, studies related to acquisition of C. difficile outside of hospitals are lacking. As a result, risk factors for exposure to C. difficile in community settings have been inadequately studied.To identify novel environmental risk factors for CA-CDI.We performed a population-based retrospective cohort study of patients with CA-CDI from 1/1/2007 through 12/31/2014 in a 10-county area in central North Carolina. 360 Census Tracts in these 10 counties were used as the demographic Geographic Information System (GIS base-map. Longitude and latitude (X, Y coordinates were generated from patient home addresses and overlaid to Census Tracts polygons using ArcGIS; ArcView was used to assess "hot-spots" or clusters of CA-CDI. We then constructed a mixed hierarchical model to identify environmental variables independently associated with increased rates of CA-CDI.A total of 1,895 unique patients met our criteria for CA-CDI. The mean patient age was 54.5 years; 62% were female and 70% were Caucasian. 402 (21% patient addresses were located in "hot spots" or clusters of CA-CDI (p<0.001. "Hot spot" census tracts were scattered throughout the 10 counties. After adjusting for clustering and population density, age ≥ 60 years (p = 0.03, race (<0.001, proximity to a livestock farm (0.01, proximity to farming raw materials services (0.02, and proximity to a nursing home (0.04 were independently associated with increased rates of CA-CDI.Our study is the first to use spatial statistics and mixed models to identify important environmental risk factors for acquisition of C. difficile and adds to the growing evidence that farm practices may put patients at risk for important drug-resistant infections.
International Nuclear Information System (INIS)
Bennett, J.T.; Crowder, C.A.; Connolly, M.J.
1994-01-01
Gas samples from drums of radioactive waste at the Department of Energy (DOE) Idaho National Engineering Laboratory are being characterized for 29 volatile organic compounds to determine the feasibility of storing the waste in DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Quality requirements for the gas chromatography (GC) and GC/mass spectrometry chemical methods used to analyze the waste are specified in the Quality Assurance Program Plan for the WIPP Experimental Waste Characterization Program. Quality requirements consist of both objective criteria (data quality objectives, DQOs) and statistical criteria (process control). The DQOs apply to routine sample analyses, while the statistical criteria serve to determine and monitor precision and accuracy (P ampersand A) of the analysis methods and are also used to assign upper confidence limits to measurement results close to action levels. After over two years and more than 1000 sample analyses there are two general conclusions concerning the two approaches to quality control: (1) Objective criteria (e.g., ± 25% precision, ± 30% accuracy) based on customer needs and the usually prescribed criteria for similar EPA- approved methods are consistently attained during routine analyses. (2) Statistical criteria based on short term method performance are almost an order of magnitude more stringent than objective criteria and are difficult to satisfy following the same routine laboratory procedures which satisfy the objective criteria. A more cost effective and representative approach to establishing statistical method performances criteria would be either to utilize a moving average of P ampersand A from control samples over a several month time period or to determine within a sample variation by one-way analysis of variance of several months replicate sample analysis results or both. Confidence intervals for results near action levels could also be determined by replicate analysis of the sample in
On Parametric (and Non-Parametric Variation
Directory of Open Access Journals (Sweden)
Neil Smith
2009-11-01
Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.
Nonparametric estimation of location and scale parameters
Potgieter, C.J.
2012-12-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.
On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests
Directory of Open Access Journals (Sweden)
Aaditya Ramdas
2017-01-01
Full Text Available Nonparametric two-sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being designed and analyzed, both for the unidimensional and the multivariate setting. Inthisshortsurvey,wefocusonteststatisticsthatinvolvetheWassersteindistance. Usingan entropic smoothing of the Wasserstein distance, we connect these to very different tests including multivariate methods involving energy statistics and kernel based maximum mean discrepancy and univariate methods like the Kolmogorov–Smirnov test, probability or quantile (PP/QQ plots and receiver operating characteristic or ordinal dominance (ROC/ODC curves. Some observations are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two-sample testing’s classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.
A NONPARAMETRIC HYPOTHESIS TEST VIA THE BOOTSTRAP RESAMPLING
Temel, Tugrul T.
2001-01-01
This paper adapts an already existing nonparametric hypothesis test to the bootstrap framework. The test utilizes the nonparametric kernel regression method to estimate a measure of distance between the models stated under the null hypothesis. The bootstraped version of the test allows to approximate errors involved in the asymptotic hypothesis test. The paper also develops a Mathematica Code for the test algorithm.
Simple nonparametric checks for model data fit in CAT
Meijer, R.R.
2005-01-01
In this paper, the usefulness of several nonparametric checks is discussed in a computerized adaptive testing (CAT) context. Although there is no tradition of nonparametric scalability in CAT, it can be argued that scalability checks can be useful to investigate, for example, the quality of item
Nonparametric Bayesian inference for multidimensional compound Poisson processes
Gugushvili, S.; van der Meulen, F.; Spreij, P.
2015-01-01
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,
Bayesian nonparametric meta-analysis using Polya tree mixture models.
Branscum, Adam J; Hanson, Timothy E
2008-09-01
Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.
Pan, Wei
2003-07-22
Recently a class of nonparametric statistical methods, including the empirical Bayes (EB) method, the significance analysis of microarray (SAM) method and the mixture model method (MMM), have been proposed to detect differential gene expression for replicated microarray experiments conducted under two conditions. All the methods depend on constructing a test statistic Z and a so-called null statistic z. The null statistic z is used to provide some reference distribution for Z such that statistical inference can be accomplished. A common way of constructing z is to apply Z to randomly permuted data. Here we point our that the distribution of z may not approximate the null distribution of Z well, leading to possibly too conservative inference. This observation may apply to other permutation-based nonparametric methods. We propose a new method of constructing a null statistic that aims to estimate the null distribution of a test statistic directly. Using simulated data and real data, we assess and compare the performance of the existing method and our new method when applied in EB, SAM and MMM. Some interesting findings on operating characteristics of EB, SAM and MMM are also reported. Finally, by combining the idea of SAM and MMM, we outline a simple nonparametric method based on the direct use of a test statistic and a null statistic.
Nonparametric methods in actigraphy: An update
Directory of Open Access Journals (Sweden)
Bruno S.B. Gonçalves
2014-09-01
Full Text Available Circadian rhythmicity in humans has been well studied using actigraphy, a method of measuring gross motor movement. As actigraphic technology continues to evolve, it is important for data analysis to keep pace with new variables and features. Our objective is to study the behavior of two variables, interdaily stability and intradaily variability, to describe rest activity rhythm. Simulated data and actigraphy data of humans, rats, and marmosets were used in this study. We modified the method of calculation for IV and IS by modifying the time intervals of analysis. For each variable, we calculated the average value (IVm and ISm results for each time interval. Simulated data showed that (1 synchronization analysis depends on sample size, and (2 fragmentation is independent of the amplitude of the generated noise. We were able to obtain a significant difference in the fragmentation patterns of stroke patients using an IVm variable, while the variable IV60 was not identified. Rhythmic synchronization of activity and rest was significantly higher in young than adults with Parkinson׳s when using the ISM variable; however, this difference was not seen using IS60. We propose an updated format to calculate rhythmic fragmentation, including two additional optional variables. These alternative methods of nonparametric analysis aim to more precisely detect sleep–wake cycle fragmentation and synchronization.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
International Nuclear Information System (INIS)
Lee, Tae-Hong; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Kyung-Pil
2007-01-01
Statistical parametric mapping (SPM) and statistical probabilistic anatomical mapping (SPAM) were applied to basal/acetazolamide Tc-99m ECD brain perfusion SPECT images in patients with middle cerebral artery (MCA) stenosis to assess the efficacy of endovascular stenting of the MCA. Enrolled in the study were 11 patients (8 men and 3 women, mean age 54.2 ± 6.2 years) who had undergone endovascular stent placement for MCA stenosis. Using SPM and SPAM analyses, we compared the number of significant voxels and cerebral counts in basal and acetazolamide SPECT images before and after stenting, and assessed the perfusion changes and cerebral vascular reserve index (CVRI). The numbers of hypoperfusion voxels in SPECT images were decreased from 10,083 ± 8,326 to 4,531 ± 5,091 in basal images (P 0.0317) and from 13,398 ± 14,222 to 7,699 ± 10,199 in acetazolamide images (P = 0.0142) after MCA stenting. On SPAM analysis, the increases in cerebral counts were significant in acetazolamide images (90.9 ± 2.2 to 93.5 ± 2.3, P = 0.0098) but not in basal images (91 ± 2.7 to 92 ± 2.6, P = 0.1602). The CVRI also showed a statistically significant increase from before stenting (median 0.32; 95% CI -2.19-2.37) to after stenting (median 1.59; 95% CI -0.85-4.16; P = 0.0068). This study revealed the usefulness of voxel-based analysis of basal/acetazolamide brain perfusion SPECT after MCA stent placement. This study showed that SPM and SPAM analyses of basal/acetazolamide Tc-99m brain SPECT could be used to evaluate the short-term hemodynamic efficacy of successful MCA stent placement. (orig.)
Directory of Open Access Journals (Sweden)
Ian T. Kracalik
2012-11-01
Full Text Available We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle and small (sheep and goats domestic ruminants across Kazakhstan. The Getis-Ord (Gi* statistic and a multidirectional optimal ecotope algorithm (AMOEBA were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149 and for small ruminants (n = 9. In contrast, Gi* revealed fewer large ruminant clusters (n = 122 and more small ruminant clusters (n = 61. Significant environmental differences were found between groups using the Kruskall-Wallis and Mann- Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.
Mihajilov-Krstev, Tatjana M; Denić, Marija S; Zlatković, Bojan K; Stankov-Jovanović, Vesna P; Mitić, Violeta D; Stojanović, Gordana S; Radulović, Niko S
2015-04-01
In Serbia, delicatessen fruit alcoholic drinks are produced from autochthonous fruit-bearing species such as cornelian cherry, blackberry, elderberry, wild strawberry, European wild apple, European blueberry and blackthorn fruits. There are no chemical data on many of these and herein we analysed volatile minor constituents of these rare fruit distillates. Our second goal was to determine possible chemical markers of these distillates through a statistical/multivariate treatment of the herein obtained and previously reported data. Detailed chemical analyses revealed a complex volatile profile of all studied fruit distillates with 371 identified compounds. A number of constituents were recognised as marker compounds for a particular distillate. Moreover, 33 of them represent newly detected flavour constituents in alcoholic beverages or, in general, in foodstuffs. With the aid of multivariate analyses, these volatile profiles were successfully exploited to infer the origin of raw materials used in the production of these spirits. It was also shown that all fruit distillates possessed weak antimicrobial properties. It seems that the aroma of these highly esteemed wild-fruit spirits depends on the subtle balance of various minor volatile compounds, whereby some of them are specific to a certain type of fruit distillate and enable their mutual distinction. © 2014 Society of Chemical Industry.
Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines
Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.
2011-01-01
Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433
Nonparametric adaptive age replacement with a one-cycle criterion
International Nuclear Information System (INIS)
Coolen-Schrijner, P.; Coolen, F.P.A.
2007-01-01
Age replacement of technical units has received much attention in the reliability literature over the last four decades. Mostly, the failure time distribution for the units is assumed to be known, and minimal costs per unit of time is used as optimality criterion, where renewal reward theory simplifies the mathematics involved but requires the assumption that the same process and replacement strategy continues over a very large ('infinite') period of time. Recently, there has been increasing attention to adaptive strategies for age replacement, taking into account the information from the process. Although renewal reward theory can still be used to provide an intuitively and mathematically attractive optimality criterion, it is more logical to use minimal costs per unit of time over a single cycle as optimality criterion for adaptive age replacement. In this paper, we first show that in the classical age replacement setting, with known failure time distribution with increasing hazard rate, the one-cycle criterion leads to earlier replacement than the renewal reward criterion. Thereafter, we present adaptive age replacement with a one-cycle criterion within the nonparametric predictive inferential framework. We study the performance of this approach via simulations, which are also used for comparisons with the use of the renewal reward criterion within the same statistical framework
Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R
2016-12-01
: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We
Nonparametric NAR-ARCH Modelling of Stock Prices by the Kernel Methodology
Directory of Open Access Journals (Sweden)
Mohamed Chikhi
2018-02-01
Full Text Available This paper analyses cyclical behaviour of Orange stock price listed in French stock exchange over 01/03/2000 to 02/02/2017 by testing the nonlinearities through a class of conditional heteroscedastic nonparametric models. The linearity and Gaussianity assumptions are rejected for Orange Stock returns and informational shocks have transitory effects on returns and volatility. The forecasting results show that Orange stock prices are short-term predictable and nonparametric NAR-ARCH model has better performance over parametric MA-APARCH model for short horizons. Plus, the estimates of this model are also better comparing to the predictions of the random walk model. This finding provides evidence for weak form of inefficiency in Paris stock market with limited rationality, thus it emerges arbitrage opportunities.
Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs
Kuosmanen, T.K.
2005-01-01
Environmental Economics and Natural Resources Group at Wageningen University in The Netherlands Weak disposability of outputs means that firms can abate harmful emissions by decreasing the activity level. Modeling weak disposability in nonparametric production analysis has caused some confusion.
Multi-sample nonparametric treatments comparison in medical ...
African Journals Online (AJOL)
Multi-sample nonparametric treatments comparison in medical follow-up study with unequal observation processes through simulation and bladder tumour case study. P. L. Tan, N.A. Ibrahim, M.B. Adam, J. Arasan ...
THE GROWTH POINTS OF STATISTICAL METHODS
Orlov A. I.
