Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.
Seismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering
Directory of Open Access Journals (Sweden)
Xin Tian
2017-06-01
Full Text Available We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one cluster could be well represented by their corresponding dictionaries. A nonparametric Bayesian dictionary learning method is used to learn the dictionaries, which naturally infers an appropriate dictionary size for each cluster. A uniform quantizer and an adaptive arithmetic coding algorithm are adopted to code the sparse coefficients. With comparisons to other state-of-the art approaches, the effectiveness of the proposed method could be validated in the experiments.
Nonparametric Collective Spectral Density Estimation and Clustering
Maadooliat, Mehdi
2017-04-12
In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at
Nonparametric Collective Spectral Density Estimation and Clustering
Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo
2017-01-01
In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at
Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.
Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A
2018-01-30
Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Categorical and nonparametric data analysis choosing the best statistical technique
Nussbaum, E Michael
2014-01-01
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain
Yau, Christopher; Holmes, Chris
2011-07-01
We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.
Xu, Zhiqiang
2017-02-16
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke
2017-01-01
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Tokuda, Tomoki; Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.
Directory of Open Access Journals (Sweden)
Tomoki Tokuda
Full Text Available We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.
Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392
Directory of Open Access Journals (Sweden)
Urbi Garay
2016-03-01
Full Text Available We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return and betas (to a choice set of explanatory factors in a multivariate setting. This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which circumvents the problem of model risk and parametric assumptions that the Kalman filter and other widely used approaches rely on. The by-product of clusters, used for shrinkage and information borrowing, can be of use to determine relationships around specific events. This approach exhibits a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which we illustrate through simulation. As an illustration, we use hedge fund index data, and find that our estimated alphas are, on average, 0.13% per month higher (1.6% per year than alphas estimated through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in periods which can be identified as times of stressful market events, a reflection of the dynamic positioning of hedge fund portfolio managers.
Zhang, Linlin; Guindani, Michele; Versace, Francesco; Vannucci, Marina
2014-07-15
In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data. Copyright © 2014 Elsevier Inc. All rights reserved.
Non-parametric co-clustering of large scale sparse bipartite networks on the GPU
DEFF Research Database (Denmark)
Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai
2011-01-01
of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...
A COMPARISON OF TWO FUZZY CLUSTERING TECHNIQUES
Directory of Open Access Journals (Sweden)
Samarjit Das
2013-10-01
Full Text Available - In fuzzy clustering, unlike hard clustering, depending on the membership value, a single object may belong exactly to one cluster or partially to more than one cluster. Out of a number of fuzzy clustering techniques Bezdek’s Fuzzy C-Means and GustafsonKessel clustering techniques are well known where Euclidian distance and Mahalanobis distance are used respectively as a measure of similarity. We have applied these two fuzzy clustering techniques on a dataset of individual differences consisting of fifty feature vectors of dimension (feature three. Based on some validity measures we have tried to see the performances of these two clustering techniques from three different aspects- first, by initializing the membership values of the feature vectors considering the values of the three features separately one at a time, secondly, by changing the number of the predefined clusters and thirdly, by changing the size of the dataset.
clues: An R Package for Nonparametric Clustering Based on Local Shrinking
Directory of Open Access Journals (Sweden)
Fang Chang
2010-02-01
Full Text Available Determining the optimal number of clusters appears to be a persistent and controversial issue in cluster analysis. Most existing R packages targeting clustering require the user to specify the number of clusters in advance. However, if this subjectively chosen number is far from optimal, clustering may produce seriously misleading results. In order to address this vexing problem, we develop the R package clues to automate and evaluate the selection of an optimal number of clusters, which is widely applicable in the field of clustering analysis. Package clues uses two main procedures, shrinking and partitioning, to estimate an optimal number of clusters by maximizing an index function, either the CH index or the Silhouette index, rather than relying on guessing a pre-specified number. Five agreement indices (Rand index, Hubert and Arabie’s adjusted Rand index, Morey and Agresti’s adjusted Rand index, Fowlkes and Mallows index and Jaccard index, which measure the degree of agreement between any two partitions, are also provided in clues. In addition to numerical evidence, clues also supplies a deeper insight into the partitioning process with trajectory plots.
A nonparametric Bayesian approach for clustering bisulfate-based DNA methylation profiles.
Zhang, Lin; Meng, Jia; Liu, Hui; Huang, Yufei
2012-01-01
DNA methylation occurs in the context of a CpG dinucleotide. It is an important epigenetic modification, which can be inherited through cell division. The two major types of methylation include hypomethylation and hypermethylation. Unique methylation patterns have been shown to exist in diseases including various types of cancer. DNA methylation analysis promises to become a powerful tool in cancer diagnosis, treatment and prognostication. Large-scale methylation arrays are now available for studying methylation genome-wide. The Illumina methylation platform simultaneously measures cytosine methylation at more than 1500 CpG sites associated with over 800 cancer-related genes. Cluster analysis is often used to identify DNA methylation subgroups for prognosis and diagnosis. However, due to the unique non-Gaussian characteristics, traditional clustering methods may not be appropriate for DNA and methylation data, and the determination of optimal cluster number is still problematic. A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation expressions as an infinite number of beta mixture distribution. The model allows automatic learning of the relevant parameters such as the cluster mixing proportion, the parameters of beta distribution for each cluster, and especially the number of potential clusters. Since the model is high dimensional and analytically intractable, we proposed a Gibbs sampling "no-gaps" solution for computing the posterior distributions, hence the estimates of the parameters. The proposed algorithm was tested on simulated data as well as methylation data from 55 Glioblastoma multiform (GBM) brain tissue samples. To reduce the computational burden due to the high data dimensionality, a dimension reduction method is adopted. The two GBM clusters yielded by DPBMM are based on data of different number of loci (P-value < 0.1), while hierarchical clustering cannot yield statistically significant clusters.
Assessing pupil and school performance by non-parametric and parametric techniques
de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.
2010-01-01
This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall
Romero, C.; McWilliam, M.; Macías-Pérez, J.-F.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; de Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2018-04-01
Context. In the past decade, sensitive, resolved Sunyaev-Zel'dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium. Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales. Methods: Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck. Results: For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 generation of SZ instruments such as NIKA2 and MUSTANG2.
Siciliani, Luigi
2006-01-01
Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.
Percolation technique for galaxy clustering
Klypin, Anatoly; Shandarin, Sergei F.
1993-01-01
We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.
Dasarathy, B. V.
1976-01-01
An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.
Lee, Kit-Hang; Fu, Denny K.C.; Leong, Martin C.W.; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong
2017-01-01
Abstract Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments. PMID:29251567
Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.
2017-12-01
Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.
International Nuclear Information System (INIS)
Stevens, D.L.; Dagle, G.E.
1986-01-01
Retention and translocation of inhaled radionuclides are often estimated from the sacrifice of multiple animals at different time points. The data for each time point can be averaged and a smooth curve fitted to the mean values, or a smooth curve may be fitted to the entire data set. However, an analysis based on means may not be the most appropriate if there is substantial variation in the initial amount of the radionuclide inhaled or if the data are subject to outliers. A method has been developed that takes account of these problems. The body burden is viewed as a compartmental system, with the compartments identified with body organs. A median polish is applied to the multiple logistic transform of the compartmental fractions (compartment burden/total burden) at each time point. A smooth function is fitted to the results of the median polish. This technique was applied to data from beagles exposed to an aerosol of 239 Pu(NO 3 ) 4 . Models of retention and translocation for lungs, skeleton, liver, kidneys, and tracheobronchial lymph nodes were developed and used to estimate dose. 4 refs., 3 figs., 4 tabs
Event Streams Clustering Using Machine Learning Techniques
Directory of Open Access Journals (Sweden)
Hanen Bouali
2015-10-01
Full Text Available Data streams are usually of unbounded lengths which push users to consider only recent observations by focusing on a time window, and ignore past data. However, in many real world applications, past data must be taken in consideration to guarantee the efficiency, the performance of decision making and to handle data streams evolution over time. In order to build a selectively history to track the underlying event streams changes, we opt for the continuously data of the sliding window which increases the time window based on changes over historical data. In this paper, to have the ability to access to historical data without requiring any significant storage or multiple passes over the data. In this paper, we propose a new algorithm for clustering multiple data streams using incremental support vector machine and data representative points’ technique. The algorithm uses a sliding window model for the most recent clustering results and data representative points to model the old data clustering results. Our experimental results on electromyography signal show a better clustering than other present in the literature
Clustering microcalcifications techniques in digital mammograms
Díaz, Claudia. C.; Bosco, Paolo; Cerello, Piergiorgio
2008-11-01
Breast cancer has become a serious public health problem around the world. However, this pathology can be treated if it is detected in early stages. This task is achieved by a radiologist, who should read a large amount of mammograms per day, either for a screening or diagnostic purpose in mammography. However human factors could affect the diagnosis. Computer Aided Detection is an automatic system, which can help to specialists in the detection of possible signs of malignancy in mammograms. Microcalcifications play an important role in early detection, so we focused on their study. The two mammographic features that indicate the microcalcifications could be probably malignant are small size and clustered distribution. We worked with density techniques for automatic clustering, and we applied them on a mammography CAD prototype developed at INFN-Turin, Italy. An improvement of performance is achieved analyzing images from a Perugia-Assisi Hospital, in Italy.
Technique for fast and efficient hierarchical clustering
Stork, Christopher
2013-10-08
A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Fiestras-Janeiro, M.G.; Garcia-Jurado, I. (Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Estadistica e Investigacion Operativa)
1990-11-01
A statistical study of the dependence between various critical fusion temperatures of a certain kind of coal and its chemical components is carried out. As well as using classical dependence techniques (multiple, stepwise and PLS regression, principal components, canonical correlation, etc.) together with the corresponding inference on the parameters of interest, non-parametric regression and bootstrap inference are also performed. 11 refs., 3 figs., 8 tabs.
International Nuclear Information System (INIS)
Chen, Chin-Wei; Cote, Patrick; Ferrarese, Laura; West, Andrew A.; Peng, Eric W.
2010-01-01
We present photometric and structural parameters for 100 ACS Virgo Cluster Survey (ACSVCS) galaxies based on homogeneous, multi-wavelength (ugriz), wide-field SDSS (DR5) imaging. These early-type galaxies, which trace out the red sequence in the Virgo Cluster, span a factor of nearly ∼10 3 in g-band luminosity. We describe an automated pipeline that generates background-subtracted mosaic images, masks field sources and measures mean shapes, total magnitudes, effective radii, and effective surface brightnesses using a model-independent approach. A parametric analysis of the surface brightness profiles is also carried out to obtain Sersic-based structural parameters and mean galaxy colors. We compare the galaxy parameters to those in the literature, including those from the ACSVCS, finding good agreement in most cases, although the sizes of the brightest, and most extended, galaxies are found to be most uncertain and model dependent. Our photometry provides an external measurement of the random errors on total magnitudes from the widely used Virgo Cluster Catalog, which we estimate to be σ(B T )∼ 0.13 mag for the brightest galaxies, rising to ∼ 0.3 mag for galaxies at the faint end of our sample (B T ∼ 16). The distribution of axial ratios of low-mass ( d warf ) galaxies bears a strong resemblance to the one observed for the higher-mass ( g iant ) galaxies. The global structural parameters for the full galaxy sample-profile shape, effective radius, and mean surface brightness-are found to vary smoothly and systematically as a function of luminosity, with unmistakable evidence for changes in structural homology along the red sequence. As noted in previous studies, the ugriz galaxy colors show a nonlinear but smooth variation over a ∼7 mag range in absolute magnitude, with an enhanced scatter for the faintest systems that is likely the signature of their more diverse star formation histories.
A survey of text clustering techniques used for web mining
Directory of Open Access Journals (Sweden)
Dan MUNTEANU
2005-12-01
Full Text Available This paper contains an overview of basic formulations and approaches to clustering. Then it presents two important clustering paradigms: a bottom-up agglomerative technique, which collects similar documents into larger and larger groups, and a top-down partitioning technique, which divides a corpus into topic-oriented partitions.
Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.
2012-01-01
The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).
Optimality Measures for Monotone Equivariant Cluster Techniques.
1980-09-01
complete linkage, u-clustering (u - .3, .5, .7), uv-clustering (uv = (.2,.4), (.2,.6), (.4,.6)) as well as the UPGMA algorithm. The idea will be to...Table 15. Notice that these measure-- do indeed pioduce difftxent verdicts. OPI rates UPGMA as best with uv = (.2,.4) R € second. By OP2, UPGMA is best...By OPI, UPGQA and uv = (.4,.6) are tied for first place, while by OP2, UPGMA is best with uv = (.2,.6), uv = (.2,.4) and uv = (.4,.6) close behind
Clustering: An Interactive Technique to Enhance Learning in Biology.
Ambron, Joanna
1988-01-01
Explains an interdisciplinary approach to biology and writing which increases students' mastery of vocabulary, scientific concepts, creativity, and expression. Describes modifications of the clustering technique used to summarize lectures, integrate reading and understand textbook material. (RT)
A contingency table approach to nonparametric testing
Rayner, JCW
2000-01-01
Most texts on nonparametric techniques concentrate on location and linear-linear (correlation) tests, with less emphasis on dispersion effects and linear-quadratic tests. Tests for higher moment effects are virtually ignored. Using a fresh approach, A Contingency Table Approach to Nonparametric Testing unifies and extends the popular, standard tests by linking them to tests based on models for data that can be presented in contingency tables.This approach unifies popular nonparametric statistical inference and makes the traditional, most commonly performed nonparametric analyses much more comp
A fuzzy clustering technique for calorimetric data reconstruction
International Nuclear Information System (INIS)
Sandhir, Radha Pyari; Muhuri, Sanjib; Nayak, Tapan K.
2010-01-01
In high energy physics experiments, electromagnetic calorimeters are used to measure shower particles produced in p-p or heavy-ion collisions. In order to extract information and reconstruct the characteristics of the various incoming particles, clustering is required to be performed on each of the calorimeter planes. Hard clustering techniques such as Local Maxima Search, Connected-cell Search and K-means Clustering simply assign a data point to a cluster. A data point either lies in a cluster or it does not, and so, overlapping clusters are hardly distinguishable. Fuzzy c-means clustering is a version of the k-means algorithm that incorporates fuzzy logic, so that each point has a weak or strong association to the cluster, determined by the inverse distance to the center of the cluster. The term fuzzy is used because an observation may in fact lie in more than one cluster simultaneously, though to different degrees called 'memberships', as is the case with many high energy physics applications. The centers obtained using the FCM algorithm are based on the geometric locations of the data points
Clustering economies based on multiple criteria decision making techniques
Directory of Open Access Journals (Sweden)
Mansour Momeni
2011-10-01
Full Text Available One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group includes countries with high standards such as Germany and Japan. In the second cluster, there are some developing countries with relatively good economic growth such as Saudi Arabia and Iran. The third cluster belongs to countries with faster rates of growth compared with the countries located in the second group such as China, India and Mexico. Finally, the fourth cluster includes countries with relatively very low rates of growth such as Jordan, Mali, Niger, etc.
An extended k-means technique for clustering moving objects
Directory of Open Access Journals (Sweden)
Omnia Ossama
2011-03-01
Full Text Available k-means algorithm is one of the basic clustering techniques that is used in many data mining applications. In this paper we present a novel pattern based clustering algorithm that extends the k-means algorithm for clustering moving object trajectory data. The proposed algorithm uses a key feature of moving object trajectories namely, its direction as a heuristic to determine the different number of clusters for the k-means algorithm. In addition, we use the silhouette coefficient as a measure for the quality of our proposed approach. Finally, we present experimental results on both real and synthetic data that show the performance and accuracy of our proposed technique.
Exploitation of Clustering Techniques in Transactional Healthcare Data
Directory of Open Access Journals (Sweden)
Naeem Ahmad Mahoto
2014-03-01
Full Text Available Healthcare service centres equipped with electronic health systems have improved their resources as well as treatment processes. The dynamic nature of healthcare data of each individual makes it complex and difficult for physicians to manually mediate them; therefore, automatic techniques are essential to manage the quality and standardization of treatment procedures. Exploratory data analysis, patternanalysis and grouping of data is managed using clustering techniques, which work as an unsupervised classification. A number of healthcare applications are developed that use several data mining techniques for classification, clustering and extracting useful information from healthcare data. The challenging issue in this domain is to select adequate data mining algorithm for optimal results. This paper exploits three different clustering algorithms: DBSCAN (Density-Based Clustering, agglomerative hierarchical and k-means in real transactional healthcare data of diabetic patients (taken as case study to analyse their performance in large and dispersed healthcare data. The best solution of cluster sets among the exploited algorithms is evaluated using clustering quality indexes and is selected to identify the possible subgroups of patients having similar treatment patterns
Nonparametric statistical inference
Gibbons, Jean Dickinson
2010-01-01
Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente
Unsupervised color image segmentation using a lattice algebra clustering technique
Urcid, Gonzalo; Ritter, Gerhard X.
2011-08-01
In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.
Microgrids Real-Time Pricing Based on Clustering Techniques
Directory of Open Access Journals (Sweden)
Hao Liu
2018-05-01
Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.
Software refactoring at the package level using clustering techniques
Alkhalid, A.
2011-01-01
Enhancing, modifying or adapting the software to new requirements increases the internal software complexity. Software with high level of internal complexity is difficult to maintain. Software refactoring reduces software complexity and hence decreases the maintenance effort. However, software refactoring becomes quite challenging task as the software evolves. The authors use clustering as a pattern recognition technique to assist in software refactoring activities at the package level. The approach presents a computer aided support for identifying ill-structured packages and provides suggestions for software designer to balance between intra-package cohesion and inter-package coupling. A comparative study is conducted applying three different clustering techniques on different software systems. In addition, the application of refactoring at the package level using an adaptive k-nearest neighbour (A-KNN) algorithm is introduced. The authors compared A-KNN technique with the other clustering techniques (viz. single linkage algorithm, complete linkage algorithm and weighted pair-group method using arithmetic averages). The new technique shows competitive performance with lower computational complexity. © 2011 The Institution of Engineering and Technology.
Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.
Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui
2006-01-01
This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.
On Cooper's Nonparametric Test.
Schmeidler, James
1978-01-01
The basic assumption of Cooper's nonparametric test for trend (EJ 125 069) is questioned. It is contended that the proper assumption alters the distribution of the statistic and reduces its usefulness. (JKS)
Marine data users clustering using data mining technique
Directory of Open Access Journals (Sweden)
Farnaz Ghiasi
2015-09-01
Full Text Available The objective of this research is marine data users clustering using data mining technique. To achieve this objective, marine organizations will enable to know their data and users requirements. In this research, CRISP-DM standard model was used to implement the data mining technique. The required data was extracted from 500 marine data users profile database of Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS from 1386 to 1393. The TwoStep algorithm was used for clustering. In this research, patterns was discovered between marine data users such as student, organization and scientist and their data request (Data source, Data type, Data set, Parameter and Geographic area using clustering for the first time. The most important clusters are: Student with International data source, Chemistry data type, “World Ocean Database” dataset, Persian Gulf geographic area and Organization with Nitrate parameter. Senior managers of the marine organizations will enable to make correct decisions concerning their existing data. They will direct to planning for better data collection in the future. Also data users will guide with respect to their requests. Finally, the valuable suggestions were offered to improve the performance of marine organizations.
Brain tumor segmentation based on a hybrid clustering technique
Directory of Open Access Journals (Sweden)
Eman Abdel-Maksoud
2015-03-01
This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.
The composite sequential clustering technique for analysis of multispectral scanner data
Su, M. Y.
1972-01-01
The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.
Nonparametric Transfer Function Models
Liu, Jun M.; Chen, Rong; Yao, Qiwei
2009-01-01
In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584
Dickhaus, Thorsten
2018-01-01
This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
Distributed cluster management techniques for unattended ground sensor networks
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...
Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
Quantal Response: Nonparametric Modeling
2017-01-01
capture the behavior of observed phenomena. Higher-order polynomial and finite-dimensional spline basis models allow for more complicated responses as the...flexibility as these are nonparametric (not constrained to any particular functional form). These should be useful in identifying nonstandard behavior via... deviance ∆ = −2 log(Lreduced/Lfull) is defined in terms of the likelihood function L. For normal error, Lfull = 1, and based on Eq. A-2, we have log
A Structural Labor Supply Model with Nonparametric Preferences
van Soest, A.H.O.; Das, J.W.M.; Gong, X.
2000-01-01
Nonparametric techniques are usually seen as a statistic device for data description and exploration, and not as a tool for estimating models with a richer economic structure, which are often required for policy analysis.This paper presents an example where nonparametric flexibility can be attained
Directory of Open Access Journals (Sweden)
Thenmozhi Srinivasan
2015-01-01
Full Text Available Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM, with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets.
Performance analysis of clustering techniques over microarray data: A case study
Dash, Rasmita; Misra, Bijan Bihari
2018-03-01
Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.
Classification of protein profiles using fuzzy clustering techniques
DEFF Research Database (Denmark)
Karemore, Gopal; Mullick, Jhinuk B.; Sujatha, R.
2010-01-01
Present study has brought out a comparison of PCA and fuzzy clustering techniques in classifying protein profiles (chromatogram) of homogenates of different tissue origins: Ovarian, Cervix, Oral cancers, which were acquired using HPLC–LIF (High Performance Liquid...... Chromatography- Laser Induced Fluorescence) method developed in our laboratory. Study includes 11 chromatogram spectra each from oral, cervical, ovarian cancers as well as healthy volunteers. Generally multivariate analysis like PCA demands clear data that is devoid of day...... PCA mapping in classifying various cancers from healthy spectra with classification rate up to 95 % from 60%. Methods are validated using various clustering indexes and shows promising improvement in developing optical pathology like HPLC-LIF for early detection of various...
Directory of Open Access Journals (Sweden)
Jie Wu
2010-12-01
Full Text Available The operational performance of container ports has received more and more attentions in both academic and practitioner circles, the performance evaluation and process improvement of container ports have also been the focus of several studies. In this paper, Data Envelopment Analysis (DEA, an effective tool for relative efficiency assessment, is utilized for measuring the performances and benchmarking of the 77 world container ports in 2007. The used approaches in the current study consider four inputs (Capacity of Cargo Handling Machines, Number of Berths, Terminal Area and Storage Capacity and a single output (Container Throughput. The results for the efficiency scores are analyzed, and a unique ordering of the ports based on average cross efficiency is provided, also cluster analysis technique is used to select the more appropriate targets for poorly performing ports to use as benchmarks.
Nonparametric statistical inference
Gibbons, Jean Dickinson
2014-01-01
Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.
Nonparametric combinatorial sequence models.
Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa
2011-11-01
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.
COMPARISON AND EVALUATION OF CLUSTER BASED IMAGE SEGMENTATION TECHNIQUES
Hetangi D. Mehta*, Daxa Vekariya, Pratixa Badelia
2017-01-01
Image segmentation is the classification of an image into different groups. Numerous algorithms using different approaches have been proposed for image segmentation. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. A review is done on different types of clustering methods used for image segmentation. Also a methodology is proposed to classify and quantify different clustering algorithms based on their consistency in different...
Nonparametric tests for censored data
Bagdonavicus, Vilijandas; Nikulin, Mikhail
2013-01-01
This book concerns testing hypotheses in non-parametric models. Generalizations of many non-parametric tests to the case of censored and truncated data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. The incorrect use of many tests applying most statistical software is highlighted and discussed.
SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems
International Nuclear Information System (INIS)
Hecht, K.T.; Zahn, W.
1978-01-01
In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references
Robustifying Bayesian nonparametric mixtures for count data.
Canale, Antonio; Prünster, Igor
2017-03-01
Our motivating application stems from surveys of natural populations and is characterized by large spatial heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure. This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding clusters. The application and a simulation study for different scenarios yield also some general methodological implications. Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at both levels, the kernel and the mixing measure. © 2016, The International Biometric Society.
The k-means clustering technique: General considerations and implementation in Mathematica
Directory of Open Access Journals (Sweden)
Laurence Morissette
2013-02-01
Full Text Available Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan and Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique.
Techniques for Representation of Regional Clusters in Geographical In-formation Systems
Directory of Open Access Journals (Sweden)
Adriana REVEIU
2011-01-01
Full Text Available This paper provides an overview of visualization techniques adapted for regional clusters presentation in Geographic Information Systems. Clusters are groups of companies and insti-tutions co-located in a specific geographic region and linked by interdependencies in providing a related group of products and services. The regional clusters can be visualized by projecting the data into two-dimensional space or using parallel coordinates. Cluster membership is usually represented by different colours or by dividing clusters into several panels of a grille display. Taking into consideration regional clusters requirements and the multilevel administrative division of the Romania’s territory, I used two cartograms: NUTS2- regions and NUTS3- counties, to illustrate the tools for regional clusters representation.
Measuring customer loyalty using an extended RFM and clustering technique
Directory of Open Access Journals (Sweden)
Zohre Zalaghi
2014-05-01
Full Text Available Today, the ability to identify the profitable customers, creating a long-term loyalty in them and expanding the existing relationships are considered as the key and competitive factors for a customer-oriented organization. The prerequisite for having such competitive factors is the presence of a very powerful customer relationship management (CRM. The accurate evaluation of customers’ profitability is considered as one of the fundamental reasons that lead to a successful customer relationship management. RFM is a method that scrutinizes three properties, namely recency, frequency and monetary for each customer and scores customers based on these properties. In this paper, a method is introduced that obtains the behavioral traits of customers using the extended RFM approach and having the information related to the customers of an organization; it then classifies the customers using the K-means algorithm and finally scores the customers in terms of their loyalty in each cluster. In the suggested approach, first the customers’ records will be clustered and then the RFM model items will be specified through selecting the effective properties on the customers’ loyalty rate using the multipurpose genetic algorithm. Next, they will be scored in each cluster based on the effect that they have on the loyalty rate. The influence rate each property has on loyalty is calculated using the Spearman’s correlation coefficient.
Nonparametric identification of copula structures
Li, Bo; Genton, Marc G.
2013-01-01
We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric
Firdausiah Mansur, Andi Besse; Yusof, Norazah
2013-01-01
Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…
Nonparametric modeling of dynamic functional connectivity in fmri data
DEFF Research Database (Denmark)
Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus
2015-01-01
dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...
Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data
Energy Technology Data Exchange (ETDEWEB)
Jin, Ling; Lee, Doris; Sim, Alex; Borgeson, Sam; Wu, Kesheng; Spurlock, C. Anna; Todd, Annika
2017-03-21
Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checking of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.
THE EFFECT OF CLUSTERING TECHNIQUE ON WRITING EXPOSITORY ESSAYS OF EFL STUDENTS
Directory of Open Access Journals (Sweden)
Sabarun Sabarun
2013-03-01
Full Text Available The study is aimed at investigating the effectiveness of using clustering technique in writing expository essays. The aim of the study is to prove whether there is a significant difference between writing using clustering technique and writing without using it on the students’ writing achievement or not. The study belonged to experimental study by applying counterbalance procedure to collect the data. The study was conducted at the fourth semester English department students of Palangka Raya State Islamic College of 2012/ 2013 academic year. The number of the sample was 13 students. This study was restricted to two focuses: using clustering technique and without using clustering technique to write composition. Using clustering technique to write essay was one of the pre writing strategies in writing process. To answer the research problem, the t test for correlated samples was applied. The research findings showed that,it was found that the t value was 10.554.It was also found that the df (Degree of freedom of the distribution observed was 13-1= 12. Based on the Table of t value, if df was 12, the 5% of significant level of t value was at 1.782 and the 1% of significant level of t value was at 2.179. It meant that using clustering gave facilitative effect on the students’ essay writing performance. Keywords: reading comprehension, text, scaffolding
Decision support using nonparametric statistics
Beatty, Warren
2018-01-01
This concise volume covers nonparametric statistics topics that most are most likely to be seen and used from a practical decision support perspective. While many degree programs require a course in parametric statistics, these methods are often inadequate for real-world decision making in business environments. Much of the data collected today by business executives (for example, customer satisfaction opinions) requires nonparametric statistics for valid analysis, and this book provides the reader with a set of tools that can be used to validly analyze all data, regardless of type. Through numerous examples and exercises, this book explains why nonparametric statistics will lead to better decisions and how they are used to reach a decision, with a wide array of business applications. Online resources include exercise data, spreadsheets, and solutions.
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
Non-parametric smoothing of experimental data
International Nuclear Information System (INIS)
Kuketayev, A.T.; Pen'kov, F.M.
2007-01-01
Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving
Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang
2017-10-30
In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.
Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique
DEFF Research Database (Denmark)
Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr
2018-01-01
Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....
LENR BEC Clusters on and below Wires through Cavitation and Related Techniques
Stringham, Roger; Stringham, Julie
2011-03-01
During the last two years I have been working on BEC cluster densities deposited just under the surface of wires, using cavitation, and other techniques. If I get the concentration high enough before the clusters dissipate, in addition to cold fusion related excess heat (and other effects, including helium-4 formation) I anticipate that it may be possible to initiate transient forms of superconductivity at room temperature.
DEFF Research Database (Denmark)
Muhammad, Hanif; Juluri, Raghavendra R.; Chirumamilla, Manohar
2016-01-01
based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...
Directory of Open Access Journals (Sweden)
Sorana D. BOLBOACĂ
2011-06-01
Full Text Available Aim: The properness of random assignment of compounds in training and validation sets was assessed using the generalized cluster technique. Material and Method: A quantitative Structure-Activity Relationship model using Molecular Descriptors Family on Vertices was evaluated in terms of assignment of carboquinone derivatives in training and test sets during the leave-many-out analysis. Assignment of compounds was investigated using five variables: observed anticancer activity and four structure descriptors. Generalized cluster analysis with K-means algorithm was applied in order to investigate if the assignment of compounds was or not proper. The Euclidian distance and maximization of the initial distance using a cross-validation with a v-fold of 10 was applied. Results: All five variables included in analysis proved to have statistically significant contribution in identification of clusters. Three clusters were identified, each of them containing both carboquinone derivatives belonging to training as well as to test sets. The observed activity of carboquinone derivatives proved to be normal distributed on every. The presence of training and test sets in all clusters identified using generalized cluster analysis with K-means algorithm and the distribution of observed activity within clusters sustain a proper assignment of compounds in training and test set. Conclusion: Generalized cluster analysis using the K-means algorithm proved to be a valid method in assessment of random assignment of carboquinone derivatives in training and test sets.
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Focus-based filtering + clustering technique for power-law networks with small world phenomenon
Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz
2006-01-01
Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.
Nonparametric factor analysis of time series
Rodríguez-Poo, Juan M.; Linton, Oliver Bruce
1998-01-01
We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.