2014-01-01
On the basis of a new paradigm of applied mathematical statistics, data analysis and economic-mathematical methods are identified; we have also discussed five topical areas in which modern applied statistics is developing as well as the other statistical methods, i.e. five "growth points" – nonparametric statistics, robustness, computer-statistical methods, statistics of interval data, statistics of non-numeric data
Cliff´s Delta Calculator: A non-parametric effect size program for two groups of observations
Directory of Open Access Journals (Sweden)
Guillermo Macbeth
2011-05-01
Full Text Available The Cliff´s Delta statistic is an effect size measure that quantifies the amount of difference between two non-parametric variables beyond p-values interpretation. This measure can be understood as a useful complementary analysis for the corresponding hypothesis testing. During the last two decades the use of effect size measures has been strongly encouraged by methodologists and leading institutions of behavioral sciences. The aim of this contribution is to introduce the Cliff´s Delta Calculator software that performs such analysis and offers some interpretation tips. Differences and similarities with the parametric case are analysed and illustrated. The implementation of this free program is fully described and compared with other calculators. Alternative algorithmic approaches are mathematically analysed and a basic linear algebra proof of its equivalence is formally presented. Two worked examples in cognitive psychology are commented. A visual interpretation of Cliff´s Delta is suggested. Availability, installation and applications of the program are presented and discussed.
Directory of Open Access Journals (Sweden)
Michael Robert Cunningham
2016-10-01
Full Text Available The limited resource model states that self-control is governed by a relatively finite set of inner resources on which people draw when exerting willpower. Once self-control resources have been used up or depleted, they are less available for other self-control tasks, leading to a decrement in subsequent self-control success. The depletion effect has been studied for over 20 years, tested or extended in more than 600 studies, and supported in an independent meta-analysis (Hagger, Wood, Stiff, and Chatzisarantis, 2010. Meta-analyses are supposed to reduce bias in literature reviews. Carter, Kofler, Forster, and McCullough’s (2015 meta-analysis, by contrast, included a series of questionable decisions involving sampling, methods, and data analysis. We provide quantitative analyses of key sampling issues: exclusion of many of the best depletion studies based on idiosyncratic criteria and the emphasis on mini meta-analyses with low statistical power as opposed to the overall depletion effect. We discuss two key methodological issues: failure to code for research quality, and the quantitative impact of weak studies by novice researchers. We discuss two key data analysis issues: questionable interpretation of the results of trim and fill and funnel plot asymmetry test procedures, and the use and misinterpretation of the untested Precision Effect Test [PET] and Precision Effect Estimate with Standard Error (PEESE procedures. Despite these serious problems, the Carter et al. meta-analysis results actually indicate that there is a real depletion effect – contrary to their title.
All of statistics a concise course in statistical inference
Wasserman, Larry
2004-01-01
This book is for people who want to learn probability and statistics quickly It brings together many of the main ideas in modern statistics in one place The book is suitable for students and researchers in statistics, computer science, data mining and machine learning This book covers a much wider range of topics than a typical introductory text on mathematical statistics It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses The reader is assumed to know calculus and a little linear algebra No previous knowledge of probability and statistics is required The text can be used at the advanced undergraduate and graduate level Larry Wasserman is Professor of Statistics at Carnegie Mellon University He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bi...
Dai, Wenlin; Tong, Tiejun; Zhu, Lixing
2017-01-01
Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.
Dai, Wenlin
2017-09-01
Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.
Basic statistical tools in research and data analysis
Directory of Open Access Journals (Sweden)
Zulfiqar Ali
2016-01-01
Full Text Available Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.
Harris, Joshua D; Brand, Jefferson C; Cote, Mark P; Dhawan, Aman
2017-08-01
Within the health care environment, there has been a recent and appropriate trend towards emphasizing the value of care provision. Reduced cost and higher quality improve the value of care. Quality is a challenging, heterogeneous, variably defined concept. At the core of quality is the patient's outcome, quantified by a vast assortment of subjective and objective outcome measures. There has been a recent evolution towards evidence-based medicine in health care, clearly elucidating the role of high-quality evidence across groups of patients and studies. Synthetic studies, such as systematic reviews and meta-analyses, are at the top of the evidence-based medicine hierarchy. Thus, these investigations may be the best potential source of guiding diagnostic, therapeutic, prognostic, and economic medical decision making. Systematic reviews critically appraise and synthesize the best available evidence to provide a conclusion statement (a "take-home point") in response to a specific answerable clinical question. A meta-analysis uses statistical methods to quantitatively combine data from single studies. Meta-analyses should be performed with high methodological quality homogenous studies (Level I or II) or evidence randomized studies, to minimize confounding variable bias. When it is known that the literature is inadequate or a recent systematic review has already been performed with a demonstration of insufficient data, then a new systematic review does not add anything meaningful to the literature. PROSPERO registration and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines assist authors in the design and conduct of systematic reviews and should always be used. Complete transparency of the conduct of the review permits reproducibility and improves fidelity of the conclusions. Pooling of data from overly dissimilar investigations should be avoided. This particularly applies to Level IV evidence, that is, noncomparative investigations
Directory of Open Access Journals (Sweden)
Sergio A. Alvarado
2010-12-01
Full Text Available Objetivo: Evaluar la eficiencia predictiva de modelos estadísticos paramétricos y no paramétricos para predecir episodios críticos de contaminación por material particulado PM10 del día siguiente, que superen en Santiago de Chile la norma de calidad diaria. Una predicción adecuada de tales episodios permite a la autoridad decretar medidas restrictivas que aminoren la gravedad del episodio, y consecuentemente proteger la salud de la comunidad. Método: Se trabajó con las concentraciones de material particulado PM10 registradas en una estación asociada a la red de monitorización de la calidad del aire MACAM-2, considerando 152 observaciones diarias de 14 variables, y con información meteorológica registrada durante los años 2001 a 2004. Se ajustaron modelos estadísticos paramétricos Gamma usando el paquete estadístico STATA v11, y no paramétricos usando una demo del software estadístico MARS v 2.0 distribuida por Salford-Systems. Resultados: Ambos métodos de modelación presentan una alta correlación entre los valores observados y los predichos. Los modelos Gamma presentan mejores aciertos que MARS para las concentraciones de PM10 con valores Objective: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community´s health. Methods: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford
da Costa Lobato, Tarcísio; Hauser-Davis, Rachel Ann; de Oliveira, Terezinha Ferreira; Maciel, Marinalva Cardoso; Tavares, Maria Regina Madruga; da Silveira, Antônio Morais; Saraiva, Augusto Cesar Fonseca
2015-02-15
The Amazon area has been increasingly suffering from anthropogenic impacts, especially due to the construction of hydroelectric power plant reservoirs. The analysis and categorization of the trophic status of these reservoirs are of interest to indicate man-made changes in the environment. In this context, the present study aimed to categorize the trophic status of a hydroelectric power plant reservoir located in the Brazilian Amazon by constructing a novel Water Quality Index (WQI) and Trophic State Index (TSI) for the reservoir using major ion concentrations and physico-chemical water parameters determined in the area and taking into account the sampling locations and the local hydrological regimes. After applying statistical analyses (factor analysis and cluster analysis) and establishing a rule base of a fuzzy system to these indicators, the results obtained by the proposed method were then compared to the generally applied Carlson and a modified Lamparelli trophic state index (TSI), specific for trophic regions. The categorization of the trophic status by the proposed fuzzy method was shown to be more reliable, since it takes into account the specificities of the study area, while the Carlson and Lamparelli TSI do not, and, thus, tend to over or underestimate the trophic status of these ecosystems. The statistical techniques proposed and applied in the present study, are, therefore, relevant in cases of environmental management and policy decision-making processes, aiding in the identification of the ecological status of water bodies. With this, it is possible to identify which factors should be further investigated and/or adjusted in order to attempt the recovery of degraded water bodies. Copyright © 2014 Elsevier B.V. All rights reserved.
Statistical inference a short course
Panik, Michael J
2012-01-01
A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causal
Directory of Open Access Journals (Sweden)
Todd C. Pataky
2016-11-01
Full Text Available One-dimensional (1D kinematic, force, and EMG trajectories are often analyzed using zero-dimensional (0D metrics like local extrema. Recently whole-trajectory 1D methods have emerged in the literature as alternatives. Since 0D and 1D methods can yield qualitatively different results, the two approaches may appear to be theoretically distinct. The purposes of this paper were (a to clarify that 0D and 1D approaches are actually just special cases of a more general region-of-interest (ROI analysis framework, and (b to demonstrate how ROIs can augment statistical power. We first simulated millions of smooth, random 1D datasets to validate theoretical predictions of the 0D, 1D and ROI approaches and to emphasize how ROIs provide a continuous bridge between 0D and 1D results. We then analyzed a variety of public datasets to demonstrate potential effects of ROIs on biomechanical conclusions. Results showed, first, that a priori ROI particulars can qualitatively affect the biomechanical conclusions that emerge from analyses and, second, that ROIs derived from exploratory/pilot analyses can detect smaller biomechanical effects than are detectable using full 1D methods. We recommend regarding ROIs, like data filtering particulars and Type I error rate, as parameters which can affect hypothesis testing results, and thus as sensitivity analysis tools to ensure arbitrary decisions do not influence scientific interpretations. Last, we describe open-source Python and MATLAB implementations of 1D ROI analysis for arbitrary experimental designs ranging from one-sample t tests to MANOVA.
A robust nonparametric method for quantifying undetected extinctions.
Chisholm, Ryan A; Giam, Xingli; Sadanandan, Keren R; Fung, Tak; Rheindt, Frank E
2016-06-01
How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per-species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions. © 2016 Society for Conservation Biology.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
Lind, Mads V; Savolainen, Otto I; Ross, Alastair B
2016-08-01
Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS "omics" approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.
Energy Technology Data Exchange (ETDEWEB)
Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu
2014-01-15
According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.
International Nuclear Information System (INIS)
Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef
2014-01-01
According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers
International Nuclear Information System (INIS)
Wenrich-Verbeek, K.J.; Suits, V.J.
1979-01-01
This report presents the chemical analyses and statistical evaluation of 62 water samples collected in the north-central part of New Mexico near Rio Ojo Caliente. Both spring and surface-water samples were taken throughout the Rio Ojo Caliente drainage basin above and a few miles below the town of La Madera. A high U concentration (15 μg/l) found in the water of the Rio Ojo Caliente near La Madera, Rio Arriba County, New Mexico, during a regional sampling-technique study in August 1975 by the senior author, was investigated further in May 1976 to determine whether stream waters could be effectively used to trace the source of a U anomaly. A detailed study of the tributaries to the Rio Ojo Caliente, involving 29 samples, was conducted during a moderate discharge period, May 1976, so that small tributaries would contain water. This study isolated Canada de la Cueva as the tributary contributing the anomalous U, so that in May 1977, an extremely low discharge period due to the 1977 drought, an additional 33 samples were taken to further define the anomalous area. 6 references, 3 figures, 6 tables
Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.
Energy Technology Data Exchange (ETDEWEB)
Lopez Fontan, J.L.; Costa, J.; Ruso, J.M.; Prieto, G. [Dept. of Applied Physics, Univ. of Santiago de Compostela, Santiago de Compostela (Spain); Sarmiento, F. [Dept. of Mathematics, Faculty of Informatics, Univ. of A Coruna, A Coruna (Spain)
2004-02-01
The application of a statistical method, the local polynomial regression method, (LPRM), based on a nonparametric estimation of the regression function to determine the critical micelle concentration (cmc) is presented. The method is extremely flexible because it does not impose any parametric model on the subjacent structure of the data but rather allows the data to speak for themselves. Good concordance of cmc values with those obtained by other methods was found for systems in which the variation of a measured physical property with concentration showed an abrupt change. When this variation was slow, discrepancies between the values obtained by LPRM and others methods were found. (orig.)
Likelihood devices in spatial statistics
Zwet, E.W. van
1999-01-01
One of the main themes of this thesis is the application to spatial data of modern semi- and nonparametric methods. Another, closely related theme is maximum likelihood estimation from spatial data. Maximum likelihood estimation is not common practice in spatial statistics. The method of moments
10th Conference on Bayesian Nonparametrics
2016-05-08
RETURN YOUR FORM TO THE ABOVE ADDRESS. North Carolina State University 2701 Sullivan Drive Admin Srvcs III, Box 7514 Raleigh, NC 27695 -7514 ABSTRACT...the conference. The findings from the conference is widely disseminated. The conference web site displays slides of the talks presented in the...being published by the Electronic Journal of Statistics consisting of about 20 papers read at the conference. The conference web site displays
New applications of statistical tools in plant pathology.
Garrett, K A; Madden, L V; Hughes, G; Pfender, W F
2004-09-01
ABSTRACT The series of papers introduced by this one address a range of statistical applications in plant pathology, including survival analysis, nonparametric analysis of disease associations, multivariate analyses, neural networks, meta-analysis, and Bayesian statistics. Here we present an overview of additional applications of statistics in plant pathology. An analysis of variance based on the assumption of normally distributed responses with equal variances has been a standard approach in biology for decades. Advances in statistical theory and computation now make it convenient to appropriately deal with discrete responses using generalized linear models, with adjustments for overdispersion as needed. New nonparametric approaches are available for analysis of ordinal data such as disease ratings. Many experiments require the use of models with fixed and random effects for data analysis. New or expanded computing packages, such as SAS PROC MIXED, coupled with extensive advances in statistical theory, allow for appropriate analyses of normally distributed data using linear mixed models, and discrete data with generalized linear mixed models. Decision theory offers a framework in plant pathology for contexts such as the decision about whether to apply or withhold a treatment. Model selection can be performed using Akaike's information criterion. Plant pathologists studying pathogens at the population level have traditionally been the main consumers of statistical approaches in plant pathology, but new technologies such as microarrays supply estimates of gene expression for thousands of genes simultaneously and present challenges for statistical analysis. Applications to the study of the landscape of the field and of the genome share the risk of pseudoreplication, the problem of determining the appropriate scale of the experimental unit and of obtaining sufficient replication at that scale.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Directory of Open Access Journals (Sweden)
Saerom Park
Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Donnelly, Aoife; Misstear, Bruce; Broderick, Brian
2011-02-15
Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling
Energy Technology Data Exchange (ETDEWEB)
Bassant, Marie-Helene
1971-01-15
The aim of this work was to study the statistical properties of the amplitude of the electroencephalographic signal. The experimental method is described (implantation of electrodes, acquisition and treatment of data). The program of the mathematical analysis is given (calculation of probability density functions, study of stationarity) and the validity of the tests discussed. The results concerned ten rabbits. Trips of EEG were sampled during 40 s. with very short intervals (500 μs). The probability density functions established for different brain structures (especially the dorsal hippocampus) and areas, were compared during sleep, arousal and visual stimulus. Using a Χ{sup 2} test, it was found that the Gaussian distribution assumption was rejected in 96.7 per cent of the cases. For a given physiological state, there was no mathematical reason to reject the assumption of stationarity (in 96 per cent of the cases). (author) [French] Le but de ce travail est d'etudier les proprietes statistiques des amplitudes du signal electroencephalographique. La methode experimentale est decrite (implantation d'electrodes, acquisition et traitement des donnees). Le programme d'analyse mathematique est precise (calcul des courbes de repartition statistique, etude de la stationnarite du signal) et la validite des tests, discutee. Les resultats de l'etude portent sur 10 lapins. Des sequences de 40 s d'EEG sont echantillonnees. La valeur de la tension est prelevee a un pas d'echantillonnage de 500 μs. Les courbes de repartition statistiques sont comparees d'une region de l'encephale a l'autre (l'hippocampe dorsal a ete specialement analyse) ceci pendant le sommeil, l'eveil et des stimulations visuelles. Le test du Χ{sup 2} rejette l'hypothese de distribution normale dans 97 pour cent des cas. Pour un etat physiologique donne, il n'existe pas de raison mathematique a ce que soit repoussee l'hypothese de stationnarite, ceci dans 96.7 pour cent des cas. (auteur)
Ben Ayed, Rayda; Ennouri, Karim; Ercişli, Sezai; Ben Hlima, Hajer; Hanana, Mohsen; Smaoui, Slim; Rebai, Ahmed; Moreau, Fabienne
2018-04-10
Virgin olive oil is appreciated for its particular aroma and taste and is recognized worldwide for its nutritional value and health benefits. The olive oil contains a vast range of healthy compounds such as monounsaturated free fatty acids, especially, oleic acid. The SAD.1 polymorphism localized in the Stearoyl-acyl carrier protein desaturase gene (SAD) was genotyped and showed that it is associated with the oleic acid composition of olive oil samples. However, the effect of polymorphisms in fatty acid-related genes on olive oil monounsaturated and saturated fatty acids distribution in the Tunisian olive oil varieties is not understood. Seventeen Tunisian olive-tree varieties were selected for fatty acid content analysis by gas chromatography. The association of SAD.1 genotypes with the fatty acids composition was studied by statistical and Bayesian modeling analyses. Fatty acid content analysis showed interestingly that some Tunisian virgin olive oil varieties could be classified as a functional food and nutraceuticals due to their particular richness in oleic acid. In fact, the TT-SAD.1 genotype was found to be associated with a higher proportion of mono-unsaturated fatty acids (MUFA), mainly oleic acid (C18:1) (r = - 0.79, p SAD.1 association with the oleic acid composition of olive oil was identified among the studied varieties. This correlation fluctuated between studied varieties, which might elucidate variability in lipidic composition among them and therefore reflecting genetic diversity through differences in gene expression and biochemical pathways. SAD locus would represent an excellent marker for identifying interesting amongst virgin olive oil lipidic composition.
Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran
2006-06-01
Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.
The nonparametric bootstrap for the current status model
Groeneboom, P.; Hendrickx, K.
2017-01-01
It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid
Non-Parametric Analysis of Rating Transition and Default Data
DEFF Research Database (Denmark)
Fledelius, Peter; Lando, David; Perch Nielsen, Jens
2004-01-01
We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...
Bayesian nonparametric system reliability using sets of priors
Walter, G.M.; Aslett, L.J.M.; Coolen, F.P.A.
2016-01-01
An imprecise Bayesian nonparametric approach to system reliability with multiple types of components is developed. This allows modelling partial or imperfect prior knowledge on component failure distributions in a flexible way through bounds on the functioning probability. Given component level test
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Nonparametric modeling of dynamic functional connectivity in fmri data
DEFF Research Database (Denmark)
Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus
2015-01-01
dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen
2011-04-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.
On the robust nonparametric regression estimation for a functional regressor
Azzedine , Nadjia; Laksaci , Ali; Ould-Saïd , Elias
2009-01-01
On the robust nonparametric regression estimation for a functional regressor correspondance: Corresponding author. (Ould-Said, Elias) (Azzedine, Nadjia) (Laksaci, Ali) (Ould-Said, Elias) Departement de Mathematiques--> , Univ. Djillali Liabes--> , BP 89--> , 22000 Sidi Bel Abbes--> - ALGERIA (Azzedine, Nadjia) Departement de Mathema...
A general approach to posterior contraction in nonparametric inverse problems
Knapik, Bartek; Salomond, Jean Bernard
In this paper, we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive contraction rates for the parameter of interest from contraction rates of the related
Non-parametric analysis of production efficiency of poultry egg ...
African Journals Online (AJOL)
Non-parametric analysis of production efficiency of poultry egg farmers in Delta ... analysis of factors affecting the output of poultry farmers showed that stock ... should be put in place for farmers to learn the best farm practices carried out on the ...
kruX: matrix-based non-parametric eQTL discovery.
Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom
2014-01-14
The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.
Parametric and nonparametric Granger causality testing: Linkages between international stock markets
De Gooijer, Jan G.; Sivarajasingham, Selliah
2008-04-01
This study investigates long-term linear and nonlinear causal linkages among eleven stock markets, six industrialized markets and five emerging markets of South-East Asia. We cover the period 1987-2006, taking into account the on-set of the Asian financial crisis of 1997. We first apply a test for the presence of general nonlinearity in vector time series. Substantial differences exist between the pre- and post-crisis period in terms of the total number of significant nonlinear relationships. We then examine both periods, using a new nonparametric test for Granger noncausality and the conventional parametric Granger noncausality test. One major finding is that the Asian stock markets have become more internationally integrated after the Asian financial crisis. An exception is the Sri Lankan market with almost no significant long-term linear and nonlinear causal linkages with other markets. To ensure that any causality is strictly nonlinear in nature, we also examine the nonlinear causal relationships of VAR filtered residuals and VAR filtered squared residuals for the post-crisis sample. We find quite a few remaining significant bi- and uni-directional causal nonlinear relationships in these series. Finally, after filtering the VAR-residuals with GARCH-BEKK models, we show that the nonparametric test statistics are substantially smaller in both magnitude and statistical significance than those before filtering. This indicates that nonlinear causality can, to a large extent, be explained by simple volatility effects.
A semi-nonparametric mixture model for selecting functionally consistent proteins.
Yu, Lianbo; Doerge, Rw
2010-09-28
High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein.
Statistical concepts a second course
Lomax, Richard G
2012-01-01
Statistical Concepts consists of the last 9 chapters of An Introduction to Statistical Concepts, 3rd ed. Designed for the second course in statistics, it is one of the few texts that focuses just on intermediate statistics. The book highlights how statistics work and what they mean to better prepare students to analyze their own data and interpret SPSS and research results. As such it offers more coverage of non-parametric procedures used when standard assumptions are violated since these methods are more frequently encountered when working with real data. Determining appropriate sample sizes
Mathematical statistics and stochastic processes
Bosq, Denis
2013-01-01
Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob
Petocz, Peter; Sowey, Eric
2012-01-01
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…
Lyons, L.
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
Guhaniyogi, Rajarshi
2017-11-10
With increasingly abundant spatial data in the form of case counts or rates combined over areal regions (eg, ZIP codes, census tracts, or counties), interest turns to formal identification of difference "boundaries," or barriers on the map, in addition to the estimated statistical map itself. "Boundary" refers to a border that describes vastly disparate outcomes in the adjacent areal units, perhaps caused by latent risk factors. This article focuses on developing a model-based statistical tool, equipped to identify difference boundaries in maps with a small number of areal units, also referred to as small-scale maps. This article proposes a novel and robust nonparametric boundary detection rule based on nonparametric Dirichlet processes, later referred to as Dirichlet process wombling (DPW) rule, by employing Dirichlet process-based mixture models for small-scale maps. Unlike the recently proposed nonparametric boundary detection rules based on false discovery rates, the DPW rule is free of ad hoc parameters, computationally simple, and readily implementable in freely available software for public health practitioners such as JAGS and OpenBUGS and yet provides statistically interpretable boundary detection in small-scale wombling. We offer a detailed simulation study and an application of our proposed approach to a urinary bladder cancer incidence rates dataset between 1990 and 2012 in the 8 counties in Connecticut. Copyright © 2017 John Wiley & Sons, Ltd.
Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab
2011-01-01
We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work
Curceac, S.; Ternynck, C.; Ouarda, T.
2015-12-01
Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed
Wang, Yuanjia; Garcia, Tanya P; Ma, Yanyuan
2012-01-01
This work presents methods for estimating genotype-specific distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators which do not assume parametric density models and are easy to implement. They are based on the inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). The AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington's Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated non-carrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared to non-carriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic testing, and in facilitating future subjects at risk
International Nuclear Information System (INIS)
McIntee, Erin; Viglino, Emilie; Rinke, Caitlin; Kumor, Stephanie; Ni Liqiang; Sigman, Michael E.
2010-01-01
Laser-induced breakdown spectroscopy (LIBS) has been investigated for the discrimination of automobile paint samples. Paint samples from automobiles of different makes, models, and years were collected and separated into sets based on the color, presence or absence of effect pigments and the number of paint layers. Twelve LIBS spectra were obtained for each paint sample, each an average of a five single shot 'drill down' spectra from consecutive laser ablations in the same spot on the sample. Analyses by a nonparametric permutation test and a parametric Wald test were performed to determine the extent of discrimination within each set of paint samples. The discrimination power and Type I error were assessed for each data analysis method. Conversion of the spectral intensity to a log-scale (base 10) resulted in a higher overall discrimination power while observing the same significance level. Working on the log-scale, the nonparametric permutation tests gave an overall 89.83% discrimination power with a size of Type I error being 4.44% at the nominal significance level of 5%. White paint samples, as a group, were the most difficult to differentiate with the power being only 86.56% followed by 95.83% for black paint samples. Parametric analysis of the data set produced lower discrimination (85.17%) with 3.33% Type I errors, which is not recommended for both theoretical and practical considerations. The nonparametric testing method is applicable across many analytical comparisons, with the specific application described here being the pairwise comparison of automotive paint samples.
Applied statistical designs for the researcher
Paulson, Daryl S
2003-01-01
Research and Statistics Basic Review of Parametric Statistics Exploratory Data Analysis Two Sample Tests Completely Randomized One-Factor Analysis of Variance One and Two Restrictions on Randomization Completely Randomized Two-Factor Factorial Designs Two-Factor Factorial Completely Randomized Blocked Designs Useful Small Scale Pilot Designs Nested Statistical Designs Linear Regression Nonparametric Statistics Introduction to Research Synthesis and "Meta-Analysis" and Conclusory Remarks References Index.
Statistical methods for ranking data
Alvo, Mayer
2014-01-01
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
Nonparametric Regression Estimation for Multivariate Null Recurrent Processes
Directory of Open Access Journals (Sweden)
Biqing Cai
2015-04-01
Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.
Nonparametric instrumental regression with non-convex constraints
International Nuclear Information System (INIS)
Grasmair, M; Scherzer, O; Vanhems, A
2013-01-01
This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition. (paper)
Nonparametric instrumental regression with non-convex constraints
Grasmair, M.; Scherzer, O.; Vanhems, A.
2013-03-01
This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition.
Seismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering
Directory of Open Access Journals (Sweden)
Xin Tian
2017-06-01
Full Text Available We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one cluster could be well represented by their corresponding dictionaries. A nonparametric Bayesian dictionary learning method is used to learn the dictionaries, which naturally infers an appropriate dictionary size for each cluster. A uniform quantizer and an adaptive arithmetic coding algorithm are adopted to code the sparse coefficients. With comparisons to other state-of-the art approaches, the effectiveness of the proposed method could be validated in the experiments.
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
2012-01-01
by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...
Lu, Tao
2016-01-01
The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.
Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.
2018-03-01
This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).
Nonparametric Bayesian models through probit stick-breaking processes.
Rodríguez, Abel; Dunson, David B
2011-03-01
We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.
Non-parametric estimation of the individual's utility map
Noguchi, Takao; Sanborn, Adam N.; Stewart, Neil
2013-01-01
Models of risky choice have attracted much attention in behavioural economics. Previous research has repeatedly demonstrated that individuals' choices are not well explained by expected utility theory, and a number of alternative models have been examined using carefully selected sets of choice alternatives. The model performance however, can depend on which choice alternatives are being tested. Here we develop a non-parametric method for estimating the utility map over the wide range of choi...
Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data
CORNELIS A. LOS
2004-01-01
The efficiency of speculative markets, as represented by Fama's 1970 fair game model, is tested on weekly price index data of six Asian stock markets - Hong Kong, Indonesia, Malaysia, Singapore, Taiwan and Thailand - using Sherry's (1992) non-parametric methods. These scientific testing methods were originally developed to analyze the information processing efficiency of nervous systems. In particular, the stationarity and independence of the price innovations are tested over ten years, from ...
Chiu, Chun-Huo; Wang, Yi-Ting; Walther, Bruno A; Chao, Anne
2014-09-01
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. © 2014, The International Biometric Society.
Impulse response identification with deterministic inputs using non-parametric methods
International Nuclear Information System (INIS)
Bhargava, U.K.; Kashyap, R.L.; Goodman, D.M.