Directory of Open Access Journals (Sweden)
Arun Vasanaperumal
2015-11-01
Full Text Available There are number of potential applications of Wireless Sensor Networks (WSNs like wild habitat monitoring, forest fire detection, military surveillance etc. All these applications are constrained for power from a stand along battery power source. So it becomes of paramount importance to conserve the energy utilized from this power source. A lot of efforts have gone into this area recently and it remains as one of the hot research areas. In order to improve network lifetime and reduce average power consumption, this study proposes a novel cluster head selection algorithm. Clustering is the preferred architecture when the numbers of nodes are larger because it results in considerable power savings for large networks as compared to other ones like tree or star. Since majority of the applications generally involve more than 30 nodes, clustering has gained widespread importance and is most used network architecture. The optimum number of clusters is first selected based on the number of nodes in the network. When the network is in operation the cluster heads in a cluster are rotated periodically based on the proposed cluster head selection algorithm to increase the network lifetime. Throughout the network single-hop communication methodology is assumed. This work will serve as an encouragement for further advances in the low power techniques for implementing Wireless Sensor Networks (WSNs.
Gholami, Mohammad; Brennan, Robert W
2016-01-06
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.
Nonparametric Inference for Periodic Sequences
Sun, Ying
2012-02-01
This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
The Application of Clustering Techniques to Citation Data. Research Reports Series B No. 6.
Arms, William Y.; Arms, Caroline
This report describes research carried out as part of the Design of Information Systems in the Social Sciences (DISISS) project. Cluster analysis techniques were applied to a machine readable file of bibliographic data in the form of cited journal titles in order to identify groupings which could be used to structure bibliographic files. Practical…
Nonparametric predictive inference in reliability
International Nuclear Information System (INIS)
Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.
2002-01-01
We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere
Directory of Open Access Journals (Sweden)
Simon Benjaminsson
2010-08-01
Full Text Available Non-parametric data-driven analysis techniques can be used to study datasets with few assumptions about the data and underlying experiment. Variations of Independent Component Analysis (ICA have been the methods mostly used on fMRI data, e.g. in finding resting-state networks thought to reflect the connectivity of the brain. Here we present a novel data analysis technique and demonstrate it on resting-state fMRI data. It is a generic method with few underlying assumptions about the data. The results are built from the statistical relations between all input voxels, resulting in a whole-brain analysis on a voxel level. It has good scalability properties and the parallel implementation is capable of handling large datasets and databases. From the mutual information between the activities of the voxels over time, a distance matrix is created for all voxels in the input space. Multidimensional scaling is used to put the voxels in a lower-dimensional space reflecting the dependency relations based on the distance matrix. By performing clustering in this space we can find the strong statistical regularities in the data, which for the resting-state data turns out to be the resting-state networks. The decomposition is performed in the last step of the algorithm and is computationally simple. This opens up for rapid analysis and visualization of the data on different spatial levels, as well as automatically finding a suitable number of decomposition components.
International Nuclear Information System (INIS)
Pirkle, F.L.; Stablein, N.K.; Howell, J.A.; Wecksung, G.W.; Duran, B.S.
1982-11-01
One objective of the aerial radiometric surveys flown as part of the US Department of Energy's National Uranium Resource Evaluation (NURE) program was to ascertain the regional distribution of near-surface radioelement abundances. Some method for identifying groups of observations with similar radioelement values was therefore required. It is shown in this report that cluster analysis can identify such groups even when no a priori knowledge of the geology of an area exists. A method of convergent k-means cluster analysis coupled with a hierarchical cluster analysis is used to classify 6991 observations (three radiometric variables at each observation location) from the Precambrian rocks of the Copper Mountain, Wyoming, area. Another method, one that combines a principal components analysis with a convergent k-means analysis, is applied to the same data. These two methods are compared with a convergent k-means analysis that utilizes available geologic knowledge. All three methods identify four clusters. Three of the clusters represent background values for the Precambrian rocks of the area, and one represents outliers (anomalously high 214 Bi). A segmentation of the data corresponding to geologic reality as discovered by other methods has been achieved based solely on analysis of aerial radiometric data. The techniques employed are composites of classical clustering methods designed to handle the special problems presented by large data sets. 20 figures, 7 tables
Walz, Michael; Leckebusch, Gregor C.
2016-04-01
Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.
A three-stage strategy for optimal price offering by a retailer based on clustering techniques
International Nuclear Information System (INIS)
Mahmoudi-Kohan, N.; Shayesteh, E.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.
2010-01-01
In this paper, an innovative strategy for optimal price offering to customers for maximizing the profit of a retailer is proposed. This strategy is based on load profile clustering techniques and includes three stages. For the purpose of clustering, an improved weighted fuzzy average K-means is proposed. Also, in this paper a new acceptance function for increasing the profit of the retailer is proposed. The new method is evaluated by implementation on a group of 300 customers of a 20 kV distribution network. (author)
A three-stage strategy for optimal price offering by a retailer based on clustering techniques
Energy Technology Data Exchange (ETDEWEB)
Mahmoudi-Kohan, N.; Shayesteh, E. [Islamic Azad University (Garmsar Branch), Garmsar (Iran); Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K. [Tarbiat Modares University, Tehran (Iran)
2010-12-15
In this paper, an innovative strategy for optimal price offering to customers for maximizing the profit of a retailer is proposed. This strategy is based on load profile clustering techniques and includes three stages. For the purpose of clustering, an improved weighted fuzzy average K-means is proposed. Also, in this paper a new acceptance function for increasing the profit of the retailer is proposed. The new method is evaluated by implementation on a group of 300 customers of a 20 kV distribution network. (author)
Nonparametric regression using the concept of minimum energy
International Nuclear Information System (INIS)
Williams, Mike
2011-01-01
It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.
Directory of Open Access Journals (Sweden)
Rosemary M McCloskey
2017-11-01
Full Text Available Clustering infections by genetic similarity is a popular technique for identifying potential outbreaks of infectious disease, in part because sequences are now routinely collected for clinical management of many infections. A diverse number of nonparametric clustering methods have been developed for this purpose. These methods are generally intuitive, rapid to compute, and readily scale with large data sets. However, we have found that nonparametric clustering methods can be biased towards identifying clusters of diagnosis-where individuals are sampled sooner post-infection-rather than the clusters of rapid transmission that are meant to be potential foci for public health efforts. We develop a fundamentally new approach to genetic clustering based on fitting a Markov-modulated Poisson process (MMPP, which represents the evolution of transmission rates along the tree relating different infections. We evaluated this model-based method alongside five nonparametric clustering methods using both simulated and actual HIV sequence data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained higher mean sensitivity (85% and specificity (91% than the nonparametric methods. When we applied these clustering methods to published sequences from a study of HIV-1 genetic clusters in Seattle, USA, we found that the MMPP method categorized about half (46% as many individuals to clusters compared to the other methods. Furthermore, the mean internal branch lengths that approximate transmission rates were significantly shorter in clusters extracted using MMPP, but not by other methods. We determined that the computing time for the MMPP method scaled linearly with the size of trees, requiring about 30 seconds for a tree of 1,000 tips and about 20 minutes for 50,000 tips on a single computer. This new approach to genetic clustering has significant implications for the application of pathogen sequence analysis to public health, where
Directory of Open Access Journals (Sweden)
Germán D. Sosa
2015-01-01
Full Text Available Due to the subjectivity involved currently in pulmonary auscultation process and its diagnostic to evaluate the condition of respiratory airways, this work pretends to evaluate the performance of clustering algorithms such as k-means and DBSCAN to perform a computational analysis of lung sounds aiming to visualize a representation of such sounds that highlights the presence of crackles and the energy associated with them. In order to achieve that goal, Wavelet analysis techniques were used in contrast to traditional frequency analysis given the similarity between the typical waveform for a crackle and the wavelet sym4. Once the lung sound signal with isolated crackles is obtained, the clustering process groups crackles in regions of high density and provides visualization that might be useful for the diagnostic made by an expert. Evaluation suggests that k-means groups crackle more effective than DBSCAN in terms of generated clusters.
Nonparametric identification of copula structures
Li, Bo
2013-06-01
We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric and based on the asymptotic distribution of the empirical copula process.We perform simulation experiments to evaluate our test and conclude that our method is reliable and powerful for assessing common assumptions on the structure of copulas, particularly when the sample size is moderately large. We illustrate our testing approach on two datasets. © 2013 American Statistical Association.
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
International Nuclear Information System (INIS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references
Performance of clustering techniques for solving multi depot vehicle routing problem
Directory of Open Access Journals (Sweden)
Eliana M. Toro-Ocampo
2016-01-01
Full Text Available The vehicle routing problem considering multiple depots is classified as NP-hard. MDVRP determines simultaneously the routes of a set of vehicles and aims to meet a set of clients with a known demand. The objective function of the problem is to minimize the total distance traveled by the routes given that all customers must be served considering capacity constraints in depots and vehicles. This paper presents a hybrid methodology that combines agglomerative clustering techniques to generate initial solutions with an iterated local search algorithm (ILS to solve the problem. Although previous studies clustering methods have been proposed like strategies to generate initial solutions, in this work the search is intensified on the information generated after applying the clustering technique. Besides an extensive analysis on the performance of techniques, and their effect in the final solution is performed. The operation of the proposed methodology is feasible and effective to solve the problem regarding the quality of the answers and computational times obtained on request evaluated literature
Nonparametric correlation models for portfolio allocation
DEFF Research Database (Denmark)
Aslanidis, Nektarios; Casas, Isabel
2013-01-01
This article proposes time-varying nonparametric and semiparametric estimators of the conditional cross-correlation matrix in the context of portfolio allocation. Simulations results show that the nonparametric and semiparametric models are best in DGPs with substantial variability or structural ...... currencies. Results show the nonparametric model generally dominates the others when evaluating in-sample. However, the semiparametric model is best for out-of-sample analysis....
Nonparametric statistics for social and behavioral sciences
Kraska-MIller, M
2013-01-01
Introduction to Research in Social and Behavioral SciencesBasic Principles of ResearchPlanning for ResearchTypes of Research Designs Sampling ProceduresValidity and Reliability of Measurement InstrumentsSteps of the Research Process Introduction to Nonparametric StatisticsData AnalysisOverview of Nonparametric Statistics and Parametric Statistics Overview of Parametric Statistics Overview of Nonparametric StatisticsImportance of Nonparametric MethodsMeasurement InstrumentsAnalysis of Data to Determine Association and Agreement Pearson Chi-Square Test of Association and IndependenceContingency
Wei, Liyang; Yang, Yongyi; Nishikawa, Robert M.
2005-04-01
Microcalcification (MC) clusters in mammograms can be important early signs of breast cancer in women. Accurate detection of MC clusters is an important but challenging problem. In this paper, we propose the use of a recently developed machine learning technique -- relevance vector machine (RVM) -- for automatic detection of MCs in digitized mammograms. RVM is based on Bayesian estimation theory, and as a feature it can yield a decision function that depends on only a very small number of so-called relevance vectors. We formulate MC detection as a supervised-learning problem, and use RVM to classify if an MC object is present or not at each location in a mammogram image. MC clusters are then identified by grouping the detected MC objects. The proposed method is tested using a database of 141 clinical mammograms, and compared with a support vector machine (SVM) classifier which we developed previously. The detection performance is evaluated using the free-response receiver operating characteristic (FROC) curves. It is demonstrated that the RVM classifier matches closely with the SVM classifier in detection performance, and does so with a much sparser kernel representation than the SVM classifier. Consequently, the RVM classifier greatly reduces the computational complexity, making it more suitable for real-time processing of MC clusters in mammograms.
Nonparametric Bayesian inference in biostatistics
Müller, Peter
2015-01-01
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...
Nonparametric e-Mixture Estimation.
Takano, Ken; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2016-12-01
This study considers the common situation in data analysis when there are few observations of the distribution of interest or the target distribution, while abundant observations are available from auxiliary distributions. In this situation, it is natural to compensate for the lack of data from the target distribution by using data sets from these auxiliary distributions-in other words, approximating the target distribution in a subspace spanned by a set of auxiliary distributions. Mixture modeling is one of the simplest ways to integrate information from the target and auxiliary distributions in order to express the target distribution as accurately as possible. There are two typical mixtures in the context of information geometry: the [Formula: see text]- and [Formula: see text]-mixtures. The [Formula: see text]-mixture is applied in a variety of research fields because of the presence of the well-known expectation-maximazation algorithm for parameter estimation, whereas the [Formula: see text]-mixture is rarely used because of its difficulty of estimation, particularly for nonparametric models. The [Formula: see text]-mixture, however, is a well-tempered distribution that satisfies the principle of maximum entropy. To model a target distribution with scarce observations accurately, this letter proposes a novel framework for a nonparametric modeling of the [Formula: see text]-mixture and a geometrically inspired estimation algorithm. As numerical examples of the proposed framework, a transfer learning setup is considered. The experimental results show that this framework works well for three types of synthetic data sets, as well as an EEG real-world data set.
Melodic pattern discovery by structural analysis via wavelets and clustering techniques
DEFF Research Database (Denmark)
Velarde, Gissel; Meredith, David
We present an automatic method to support melodic pattern discovery by structural analysis of symbolic representations by means of wavelet analysis and clustering techniques. In previous work, we used the method to recognize the parent works of melodic segments, or to classify tunes into tune......-means to cluster melodic segments into groups of measured similarity and obtain a raking of the most prototypical melodic segments or patterns and their occurrences. We test the method on the JKU Patterns Development Database and evaluate it based on the ground truth defined by the MIREX 2013 Discovery of Repeated...... Themes & Sections task. We compare the results of our method to the output of geometric approaches. Finally, we discuss about the relevance of our wavelet-based analysis in relation to structure, pattern discovery, similarity and variation, and comment about the considerations of the method when used...
APPLICATION OF FUZZY C-MEANS CLUSTERING TECHNIQUE IN VEHICULAR POLLUTION
Directory of Open Access Journals (Sweden)
Samarjit Das
2013-07-01
Full Text Available Presently in most of the urban areas all over the world, due to the exponential increase in traffic, vehicular pollution has become one of the key contributors to air pollution. As uncertainty prevails in the process of designating the level of pollution of a particular region, a fuzzy method can be applied to see the membership values of that region to a number of predefined clusters. Also, due to the existence of different pollutants in vehicular pollution, the data used to represent it are in the form of numerical vectors. In our work, we shall apply the fuzzy c-means technique of Bezdek on a dataset representing vehicular pollution to obtain the membership values of pollution due to vehicular emission of a city to one or more of some predefined clusters. We shall try also to see the benefits of adopting a fuzzy approach over the traditional way of determining the level of pollution of the particular region
Directory of Open Access Journals (Sweden)
Xiangbing Zhou
2018-04-01
Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.
Indian Academy of Sciences (India)
2017-09-27
Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...
Indian Academy of Sciences (India)
environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.
Clustering of commercial fish sauce products based on an e-panel technique
Directory of Open Access Journals (Sweden)
Mitsutoshi Nakano
2018-02-01
Full Text Available Fish sauce is a brownish liquid seasoning with a characteristic flavor that is produced in Asian countries and limited areas of Europe. The types of fish and shellfish and fermentation process used in its production depend on the region from which it derives. Variations in ingredients and fermentation procedures yield end products with different smells, tastes, and colors. For this data article, we employed an electronic panel (e-panel technique including an electronic nose (e-nose, electronic tongue (e-tongue, and electronic eye (e-eye, in which smell, taste, and color are evaluated by sensors instead of the human nose, tongue, and eye to avoid subjective error. The presented data comprise clustering of 46 commercially available fish sauce products based separate e-nose, e-tongue, and e-eye test results. Sensory intensity data from the e-nose, e-tongue, and e-eye were separately classified by cluster analysis and are shown in dendrograms. The hierarchical cluster analysis indicates major three groups on e-nose and e-tongue data, and major four groups on e-eye data.
Profiling Local Optima in K-Means Clustering: Developing a Diagnostic Technique
Steinley, Douglas
2006-01-01
Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate…
Bayesian Nonparametric Longitudinal Data Analysis.
Quintana, Fernando A; Johnson, Wesley O; Waetjen, Elaine; Gold, Ellen
2016-01-01
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
Using intelligent clustering techniques to classify the energy performance of school buildings
Energy Technology Data Exchange (ETDEWEB)
Santamouris, M.; Sfakianaki, K.; Papaglastra, M.; Pavlou, C.; Doukas, P.; Geros, V.; Assimakopoulos, M.N.; Zerefos, S. [University of Athens, Department of Physics, Division of Applied Physics, Laboratory of Meteorology, Athens (Greece); Mihalakakou, G.; Gaitani, N. [University of Ioannina, Department of Environmental and Natural Resources Management, Agrinio (Greece); Patargias, P. [University of Peloponnesus, Faculty of Human Sciences and Cultural Studies, Department of History, Kalamata (Greece); Primikiri, E. [University of Patras, Department of Architecture, Patras (Greece); Mitoula, R. [Charokopion University of Athens, Athens (Greece)
2007-07-01
The present paper deals with the energy performance, energy classification and rating and the global environmental quality of school buildings. A new energy classification technique based on intelligent clustering methodologies is proposed. Energy rating of school buildings provides specific information on their energy consumption and efficiency relative to the other buildings of similar nature and permits a better planning of interventions to improve its energy performance. The overall work reported in the present paper, is carried out in three phases. During the first phase energy consumption data have been collected through energy surveys performed in 320 schools in Greece. In the second phase an innovative energy rating scheme based on fuzzy clustering techniques has been developed, while in the third phase, 10 schools have been selected and detailed measurements of their energy efficiency and performance as well as of the global environmental quality have been performed using a specific experimental protocol. The proposed energy rating method has been applied while the main environmental and energy problems have been identified. The potential for energy and environmental improvements has been assessed. (author)
International Nuclear Information System (INIS)
Arnold, Alexander; Bruhns, Otto T; Reichling, Stefan; Mosler, Joern
2010-01-01
This paper is concerned with an efficient implementation suitable for the elastography inverse problem. More precisely, the novel algorithm allows us to compute the unknown stiffness distribution in soft tissue by means of the measured displacement field by considerably reducing the numerical cost compared to previous approaches. This is realized by combining and further elaborating variational mesh adaption with a clustering technique similar to those known from digital image compression. Within the variational mesh adaption, the underlying finite element discretization is only locally refined if this leads to a considerable improvement of the numerical solution. Additionally, the numerical complexity is reduced by the aforementioned clustering technique, in which the parameters describing the stiffness of the respective soft tissue are sorted according to a predefined number of intervals. By doing so, the number of unknowns associated with the elastography inverse problem can be chosen explicitly. A positive side effect of this method is the reduction of artificial noise in the data (smoothing of the solution). The performance and the rate of convergence of the resulting numerical formulation are critically analyzed by numerical examples.
Membership determination of open clusters based on a spectral clustering method
Gao, Xin-Hua
2018-06-01
We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
Moharana, S.; Dutta, S.
2015-12-01
Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was
Energy Technology Data Exchange (ETDEWEB)
Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)
2017-01-10
We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.
Nonparametric functional mapping of quantitative trait loci.
Yang, Jie; Wu, Rongling; Casella, George
2009-03-01
Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping, thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by examples.
Essays on nonparametric econometrics of stochastic volatility
Zu, Y.
2012-01-01
Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.
Nonparametric methods for volatility density estimation
Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.
2009-01-01
Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on
International Nuclear Information System (INIS)
Azimi, R.; Ghayekhloo, M.; Ghofrani, M.
2016-01-01
Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
2012-01-01
by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...
Lee, Soojeong; Rajan, Sreeraman; Jeon, Gwanggil; Chang, Joon-Hyuk; Dajani, Hilmi R; Groza, Voicu Z
2017-06-01
Blood pressure (BP) is one of the most important vital indicators and plays a key role in determining the cardiovascular activity of patients. This paper proposes a hybrid approach consisting of nonparametric bootstrap (NPB) and machine learning techniques to obtain the characteristic ratios (CR) used in the blood pressure estimation algorithm to improve the accuracy of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates and obtain confidence intervals (CI). The NPB technique is used to circumvent the requirement for large sample set for obtaining the CI. A mixture of Gaussian densities is assumed for the CRs and Gaussian mixture model (GMM) is chosen to estimate the SBP and DBP ratios. The K-means clustering technique is used to obtain the mixture order of the Gaussian densities. The proposed approach achieves grade "A" under British Society of Hypertension testing protocol and is superior to the conventional approach based on maximum amplitude algorithm (MAA) that uses fixed CR ratios. The proposed approach also yields a lower mean error (ME) and the standard deviation of the error (SDE) in the estimates when compared to the conventional MAA method. In addition, CIs obtained through the proposed hybrid approach are also narrower with a lower SDE. The proposed approach combining the NPB technique with the GMM provides a methodology to derive individualized characteristic ratio. The results exhibit that the proposed approach enhances the accuracy of SBP and DBP estimation and provides narrower confidence intervals for the estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Hada, Subin; Solvason, Charles C.; Eden, Mario R.
2014-01-01
In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.
Energy Technology Data Exchange (ETDEWEB)
Hada, Subin; Solvason, Charles C.; Eden, Mario R., E-mail: edenmar@auburn.edu [Department of Chemical Engineering, Auburn University, Auburn, AL (United States)
2014-06-10
In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.
Directory of Open Access Journals (Sweden)
Subin eHada
2014-06-01
Full Text Available In this work, multivariate characterization data such as infrared (IR spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis (PCA allowed capturing important features of the molecular architecture from complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods (GCM based on characterization data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.
Nonparametric Monitoring for Geotechnical Structures Subject to Long-Term Environmental Change
Directory of Open Access Journals (Sweden)
Hae-Bum Yun
2011-01-01
Full Text Available A nonparametric, data-driven methodology of monitoring for geotechnical structures subject to long-term environmental change is discussed. Avoiding physical assumptions or excessive simplification of the monitored structures, the nonparametric monitoring methodology presented in this paper provides reliable performance-related information particularly when the collection of sensor data is limited. For the validation of the nonparametric methodology, a field case study was performed using a full-scale retaining wall, which had been monitored for three years using three tilt gauges. Using the very limited sensor data, it is demonstrated that important performance-related information, such as drainage performance and sensor damage, could be disentangled from significant daily, seasonal and multiyear environmental variations. Extensive literature review on recent developments of parametric and nonparametric data processing techniques for geotechnical applications is also presented.
Directory of Open Access Journals (Sweden)
Ajayi Abiola Toyin
2013-01-01
Full Text Available The genetic variability among 10 accessions of cowpea, Vigna unguiculata (L. Walp was studied by the use of 13 qualitative and 13 quantitative traits. From the results on qualitative traits, dendrogram grouped the 10 accessions into two major clusters, 1 and 2.Cluster 1 had 3 accessions and cluster 2 had 2 sub-clusters (I and II, having 2 accessions in sub-cluster I and 5 accessions in sub-cluster II. The dendrogram revealed two major clusters, 1 and 2, for quantitative data, for the 10 accessions. At distance of 4 and 6, cluster 1 had two sub-clusters (I and II, with sub-cluster I having 5 accessions, sub-cluster II having 4 accessions while cluster 2 had only 1 accession. This study made the observation that identification of the right agro-morphological traits of high discriminating capacity is essential, before embarking on any genetic diversity; as it was revealed that some traits discriminated more efficiently among the accessions than others. A group of accessions, which are NGSA1, NGSA2, NGSA3, NGSA4, NGSA7, NGSA9 and NGSA10, was identified as being different from the others for number of seeds per pod, pod length, plant height, peduncle length, seed weight and number of pods per plant. These accessions may be good for cowpea improvement programs.
DEFF Research Database (Denmark)
Löwe, Roland; Madsen, Henrik; McSharry, Patrick
2016-01-01
operators to change modes of control of their facilities. A k-means clustering technique was applied to group events retrospectively and was able to distinguish events with clearly different temporal and spatial correlation properties. For online applications, techniques based on k-means clustering...... and quadratic discriminant analysis both provided a fast and reliable identification of rain events of "high" variability, while the k-means provided the smallest number of rain events falsely identified as being of "high" variability (false hits). A simple classification method based on a threshold...
Electric field measurements on Cluster: comparing the double-probe and electron drift techniques
Directory of Open Access Journals (Sweden)
A. I. Eriksson
2006-03-01
Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.
Recent Advances and Trends in Nonparametric Statistics
Akritas, MG
2003-01-01
The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection o
Energy Technology Data Exchange (ETDEWEB)
Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2016-10-15
II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.
Bandaru, Sunith; Deb, Kalyanmoy
2011-09-01
In this article, a methodology is proposed for automatically extracting innovative design principles which make a system or process (subject to conflicting objectives) optimal using its Pareto-optimal dataset. Such 'higher knowledge' would not only help designers to execute the system better, but also enable them to predict how changes in one variable would affect other variables if the system has to retain its optimal behaviour. This in turn would help solve other similar systems with different parameter settings easily without the need to perform a fresh optimization task. The proposed methodology uses a clustering-based optimization technique and is capable of discovering hidden functional relationships between the variables, objective and constraint functions and any other function that the designer wishes to include as a 'basis function'. A number of engineering design problems are considered for which the mathematical structure of these explicit relationships exists and has been revealed by a previous study. A comparison with the multivariate adaptive regression splines (MARS) approach reveals the practicality of the proposed approach due to its ability to find meaningful design principles. The success of this procedure for automated innovization is highly encouraging and indicates its suitability for further development in tackling more complex design scenarios.
Development and validation of the European Cluster Assimilation Techniques run libraries
Facskó, G.; Gordeev, E.; Palmroth, M.; Honkonen, I.; Janhunen, P.; Sergeev, V.; Kauristie, K.; Milan, S.
2012-04-01
The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: Synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The result of the 192 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation. Here we present details of these runs.
Directory of Open Access Journals (Sweden)
Megawati Sinaga
2017-12-01
Full Text Available The Objectives of this paper as an experimental research was to investigate the effect of Roundtable and Clustering teaching techniques and students’ personal traits on students’ achievement in descriptive writing. The students in grade ix of SMP Negeri 2 Pancurbatu 2016/2017 school academic year were chose as the population of this research.. The research design was experimental research by using factorial design 2x2. The students were divided into two experimental groups. The experimental group was treated by using Roundtable teaching technique and control group was treated by using Clustering teaching technique. The students are classified into the introvert and extrovert personal traits by conducting the questionnaire and the students’ achievement in descriptive writing was measured by using writing test, namely ‘Analytic Scoring’ by Weigle. The data were analyzed by applying two-way analysis of variance (ANOVA at the level of significance α = 0.05. The result reveals that (1 students’ achievement in descriptive writing taught by using Roundtable teaching technique was higher than that taught by Clustering teaching technique, with Fobs = 4.59>Ftab=3.97, (2 students’ achievement in descriptive writing with introvert personal trait was higher than that with extrovert personal traits with Fobs=4.90 Ftable=3.97, (3 there is interaction between teaching techniques and personal traits on students’ achievement in descriptive writing with Fobs =6,58 Ftable=3.97. After computing the Tuckey-Test, the result showed that introvert students got higher achievement if they were taught by using Roundtable teaching technique while extrovert students got higher achievement if they were taught by using Clustering teaching technique.
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman
2014-01-01
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite...... between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background...
Teaching Nonparametric Statistics Using Student Instrumental Values.
Anderson, Jonathan W.; Diddams, Margaret
Nonparametric statistics are often difficult to teach in introduction to statistics courses because of the lack of real-world examples. This study demonstrated how teachers can use differences in the rankings and ratings of undergraduate and graduate values to discuss: (1) ipsative and normative scaling; (2) uses of the Mann-Whitney U-test; and…
Nonparametric conditional predictive regions for time series
de Gooijer, J.G.; Zerom Godefay, D.
2000-01-01
Several nonparametric predictors based on the Nadaraya-Watson kernel regression estimator have been proposed in the literature. They include the conditional mean, the conditional median, and the conditional mode. In this paper, we consider three types of predictive regions for these predictors — the
Nonparametric predictive inference in statistical process control
Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.
2000-01-01
New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on
Nonparametric predictive inference in statistical process control
Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.
2004-01-01
Statistical process control (SPC) is used to decide when to stop a process as confidence in the quality of the next item(s) is low. Information to specify a parametric model is not always available, and as SPC is of a predictive nature, we present a control chart developed using nonparametric
Nonparametric estimation in models for unobservable heterogeneity
Hohmann, Daniel
2014-01-01
Nonparametric models which allow for data with unobservable heterogeneity are studied. The first publication introduces new estimators and their asymptotic properties for conditional mixture models. The second publication considers estimation of a function from noisy observations of its Radon transform in a Gaussian white noise model.
Nonparametric estimation of location and scale parameters
Potgieter, C.J.; Lombard, F.
2012-01-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal
A Bayesian Nonparametric Approach to Factor Analysis
DEFF Research Database (Denmark)
Piatek, Rémi; Papaspiliopoulos, Omiros
2018-01-01
This paper introduces a new approach for the inference of non-Gaussian factor models based on Bayesian nonparametric methods. It relaxes the usual normality assumption on the latent factors, widely used in practice, which is too restrictive in many settings. Our approach, on the contrary, does no...
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
Debt and growth: A non-parametric approach
Brida, Juan Gabriel; Gómez, David Matesanz; Seijas, Maria Nela
2017-11-01
In this study, we explore the dynamic relationship between public debt and economic growth by using a non-parametric approach based on data symbolization and clustering methods. The study uses annual data of general government consolidated gross debt-to-GDP ratio and gross domestic product for sixteen countries between 1977 and 2015. Using symbolic sequences, we introduce a notion of distance between the dynamical paths of different countries. Then, a Minimal Spanning Tree and a Hierarchical Tree are constructed from time series to help detecting the existence of groups of countries sharing similar economic performance. The main finding of the study appears for the period 2008-2016 when several countries surpassed the 90% debt-to-GDP threshold. During this period, three groups (clubs) of countries are obtained: high, mid and low indebted countries, suggesting that the employed debt-to-GDP threshold drives economic dynamics for the selected countries.
Pangaribuan, Tagor; Manik, Sondang
2018-01-01
This research held at SMA HKBP 1 Tarutung North Sumatra on the research result of test XI[superscript 2] and XI[superscript 2] students, after they got treatment in teaching writing in recount text by using buzz group and clustering technique. The average score (X) was 67.7 and the total score buzz group the average score (X) was 77.2 and in…
Directory of Open Access Journals (Sweden)
Khodadadi Mostafa
2014-01-01
Full Text Available Wheat is an important staple in human nutrition and improvement of its grain quality characters will have high impact on population's health. The objectives of this study were assessing variation of some grain quality characteristics in the Iranian wheat genotypes and identify the best type of data and clustering method for grouping genotypes. In this study 30 spring wheat genotypes were cultivated through randomized complete block design with three replications in 2009 and 2010 years. High significant difference among genotypes for all traits except for Sulfate, K, Br and Cl content, also deference among two years mean for all traits were no significant. Meanwhile there were significant interaction between year and genotype for all traits except Sulfate and F content. Mean values for crude protein, Zn, Fe and Ca in Mahdavi, Falat, Star, Sistan genotypes were the highest. The Ca and Br content showed the highest and the lowest broadcast heritability respectively. In this study indicated that the Root Mean Square Standard Deviation is efficient than R Squared and R Squared efficient than Semi Partial R Squared criteria for determining the best clustering technique. Also Ward method and canonical scores identified as the best clustering method and data type for grouping genotypes, respectively. Genotypes were grouped into six completely separate clusters and Roshan, Niknejad and Star genotypes from the fourth, fifth and sixth clusters had high grain quality characters in overall.