1985-01-01
This paper addresses the problem of impulse response identification using non-parametric methods. Although the techniques developed herein apply to the truncated, untruncated, and the circulant models, we focus on the truncated model which is useful in certain applications. Two methods of impulse response identification will be presented. The first is based on the minimization of the C/sub L/ Statistic, which is an estimate of the mean-square prediction error; the second is a Bayesian approach. For both of these methods, we consider the effects of using both the identity matrix and the Laplacian matrix as weights on the energy in the impulse response. In addition, we present a method for estimating the effective length of the impulse response. Estimating the length is particularly important in the truncated case. Finally, we develop a method for estimating the noise variance at the output. Often, prior information on the noise variance is not available, and a good estimate is crucial to the success of estimating the impulse response with a nonparametric technique
Macmillan, N A; Creelman, C D
1996-06-01
Can accuracy and response bias in two-stimulus, two-response recognition or detection experiments be measured nonparametrically? Pollack and Norman (1964) answered this question affirmatively for sensitivity, Hodos (1970) for bias: Both proposed measures based on triangular areas in receiver-operating characteristic space. Their papers, and especially a paper by Grier (1971) that provided computing formulas for the measures, continue to be heavily cited in a wide range of content areas. In our sample of articles, most authors described triangle-based measures as making fewer assumptions than measures associated with detection theory. However, we show that statistics based on products or ratios of right triangle areas, including a recently proposed bias index and a not-yetproposed but apparently plausible sensitivity index, are consistent with a decision process based on logistic distributions. Even the Pollack and Norman measure, which is based on non-right triangles, is approximately logistic for low values of sensitivity. Simple geometric models for sensitivity and bias are not nonparametric, even if their implications are not acknowledged in the defining publications.
Investigation of MLE in nonparametric estimation methods of reliability function
International Nuclear Information System (INIS)
Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo
2001-01-01
There have been lots of trials to estimate a reliability function. In the ESReDA 20 th seminar, a new method in nonparametric way was proposed. The major point of that paper is how to use censored data efficiently. Generally there are three kinds of approach to estimate a reliability function in nonparametric way, i.e., Reduced Sample Method, Actuarial Method and Product-Limit (PL) Method. The above three methods have some limits. So we suggest an advanced method that reflects censored information more efficiently. In many instances there will be a unique maximum likelihood estimator (MLE) of an unknown parameter, and often it may be obtained by the process of differentiation. It is well known that the three methods generally used to estimate a reliability function in nonparametric way have maximum likelihood estimators that are uniquely exist. So, MLE of the new method is derived in this study. The procedure to calculate a MLE is similar just like that of PL-estimator. The difference of the two is that in the new method, the mass (or weight) of each has an influence of the others but the mass in PL-estimator not
Practical statistics in pain research.
Kim, Tae Kyun
2017-10-01
Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.
Directory of Open Access Journals (Sweden)
L. Bressan
2016-01-01
reconstructed sea level (RSL, the background slope (BS and the control function (CF. These functions are examined through a traditional spectral fast Fourier transform (FFT analysis and also through a statistical analysis, showing that they can be characterised by probability distribution functions PDFs such as the Student's t distribution (IS and RSL and the beta distribution (CF. As an example, the method has been applied to data from the tide-gauge station of Siracusa, Italy.
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Assessing T cell clonal size distribution: a non-parametric approach.
Directory of Open Access Journals (Sweden)
Olesya V Bolkhovskaya
Full Text Available Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
Assessing T cell clonal size distribution: a non-parametric approach.
Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V
2014-01-01
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
Nonparametric Methods in Astronomy: Think, Regress, Observe—Pick Any Three
Steinhardt, Charles L.; Jermyn, Adam S.
2018-02-01
Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.
Energy Technology Data Exchange (ETDEWEB)
Ford, Eric B.; /Florida U.; Fabrycky, Daniel C.; /Lick Observ.; Steffen, Jason H.; /Fermilab; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Lissauer, Jack J.; /NASA, Ames; Moorhead, Althea V.; /Florida U.; Morehead, Robert C.; /Florida U.; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames /SETI Inst., Mtn. View /San Diego State U., Astron. Dept.
2012-01-01
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the transit timing variations of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
International Nuclear Information System (INIS)
Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.; Fabrycky, Daniel C.; Steffen, Jason H.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David; Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Welsh, William F.; Allen, Christopher; Batalha, Natalie M.; Buchhave, Lars A.
2012-01-01
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
Energy Technology Data Exchange (ETDEWEB)
Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611 (United States); Fabrycky, Daniel C. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Welsh, William F. [Astronomy Department, San Diego State University, San Diego, CA 92182-1221 (United States); Allen, Christopher [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Buchhave, Lars A., E-mail: eford@astro.ufl.edu [Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen (Denmark); Collaboration: Kepler Science Team; and others
2012-05-10
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
Touw, D J; Vinks, A A; Neef, C
1997-06-01
The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.
Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D
2016-06-01
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.
Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method
Kenderi, Gábor; Fidlin, Alexander
2014-12-01
The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.
A Nonparametric Bayesian Approach For Emission Tomography Reconstruction
International Nuclear Information System (INIS)
Barat, Eric; Dautremer, Thomas
2007-01-01
We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution--normalized emission intensity of the spatial poisson process--is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on R k (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM
Directory of Open Access Journals (Sweden)
Susanne Unverzagt
Full Text Available This study is an in-depth-analysis to explain statistical heterogeneity in a systematic review of implementation strategies to improve guideline adherence of primary care physicians in the treatment of patients with cardiovascular diseases. The systematic review included randomized controlled trials from a systematic search in MEDLINE, EMBASE, CENTRAL, conference proceedings and registers of ongoing studies. Implementation strategies were shown to be effective with substantial heterogeneity of treatment effects across all investigated strategies. Primary aim of this study was to explain different effects of eligible trials and to identify methodological and clinical effect modifiers. Random effects meta-regression models were used to simultaneously assess the influence of multimodal implementation strategies and effect modifiers on physician adherence. Effect modifiers included the staff responsible for implementation, level of prevention and definition pf the primary outcome, unit of randomization, duration of follow-up and risk of bias. Six clinical and methodological factors were investigated as potential effect modifiers of the efficacy of different implementation strategies on guideline adherence in primary care practices on the basis of information from 75 eligible trials. Five effect modifiers were able to explain a substantial amount of statistical heterogeneity. Physician adherence was improved by 62% (95% confidence interval (95% CI 29 to 104% or 29% (95% CI 5 to 60% in trials where other non-medical professionals or nurses were included in the implementation process. Improvement of physician adherence was more successful in primary and secondary prevention of cardiovascular diseases by around 30% (30%; 95% CI -2 to 71% and 31%; 95% CI 9 to 57%, respectively compared to tertiary prevention. This study aimed to identify effect modifiers of implementation strategies on physician adherence. Especially the cooperation of different health
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...
Panel data nonparametric estimation of production risk and risk preferences
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
approaches for obtaining firm-specific measures of risk attitudes. We found that Polish dairy farmers are risk averse regarding production risk and price uncertainty. According to our results, Polish dairy farmers perceive the production risk as being more significant than the risk related to output price......We apply nonparametric panel data kernel regression to investigate production risk, out-put price uncertainty, and risk attitudes of Polish dairy farms based on a firm-level unbalanced panel data set that covers the period 2004–2010. We compare different model specifications and different...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
A Bayesian nonparametric approach to causal inference on quantiles.
Xu, Dandan; Daniels, Michael J; Winterstein, Almut G
2018-02-25
We propose a Bayesian nonparametric approach (BNP) for causal inference on quantiles in the presence of many confounders. In particular, we define relevant causal quantities and specify BNP models to avoid bias from restrictive parametric assumptions. We first use Bayesian additive regression trees (BART) to model the propensity score and then construct the distribution of potential outcomes given the propensity score using a Dirichlet process mixture (DPM) of normals model. We thoroughly evaluate the operating characteristics of our approach and compare it to Bayesian and frequentist competitors. We use our approach to answer an important clinical question involving acute kidney injury using electronic health records. © 2018, The International Biometric Society.
Evaluation of Nonparametric Probabilistic Forecasts of Wind Power
DEFF Research Database (Denmark)
Pinson, Pierre; Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg, orlov 31.07.2008
Predictions of wind power production for horizons up to 48-72 hour ahead comprise a highly valuable input to the methods for the daily management or trading of wind generation. Today, users of wind power predictions are not only provided with point predictions, which are estimates of the most...... likely outcome for each look-ahead time, but also with uncertainty estimates given by probabilistic forecasts. In order to avoid assumptions on the shape of predictive distributions, these probabilistic predictions are produced from nonparametric methods, and then take the form of a single or a set...
Estimation of Stochastic Volatility Models by Nonparametric Filtering
DEFF Research Database (Denmark)
Kanaya, Shin; Kristensen, Dennis
2016-01-01
/estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...
Bansal, Ravi; Peterson, Bradley S
2018-06-01
FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.
Genomic outlier profile analysis: mixture models, null hypotheses, and nonparametric estimation.
Ghosh, Debashis; Chinnaiyan, Arul M
2009-01-01
In most analyses of large-scale genomic data sets, differential expression analysis is typically assessed by testing for differences in the mean of the distributions between 2 groups. A recent finding by Tomlins and others (2005) is of a different type of pattern of differential expression in which a fraction of samples in one group have overexpression relative to samples in the other group. In this work, we describe a general mixture model framework for the assessment of this type of expression, called outlier profile analysis. We start by considering the single-gene situation and establishing results on identifiability. We propose 2 nonparametric estimation procedures that have natural links to familiar multiple testing procedures. We then develop multivariate extensions of this methodology to handle genome-wide measurements. The proposed methodologies are compared using simulation studies as well as data from a prostate cancer gene expression study.
DEFF Research Database (Denmark)
Edberg, Anna; Freyhult, Eva; Sand, Salomon
- and inter-national data excerpts. For example, major PCA loadings helped deciphering both shared and disparate features, relating to food groups, across Danish and Swedish preschool consumers. Data interrogation, reliant on the above-mentioned composite techniques, disclosed one outlier dietary prototype...... prototype with the latter property was identified also in the Danish data material, but without low consumption of Vegetables or Fruit & berries. The second MDA-type of data interrogation involved Supervised Learning, also known as Predictive Modelling. These exercises involved the Random Forest (RF...... not elaborated on in-depth, output from several analyses suggests a preference for energy-based consumption data for Cluster Analysis and Predictive Modelling, over those appearing as weight....
International Nuclear Information System (INIS)
El-Arabi, A.M.Abd El-Gabar M.; Khalifa, Ibrahim H.
2002-01-01
Factor and cluster analyses as well as the Pearson correlation coefficient have been applied to geochemical data obtained from phosphorite and phosphatic rocks of Duwi Formation exposed at the Red Sea coast, Nile Valley and Western Desert. Sixty-six samples from a total of 71 collected samples were analysed for SiO 2 , TiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, P 2 O 5 , Sr, U and Pb by XRF and their mineral constituents were determined by the use of XRD techniques. In addition, the natural radioactivity of the phosphatic samples due to their uranium, thorium and potassium contents was measured by gamma-spectrometry.The uranium content in the phosphate rocks with P 2 O 5 >15% (average of 106.6 ppm) is higher than in rocks with P 2 O 5 2 O 5 and CaO, whereas it is not related to changes in SiO 2 , TiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O and K 2 O concentrations.Factor analysis and the Pearson correlation coefficient revealed that uranium behaves geochemically in different ways in the phosphatic sediments and phosphorites in the Red Sea, Nile Valley and Western Desert. In the Red Sea and Western Desert phosphorites, uranium occurs mainly in oxidized U 6+ state where it seems to be fixed by the phosphate ion, forming secondary uranium phosphate minerals such as phosphuranylite.In the Nile Valley phosphorites, ionic substitution of Ca 2+ by U 4+ is the main controlling factor in the concentration of uranium in phosphate rocks. Moreover, fixation of U 6+ by phosphate ion and adsorption of uranium on phosphate minerals play subordinate roles
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.
International Nuclear Information System (INIS)
Roach, J.F.
1992-01-01
The electrical insulation system of the SSC long dipole magnets is reviewed and potential dielectric failure modes discussed. Electrical insulation fabrication and assembly issues with respect to rate production manufacturability are addressed. The automation required for rate assembly of electrical insulation components will require critical online visual and dielectric screening tests to insure production quality. Storage and assembly areas must bc designed to prevent foreign particles from becoming entrapped in the insulation during critical coil winding, molding, and collaring operations. All hand assembly procedures involving dielectrics must be performed with rigorous attention to their impact on insulation integrity. Individual dipole magnets must have a sufficiently low probability of electrical insulation failure under all normal and fault mode voltage conditions such that the series of magnets in the SSC rings have acceptable Mean Time Between Failure (MTBF) with respect to dielectric mode failure events. Statistical models appropriate for large electrical system breakdown failure analysis are applied to the SSC magnet rings. The MTBF of the SSC system is related to failure data base for individual dipole magnet samples
Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis
2016-07-01
A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Peterson, James T.
1999-12-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network.
Bayesian nonparametric dictionary learning for compressed sensing MRI.
Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping
2014-12-01
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.
A Bayesian nonparametric estimation of distributions and quantiles
International Nuclear Information System (INIS)
Poern, K.
1988-11-01
The report describes a Bayesian, nonparametric method for the estimation of a distribution function and its quantiles. The method, presupposing random sampling, is nonparametric, so the user has to specify a prior distribution on a space of distributions (and not on a parameter space). In the current application, where the method is used to estimate the uncertainty of a parametric calculational model, the Dirichlet prior distribution is to a large extent determined by the first batch of Monte Carlo-realizations. In this case the results of the estimation technique is very similar to the conventional empirical distribution function. The resulting posterior distribution is also Dirichlet, and thus facilitates the determination of probability (confidence) intervals at any given point in the space of interest. Another advantage is that also the posterior distribution of a specified quantitle can be derived and utilized to determine a probability interval for that quantile. The method was devised for use in the PROPER code package for uncertainty and sensitivity analysis. (orig.)
Genomic breeding value estimation using nonparametric additive regression models
Directory of Open Access Journals (Sweden)
Solberg Trygve
2009-01-01
Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.
International Nuclear Information System (INIS)
Gilbert, R.O.; Klover, W.J.
1988-09-01
Radiation detection surveys are used at the US Department of Energy's Hanford Reservation near Richland, Washington, to determine areas that need posting as radiation zones or to measure dose rates in the field. The relationship between measurements made by Sodium Iodide (NaI) detectors mounted on the mobile Road Monitor vehicle and those made by hand-held GM P-11 probes and Micro-R meters are of particular interest because the Road Monitor can survey land areas in much less time than hand-held detectors. Statistical regression methods are used here to develop simple equations to predict GM P-11 probe gross gamma count-per-minute (cpm) and Micro-R-Meter μR/h measurements on the basis of NaI gross gamma count-per-second (cps) measurements obtained using the Road Monitor. These equations were estimated using data collected near the 116-K-2 Trench in the 100-K area on the Hanford Reservation. Equations are also obtained for estimating upper and lower limits within which the GM P-11 or Micro-R-Meter measurement corresponding to a given NaI Road Monitor measurement at a new location is expected to fall with high probability. An equation and limits for predicting GM P-11 measurements on the basis of Micro-R- Meter measurements is also estimated. Also, we estimate an equation that may be useful for approximating the 90 Sr measurement of a surface soil sample on the basis of a spectroscopy measurement for 137 Cs on that sample. 3 refs., 16 figs., 44 tabs
International Nuclear Information System (INIS)
Fahidy, Thomas Z.
2009-01-01
A major advantage of NST lies in the unimportance of the probability distribution of observations. In this paper, the sign test, the rank-sum test, the Kruskal-Wallis test, the Friedman test, and the runs test illustrate the potential of certain rapid NST for the evaluation of electrochemical process performance.
2014-10-02
defined by Eqs. (3)–(4) (Greenwell & Finch , 2004) (Kar & Mohanty, 2006). The p value provides the metric for novelty scoring. p = QKS(z) = 2 ∞∑ j=1 (−1...provides early detection of degradation and ability to score its significance in order to inform maintenance planning and consequently reduce disruption ...actionable information, sig- nals are typically processed from raw measurements into a reduced dimension novelty summary value that may be more easily
International Nuclear Information System (INIS)
Stevens, D.L.; Dagle, G.E.
1986-01-01
Retention and translocation of inhaled radionuclides are often estimated from the sacrifice of multiple animals at different time points. The data for each time point can be averaged and a smooth curve fitted to the mean values, or a smooth curve may be fitted to the entire data set. However, an analysis based on means may not be the most appropriate if there is substantial variation in the initial amount of the radionuclide inhaled or if the data are subject to outliers. A method has been developed that takes account of these problems. The body burden is viewed as a compartmental system, with the compartments identified with body organs. A median polish is applied to the multiple logistic transform of the compartmental fractions (compartment burden/total burden) at each time point. A smooth function is fitted to the results of the median polish. This technique was applied to data from beagles exposed to an aerosol of 239 Pu(NO 3 ) 4 . Models of retention and translocation for lungs, skeleton, liver, kidneys, and tracheobronchial lymph nodes were developed and used to estimate dose. 4 refs., 3 figs., 4 tabs
Application of a nonparametric approach to analyze delta-pCO2 data from the Southern Ocean
CSIR Research Space (South Africa)
Pretorius, WB
2011-11-01
Full Text Available NONPARAMETRIC APPROACH TO ANALYZE ?pCO2 DATA FROM THE SOUTHERN OCEAN Wesley B. Pretorius*1, Sonali Das2 and Paul J. Mostert1 *1 Cell: 0722897595, Department of Statistics and Actuarial Science, University of Stellenbosch, Private Bag X1, Matieland 7602...(9-10):1601-1622. Tans, P.P., Fung, I. Y. & Takahashi, T. 1990 Observational constraints on the global atmospheric CO2-budget. Science, 247:1431-1438. Telszewski, M., Chazottes, A., Schuster, U., Watson, A.J., Moulin, C., Bakker, D.C.E., Gonzalez-Davila, M...
Liu, Yang; Chiaromonte, Francesca; Ross, Howard; Malhotra, Raunaq; Elleder, Daniel; Poss, Mary
2015-06-30
in G to A substitutions, but found no evidence for this host defense strategy. Our error correction approach for minor allele frequencies (more sensitive and computationally efficient than other algorithms) and our statistical treatment of variation (ANOVA) were critical for effective use of high-throughput sequencing data in understanding viral diversity. We found that co-infection with PLV shifts FIV diversity from bone marrow to lymph node and spleen.
Understanding Statistics - Cancer Statistics
Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.
Rank-based permutation approaches for non-parametric factorial designs.
Umlauft, Maria; Konietschke, Frank; Pauly, Markus
2017-11-01
Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.
Bayesian Nonparametric Mixture Estimation for Time-Indexed Functional Data in R
Directory of Open Access Journals (Sweden)
Terrance D. Savitsky
2016-08-01
Full Text Available We present growfunctions for R that offers Bayesian nonparametric estimation models for analysis of dependent, noisy time series data indexed by a collection of domains. This data structure arises from combining periodically published government survey statistics, such as are reported in the Current Population Study (CPS. The CPS publishes monthly, by-state estimates of employment levels, where each state expresses a noisy time series. Published state-level estimates from the CPS are composed from household survey responses in a model-free manner and express high levels of volatility due to insufficient sample sizes. Existing software solutions borrow information over a modeled time-based dependence to extract a de-noised time series for each domain. These solutions, however, ignore the dependence among the domains that may be additionally leveraged to improve estimation efficiency. The growfunctions package offers two fully nonparametric mixture models that simultaneously estimate both a time and domain-indexed dependence structure for a collection of time series: (1 A Gaussian process (GP construction, which is parameterized through the covariance matrix, estimates a latent function for each domain. The covariance parameters of the latent functions are indexed by domain under a Dirichlet process prior that permits estimation of the dependence among functions across the domains: (2 An intrinsic Gaussian Markov random field prior construction provides an alternative to the GP that expresses different computation and estimation properties. In addition to performing denoised estimation of latent functions from published domain estimates, growfunctions allows estimation of collections of functions for observation units (e.g., households, rather than aggregated domains, by accounting for an informative sampling design under which the probabilities for inclusion of observation units are related to the response variable. growfunctions includes plot
Nonparametric test of consistency between cosmological models and multiband CMB measurements
Energy Technology Data Exchange (ETDEWEB)
Aghamousa, Amir [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)
2015-06-01
We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles 18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.
Carroll, Raymond J.
2011-03-01
In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.
Statistics and finance an introduction
Ruppert, David
2004-01-01
This textbook emphasizes the applications of statistics and probability to finance. Students are assumed to have had a prior course in statistics, but no background in finance or economics. The basics of probability and statistics are reviewed and more advanced topics in statistics, such as regression, ARMA and GARCH models, the bootstrap, and nonparametric regression using splines, are introduced as needed. The book covers the classical methods of finance such as portfolio theory, CAPM, and the Black-Scholes formula, and it introduces the somewhat newer area of behavioral finance. Applications and use of MATLAB and SAS software are stressed. The book will serve as a text in courses aimed at advanced undergraduates and masters students in statistics, engineering, and applied mathematics as well as quantitatively oriented MBA students. Those in the finance industry wishing to know more statistics could also use it for self-study. David Ruppert is the Andrew Schultz, Jr. Professor of Engineering, School of Oper...
Kowalski, Jeanne
2008-01-01
A timely and applied approach to the newly discovered methods and applications of U-statisticsBuilt on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research.The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applic...
Generative Temporal Modelling of Neuroimaging - Decomposition and Nonparametric Testing
DEFF Research Database (Denmark)
Hald, Ditte Høvenhoff
The goal of this thesis is to explore two improvements for functional magnetic resonance imaging (fMRI) analysis; namely our proposed decomposition method and an extension to the non-parametric testing framework. Analysis of fMRI allows researchers to investigate the functional processes...... of the brain, and provides insight into neuronal coupling during mental processes or tasks. The decomposition method is a Gaussian process-based independent components analysis (GPICA), which incorporates a temporal dependency in the sources. A hierarchical model specification is used, featuring both...... instantaneous and convolutive mixing, and the inferred temporal patterns. Spatial maps are seen to capture smooth and localized stimuli-related components, and often identifiable noise components. The implementation is freely available as a GUI/SPM plugin, and we recommend using GPICA as an additional tool when...
Prior processes and their applications nonparametric Bayesian estimation
Phadia, Eswar G
2016-01-01
This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and P...
Spurious Seasonality Detection: A Non-Parametric Test Proposal
Directory of Open Access Journals (Sweden)
Aurelio F. Bariviera
2018-01-01
Full Text Available This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called “day-of-the-week” effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Debt and growth: A non-parametric approach
Brida, Juan Gabriel; Gómez, David Matesanz; Seijas, Maria Nela
2017-11-01
In this study, we explore the dynamic relationship between public debt and economic growth by using a non-parametric approach based on data symbolization and clustering methods. The study uses annual data of general government consolidated gross debt-to-GDP ratio and gross domestic product for sixteen countries between 1977 and 2015. Using symbolic sequences, we introduce a notion of distance between the dynamical paths of different countries. Then, a Minimal Spanning Tree and a Hierarchical Tree are constructed from time series to help detecting the existence of groups of countries sharing similar economic performance. The main finding of the study appears for the period 2008-2016 when several countries surpassed the 90% debt-to-GDP threshold. During this period, three groups (clubs) of countries are obtained: high, mid and low indebted countries, suggesting that the employed debt-to-GDP threshold drives economic dynamics for the selected countries.
Indoor Positioning Using Nonparametric Belief Propagation Based on Spanning Trees
Directory of Open Access Journals (Sweden)
Savic Vladimir
2010-01-01
Full Text Available Nonparametric belief propagation (NBP is one of the best-known methods for cooperative localization in sensor networks. It is capable of providing information about location estimation with appropriate uncertainty and to accommodate non-Gaussian distance measurement errors. However, the accuracy of NBP is questionable in loopy networks. Therefore, in this paper, we propose a novel approach, NBP based on spanning trees (NBP-ST created by breadth first search (BFS method. In addition, we propose a reliable indoor model based on obtained measurements in our lab. According to our simulation results, NBP-ST performs better than NBP in terms of accuracy and communication cost in the networks with high connectivity (i.e., highly loopy networks. Furthermore, the computational and communication costs are nearly constant with respect to the transmission radius. However, the drawbacks of proposed method are a little bit higher computational cost and poor performance in low-connected networks.
Hyperspectral image segmentation using a cooperative nonparametric approach
Taher, Akar; Chehdi, Kacem; Cariou, Claude
2013-10-01
In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.
Statistical intervals a guide for practitioners
Hahn, Gerald J
2011-01-01
Presents a detailed exposition of statistical intervals and emphasizes applications in industry. The discussion differentiates at an elementary level among different kinds of statistical intervals and gives instruction with numerous examples and simple math on how to construct such intervals from sample data. This includes confidence intervals to contain a population percentile, confidence intervals on probability of meeting specified threshold value, and prediction intervals to include observation in a future sample. Also has an appendix containing computer subroutines for nonparametric stati
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Fiestras-Janeiro, M.G.; Garcia-Jurado, I. (Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Estadistica e Investigacion Operativa)
1990-11-01
A statistical study of the dependence between various critical fusion temperatures of a certain kind of coal and its chemical components is carried out. As well as using classical dependence techniques (multiple, stepwise and PLS regression, principal components, canonical correlation, etc.) together with the corresponding inference on the parameters of interest, non-parametric regression and bootstrap inference are also performed. 11 refs., 3 figs., 8 tabs.
Kashif, Muhammad; Andersson, Claes; Mansoori, Sharmineh; Larsson, Rolf; Nygren, Peter; Gustafsson, Mats G
2017-11-28
We analyzed survival effects for 15 different pairs of clinically relevant anti-cancer drugs in three iso-genic pairs of human colorectal cancer carcinoma cell lines, by applying for the first time our novel software (R package) called COMBIA. In our experiments iso-genic pairs of cell lines were used, differing only with respect to a single clinically important KRAS or BRAF mutation. Frequently, concentration dependent but mutation independent joint Bliss and Loewe synergy/antagonism was found statistically significant. Four combinations were found synergistic/antagonistic specifically to the parental (harboring KRAS or BRAF mutation) cell line of the corresponding iso-genic cell lines pair. COMBIA offers considerable improvements over established software for synergy analysis such as MacSynergy™ II as it includes both Bliss (independence) and Loewe (additivity) analyses, together with a tailored non-parametric statistical analysis employing heteroscedasticity, controlled resampling, and global (omnibus) testing. In many cases Loewe analyses found significant synergistic as well as antagonistic effects in a cell line at different concentrations of a tested drug combination. By contrast, Bliss analysis found only one type of significant effect per cell line. In conclusion, the integrated Bliss and Loewe interaction analysis based on non-parametric statistics may provide more robust interaction analyses and reveal complex patterns of synergy and antagonism.
A ¤nonparametric dynamic additive regression model for longitudinal data
DEFF Research Database (Denmark)
Martinussen, T.; Scheike, T. H.
2000-01-01
dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...
DEFF Research Database (Denmark)
Effraimidis, Georgios; Dahl, Christian Møller
In this paper, we develop a fully nonparametric approach for the estimation of the cumulative incidence function with Missing At Random right-censored competing risks data. We obtain results on the pointwise asymptotic normality as well as the uniform convergence rate of the proposed nonparametric...
Non-parametric tests of productive efficiency with errors-in-variables
Kuosmanen, T.K.; Post, T.; Scholtes, S.
2007-01-01
We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans
Non-parametric early seizure detection in an animal model of temporal lobe epilepsy
Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.
2008-03-01
The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.