A Nonparametric Bayesian Approach For Emission Tomography Reconstruction
International Nuclear Information System (INIS)
Barat, Eric; Dautremer, Thomas
2007-01-01
We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution--normalized emission intensity of the spatial poisson process--is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on R k (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM
Parametric and Non-Parametric System Modelling
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg
1999-01-01
the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...
Nonparametric Bayes Modeling of Multivariate Categorical Data.
Dunson, David B; Xing, Chuanhua
2012-01-01
Modeling of multivariate unordered categorical (nominal) data is a challenging problem, particularly in high dimensions and cases in which one wishes to avoid strong assumptions about the dependence structure. Commonly used approaches rely on the incorporation of latent Gaussian random variables or parametric latent class models. The goal of this article is to develop a nonparametric Bayes approach, which defines a prior with full support on the space of distributions for multiple unordered categorical variables. This support condition ensures that we are not restricting the dependence structure a priori. We show this can be accomplished through a Dirichlet process mixture of product multinomial distributions, which is also a convenient form for posterior computation. Methods for nonparametric testing of violations of independence are proposed, and the methods are applied to model positional dependence within transcription factor binding motifs.
Network structure exploration via Bayesian nonparametric models
International Nuclear Information System (INIS)
Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z
2015-01-01
Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)
portfolio optimization based on nonparametric estimation methods
Directory of Open Access Journals (Sweden)
mahsa ghandehari
2017-03-01
Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.
Nonparametric Mixture Models for Supervised Image Parcellation.
Sabuncu, Mert R; Yeo, B T Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polina
2009-09-01
We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.
Energy Technology Data Exchange (ETDEWEB)
Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)
2015-04-15
Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.
International Nuclear Information System (INIS)
Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed
2015-01-01
Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.
POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE
DEFF Research Database (Denmark)
Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir
2017-01-01
Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...
Introduction to nonparametric statistics for the biological sciences using R
MacFarland, Thomas W
2016-01-01
This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...
Nonparametric Analyses of Log-Periodic Precursors to Financial Crashes
Zhou, Wei-Xing; Sornette, Didier
We apply two nonparametric methods to further test the hypothesis that log-periodicity characterizes the detrended price trajectory of large financial indices prior to financial crashes or strong corrections. The term "parametric" refers here to the use of the log-periodic power law formula to fit the data; in contrast, "nonparametric" refers to the use of general tools such as Fourier transform, and in the present case the Hilbert transform and the so-called (H, q)-analysis. The analysis using the (H, q)-derivative is applied to seven time series ending with the October 1987 crash, the October 1997 correction and the April 2000 crash of the Dow Jones Industrial Average (DJIA), the Standard & Poor 500 and Nasdaq indices. The Hilbert transform is applied to two detrended price time series in terms of the ln(tc-t) variable, where tc is the time of the crash. Taking all results together, we find strong evidence for a universal fundamental log-frequency f=1.02±0.05 corresponding to the scaling ratio λ=2.67±0.12. These values are in very good agreement with those obtained in earlier works with different parametric techniques. This note is extracted from a long unpublished report with 58 figures available at , which extensively describes the evidence we have accumulated on these seven time series, in particular by presenting all relevant details so that the reader can judge for himself or herself the validity and robustness of the results.
A Bayesian nonparametric estimation of distributions and quantiles
International Nuclear Information System (INIS)
Poern, K.
1988-11-01
The report describes a Bayesian, nonparametric method for the estimation of a distribution function and its quantiles. The method, presupposing random sampling, is nonparametric, so the user has to specify a prior distribution on a space of distributions (and not on a parameter space). In the current application, where the method is used to estimate the uncertainty of a parametric calculational model, the Dirichlet prior distribution is to a large extent determined by the first batch of Monte Carlo-realizations. In this case the results of the estimation technique is very similar to the conventional empirical distribution function. The resulting posterior distribution is also Dirichlet, and thus facilitates the determination of probability (confidence) intervals at any given point in the space of interest. Another advantage is that also the posterior distribution of a specified quantitle can be derived and utilized to determine a probability interval for that quantile. The method was devised for use in the PROPER code package for uncertainty and sensitivity analysis. (orig.)
Multivariate nonparametric regression and visualization with R and applications to finance
Klemelä, Jussi
2014-01-01
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio
Using Clustering Techniques To Detect Usage Patterns in a Web-based Information System.
Chen, Hui-Min; Cooper, Michael D.
2001-01-01
This study developed an analytical approach to detecting groups with homogenous usage patterns in a Web-based information system. Principal component analysis was used for data reduction, cluster analysis for categorizing usage into groups. The methodology was demonstrated and tested using two independent samples of user sessions from the…
Data analysis with small samples and non-normal data nonparametrics and other strategies
Siebert, Carl F
2017-01-01
Written in everyday language for non-statisticians, this book provides all the information needed to successfully conduct nonparametric analyses. This ideal reference book provides step-by-step instructions to lead the reader through each analysis, screenshots of the software and output, and case scenarios to illustrate of all the analytic techniques.
Hearty, Aine P; Gibney, Michael J
2009-02-01
The aims of the present study were to examine and compare dietary patterns in adults using cluster and factor analyses and to examine the format of the dietary variables on the pattern solutions (i.e. expressed as grams/day (g/d) of each food group or as the percentage contribution to total energy intake). Food intake data were derived from the North/South Ireland Food Consumption Survey 1997-9, which was a randomised cross-sectional study of 7 d recorded food and nutrient intakes of a representative sample of 1379 Irish adults aged 18-64 years. Cluster analysis was performed using the k-means algorithm and principal component analysis (PCA) was used to extract dietary factors. Food data were reduced to thirty-three food groups. For cluster analysis, the most suitable format of the food-group variable was found to be the percentage contribution to energy intake, which produced six clusters: 'Traditional Irish'; 'Continental'; 'Unhealthy foods'; 'Light-meal foods & low-fat milk'; 'Healthy foods'; 'Wholemeal bread & desserts'. For PCA, food groups in the format of g/d were found to be the most suitable format, and this revealed four dietary patterns: 'Unhealthy foods & high alcohol'; 'Traditional Irish'; 'Healthy foods'; 'Sweet convenience foods & low alcohol'. In summary, cluster and PCA identified similar dietary patterns when presented with the same dataset. However, the two dietary pattern methods required a different format of the food-group variable, and the most appropriate format of the input variable should be considered in future studies.
WORD SENSE DISAMBIGUATION FOR TAMIL LANGUAGE USING PART-OF-SPEECH AND CLUSTERING TECHNIQUE
Directory of Open Access Journals (Sweden)
P. ISWARYA
2017-09-01
Full Text Available Word sense disambiguation is an important task in Natural Language Processing (NLP, and this paper concentrates on the problem of target word selection in machine translation. The proposed method called enhanced Word Sense Disambiguation with Part-of-Speech and Clustering based Sensecollocation (WSDPCS consists of two steps namely (i Part-of-Speech (POS tagger in disambiguating word senses and (ii Enhanced with Clustering and Sense-collocation dictionary based disambiguation. In the first step an ambiguous Tamil words are disambiguated using Tamil and English POS Tagger. If it has same type of POS category labels, then it passes the word to the next step. In the second step ambiguity is resolved using sense-collocation dictionary. The experimental analysis shows that the accuracy of proposed WSDPCS method achieves 1.86% improvement over an existing method.
International Nuclear Information System (INIS)
Janurová, Kateřina; Briš, Radim
2014-01-01
Medical survival right-censored data of about 850 patients are evaluated to analyze the uncertainty related to the risk of mortality on one hand and compare two basic surgery techniques in the context of risk of mortality on the other hand. Colorectal data come from patients who underwent colectomy in the University Hospital of Ostrava. Two basic surgery operating techniques are used for the colectomy: either traditional (open) or minimally invasive (laparoscopic). Basic question arising at the colectomy operation is, which type of operation to choose to guarantee longer overall survival time. Two non-parametric approaches have been used to quantify probability of mortality with uncertainties. In fact, complement of the probability to one, i.e. survival function with corresponding confidence levels is calculated and evaluated. First approach considers standard nonparametric estimators resulting from both the Kaplan–Meier estimator of survival function in connection with Greenwood's formula and the Nelson–Aalen estimator of cumulative hazard function including confidence interval for survival function as well. The second innovative approach, represented by Nonparametric Predictive Inference (NPI), uses lower and upper probabilities for quantifying uncertainty and provides a model of predictive survival function instead of the population survival function. The traditional log-rank test on one hand and the nonparametric predictive comparison of two groups of lifetime data on the other hand have been compared to evaluate risk of mortality in the context of mentioned surgery techniques. The size of the difference between two groups of lifetime data has been considered and analyzed as well. Both nonparametric approaches led to the same conclusion, that the minimally invasive operating technique guarantees the patient significantly longer survival time in comparison with the traditional operating technique
Decompounding random sums: A nonparametric approach
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted; Pitts, Susan M.
Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...
A Nonparametric Test for Seasonal Unit Roots
Kunst, Robert M.
2009-01-01
Abstract: We consider a nonparametric test for the null of seasonal unit roots in quarterly time series that builds on the RUR (records unit root) test by Aparicio, Escribano, and Sipols. We find that the test concept is more promising than a formalization of visual aids such as plots by quarter. In order to cope with the sensitivity of the original RUR test to autocorrelation under its null of a unit root, we suggest an augmentation step by autoregression. We present some evidence on the siz...
LOD-based clustering techniques for efficient large-scale terrain storage and visualization
Bao, Xiaohong; Pajarola, Renato
2003-05-01
Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.
Energy Technology Data Exchange (ETDEWEB)
Kurita, Kazunari; Kadono, Takeshi; Okuyama, Ryousuke; Shigemastu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Koga, Yoshihiro; Okuda, Hidehiko [SUMCO Corporation, Saga (Japan)
2017-07-15
A new technique is described for manufacturing advanced silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication processes. Carbon and hydrogen elements are localized in the projection range of the silicon wafer by implantation of ion clusters from a hydrocarbon molecular gas source. Furthermore, these wafers can getter oxygen impurities out-diffused to device active regions from a Czochralski grown silicon wafer substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as the dark current, white spot defects, pn-junction leakage current, and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly improve electrical devices performance characteristics in advanced CMOS image sensors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spurious Seasonality Detection: A Non-Parametric Test Proposal
Directory of Open Access Journals (Sweden)
Aurelio F. Bariviera
2018-01-01
Full Text Available This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called “day-of-the-week” effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
Multi-Directional Non-Parametric Analysis of Agricultural Efficiency
DEFF Research Database (Denmark)
Balezentis, Tomas
This thesis seeks to develop methodologies for assessment of agricultural efficiency and employ them to Lithuanian family farms. In particular, we focus on three particular objectives throughout the research: (i) to perform a fully non-parametric analysis of efficiency effects, (ii) to extend...... to the Multi-Directional Efficiency Analysis approach when the proposed models were employed to analyse empirical data of Lithuanian family farm performance, we saw substantial differences in efficiencies associated with different inputs. In particular, assets appeared to be the least efficiently used input...... relative to labour, intermediate consumption and land (in some cases land was not treated as a discretionary input). These findings call for further research on relationships among financial structure, investment decisions, and efficiency in Lithuanian family farms. Application of different techniques...
A comparative study of dimensionality reduction techniques to enhance trace clustering performances
Song, M.S.; Yang, H.; Siadat, S.H.; Pechenizkiy, M.
2013-01-01
Process mining techniques have been used to analyze event logs from information systems in order to derive useful patterns. However, in the big data era, real-life event logs are huge, unstructured, and complex so that traditional process mining techniques have difficulties in the analysis of big
Energy Technology Data Exchange (ETDEWEB)
Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Itoh, Hiroto, E-mail: ito.hiroto@jaea.go.jp; Nishiyama, Yutaka, E-mail: nishiyama.yutaka93@jaea.go.jp
2016-10-15
In order to understand neutron irradiation embrittlement in high fluence regions, statistical analysis using the Bayesian nonparametric (BNP) method was performed for the Japanese surveillance and material test reactor irradiation database. The BNP method is essentially expressed as an infinite summation of normal distributions, with input data being subdivided into clusters with identical statistical parameters, such as mean and standard deviation, for each cluster to estimate shifts in ductile-to-brittle transition temperature (DBTT). The clusters typically depend on chemical compositions, irradiation conditions, and the irradiation embrittlement. Specific variables contributing to the irradiation embrittlement include the content of Cu, Ni, P, Si, and Mn in the pressure vessel steels, neutron flux, neutron fluence, and irradiation temperatures. It was found that the measured shifts of DBTT correlated well with the calculated ones. Data associated with the same materials were subdivided into the same clusters even if neutron fluences were increased.
Lawson, Andrew B
2002-01-01
Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...
Bayesian Non-Parametric Mixtures of GARCH(1,1 Models
Directory of Open Access Journals (Sweden)
John W. Lau
2012-01-01
Full Text Available Traditional GARCH models describe volatility levels that evolve smoothly over time, generated by a single GARCH regime. However, nonstationary time series data may exhibit abrupt changes in volatility, suggesting changes in the underlying GARCH regimes. Further, the number and times of regime changes are not always obvious. This article outlines a nonparametric mixture of GARCH models that is able to estimate the number and time of volatility regime changes by mixing over the Poisson-Kingman process. The process is a generalisation of the Dirichlet process typically used in nonparametric models for time-dependent data provides a richer clustering structure, and its application to time series data is novel. Inference is Bayesian, and a Markov chain Monte Carlo algorithm to explore the posterior distribution is described. The methodology is illustrated on the Standard and Poor's 500 financial index.
CLUSTERING TECHNIQUES IN FINANCIAL DATA ANALYSIS APPLICATIONS ON THE U.S. FINANCIAL MARKET
Directory of Open Access Journals (Sweden)
ALEXANDRU BOGEANU
2013-08-01
Full Text Available In the economic and financial analysis, the need to classify companies in terms of categories, thedelimitation of which has to be clear and natural occurs frequently. The differentiation of companies bycategories is performed according to the economic and financial indicators which are associated to the above.The clustering algorithms are a very powerful tool in identifying the classes of companies based on theinformation provided by the indicators associated to them. The last decade imposed to the economic andfinancial practice the use of economic value added as an indicator of synthesis of the entire activity of acompany. Our study uses a sample of 106 companies in four different fields of activity; each company isidentified by: Economic Value Added, Net Income, Current Sales, Equity and Stock Price. Using the ascendinghierarchical classification methods and the partitioning classification methods, as well as Ward’s method and kmeansalgorithm, we identified on the considered sample an information structure consisting of 5 rating classes.
Application of multi-element clustering techniques of five Egyptian industrial sugar products
International Nuclear Information System (INIS)
Awadallah, R.M.; Mohamed, A.E.