Qu, Long; Nettleton, Dan; Dekkers, Jack C M
2012-12-01
Given a large number of t-statistics, we consider the problem of approximating the distribution of noncentrality parameters (NCPs) by a continuous density. This problem is closely related to the control of false discovery rates (FDR) in massive hypothesis testing applications, e.g., microarray gene expression analysis. Our methodology is similar to, but improves upon, the existing approach by Ruppert, Nettleton, and Hwang (2007, Biometrics, 63, 483-495). We provide parametric, nonparametric, and semiparametric estimators for the distribution of NCPs, as well as estimates of the FDR and local FDR. In the parametric situation, we assume that the NCPs follow a distribution that leads to an analytically available marginal distribution for the test statistics. In the nonparametric situation, we use convex combinations of basis density functions to estimate the density of the NCPs. A sequential quadratic programming procedure is developed to maximize the penalized likelihood. The smoothing parameter is selected with the approximate network information criterion. A semiparametric estimator is also developed to combine both parametric and nonparametric fits. Simulations show that, under a variety of situations, our density estimates are closer to the underlying truth and our FDR estimates are improved compared with alternative methods. Data-based simulations and the analyses of two microarray datasets are used to evaluate the performance in realistic situations. © 2012, The International Biometric Society.
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Fatmi, H.; Ababou, R.; Matray, J.M.; Joly, C.
2010-01-01
Document available in extended abstract form only. This paper presents methods of statistical analysis and interpretation of hydrogeological signals in clayey formations, e.g., pore water pressure and atmospheric pressure. The purpose of these analyses is to characterize the hydraulic behaviour of this type of formation in the case of a deep repository of Mid- Level/High-Level and Long-lived radioactive wastes, and to study the evolution of the geologic formation and its EDZ (Excavation Damaged Zone) during the excavation of galleries. We focus on galleries Ga98 and Ga03 in the sites of Mont Terri (Jura, Switzerland) and Tournemire (France, Aveyron), through data collected in the BPP- 1 and PH2 boreholes, respectively. The Mont Terri site, crossing the Aalenian Opalinus clay-stone, is an underground laboratory managed by an international consortium, namely the Mont Terri project (Switzerland). The Tournemire site, crossing the Toarcian clay-stone, is an Underground Research facility managed by IRSN (France). We have analysed pore water and atmospheric pressure signals at these sites, sometimes in correlation with other data. The methods of analysis are based on the theory of stationary random signals (correlation functions, Fourier spectra, transfer functions, envelopes), and on multi-resolution wavelet analysis (adapted to nonstationary and evolutionary signals). These methods are also combined with filtering techniques, and they can be used for single signals as well as pairs of signals (cross-analyses). The objective of this work is to exploit pressure measurements in selected boreholes from the two compacted clay sites, in order to: - evaluate phenomena affecting the measurements (earth tides, barometric pressures..); - estimate hydraulic properties (specific storage..) of the clay-stones prior to excavation works and compare them with those estimated by pulse or slug tests on shorter time scales; - analyze the effects of drift excavation on pore pressures
Directory of Open Access Journals (Sweden)
Ben J. Callahan
2016-11-01
Full Text Available High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or OTU composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, whether parametric or nonparametric. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests and nonparametric testing using community networks and the ggnetwork package.
Directory of Open Access Journals (Sweden)
Ben J. Callahan
2016-06-01
Full Text Available High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or microbial composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, including both parameteric and nonparametric methods. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests, partial least squares and linear models as well as nonparametric testing using community networks and the ggnetwork package.
Directory of Open Access Journals (Sweden)
Archer Kellie J
2008-02-01
Full Text Available Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN to those with normal functioning allograft. Results The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. Conclusion We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been
Ponciano, José Miguel
2017-11-22
Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Wesselink, Christiaan; Heeg, Govert P.; Jansonius, Nomdo M.
Objective: To compare prospectively 2 perimetric progression detection algorithms for glaucoma, the Early Manifest Glaucoma Trial algorithm (glaucoma progression analysis [GPA]) and a nonparametric algorithm applied to the mean deviation (MD) (nonparametric progression analysis [NPA]). Methods:
International Nuclear Information System (INIS)
Guha, S.; Taylor, J.H.
1996-01-01
It is critical that summary statistics on background data, or background levels, be computed based on standardized and defensible statistical methods because background levels are frequently used in subsequent analyses and comparisons performed by separate analysts over time. The final background for naturally occurring radionuclide concentrations in soil at a RCRA facility, and the associated statistical methods used to estimate these concentrations, are presented. The primary objective is to describe, via a case study, the statistical methods used to estimate 95% upper tolerance limits (UTL) on radionuclide background soil data sets. A 95% UTL on background samples can be used as a screening level concentration in the absence of definitive soil cleanup criteria for naturally occurring radionuclides. The statistical methods are based exclusively on EPA guidance. This paper includes an introduction, a discussion of the analytical results for the radionuclides and a detailed description of the statistical analyses leading to the determination of 95% UTLs. Soil concentrations reported are based on validated data. Data sets are categorized as surficial soil; samples collected at depths from zero to one-half foot; and deep soil, samples collected from 3 to 5 feet. These data sets were tested for statistical outliers and underlying distributions were determined by using the chi-squared test for goodness-of-fit. UTLs for the data sets were then computed based on the percentage of non-detects and the appropriate best-fit distribution (lognormal, normal, or non-parametric). For data sets containing greater than approximately 50% nondetects, nonparametric UTLs were computed
A local non-parametric model for trade sign inference
Blazejewski, Adam; Coggins, Richard
2005-03-01
We investigate a regularity in market order submission strategies for 12 stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest neighbor with three predictor variables achieves an average out-of-sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.
Efficient nonparametric n -body force fields from machine learning
Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro
2018-05-01
We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.
Non-parametric Bayesian networks: Improving theory and reviewing applications
International Nuclear Information System (INIS)
Hanea, Anca; Morales Napoles, Oswaldo; Ababei, Dan
2015-01-01
Applications in various domains often lead to high dimensional dependence modelling. A Bayesian network (BN) is a probabilistic graphical model that provides an elegant way of expressing the joint distribution of a large number of interrelated variables. BNs have been successfully used to represent uncertain knowledge in a variety of fields. The majority of applications use discrete BNs, i.e. BNs whose nodes represent discrete variables. Integrating continuous variables in BNs is an area fraught with difficulty. Several methods that handle discrete-continuous BNs have been proposed in the literature. This paper concentrates only on one method called non-parametric BNs (NPBNs). NPBNs were introduced in 2004 and they have been or are currently being used in at least twelve professional applications. This paper provides a short introduction to NPBNs, a couple of theoretical advances, and an overview of applications. The aim of the paper is twofold: one is to present the latest improvements of the theory underlying NPBNs, and the other is to complement the existing overviews of BNs applications with the NPNBs applications. The latter opens the opportunity to discuss some difficulties that applications pose to the theoretical framework and in this way offers some NPBN modelling guidance to practitioners. - Highlights: • The paper gives an overview of the current NPBNs methodology. • We extend the NPBN methodology by relaxing the conditions of one of its fundamental theorems. • We propose improvements of the data mining algorithm for the NPBNs. • We review the professional applications of the NPBNs.
Nonparametric predictive inference for combined competing risks data
International Nuclear Information System (INIS)
Coolen-Maturi, Tahani; Coolen, Frank P.A.
2014-01-01
The nonparametric predictive inference (NPI) approach for competing risks data has recently been presented, in particular addressing the question due to which of the competing risks the next unit will fail, and also considering the effects of unobserved, re-defined, unknown or removed competing risks. In this paper, we introduce how the NPI approach can be used to deal with situations where units are not all at risk from all competing risks. This may typically occur if one combines information from multiple samples, which can, e.g. be related to further aspects of units that define the samples or groups to which the units belong or to different applications where the circumstances under which the units operate can vary. We study the effect of combining the additional information from these multiple samples, so effectively borrowing information on specific competing risks from other units, on the inferences. Such combination of information can be relevant to competing risks scenarios in a variety of application areas, including engineering and medical studies
Transition redshift: new constraints from parametric and nonparametric methods
Energy Technology Data Exchange (ETDEWEB)
Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110015 (India); Pires, Nilza, E-mail: nrani@physics.du.ac.in, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: npires@dfte.ufrn.br [Departamento de Física Teórica e Experimental, UFRN, Campus Universitário, Natal, RN 59072-970 (Brazil)
2015-12-01
In this paper, we use the cosmokinematics approach to study the accelerated expansion of the Universe. This is a model independent approach and depends only on the assumption that the Universe is homogeneous and isotropic and is described by the FRW metric. We parametrize the deceleration parameter, q(z), to constrain the transition redshift (z{sub t}) at which the expansion of the Universe goes from a decelerating to an accelerating phase. We use three different parametrizations of q(z) namely, q{sub I}(z)=q{sub 1}+q{sub 2}z, q{sub II} (z) = q{sub 3} + q{sub 4} ln (1 + z) and q{sub III} (z)=½+q{sub 5}/(1+z){sup 2}. A joint analysis of the age of galaxies, strong lensing and supernovae Ia data indicates that the transition redshift is less than unity i.e. z{sub t} < 1. We also use a nonparametric approach (LOESS+SIMEX) to constrain z{sub t}. This too gives z{sub t} < 1 which is consistent with the value obtained by the parametric approach.
Discrete non-parametric kernel estimation for global sensitivity analysis
International Nuclear Information System (INIS)
Senga Kiessé, Tristan; Ventura, Anne
2016-01-01
This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.
Nonparametric Integrated Agrometeorological Drought Monitoring: Model Development and Application
Zhang, Qiang; Li, Qin; Singh, Vijay P.; Shi, Peijun; Huang, Qingzhong; Sun, Peng
2018-01-01
Drought is a major natural hazard that has massive impacts on the society. How to monitor drought is critical for its mitigation and early warning. This study proposed a modified version of the multivariate standardized drought index (MSDI) based on precipitation, evapotranspiration, and soil moisture, i.e., modified multivariate standardized drought index (MMSDI). This study also used nonparametric joint probability distribution analysis. Comparisons were done between standardized precipitation evapotranspiration index (SPEI), standardized soil moisture index (SSMI), MSDI, and MMSDI, and real-world observed drought regimes. Results indicated that MMSDI detected droughts that SPEI and/or SSMI failed to do. Also, MMSDI detected almost all droughts that were identified by SPEI and SSMI. Further, droughts detected by MMSDI were similar to real-world observed droughts in terms of drought intensity and drought-affected area. When compared to MMSDI, MSDI has the potential to overestimate drought intensity and drought-affected area across China, which should be attributed to exclusion of the evapotranspiration components from estimation of drought intensity. Therefore, MMSDI is proposed for drought monitoring that can detect agrometeorological droughts. Results of this study provide a framework for integrated drought monitoring in other regions of the world and can help to develop drought mitigation.
Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.
Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A
2018-01-30
Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Bayesian Nonparametric Model for Estimating Multistate Travel Time Distribution
Directory of Open Access Journals (Sweden)
Emmanuel Kidando
2017-01-01
Full Text Available Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model (DPMM with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC sampling technique was employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The DPMM modeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the inclusion of onset and offset of congestion periods.
Nonparametric Bayes Classification and Hypothesis Testing on Manifolds
Bhattacharya, Abhishek; Dunson, David
2012-01-01
Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Directory of Open Access Journals (Sweden)
Alejandro Jara
2011-04-01
Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.
Wang, Yuanjia; Garcia, Tanya P.; Ma, Yanyuan
2012-01-01
This work presents methods for estimating genotype-specific distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators which do not assume parametric density models and are easy to implement. They are based on the inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). The AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated non-carrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared to non-carriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic testing, and in facilitating future subjects at risk
Van Steenbergen, N.; Willems, P.
2012-04-01
Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the
Directory of Open Access Journals (Sweden)
Olivier Buchsenschutz
2009-05-01
Full Text Available Le développement des systèmes d'information géographique (SIG permet d'introduire dans les bases de données archéologiques la localisation des données. Il est possible alors d'obtenir des cartes de répartition qu'il s'agit ensuite d'interpréter en s’appuyant sur des analyses statistiques et spatiales. Cartes et statistiques mettent en évidence l'état de la recherche, les conditions de conservation des sites, et au-delà des phénomènes historiques ou culturels.À travers un programme de recherche sur l'âge du Fer en France (Basefer une base de données globale a été constituée pour l'espace métropolitain. Cet article propose un certain nombre d'analyses sur les critères descriptifs généraux d’un corpus de 11 000 sites (les départements côtiers de la Méditerranée ne sont pas traités dans ce test. Le contrôle et le développement des rubriques plus fines seront réalisés avec une équipe élargie, avant une mise en réseau de la base.The development of Geographical Information Systems (GIS allows information in archaeological databases to be georeferenced. It is thus possible to obtain distribution maps which can then be interpreted using statistical and spatial analyses. Maps and statistics highlight the state of research, the condition of sites, and moreover historical and cultural phenomena.Through a research programme on the Iron Age in France (Basefer, a global database was established for the entire country. This article puts forward some analyses of the general descriptive criteria represented in a corpus of 11000 sites (departments along the Mediterranean Sea coast are excluded from this test. The control and development of finer descriptors will be undertaken by an enlarged team, before the data are networked.
DEFF Research Database (Denmark)
Tan, Qihua; Zhao, J H; Iachine, I
2004-01-01
This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP) [Kruglyak and Lander, 1995: Am J Hum Genet 57:439-454] to localize genes that contribute to human longevity using long-lived sib-pairs. Data were simulated by introducing a recently...... developed statistical model for measuring marker-longevity associations [Yashin et al., 1999: Am J Hum Genet 65:1178-1193], enabling direct power comparison between linkage and association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are evaluated...... in case of a dominant effect. Although the power issue may depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair investigations should be referred with caution, given the complexity of human longevity....