1995-01-01
The concentration of 18 elements in different cane sugar products, i.e., cane sugar plants, crude and syrup juices, molasses, and the end products of the consumer sugar, were analyzed and processed. The samples were collected from five cities, i.e., Kom Ombo, Edfu, Armant, Deshna and Naga Hammady in Upper Egypt where the main Egyptian sugar industry factories are located. INAA was applied for the determination of Al, Ca, Cl, Co, Cr, Fe, Mg, Mn, Na, and Sc, while Cu, Li, P, Sn, V and Zn were determined by ICP-AES and Pb and As were determined by AAS. These three analytical methods were applied to optimize the sensitivity and the accuracy of the measurements in order to provide a sound basis for the obtention of reliable clustering results. (author). 5 refs., 8 figs., 3 tabs
Ultra-Wideband Geo-Regioning: A Novel Clustering and Localization Technique
Directory of Open Access Journals (Sweden)
Armin Wittneben
2007-12-01
Full Text Available Ultra-wideband (UWB technology enables a high temporal resolution of the propagation channel. Consequently, a channel impulse response between transmitter and receiver can be interpreted as signature for their relative positions. If the position of the receiver is known, the channel impulse response indicates the position of the transmitter and vice versa. This work introduces UWB geo-regioning as a clustering and localization method based on channel impulse response fingerprinting, develops a theoretical framework for performance analysis, and evaluates this approach by means of performance results based on measured channel impulse responses. Complexity issues are discussed and performance dependencies on signal-to-noise ratio, a priori knowledge, observation window, and system bandwidth are investigated.
On Parametric (and Non-Parametric Variation
Directory of Open Access Journals (Sweden)
Neil Smith
2009-11-01
Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.
Nonparametric predictive pairwise comparison with competing risks
International Nuclear Information System (INIS)
Coolen-Maturi, Tahani
2014-01-01
In reliability, failure data often correspond to competing risks, where several failure modes can cause a unit to fail. This paper presents nonparametric predictive inference (NPI) for pairwise comparison with competing risks data, assuming that the failure modes are independent. These failure modes could be the same or different among the two groups, and these can be both observed and unobserved failure modes. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. The focus is on the lower and upper probabilities for the event that the lifetime of a future unit from one group, say Y, is greater than the lifetime of a future unit from the second group, say X. The paper also shows how the two groups can be compared based on particular failure mode(s), and the comparison of the two groups when some of the competing risks are combined is discussed
Nonparametric estimation of location and scale parameters
Potgieter, C.J.
2012-12-01
Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
Antoni, R.; Passard, C.; Perot, B.; Guillaumin, F.; Mazy, C.; Batifol, M.; Grassi, G.
2018-07-01
AREVA NC is preparing to process, characterize and compact old used fuel metallic waste stored at La Hague reprocessing plant in view of their future storage ("Haute Activité Oxyde" HAO project). For a large part of these historical wastes, the packaging is planned in CSD-C canisters ("Colis Standard de Déchets Compacté s") in the ACC hulls and nozzles compaction facility ("Atelier de Compactage des Coques et embouts"). . This paper presents a new method to take into account the possible presence of fissile material clusters, which may have a significant impact in the active neutron interrogation (Differential Die-away Technique) measurement of the CSD-C canisters, in the industrial neutron measurement station "P2-2". A matrix effect correction has already been investigated to predict the prompt fission neutron calibration coefficient (which provides the fissile mass) from an internal "drum flux monitor" signal provided during the active measurement by a boron-coated proportional counter located in the measurement cavity, and from a "drum transmission signal" recorded in passive mode by the detection blocks, in presence of an AmBe point source in the measurement cell. Up to now, the relationship between the calibration coefficient and these signals was obtained from a factorial design that did not consider the potential for occurrence of fissile material clusters. The interrogative neutron self-shielding in these clusters was treated separately and resulted in a penalty coefficient larger than 20% to prevent an underestimation of the fissile mass within the drum. In this work, we have shown that the incorporation of a new parameter in the factorial design, representing the fissile mass fraction in these clusters, provides an alternative to the penalty coefficient. This new approach finally does not degrade the uncertainty of the original prediction, which was calculated without taking into consideration the possible presence of clusters. Consequently, the
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Directory of Open Access Journals (Sweden)
Alejandro Jara
2011-04-01
Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.
A NONPARAMETRIC HYPOTHESIS TEST VIA THE BOOTSTRAP RESAMPLING
Temel, Tugrul T.
2001-01-01
This paper adapts an already existing nonparametric hypothesis test to the bootstrap framework. The test utilizes the nonparametric kernel regression method to estimate a measure of distance between the models stated under the null hypothesis. The bootstraped version of the test allows to approximate errors involved in the asymptotic hypothesis test. The paper also develops a Mathematica Code for the test algorithm.
Simple nonparametric checks for model data fit in CAT
Meijer, R.R.
2005-01-01
In this paper, the usefulness of several nonparametric checks is discussed in a computerized adaptive testing (CAT) context. Although there is no tradition of nonparametric scalability in CAT, it can be argued that scalability checks can be useful to investigate, for example, the quality of item
Nonparametric Bayesian inference for multidimensional compound Poisson processes
Gugushvili, S.; van der Meulen, F.; Spreij, P.
2015-01-01
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,
Nonparametric analysis of blocked ordered categories data: some examples revisited
Directory of Open Access Journals (Sweden)
O. Thas
2006-08-01
Full Text Available Nonparametric analysis for general block designs can be given by using the Cochran-Mantel-Haenszel (CMH statistics. We demonstrate this with four examples and note that several well-known nonparametric statistics are special cases of CMH statistics.
Bansal, Ravi; Peterson, Bradley S
2018-06-01
FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.
Nonparametric statistics with applications to science and engineering
Kvam, Paul H
2007-01-01
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provide...
2nd Conference of the International Society for Nonparametric Statistics
Manteiga, Wenceslao; Romo, Juan
2016-01-01
This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers...
Ettl, Florian; Testori, Christoph; Weiser, Christoph; Fleischhackl, Sabine; Mayer-Stickler, Monika; Herkner, Harald; Schreiber, Wolfgang; Fleischhackl, Roman
2011-06-01
The first-aid training necessary for obtaining a drivers license in Austria has a regulated and predefined curriculum but has been targeted for the implementation of a new course structure with less theoretical input, repetitive training in cardiopulmonary resuscitation (CPR) and structured presentations using innovative media. The standard and a new course design were compared with a prospective, participant- and observer-blinded, cluster-randomized controlled study. Six months after the initial training, we evaluated the confidence of the 66 participants in their skills, CPR effectiveness parameters and correctness of their actions. The median self-confidence was significantly higher in the interventional group [IG, visual analogue scale (VAS:"0" not-confident at all,"100" highly confident):57] than in the control group (CG, VAS:41). The mean chest compression rate in the IG (98/min) was closer to the recommended 100 bpm than in the CG (110/min). The time to the first chest compression (IG:25s, CG:36s) and time to first defibrillator shock (IG:86s, CG:92s) were significantly shorter in the IG. Furthermore, the IG participants were safer in their handling of the defibrillator and started with countermeasures against developing shock more often. The management of an unconscious person and of heavy bleeding did not show a difference between the two groups even after shortening the lecture time. Motivation and self-confidence as well as skill retention after six months were shown to be dependent on the teaching methods and the time for practical training. Courses may be reorganized and content rescheduled, even within predefined curricula, to improve course outcomes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jiahu Zhao
2011-11-01
Full Text Available Aquatic ecoregions were increasingly used as spatial units for aquatic ecosystem management at the watershed scale. In this paper, the principle of including land area, comprehensiveness and dominance, conjugation and hierarchy were selected as regionalizing principles. Elevation and drainage density were selected as the regionalizing indicators for the delineation of level I aquatic ecoregions, and percent of construction land area, percent of cultivated land area, soil type and slope for the level II. Under the support of GIS technology, the spatial distribution maps of the two indicators for level I and the four indicators for level II aquatic ecoregion delineation were generated from the raster data based on the 1,107 subwatersheds. River subbasin taxonomy concept, two-step spatial clustering analysis approach and manual-assisted method were used to regionalize aquatic ecosystems in the Taihu Lake watershed. Then the Taihu Lake watershed was divided into two level I aquatic ecoregions, including Ecoregion I1 and Ecoregion I2, and five level II aquatic subecoregions, including Subecoregion II11, Subecoregion II12, Subecoregion II21, Subecoregion II22 and Subecoregion II23. Moreover, the characteristics of the two level I aquatic ecoregions and five level II aquatic subecoregions in the Taihu Lake watershed were summarized, showing that there were significant differences in topography, socio-economic development, water quality and aquatic ecology, etc. The results of quantitative comparison of aquatic life also indicated that the dominant species of fish, benthic density, biomass, dominant species, Shannon-Wiener diversity index, Margalef species richness index, Pielou evenness index and ecological dominance showed great spatial variability between the two level I aquatic ecoregions and five level II aquatic subecoregions. It reflected the spatial heterogeneities and the uneven natures of aquatic ecosystems in the Taihu Lake watershed.
Investigation of Cu(In,Ga)Se{sub 2} using Monte Carlo and the cluster expansion technique
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Christian D.R.; Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz (Germany); Windeln, Johannes [IBM Germany, Mgr. Technology Center ISC EMEA, Mainz (Germany)
2010-07-01
CIGS based solar cells are among the most promising thin-film techniques for cheap, yet efficient modules. They have been investigated for many years, but the full potential of CIGS cells has not yet been exhausted and many effects are not understood. For instance, the band gap of the absorber material Cu(In,Ga)Se{sub 2} varies with Ga content. The question why solar cells with high Ga content have low efficiencies, despite the fact that the band gap should have the optimum value, is still unanswered. We are using Monte Carlo simulations in combination with a cluster expansion to investigate the homogeneity of the In-Ga distribution as a possible cause of the low efficiency of cells with high Ga content. The cluster expansion is created by a fit to ab initio electronic structure energies. The results we found are crucial for the processing of solar cells, shed light on structural properties and give hints on how to significantly improve solar cell performance. Above the transition temperature from the separated to the mixed phase, we observe different sizes of the In and Ga domains for a given temperature. The In domains in the Ga-rich compound are smaller and less abundant than the Ga domains in the In-rich compound. This translates into the Ga-rich material being less homogeneous.
Nahid, Abdullah-Al; Mehrabi, Mohamad Ali; Kong, Yinan
2018-01-01
Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F -Measure value is achieved on both the 40x and 100x datasets.
Directory of Open Access Journals (Sweden)
Punith K
2008-01-01
Full Text Available Research Question: Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? Objective: To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Study Design: Population-based cross-sectional study. Study Setting: Areas under Mathikere Urban Health Center. Study Subjects: Children aged 12 months to 23 months. Sample Size: 220 in cluster sampling, 76 in lot quality assurance sampling. Statistical Analysis: Percentages and Proportions, Chi square Test. Results: (1 Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2 Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area.
K, Punith; K, Lalitha; G, Suman; Bs, Pradeep; Kumar K, Jayanth
2008-07-01
Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Population-based cross-sectional study. Areas under Mathikere Urban Health Center. Children aged 12 months to 23 months. 220 in cluster sampling, 76 in lot quality assurance sampling. Percentages and Proportions, Chi square Test. (1) Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2) Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area.
An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques
Directory of Open Access Journals (Sweden)
Elid Rubio
2017-01-01
Full Text Available In this work an extension of the Fuzzy Possibilistic C-Means (FPCM algorithm using Type-2 Fuzzy Logic Techniques is presented, and this is done in order to improve the efficiency of FPCM algorithm. With the purpose of observing the performance of the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means (IT2FCM algorithm to observe if the proposed approach has better performance than this algorithm.
Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method
Kulchitskii, Yu A
2000-01-01
Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.
Nonparametric methods in actigraphy: An update
Directory of Open Access Journals (Sweden)
Bruno S.B. Gonçalves
2014-09-01
Full Text Available Circadian rhythmicity in humans has been well studied using actigraphy, a method of measuring gross motor movement. As actigraphic technology continues to evolve, it is important for data analysis to keep pace with new variables and features. Our objective is to study the behavior of two variables, interdaily stability and intradaily variability, to describe rest activity rhythm. Simulated data and actigraphy data of humans, rats, and marmosets were used in this study. We modified the method of calculation for IV and IS by modifying the time intervals of analysis. For each variable, we calculated the average value (IVm and ISm results for each time interval. Simulated data showed that (1 synchronization analysis depends on sample size, and (2 fragmentation is independent of the amplitude of the generated noise. We were able to obtain a significant difference in the fragmentation patterns of stroke patients using an IVm variable, while the variable IV60 was not identified. Rhythmic synchronization of activity and rest was significantly higher in young than adults with Parkinson׳s when using the ISM variable; however, this difference was not seen using IS60. We propose an updated format to calculate rhythmic fragmentation, including two additional optional variables. These alternative methods of nonparametric analysis aim to more precisely detect sleep–wake cycle fragmentation and synchronization.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Nonparametric tests for equality of psychometric functions.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2017-12-07
Many empirical studies measure psychometric functions (curves describing how observers' performance varies with stimulus magnitude) because these functions capture the effects of experimental conditions. To assess these effects, parametric curves are often fitted to the data and comparisons are carried out by testing for equality of mean parameter estimates across conditions. This approach is parametric and, thus, vulnerable to violations of the implied assumptions. Furthermore, testing for equality of means of parameters may be misleading: Psychometric functions may vary meaningfully across conditions on an observer-by-observer basis with no effect on the mean values of the estimated parameters. Alternative approaches to assess equality of psychometric functions per se are thus needed. This paper compares three nonparametric tests that are applicable in all situations of interest: The existing generalized Mantel-Haenszel test, a generalization of the Berry-Mielke test that was developed here, and a split variant of the generalized Mantel-Haenszel test also developed here. Their statistical properties (accuracy and power) are studied via simulation and the results show that all tests are indistinguishable as to accuracy but they differ non-uniformly as to power. Empirical use of the tests is illustrated via analyses of published data sets and practical recommendations are given. The computer code in MATLAB and R to conduct these tests is available as Electronic Supplemental Material.
Adaptive nonparametric estimation for L\\'evy processes observed at low frequency
Kappus, Johanna
2013-01-01
This article deals with adaptive nonparametric estimation for L\\'evy processes observed at low frequency. For general linear functionals of the L\\'evy measure, we construct kernel estimators, provide upper risk bounds and derive rates of convergence under regularity assumptions. Our focus lies on the adaptive choice of the bandwidth, using model selection techniques. We face here a non-standard problem of model selection with unknown variance. A new approach towards this problem is proposed, ...
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
Clustering disaggregated load profiles using a Dirichlet process mixture model
International Nuclear Information System (INIS)
Granell, Ramon; Axon, Colin J.; Wallom, David C.H.
2015-01-01
Highlights: • We show that the Dirichlet process mixture model is scaleable. • Our model does not require the number of clusters as an input. • Our model creates clusters only by the features of the demand profiles. • We have used both residential and commercial data sets. - Abstract: The increasing availability of substantial quantities of power-use data in both the residential and commercial sectors raises the possibility of mining the data to the advantage of both consumers and network operations. We present a Bayesian non-parametric model to cluster load profiles from households and business premises. Evaluators show that our model performs as well as other popular clustering methods, but unlike most other methods it does not require the number of clusters to be predetermined by the user. We used the so-called ‘Chinese restaurant process’ method to solve the model, making use of the Dirichlet-multinomial distribution. The number of clusters grew logarithmically with the quantity of data, making the technique suitable for scaling to large data sets. We were able to show that the model could distinguish features such as the nationality, household size, and type of dwelling between the cluster memberships
Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs
Kuosmanen, T.K.