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
International Nuclear Information System (INIS)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming
2016-01-01
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
Energy Technology Data Exchange (ETDEWEB)
Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2016-11-10
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
A comparison of parametric and nonparametric methods for normalising cDNA microarray data.
Khondoker, Mizanur R; Glasbey, Chris A; Worton, Bruce J
2007-12-01
Normalisation is an essential first step in the analysis of most cDNA microarray data, to correct for effects arising from imperfections in the technology. Loess smoothing is commonly used to correct for trends in log-ratio data. However, parametric models, such as the additive plus multiplicative variance model, have been preferred for scale normalisation, though the variance structure of microarray data may be of a more complex nature than can be accommodated by a parametric model. We propose a new nonparametric approach that incorporates location and scale normalisation simultaneously using a Generalised Additive Model for Location, Scale and Shape (GAMLSS, Rigby and Stasinopoulos, 2005, Applied Statistics, 54, 507-554). We compare its performance in inferring differential expression with Huber et al.'s (2002, Bioinformatics, 18, 96-104) arsinh variance stabilising transformation (AVST) using real and simulated data. We show GAMLSS to be as powerful as AVST when the parametric model is correct, and more powerful when the model is wrong. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Directory of Open Access Journals (Sweden)
SANGCHAN KANTABUTRA
2009-04-01
Full Text Available This paper examines urban-rural effects on public upper-secondary school efficiency in northern Thailand. In the study, efficiency was measured by a nonparametric technique, data envelopment analysis (DEA. Urban-rural effects were examined through a Mann-Whitney nonparametric statistical test. Results indicate that urban schools appear to have access to and practice different production technologies than rural schools, and rural institutions appear to operate less efficiently than their urban counterparts. In addition, a sensitivity analysis, conducted to ascertain the robustness of the analytical framework, revealed the stability of urban-rural effects on school efficiency. Policy to improve school eff iciency should thus take varying geographical area differences into account, viewing rural and urban schools as different from one another. Moreover, policymakers might consider shifting existing resources from urban schools to rural schools, provided that the increase in overall rural efficiency would be greater than the decrease, if any, in the city. Future research directions are discussed.
Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker
2012-08-01
Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.
Analysis of family-wise error rates in statistical parametric mapping using random field theory.
Flandin, Guillaume; Friston, Karl J
2017-11-01
This technical report revisits the analysis of family-wise error rates in statistical parametric mapping-using random field theory-reported in (Eklund et al. []: arXiv 1511.01863). Contrary to the understandable spin that these sorts of analyses attract, a review of their results suggests that they endorse the use of parametric assumptions-and random field theory-in the analysis of functional neuroimaging data. We briefly rehearse the advantages parametric analyses offer over nonparametric alternatives and then unpack the implications of (Eklund et al. []: arXiv 1511.01863) for parametric procedures. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Akhtar, Naveed; Mian, Ajmal
2017-10-03
We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2008-01-01
Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.
Trend Analysis of Pahang River Using Non-Parametric Analysis: Mann Kendalls Trend Test
International Nuclear Information System (INIS)
Nur Hishaam Sulaiman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin; Ahmad Dasuki Mustafa; Muhammad Azizi Amran; Fazureen Azaman; Ismail Zainal Abidin; Norsyuhada Hairoma
2015-01-01
Flood is common in Pahang especially during northeast monsoon season from November to February. Three river cross station: Lubuk Paku, Sg. Yap and Temerloh were selected as area of this study. The stream flow and water level data were gathered from DID record. Data set for this study were analysed by using non-parametric analysis, Mann-Kendall Trend Test. The results that obtained from stream flow and water level analysis indicate that there are positively significant trend for Lubuk Paku (0.001) and Sg. Yap (<0.0001) from 1972-2011 with the p-value < 0.05. Temerloh (0.178) data from 1963-2011 recorded no trend for stream flow parameter but negative trend for water level parameter. Hydrological pattern and trend are extremely affected by outside factors such as north east monsoon season that occurred in South China Sea and affected Pahang during November to March. There are other factors such as development and management of the areas which can be considered as factors affected the data and results. Hydrological Pattern is important to indicate the river trend such as stream flow and water level. It can be used as flood mitigation by local authorities. (author)
A framework for Bayesian nonparametric inference for causal effects of mediation.
Kim, Chanmin; Daniels, Michael J; Marcus, Bess H; Roy, Jason A
2017-06-01
We propose a Bayesian non-parametric (BNP) framework for estimating causal effects of mediation, the natural direct, and indirect, effects. The strategy is to do this in two parts. Part 1 is a flexible model (using BNP) for the observed data distribution. Part 2 is a set of uncheckable assumptions with sensitivity parameters that in conjunction with Part 1 allows identification and estimation of the causal parameters and allows for uncertainty about these assumptions via priors on the sensitivity parameters. For Part 1, we specify a Dirichlet process mixture of multivariate normals as a prior on the joint distribution of the outcome, mediator, and covariates. This approach allows us to obtain a (simple) closed form of each marginal distribution. For Part 2, we consider two sets of assumptions: (a) the standard sequential ignorability (Imai et al., 2010) and (b) weakened set of the conditional independence type assumptions introduced in Daniels et al. (2012) and propose sensitivity analyses for both. We use this approach to assess mediation in a physical activity promotion trial. © 2016, The International Biometric Society.
Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G
2018-03-01
Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.
Ramajo, Julián; Cordero, José Manuel; Márquez, Miguel Ángel
2017-10-01
This paper analyses region-level technical efficiency in nine European countries over the 1995-2007 period. We propose the application of a nonparametric conditional frontier approach to account for the presence of heterogeneous conditions in the form of geographical externalities. Such environmental factors are beyond the control of regional authorities, but may affect the production function. Therefore, they need to be considered in the frontier estimation. Specifically, a spatial autoregressive term is included as an external conditioning factor in a robust order- m model. Thus we can test the hypothesis of non-separability (the external factor impacts both the input-output space and the distribution of efficiencies), demonstrating the existence of significant global interregional spillovers into the production process. Our findings show that geographical externalities affect both the frontier level and the probability of being more or less efficient. Specifically, the results support the fact that the spatial lag variable has an inverted U-shaped non-linear impact on the performance of regions. This finding can be interpreted as a differential effect of interregional spillovers depending on the size of the neighboring economies: positive externalities for small values, possibly related to agglomeration economies, and negative externalities for high values, indicating the possibility of production congestion. Additionally, evidence of the existence of a strong geographic pattern of European regional efficiency is reported and the levels of technical efficiency are acknowledged to have converged during the period under analysis.
Nonparametric Monitoring for Geotechnical Structures Subject to Long-Term Environmental Change
Directory of Open Access Journals (Sweden)
Hae-Bum Yun
2011-01-01
Full Text Available A nonparametric, data-driven methodology of monitoring for geotechnical structures subject to long-term environmental change is discussed. Avoiding physical assumptions or excessive simplification of the monitored structures, the nonparametric monitoring methodology presented in this paper provides reliable performance-related information particularly when the collection of sensor data is limited. For the validation of the nonparametric methodology, a field case study was performed using a full-scale retaining wall, which had been monitored for three years using three tilt gauges. Using the very limited sensor data, it is demonstrated that important performance-related information, such as drainage performance and sensor damage, could be disentangled from significant daily, seasonal and multiyear environmental variations. Extensive literature review on recent developments of parametric and nonparametric data processing techniques for geotechnical applications is also presented.
Kernel bandwidth estimation for non-parametric density estimation: a comparative study
CSIR Research Space (South Africa)
Van der Walt, CM
2013-12-01
Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...
Froelich, Markus; Puhani, Patrick
2004-01-01
Based on a nonparametrically estimated model of labor market classifications, this paper makes suggestions for immigration policy using data from western Germany in the 1990s. It is demonstrated that nonparametric regression is feasible in higher dimensions with only a few thousand observations. In sum, labor markets able to absorb immigrants are characterized by above average age and by professional occupations. On the other hand, labor markets for young workers in service occupations are id...
Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices
Hiroyuki Kasahara; Katsumi Shimotsu
2006-01-01
In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...
Directory of Open Access Journals (Sweden)
Mirjam Nielen
2017-01-01
Full Text Available Always wondered why research papers often present rather complicated statistical analyses? Or wondered how to properly analyse the results of a pragmatic trial from your own practice? This talk will give an overview of basic statistical principles and focus on the why of statistics, rather than on the how.This is a podcast of Mirjam's talk at the Veterinary Evidence Today conference, Edinburgh November 2, 2016.
A non-parametric peak calling algorithm for DamID-Seq.
Directory of Open Access Journals (Sweden)
Renhua Li
Full Text Available Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS of double sex (DSX-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq. One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only. After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1 reads resampling; 2 reads scaling (normalization and computing signal-to-noise fold changes; 3 filtering; 4 Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC. We also used irreproducible discovery rate (IDR analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
A non-parametric peak calling algorithm for DamID-Seq.
Li, Renhua; Hempel, Leonie U; Jiang, Tingbo
2015-01-01
Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
A Non-Parametric Surrogate-based Test of Significance for T-Wave Alternans Detection
Nemati, Shamim; Abdala, Omar; Bazán, Violeta; Yim-Yeh, Susie; Malhotra, Atul; Clifford, Gari
2010-01-01
We present a non-parametric adaptive surrogate test that allows for the differentiation of statistically significant T-Wave Alternans (TWA) from alternating patterns that can be solely explained by the statistics of noise. The proposed test is based on estimating the distribution of noise induced alternating patterns in a beat sequence from a set of surrogate data derived from repeated reshuffling of the original beat sequence. Thus, in assessing the significance of the observed alternating patterns in the data no assumptions are made about the underlying noise distribution. In addition, since the distribution of noise-induced alternans magnitudes is calculated separately for each sequence of beats within the analysis window, the method is robust to data non-stationarities in both noise and TWA. The proposed surrogate method for rejecting noise was compared to the standard noise rejection methods used with the Spectral Method (SM) and the Modified Moving Average (MMA) techniques. Using a previously described realistic multi-lead model of TWA, and real physiological noise, we demonstrate the proposed approach reduces false TWA detections, while maintaining a lower missed TWA detection compared with all the other methods tested. A simple averaging-based TWA estimation algorithm was coupled with the surrogate significance testing and was evaluated on three public databases; the Normal Sinus Rhythm Database (NRSDB), the Chronic Heart Failure Database (CHFDB) and the Sudden Cardiac Death Database (SCDDB). Differences in TWA amplitudes between each database were evaluated at matched heart rate (HR) intervals from 40 to 120 beats per minute (BPM). Using the two-sample Kolmogorov-Smirnov test, we found that significant differences in TWA levels exist between each patient group at all decades of heart rates. The most marked difference was generally found at higher heart rates, and the new technique resulted in a larger margin of separability between patient populations than
Progressive statistics for studies in sports medicine and exercise science.
Hopkins, William G; Marshall, Stephen W; Batterham, Alan M; Hanin, Juri
2009-01-01
Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.
St-Onge, Christina; Valois, Pierre; Abdous, Belkacem; Germain, Stephane
2009-01-01
To date, there have been no studies comparing parametric and nonparametric Item Characteristic Curve (ICC) estimation methods on the effectiveness of Person-Fit Statistics (PFS). The primary aim of this study was to determine if the use of ICCs estimated by nonparametric methods would increase the accuracy of item response theory-based PFS for…
An ANOVA approach for statistical comparisons of brain networks.
Fraiman, Daniel; Fraiman, Ricardo
2018-03-16
The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
An adaptive distance measure for use with nonparametric models
International Nuclear Information System (INIS)
Garvey, D. R.; Hines, J. W.
2006-01-01
Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction
Shi, Yang; Chinnaiyan, Arul M; Jiang, Hui
2015-07-01
High-throughput sequencing of transcriptomes (RNA-Seq) has become a powerful tool to study gene expression. Here we present an R package, rSeqNP, which implements a non-parametric approach to test for differential expression and splicing from RNA-Seq data. rSeqNP uses permutation tests to access statistical significance and can be applied to a variety of experimental designs. By combining information across isoforms, rSeqNP is able to detect more differentially expressed or spliced genes from RNA-Seq data. The R package with its source code and documentation are freely available at http://www-personal.umich.edu/∼jianghui/rseqnp/. jianghui@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Statistical Modeling of Energy Production by Photovoltaic Farms
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.
2011-01-01
Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research
International Nuclear Information System (INIS)
Soto, R; Wu, Ch. H; Bubela, A M
1999-01-01
This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery
Directory of Open Access Journals (Sweden)
Campbell Michael J
2004-12-01
Full Text Available Abstract Health-Related Quality of Life (HRQoL measures are becoming increasingly used in clinical trials as primary outcome measures. Investigators are now asking statisticians for advice on how to analyse studies that have used HRQoL outcomes. HRQoL outcomes, like the SF-36, are usually measured on an ordinal scale. However, most investigators assume that there exists an underlying continuous latent variable that measures HRQoL, and that the actual measured outcomes (the ordered categories, reflect contiguous intervals along this continuum. The ordinal scaling of HRQoL measures means they tend to generate data that have discrete, bounded and skewed distributions. Thus, standard methods of analysis such as the t-test and linear regression that assume Normality and constant variance may not be appropriate. For this reason, conventional statistical advice would suggest that non-parametric methods be used to analyse HRQoL data. The bootstrap is one such computer intensive non-parametric method for analysing data. We used the bootstrap for hypothesis testing and the estimation of standard errors and confidence intervals for parameters, in four datasets (which illustrate the different aspects of study design. We then compared and contrasted the bootstrap with standard methods of analysing HRQoL outcomes. The standard methods included t-tests, linear regression, summary measures and General Linear Models. Overall, in the datasets we studied, using the SF-36 outcome, bootstrap methods produce results similar to conventional statistical methods. This is likely because the t-test and linear regression are robust to the violations of assumptions that HRQoL data are likely to cause (i.e. non-Normality. While particular to our datasets, these findings are likely to generalise to other HRQoL outcomes, which have discrete, bounded and skewed distributions. Future research with other HRQoL outcome measures, interventions and populations, is required to
Tips and Tricks for Successful Application of Statistical Methods to Biological Data.