2005-01-01
Environmental Economics and Natural Resources Group at Wageningen University in The Netherlands Weak disposability of outputs means that firms can abate harmful emissions by decreasing the activity level. Modeling weak disposability in nonparametric production analysis has caused some confusion.
Multi-sample nonparametric treatments comparison in medical ...
African Journals Online (AJOL)
Multi-sample nonparametric treatments comparison in medical follow-up study with unequal observation processes through simulation and bladder tumour case study. P. L. Tan, N.A. Ibrahim, M.B. Adam, J. Arasan ...
A nonparametric mixture model for cure rate estimation.
Peng, Y; Dear, K B
2000-03-01
Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.
Speaker Linking and Applications using Non-Parametric Hashing Methods
2016-09-08
nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Bayesian Nonparametric Model for Estimating Multistate Travel Time Distribution
Directory of Open Access Journals (Sweden)
Emmanuel Kidando
2017-01-01
Full Text Available Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model (DPMM with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC sampling technique was employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The DPMM modeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the inclusion of onset and offset of congestion periods.
Clustering via Kernel Decomposition
DEFF Research Database (Denmark)
Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan
2006-01-01
Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....
A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems
Merkatas, Christos; Kaloudis, Konstantinos; Hatjispyros, Spyridon J.
2017-06-01
We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.
A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems.
Merkatas, Christos; Kaloudis, Konstantinos; Hatjispyros, Spyridon J
2017-06-01
We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz
2016-03-01
Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.
International Nuclear Information System (INIS)
Kunieda, Takuya; Uchiyama, Yoshikazu; Hara, Takeshi
2008-01-01
Asymptomatic white matter lesions are frequently identified by the screening system known as Brain Dock, which is intended for the detection of asymptomatic brain diseases. The detection of asymptomatic white matter lesions is important because their presence is associated with an increased risk of stroke. Therefore, we have developed a computerized method for the detection of asymptomatic white matter lesions in order to assist radiologists in image interpretation as a ''second opinion''. Our database consisted of T 1 - and T 2 -weighted images obtained from 73 patients. The locations of the white matter lesions were determined by an experienced neuroradiologist. In order to restrict the area to be searched for white matter lesions, we first segmented the cerebral region in T 1 -weighted images by applying thresholding and region-growing techniques. To identify the initial candidate lesions, k-means clustering with pixel values in T 1 - and T 2 -weighted images was applied to the segmented cerebral region. To eliminate false positives (FPs), we determined the features, such as location, size, and circularity, of each of the initial candidate lesions. Finally, a rule-based scheme and a quadratic discriminant analysis with these features were employed to distinguish between white matter lesions and FPs. The results showed that the sensitivity for the detection of white matter lesions was 93.2%, with 4.3 FPs per image, suggesting that our computerized method may be useful for the detection of asymptomatic white matter lesions in T 1 - and T 2 -weighted images. (author)
Sinaga, Megawati
2017-01-01
The Objectives of this paper as an experimental research was to investigate the effect of Roundtable and Clustering teaching techniques and students' personal traits on students' achievement in descriptive writing. The students in grade ix of SMP Negeri 2 Pancurbatu 2016/2017 school academic year were chose as the population of this research. The…
International Nuclear Information System (INIS)
Peterson, James R.; Haas, Timothy C.; Lee, Danny C.
2000-01-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network
International Nuclear Information System (INIS)
Biring, Shyamal Kumar; Chaudhury, Pinaki
2012-01-01
Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.
Kappa statistic for clustered matched-pair data.
Yang, Zhao; Zhou, Ming
2014-07-10
Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data. Copyright © 2014 John Wiley & Sons, Ltd.
Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering
Xiang, Sijia; Yao, Weixin
2017-01-01
In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...
Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.
2011-05-01
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Directory of Open Access Journals (Sweden)
Saerom Park
Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Application of nonparametric statistic method for DNBR limit calculation
International Nuclear Information System (INIS)
Dong Bo; Kuang Bo; Zhu Xuenong
2013-01-01
Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Xu, Richard Yi Da; Luo, Xiangfeng
2018-05-01
Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionality of the factor matrices) to be fixed. This assumption makes it inflexible in practice. In this paper, we propose a doubly sparse nonparametric NMF framework to mitigate this issue by using dependent Indian buffet processes (dIBP). We apply a correlation function for the generation of two stick weights associated with each column pair of factor matrices while still maintaining their respective marginal distribution specified by IBP. As a consequence, the generation of two factor matrices will be columnwise correlated. Under this framework, two classes of correlation function are proposed: 1) using bivariate Beta distribution and 2) using Copula function. Compared with the single IBP-based NMF, this paper jointly makes two factor matrices nonparametric and sparse, which could be applied to broader scenarios, such as co-clustering. This paper is seen to be much more flexible than Gaussian process-based and hierarchial Beta process-based dIBPs in terms of allowing the two corresponding binary matrix columns to have greater variations in their nonzero entries. Our experiments on synthetic data show the merits of this paper compared with the state-of-the-art models in respect of factorization efficiency, sparsity, and flexibility. Experiments on real-world data sets demonstrate the efficiency of this paper in document-word co-clustering tasks.
International Nuclear Information System (INIS)
Romli
1997-01-01
Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods
Everitt, Brian S; Leese, Morven; Stahl, Daniel
2011-01-01
Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons
Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation
DEFF Research Database (Denmark)
Katebi, S.D.; Blanke, M.; Katebi, M.R.
This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...
Wagstaff, Kiri L.
2012-03-01
matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.
Adaptive nonparametric Bayesian inference using location-scale mixture priors
Jonge, de R.; Zanten, van J.H.
2010-01-01
We study location-scale mixture priors for nonparametric statistical problems, including multivariate regression, density estimation and classification. We show that a rate-adaptive procedure can be obtained if the prior is properly constructed. In particular, we show that adaptation is achieved if
The nonparametric bootstrap for the current status model
Groeneboom, P.; Hendrickx, K.
2017-01-01
It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid
Non-Parametric Analysis of Rating Transition and Default Data
DEFF Research Database (Denmark)
Fledelius, Peter; Lando, David; Perch Nielsen, Jens
2004-01-01
We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...
Bayesian nonparametric system reliability using sets of priors
Walter, G.M.; Aslett, L.J.M.; Coolen, F.P.A.
2016-01-01
An imprecise Bayesian nonparametric approach to system reliability with multiple types of components is developed. This allows modelling partial or imperfect prior knowledge on component failure distributions in a flexible way through bounds on the functioning probability. Given component level test
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen
2011-04-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.
Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support
Czech Academy of Sciences Publication Activity Database
Kalina, Jan; Zvárová, Jana
2017-01-01
Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability
On the robust nonparametric regression estimation for a functional regressor
Azzedine , Nadjia; Laksaci , Ali; Ould-Saïd , Elias
2009-01-01
On the robust nonparametric regression estimation for a functional regressor correspondance: Corresponding author. (Ould-Said, Elias) (Azzedine, Nadjia) (Laksaci, Ali) (Ould-Said, Elias) Departement de Mathematiques--> , Univ. Djillali Liabes--> , BP 89--> , 22000 Sidi Bel Abbes--> - ALGERIA (Azzedine, Nadjia) Departement de Mathema...
A general approach to posterior contraction in nonparametric inverse problems
Knapik, Bartek; Salomond, Jean Bernard
In this paper, we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive contraction rates for the parameter of interest from contraction rates of the related
Non-parametric analysis of production efficiency of poultry egg ...
African Journals Online (AJOL)
Non-parametric analysis of production efficiency of poultry egg farmers in Delta ... analysis of factors affecting the output of poultry farmers showed that stock ... should be put in place for farmers to learn the best farm practices carried out on the ...
DEFF Research Database (Denmark)
Warming, S; Ebbehøj, N E; Wiese, N
2008-01-01
intervention (six wards) or to control (five wards). The intervention cluster was individually randomised to TT (55 nurses) and TTPT (50 nurses), control (76 nurses). The transfer technique programme was a 4-d course of train-the-trainers to teach transfer technique to their colleagues. The physical training...... consisted of supervised physical fitness training 1 h twice per week for 8 weeks. Implementing transfer technique alone or in combination with physical fitness training among a hospital nursing staff did not, when compared to a control group, show any statistical differences according to self-reported low...... to nurses in a hospital setting needs to be thoroughly considered. Other priorities such as physical training may be taken into consideration. The current study supports the findings of other studies that introducing transfer technique alone has no effect in targeting LBP. However, physical training seems...
Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab
2011-01-01
We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work
, N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar
2011-01-01
Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...
Akhmadaliev, S Z; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Crouau, M; Daudon, F; David, J; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Evans, H; Eynard, G; Fassi, F; Fassnacht, P; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E; Gaspar, M; Giakoumopoulou, V; Gianotti, F; Gildemeister, O; Giokaris, N; Glagolev, V; Glebov, V Yu; Gomes, A; González, V; González de la Hoz, S; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Hervás, L; Higón, E; Holmgren, Sven Olof; Hostachy, J Y; Hoummada, A; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kopikov, S V; Kostrikov, M E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Laforge, B; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Li, J; Liablin, M V; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; López-Amengual, J M; Lund-Jensen, B; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquim, F; Martin, P; Maslennikov, A L; Massol, N; Mataix, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Moynot, M; Muanza, G S; Nayman, P; Némécek, S; Nessi, Marzio; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Roda, C; Rodier, S; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rossel, F; Rusakovitch, N A; Sala, P; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A; Serin, L; Shaldaev, E; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Snopkov, R; Söderqvist, J; Solodkov, A A; Soloviev, A; Soloviev, I V; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Suk, M; Surkov, A; Sykora, I; Takai, H; Tang, F; Tardell, S; Tartarelli, F; Tas, P; Teiger, J; Thaler, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y
2002-01-01
This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the nonparametrical method. The nonparametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within +or-1% of the true values and the fractional energy resolution is [(58+or-3)%/ square root E+(2.5+or-0.3)%](+)(1.7+or-0.2)/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74+or-0.04 and agrees with the prediction that e/h >1.66 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam...
Impulse response identification with deterministic inputs using non-parametric methods
International Nuclear Information System (INIS)
Bhargava, U.K.; Kashyap, R.L.; Goodman, D.M.
1985-01-01
This paper addresses the problem of impulse response identification using non-parametric methods. Although the techniques developed herein apply to the truncated, untruncated, and the circulant models, we focus on the truncated model which is useful in certain applications. Two methods of impulse response identification will be presented. The first is based on the minimization of the C/sub L/ Statistic, which is an estimate of the mean-square prediction error; the second is a Bayesian approach. For both of these methods, we consider the effects of using both the identity matrix and the Laplacian matrix as weights on the energy in the impulse response. In addition, we present a method for estimating the effective length of the impulse response. Estimating the length is particularly important in the truncated case. Finally, we develop a method for estimating the noise variance at the output. Often, prior information on the noise variance is not available, and a good estimate is crucial to the success of estimating the impulse response with a nonparametric technique
Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.
2014-01-01
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based
Tune Your Brown Clustering, Please
DEFF Research Database (Denmark)
Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden
2015-01-01
Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...
Clustering of near clusters versus cluster compactness
International Nuclear Information System (INIS)
Yu Gao; Yipeng Jing
1989-01-01
The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)
Mucha, Hans-Joachim; Sofyan, Hizir
2000-01-01
As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
Nonparametric Regression Estimation for Multivariate Null Recurrent Processes
Directory of Open Access Journals (Sweden)
Biqing Cai
2015-04-01
Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.
Nonparametric instrumental regression with non-convex constraints
International Nuclear Information System (INIS)
Grasmair, M; Scherzer, O; Vanhems, A
2013-01-01
This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition. (paper)
Nonparametric instrumental regression with non-convex constraints
Grasmair, M.; Scherzer, O.; Vanhems, A.
2013-03-01
This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition.
Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.
Deshwar, Amit G; Vembu, Shankar; Morris, Quaid
2015-01-01
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
Single versus mixture Weibull distributions for nonparametric satellite reliability
International Nuclear Information System (INIS)
Castet, Jean-Francois; Saleh, Joseph H.
2010-01-01
Long recognized as a critical design attribute for space systems, satellite reliability has not yet received the proper attention as limited on-orbit failure data and statistical analyses can be found in the technical literature. To fill this gap, we recently conducted a nonparametric analysis of satellite reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we provide an advanced parametric fit, based on mixture of Weibull distributions, and compare it with the single Weibull distribution model obtained with the Maximum Likelihood Estimation (MLE) method. We demonstrate that both parametric fits are good approximations of the nonparametric satellite reliability, but that the mixture Weibull distribution provides significant accuracy in capturing all the failure trends in the failure data, as evidenced by the analysis of the residuals and their quasi-normal dispersion.
International Conference on Robust Rank-Based and Nonparametric Methods
McKean, Joseph
2016-01-01
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...
Nonparametric Bayesian models through probit stick-breaking processes.
Rodríguez, Abel; Dunson, David B
2011-03-01
We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.
Exact nonparametric inference for detection of nonlinear determinism
Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene
2005-01-01
We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...
Non-parametric estimation of the individual's utility map
Noguchi, Takao; Sanborn, Adam N.; Stewart, Neil
2013-01-01
Models of risky choice have attracted much attention in behavioural economics. Previous research has repeatedly demonstrated that individuals' choices are not well explained by expected utility theory, and a number of alternative models have been examined using carefully selected sets of choice alternatives. The model performance however, can depend on which choice alternatives are being tested. Here we develop a non-parametric method for estimating the utility map over the wide range of choi...
Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data
CORNELIS A. LOS
2004-01-01
The efficiency of speculative markets, as represented by Fama's 1970 fair game model, is tested on weekly price index data of six Asian stock markets - Hong Kong, Indonesia, Malaysia, Singapore, Taiwan and Thailand - using Sherry's (1992) non-parametric methods. These scientific testing methods were originally developed to analyze the information processing efficiency of nervous systems. In particular, the stationarity and independence of the price innovations are tested over ten years, from ...
Investigation of MLE in nonparametric estimation methods of reliability function
International Nuclear Information System (INIS)
Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo
2001-01-01
There have been lots of trials to estimate a reliability function. In the ESReDA 20 th seminar, a new method in nonparametric way was proposed. The major point of that paper is how to use censored data efficiently. Generally there are three kinds of approach to estimate a reliability function in nonparametric way, i.e., Reduced Sample Method, Actuarial Method and Product-Limit (PL) Method. The above three methods have some limits. So we suggest an advanced method that reflects censored information more efficiently. In many instances there will be a unique maximum likelihood estimator (MLE) of an unknown parameter, and often it may be obtained by the process of differentiation. It is well known that the three methods generally used to estimate a reliability function in nonparametric way have maximum likelihood estimators that are uniquely exist. So, MLE of the new method is derived in this study. The procedure to calculate a MLE is similar just like that of PL-estimator. The difference of the two is that in the new method, the mass (or weight) of each has an influence of the others but the mass in PL-estimator not
DEFF Research Database (Denmark)
Popok, Vladimir; Jeppesen, Cesarino; Fojan, Peter
2018-01-01
Background: Antibacterial materials are of high importance for medicine, food production and conservation. Among these materials, polymer films with metals nanoparticles (NPs) are of considerable attention for many practical applications. Results: The paper describes a novel approach...... for the formation of bactericidal media which are represented by thin polymer films (polystyrene in the current case), produced by spin-coating, with Ti and Cu NPs deposited from cluster beams. Ti NPs are treated in three different ways in order to study different approaches for oxidation and, thus, efficiency...