Schlenker, Evelyn
2016-01-01
This chapter discusses experimental design and use of statistics to describe characteristics of data (descriptive statistics) and inferential statistics that test the hypothesis posed by the investigator. Inferential statistics, based on probability distributions, depend upon the type and distribution of the data. For data that are continuous, randomly and independently selected, as well as normally distributed more powerful parametric tests such as Student's t test and analysis of variance (ANOVA) can be used. For non-normally distributed or skewed data, transformation of the data (using logarithms) may normalize the data allowing use of parametric tests. Alternatively, with skewed data nonparametric tests can be utilized, some of which rely on data that are ranked prior to statistical analysis. Experimental designs and analyses need to balance between committing type 1 errors (false positives) and type 2 errors (false negatives). For a variety of clinical studies that determine risk or benefit, relative risk ratios (random clinical trials and cohort studies) or odds ratios (case-control studies) are utilized. Although both use 2 × 2 tables, their premise and calculations differ. Finally, special statistical methods are applied to microarray and proteomics data, since the large number of genes or proteins evaluated increase the likelihood of false discoveries. Additional studies in separate samples are used to verify microarray and proteomic data. Examples in this chapter and references are available to help continued investigation of experimental designs and appropriate data analysis.
... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...
A note on Nonparametric Confidence Interval for a Shift Parameter ...
African Journals Online (AJOL)
The method is illustrated using the Cauchy distribution as a location model. The kernel-based method is found to have a shorter interval for the shift parameter between two Cauchy distributions than the one based on the Mann-Whitney test statistic. Keywords: Best Asymptotic Normal; Cauchy distribution; Kernel estimates; ...
Bayesian nonparametric estimation of hazard rate in monotone Aalen model
Czech Academy of Sciences Publication Activity Database
Timková, Jana
2014-01-01
Roč. 50, č. 6 (2014), s. 849-868 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf
Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.
Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui
2006-01-01
This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.
Trends in three decades of HIV/AIDS epidemic in Thailand by nonparametric backcalculation method.
Punyacharoensin, Narat; Viwatwongkasem, Chukiat
2009-06-01
To reconstruct the past HIV incidence and prevalence in Thailand from 1980 to 2008 and predict the country's AIDS incidence from 2009 to 2011. Nonparametric backcalculation was adopted utilizing 100 quarterly observed new AIDS counts excluding pediatric cases. The accuracy of data was enhanced through a series of data adjustments using the weight method to account for several surveillance reporting issues. The mixture of time-dependent distributions allowed the effects of age at seroconversion and antiretroviral therapy to be incorporated simultaneously. Sensitivity analyses were conducted to assess model variations that were subject to major uncertainties. Future AIDS incidence was projected for various predetermined HIV incidence patterns. HIV incidence in Thailand reached its peak in 1992 with approximately 115,000 cases. A steep decline thereafter discontinued in 1997 and was followed by another strike of 42,000 cases in 1999. The second surge, which happened concurrently with the major economic crisis, brought on 60,000 new infections. As of December 2008, more than 1 million individuals had been infected and around 430,000 adults were living with HIV corresponding to a prevalence rate of 1.2%. The incidence rate had become less than 0.1% since 2002. The backcalculated estimates were dominated by postulated median AIDS progression time and adjustments to surveillance data. Our analysis indicated that, thus far, the 1990s was the most severe era of HIV/AIDS epidemic in Thailand with two HIV incidence peaks. A drop in new infections led to a decrease in recent AIDS incidence, and this tendency is likely to remain unchanged until 2011, if not further.
Semi-Nonparametric Estimation and Misspecification Testing of Diffusion Models
DEFF Research Database (Denmark)
Kristensen, Dennis
of the estimators and tests under the null are derived, and the power properties are analyzed by considering contiguous alternatives. Test directly comparing the drift and diffusion estimators under the relevant null and alternative are also analyzed. Markov Bootstrap versions of the test statistics are proposed...... to improve on the finite-sample approximations. The finite sample properties of the estimators are examined in a simulation study....
Nonparametric Estimation of Regression Parameters in Measurement Error Models
Czech Academy of Sciences Publication Activity Database
Ehsanes Saleh, A.K.M.D.; Picek, J.; Kalina, Jan
2009-01-01
Roč. 67, č. 2 (2009), s. 177-200 ISSN 0026-1424 Grant - others:GA AV ČR(CZ) IAA101120801; GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z10300504 Keywords : asymptotic relative efficiency(ARE) * asymptotic theory * emaculate mode * Me model * R-estimation * Reliabilty ratio(RR) Subject RIV: BB - Applied Statistics, Operational Research
Boslaugh, Sarah
2013-01-01
Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts. Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.
Fronczyk, Kassandra; Kottas, Athanasios
2014-03-01
We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. © 2013, The International Biometric Society.
This tool allows users to animate cancer trends over time by cancer site and cause of death, race, and sex. Provides access to incidence, mortality, and survival. Select the type of statistic, variables, format, and then extract the statistics in a delimited format for further analyses.
Schaid, Daniel J
2010-01-01
Measures of genomic similarity are the basis of many statistical analytic methods. We review the mathematical and statistical basis of similarity methods, particularly based on kernel methods. A kernel function converts information for a pair of subjects to a quantitative value representing either similarity (larger values meaning more similar) or distance (smaller values meaning more similar), with the requirement that it must create a positive semidefinite matrix when applied to all pairs of subjects. This review emphasizes the wide range of statistical methods and software that can be used when similarity is based on kernel methods, such as nonparametric regression, linear mixed models and generalized linear mixed models, hierarchical models, score statistics, and support vector machines. The mathematical rigor for these methods is summarized, as is the mathematical framework for making kernels. This review provides a framework to move from intuitive and heuristic approaches to define genomic similarities to more rigorous methods that can take advantage of powerful statistical modeling and existing software. A companion paper reviews novel approaches to creating kernels that might be useful for genomic analyses, providing insights with examples [1]. Copyright © 2010 S. Karger AG, Basel.
Longitudinal data analysis a handbook of modern statistical methods
Fitzmaurice, Garrett; Verbeke, Geert; Molenberghs, Geert
2008-01-01
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint
Nonparametric Cointegration Analysis of Fractional Systems With Unknown Integration Orders
DEFF Research Database (Denmark)
Nielsen, Morten Ørregaard
2009-01-01
of a particular model and is invariant to short-run dynamics. Nor does it require the choice of any smoothing parameters that change the test statistic without being reflected in the asymptotic distribution. Furthermore, a consistent estimator of the cointegration space can be obtained from the procedure....... The asymptotic distribution theory for the proposed test is non-standard but easily tabulated. Monte Carlo simulations demonstrate excellent finite sample properties, even rivaling those of well-specified parametric tests. The proposed methodology is applied to the term structure of interest rates, where...
Bellera, Carine A.; Julien, Marilyse; Hanley, James A.
2010-01-01
The Wilcoxon statistics are usually taught as nonparametric alternatives for the 1- and 2-sample Student-"t" statistics in situations where the data appear to arise from non-normal distributions, or where sample sizes are so small that we cannot check whether they do. In the past, critical values, based on exact tail areas, were…
... this page: https://medlineplus.gov/usestatistics.html MedlinePlus Statistics To use the sharing features on this page, ... By Quarter View image full size Quarterly User Statistics Quarter Page Views Unique Visitors Oct-Dec-98 ...
Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression
Yoo, W.W.; Ghosal, S
2016-01-01
In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a
Does Private Tutoring Work? The Effectiveness of Private Tutoring: A Nonparametric Bounds Analysis
Hof, Stefanie
2014-01-01
Private tutoring has become popular throughout the world. However, evidence for the effect of private tutoring on students' academic outcome is inconclusive; therefore, this paper presents an alternative framework: a nonparametric bounds method. The present examination uses, for the first time, a large representative data-set in a European setting…
Testing a parametric function against a nonparametric alternative in IV and GMM settings
DEFF Research Database (Denmark)
Gørgens, Tue; Wurtz, Allan
This paper develops a specification test for functional form for models identified by moment restrictions, including IV and GMM settings. The general framework is one where the moment restrictions are specified as functions of data, a finite-dimensional parameter vector, and a nonparametric real ...
A structural nonparametric reappraisal of the CO2 emissions-income relationship
Azomahou, T.T.; Goedhuys - Degelin, Micheline; Nguyen-Van, P.
Relying on a structural nonparametric estimation, we show that co2 emissions clearly increase with income at low income levels. For higher income levels, we observe a decreasing relationship, though not significant. We also find thatco2 emissions monotonically increases with energy use at a
Assessing pupil and school performance by non-parametric and parametric techniques
de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.
2010-01-01
This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall
Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems
DEFF Research Database (Denmark)
Georgiadis, Stylianos; Limnios, Nikolaos
2016-01-01
In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...
Low default credit scoring using two-class non-parametric kernel density estimation
CSIR Research Space (South Africa)
Rademeyer, E
2016-12-01
Full Text Available This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either...
DEFF Research Database (Denmark)
Ramirez, José Rangel; Sørensen, John Dalsgaard
2011-01-01
This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian u...
Non-parametric production analysis of pesticides use in the Netherlands
Oude Lansink, A.G.J.M.; Silva, E.
2004-01-01
Many previous empirical studies on the productivity of pesticides suggest that pesticides are under-utilized in agriculture despite the general held believe that these inputs are substantially over-utilized. This paper uses data envelopment analysis (DEA) to calculate non-parametric measures of the
Analyzing cost efficient production behavior under economies of scope : A nonparametric methodology
Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.
2008-01-01
In designing a production model for firms that generate multiple outputs, we take as a starting point that such multioutput production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost-efficient
Analyzing Cost Efficient Production Behavior Under Economies of Scope : A Nonparametric Methodology
Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.
2006-01-01
In designing a production model for firms that generate multiple outputs, we take as a starting point that such multi-output production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost efficient
The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models
GROENEBOOM, PIET; JONGBLOED, GEURT; WELLNER, JON A.
2008-01-01
In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.
A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)
Arenson, Ethan A.; Karabatsos, George
2017-01-01
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
2003-01-01
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
A non-parametric Bayesian approach to decompounding from high frequency data
Gugushvili, Shota; van der Meulen, F.H.; Spreij, Peter
2016-01-01
Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture of normal densities.
Mittag, Kathleen Cage
Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…
Nonparametric estimation of the stationary M/G/1 workload distribution function
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted
2005-01-01
In this paper it is demonstrated how a nonparametric estimator of the stationary workload distribution function of the M/G/1-queue can be obtained by systematic sampling the workload process. Weak convergence results and bootstrap methods for empirical distribution functions for stationary associ...
Nonparametric estimation in an "illness-death" model when all transition times are interval censored
DEFF Research Database (Denmark)
Frydman, Halina; Gerds, Thomas; Grøn, Randi
2013-01-01
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times ...
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
A comparative study of non-parametric models for identification of ...
African Journals Online (AJOL)
However, the frequency response method using random binary signals was good for unpredicted white noise characteristics and considered the best method for non-parametric system identifica-tion. The autoregressive external input (ARX) model was very useful for system identification, but on applicati-on, few input ...
A non-parametric hierarchical model to discover behavior dynamics from tracks
Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.
2012-01-01
We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José
2015-01-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),
Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics
International Nuclear Information System (INIS)
Janurová, Kateřina; Briš, Radim
2014-01-01
Medical survival right-censored data of about 850 patients are evaluated to analyze the uncertainty related to the risk of mortality on one hand and compare two basic surgery techniques in the context of risk of mortality on the other hand. Colorectal data come from patients who underwent colectomy in the University Hospital of Ostrava. Two basic surgery operating techniques are used for the colectomy: either traditional (open) or minimally invasive (laparoscopic). Basic question arising at the colectomy operation is, which type of operation to choose to guarantee longer overall survival time. Two non-parametric approaches have been used to quantify probability of mortality with uncertainties. In fact, complement of the probability to one, i.e. survival function with corresponding confidence levels is calculated and evaluated. First approach considers standard nonparametric estimators resulting from both the Kaplan–Meier estimator of survival function in connection with Greenwood's formula and the Nelson–Aalen estimator of cumulative hazard function including confidence interval for survival function as well. The second innovative approach, represented by Nonparametric Predictive Inference (NPI), uses lower and upper probabilities for quantifying uncertainty and provides a model of predictive survival function instead of the population survival function. The traditional log-rank test on one hand and the nonparametric predictive comparison of two groups of lifetime data on the other hand have been compared to evaluate risk of mortality in the context of mentioned surgery techniques. The size of the difference between two groups of lifetime data has been considered and analyzed as well. Both nonparametric approaches led to the same conclusion, that the minimally invasive operating technique guarantees the patient significantly longer survival time in comparison with the traditional operating technique
[The research protocol VI: How to choose the appropriate statistical test. Inferential statistics].
Flores-Ruiz, Eric; Miranda-Novales, María Guadalupe; Villasís-Keever, Miguel Ángel
2017-01-01
The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.
The research protocol VI: How to choose the appropriate statistical test. Inferential statistics
Directory of Open Access Journals (Sweden)
Eric Flores-Ruiz
2017-10-01
Full Text Available The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.
Energy Technology Data Exchange (ETDEWEB)
Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T. [Universite Catholique de Louvain, Service de Medecine Nucleaire, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Van Laere, K. [Leuven Univ. Hospital, Nuclear Medicine Div. (Belgium); Jamart, J. [Universite Catholique de Louvain, Dept. de Biostatistiques, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); D' Asseler, Y. [Ghent Univ., Medical Signal and Image Processing Dept. (MEDISIP), Faculty of applied sciences (Belgium); Minoshima, S. [Washington Univ., Dept. of Radiology, Seattle (United States)
2009-10-15
Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine {sup 99m}Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)
Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J
2011-06-01
In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.