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
Stephens, Andrew W.; Frogel, Jay A.; Freedman, Wendy; Gallart, Carme; Jablonka, Pascale; Ortolani, Sergio; Renzini, Alvio; Rich, R. Michael; Davies, Roger
2001-05-01
Astronomers are always anxious to push their observations to the limit-basing results on objects at the detection threshold, spectral features barely stronger than the noise, or photometry in very crowded regions. In this paper we present a careful analysis of photometry in crowded regions and show how image blending affects the results and interpretation of such data. Although this analysis is specifically for our NICMOS observations in M31, the techniques we develop can be applied to any imaging data taken in crowded fields; we show how the effects of image blending will limit even the Next Generation Space Telescope. We have obtained HST-NICMOS observations of five of M31's most metal-rich globular clusters. These data allow photometry of individual stars in the clusters and their surrounding fields. However, to achieve our goals-obtain accurate luminosity functions to compare with their Galactic counterparts, determine metallicities from the slope of the giant branch, identify long-period variables, and estimate ages from the AGB tip luminosity-we must be able to disentangle the true properties of the population from the observational effects associated with measurements made in very crowded fields. We thus use three different techniques to analyze the effects of crowding on our data, including the insertion of artificial stars (traditional completeness tests) and the creation of completely artificial clusters. These computer simulations are used to derive threshold- and critical-blending radii for each cluster, which determine how close to the cluster center reliable photometry can be achieved. The simulations also allow us to quantify and correct for the effects of blending on the slope and width of the RGB at different surface brightness levels. We then use these results to estimate the limits blending will place on future space-based observations. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science
International Nuclear Information System (INIS)
Morio, Jerome
2011-01-01
Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.
Nonparametric Methods in Astronomy: Think, Regress, Observe—Pick Any Three
Steinhardt, Charles L.; Jermyn, Adam S.
2018-02-01
Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.
Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo
2011-03-04
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.
Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach
International Nuclear Information System (INIS)
Wang, H.; Ang, B.W.; Wang, Q.W.; Zhou, P.
2017-01-01
Evaluating economy-wide energy performance is an integral part of assessing the effectiveness of a country's energy efficiency policy. Non-parametric frontier approach has been widely used by researchers for such a purpose. This paper proposes an extended non-parametric frontier approach to studying economy-wide energy efficiency and productivity performances by accounting for sectoral heterogeneity. Relevant techniques in index number theory are incorporated to quantify the driving forces behind changes in the economy-wide energy productivity index. The proposed approach facilitates flexible modelling of different sectors' production processes, and helps to examine sectors' impact on the aggregate energy performance. A case study of China's economy-wide energy efficiency and productivity performances in its 11th five-year plan period (2006–2010) is presented. It is found that sectoral heterogeneities in terms of energy performance are significant in China. Meanwhile, China's economy-wide energy productivity increased slightly during the study period, mainly driven by the technical efficiency improvement. A number of other findings have also been reported. - Highlights: • We model economy-wide energy performance by considering sectoral heterogeneity. • The proposed approach can identify sectors' impact on the aggregate energy performance. • Obvious sectoral heterogeneities are identified in evaluating China's energy performance.
MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO
International Nuclear Information System (INIS)
Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.; Williams, Michael J.; Drory, Niv
2013-01-01
We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 ≤ r ≤ 700 pc. The profile for r ≥ 20 pc is well fit by a power law with slope α = –1.0 ± 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.
Non-parametric transformation for data correlation and integration: From theory to practice
Energy Technology Data Exchange (ETDEWEB)
Datta-Gupta, A.; Xue, Guoping; Lee, Sang Heon [Texas A& M Univ., College Station, TX (United States)
1997-08-01
The purpose of this paper is two-fold. First, we introduce the use of non-parametric transformations for correlating petrophysical data during reservoir characterization. Such transformations are completely data driven and do not require a priori functional relationship between response and predictor variables which is the case with traditional multiple regression. The transformations are very general, computationally efficient and can easily handle mixed data types for example, continuous variables such as porosity, permeability and categorical variables such as rock type, lithofacies. The power of the non-parametric transformation techniques for data correlation has been illustrated through synthetic and field examples. Second, we utilize these transformations to propose a two-stage approach for data integration during heterogeneity characterization. The principal advantages of our approach over traditional cokriging or cosimulation methods are: (1) it does not require a linear relationship between primary and secondary data, (2) it exploits the secondary information to its fullest potential by maximizing the correlation between the primary and secondary data, (3) it can be easily applied to cases where several types of secondary or soft data are involved, and (4) it significantly reduces variance function calculations and thus, greatly facilitates non-Gaussian cosimulation. We demonstrate the data integration procedure using synthetic and field examples. The field example involves estimation of pore-footage distribution using well data and multiple seismic attributes.
Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L
2016-01-01
An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.
International Nuclear Information System (INIS)
Jenkins, M. L.
1998-01-01
We have made an analysis of the conditions necessary for the successful use of the weak-beam technique for identifying and characterizing small point-defect clusters in ion-irradiated copper. The visibility of small defects was found to depend only weakly on the magnitude of the beam-convergence. In general, the image sizes of small clusters were found to be most sensitive to the magnitude of Sa with the image sizes of some individual defects changing by large amounts with changes as small as 0.025 nm -1 . The most reliable information on the true defect size is likely to be obtained by taking a series of 5-9 micrographs with a systematic variation of deviation parameter from 0.2-0.3 nm -1 . This procedure allows size information to be obtained down to a resolution limit of about 0.5 nm for defects situated throughout a foil thickness of 60 nm. The technique has been applied to the determination of changes in the sizes of small defects produced by a low-temperature in-situ irradiation and annealing experiment
International Nuclear Information System (INIS)
Bourdin, Herve
2004-01-01
Clusters of galaxies are gravitationally bound matter over-densities which are filled with a hot and ionized gas emitting in X-rays. They form during merging phases of subgroups, so that the gas undergoes shock and mixing processes which perturb its physical properties at hydrostatic equilibrium. In order to map the spatial distributions of the gas emissivity, temperature and entropy as observed by X-ray telescopes, we compared different multi-scale imaging algorithms, and also developed and tested a new multi-scale spectro-imaging algorithm. With this algorithm, the searched parameter is first estimated from a count statistics within different spatial resolution elements, and its space-frequency variations are then coded by Haar wavelet coefficients. The optimal spatial distribution of the parameter is finally restored by thresholding the noisy wavelet transform. (author) [fr
DEFF Research Database (Denmark)
Azri, Suhaibah; Ujang, Uznir; Rahman, Alias Abdul
2014-01-01
In the last few years, 3D urban data and its information are rapidly increased due to the growth of urban area and urbanization phenomenon. These datasets are then maintain and manage in 3D spatial database system. However, performance deterioration is likely to happen due to the massiveness of 3D...... datasets. As a solution, 3D spatial index structure is used as a booster to increase the performance of data retrieval. In commercial database, commonly and widely used index structure for 3D spatial database is 3D R-Tree. This is due to its simplicity and promising method in handling spatial data. However......D geospatial data clustering to be used in the construction of 3D R-Tree and respectively could reduce the overlapping among nodes. The proposed method is tested on 3D urban dataset for the application of urban infill development. By using several cases of data updating operations such as building...
Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method
Kenderi, Gábor; Fidlin, Alexander
2014-12-01
The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.
Directory of Open Access Journals (Sweden)
Pankaj Kumar Gupta
2013-01-01
Full Text Available Background: Infectious diseases are a major cause of morbidity and mortality in children. One of the most cost-effective and easy methods for child survival is immunization. Despite all the efforts put in by governmental and nongovernmental institutes for 100% immunization coverage, there are still pockets of low-coverage areas. In India, immunization services are offered free in public health facilities, but, despite rapid increases, the immunization rate remains low in some areas. The Millennium Development Goals (MDG indicators also give importance to immunization. Objective: To assess the immunization coverage in the rural area of Pune. Materials and Methods: A cross-sectional study was conducted in the field practice area of the Rural Health Training Center (RHTC using the WHO′s 30 cluster sampling method for evaluation of immunization coverage. Results: A total of 1913 houses were surveyed. A total of 210 children aged 12-23 months were included in the study. It was found that 86.67% of the children were fully immunized against all the six vaccine-preventable diseases. The proportion of fully immunized children was marginally higher in males (87.61% than in females (85.57%, and the immunization card was available with 60.95% of the subjects. The most common cause for partial immunization was that the time of immunization was inconvenient (36%. Conclusion: Sustained efforts are required to achieve universal coverage of immunization in the rural area of Pune district.
STATCAT, Statistical Analysis of Parametric and Non-Parametric Data
International Nuclear Information System (INIS)
David, Hugh
1990-01-01
1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required
Panel data nonparametric estimation of production risk and risk preferences
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
approaches for obtaining firm-specific measures of risk attitudes. We found that Polish dairy farmers are risk averse regarding production risk and price uncertainty. According to our results, Polish dairy farmers perceive the production risk as being more significant than the risk related to output price......We apply nonparametric panel data kernel regression to investigate production risk, out-put price uncertainty, and risk attitudes of Polish dairy farms based on a firm-level unbalanced panel data set that covers the period 2004–2010. We compare different model specifications and different...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
A Bayesian nonparametric approach to causal inference on quantiles.
Xu, Dandan; Daniels, Michael J; Winterstein, Almut G
2018-02-25
We propose a Bayesian nonparametric approach (BNP) for causal inference on quantiles in the presence of many confounders. In particular, we define relevant causal quantities and specify BNP models to avoid bias from restrictive parametric assumptions. We first use Bayesian additive regression trees (BART) to model the propensity score and then construct the distribution of potential outcomes given the propensity score using a Dirichlet process mixture (DPM) of normals model. We thoroughly evaluate the operating characteristics of our approach and compare it to Bayesian and frequentist competitors. We use our approach to answer an important clinical question involving acute kidney injury using electronic health records. © 2018, The International Biometric Society.
Nonparametric statistics a step-by-step approach
Corder, Gregory W
2014-01-01
"…a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught."" -CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical powerSPSS® (Version 21) software and updated screen ca
Evaluation of Nonparametric Probabilistic Forecasts of Wind Power
DEFF Research Database (Denmark)
Pinson, Pierre; Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg, orlov 31.07.2008
Predictions of wind power production for horizons up to 48-72 hour ahead comprise a highly valuable input to the methods for the daily management or trading of wind generation. Today, users of wind power predictions are not only provided with point predictions, which are estimates of the most...... likely outcome for each look-ahead time, but also with uncertainty estimates given by probabilistic forecasts. In order to avoid assumptions on the shape of predictive distributions, these probabilistic predictions are produced from nonparametric methods, and then take the form of a single or a set...
Estimation of Stochastic Volatility Models by Nonparametric Filtering
DEFF Research Database (Denmark)
Kanaya, Shin; Kristensen, Dennis
2016-01-01
/estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...
Segmentation of Nonstationary Time Series with Geometric Clustering
DEFF Research Database (Denmark)
Bocharov, Alexei; Thiesson, Bo
2013-01-01
We introduce a non-parametric method for segmentation in regimeswitching time-series models. The approach is based on spectral clustering of target-regressor tuples and derives a switching regression tree, where regime switches are modeled by oblique splits. Such models can be learned efficiently...... from data, where clustering is used to propose one single split candidate at each split level. We use the class of ART time series models to serve as illustration, but because of the non-parametric nature of our segmentation approach, it readily generalizes to a wide range of time-series models that go...
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Nonparametric estimation of age-specific reference percentile curves with radial smoothing.
Wan, Xiaohai; Qu, Yongming; Huang, Yao; Zhang, Xiao; Song, Hanping; Jiang, Honghua
2012-01-01
Reference percentile curves represent the covariate-dependent distribution of a quantitative measurement and are often used to summarize and monitor dynamic processes such as human growth. We propose a new nonparametric method based on a radial smoothing (RS) technique to estimate age-specific reference percentile curves assuming the underlying distribution is relatively close to normal. We compared the RS method with both the LMS and the generalized additive models for location, scale and shape (GAMLSS) methods using simulated data and found that our method has smaller estimation error than the two existing methods. We also applied the new method to analyze height growth data from children being followed in a clinical observational study of growth hormone treatment, and compared the growth curves between those with growth disorders and the general population. Copyright © 2011 Elsevier Inc. All rights reserved.
Rock, N. M. S.; Duffy, T. R.
REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.
Bayesian nonparametric dictionary learning for compressed sensing MRI.
Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping
2014-12-01
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.
1st Conference of the International Society for Nonparametric Statistics
Lahiri, S; Politis, Dimitris
2014-01-01
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the wo...
Genomic breeding value estimation using nonparametric additive regression models
Directory of Open Access Journals (Sweden)
Solberg Trygve
2009-01-01
Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.
A non-parametric framework for estimating threshold limit values
Directory of Open Access Journals (Sweden)
Ulm Kurt
2005-11-01
Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.
Application of nonparametric statistics to material strength/reliability assessment
International Nuclear Information System (INIS)
Arai, Taketoshi
1992-01-01
An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)
CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions
Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.
Generative Temporal Modelling of Neuroimaging - Decomposition and Nonparametric Testing
DEFF Research Database (Denmark)
Hald, Ditte Høvenhoff
The goal of this thesis is to explore two improvements for functional magnetic resonance imaging (fMRI) analysis; namely our proposed decomposition method and an extension to the non-parametric testing framework. Analysis of fMRI allows researchers to investigate the functional processes...... of the brain, and provides insight into neuronal coupling during mental processes or tasks. The decomposition method is a Gaussian process-based independent components analysis (GPICA), which incorporates a temporal dependency in the sources. A hierarchical model specification is used, featuring both...... instantaneous and convolutive mixing, and the inferred temporal patterns. Spatial maps are seen to capture smooth and localized stimuli-related components, and often identifiable noise components. The implementation is freely available as a GUI/SPM plugin, and we recommend using GPICA as an additional tool when...
Nonparametric Estimation of Distributions in Random Effects Models
Hart, Jeffrey D.
2011-01-01
We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.
Prior processes and their applications nonparametric Bayesian estimation
Phadia, Eswar G
2016-01-01
This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and P...
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Nonparametric estimation of benchmark doses in environmental risk assessment
Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen
2013-01-01
Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133
Indoor Positioning Using Nonparametric Belief Propagation Based on Spanning Trees
Directory of Open Access Journals (Sweden)
Savic Vladimir
2010-01-01
Full Text Available Nonparametric belief propagation (NBP is one of the best-known methods for cooperative localization in sensor networks. It is capable of providing information about location estimation with appropriate uncertainty and to accommodate non-Gaussian distance measurement errors. However, the accuracy of NBP is questionable in loopy networks. Therefore, in this paper, we propose a novel approach, NBP based on spanning trees (NBP-ST created by breadth first search (BFS method. In addition, we propose a reliable indoor model based on obtained measurements in our lab. According to our simulation results, NBP-ST performs better than NBP in terms of accuracy and communication cost in the networks with high connectivity (i.e., highly loopy networks. Furthermore, the computational and communication costs are nearly constant with respect to the transmission radius. However, the drawbacks of proposed method are a little bit higher computational cost and poor performance in low-connected networks.
Exact nonparametric confidence bands for the survivor function.
Matthews, David
2013-10-12
A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.
Hyperspectral image segmentation using a cooperative nonparametric approach
Taher, Akar; Chehdi, Kacem; Cariou, Claude
2013-10-01
In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.
DEFF Research Database (Denmark)
Christensen, Thomas Budde
The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...
Performance of non-parametric algorithms for spatial mapping of tropical forest structure
Directory of Open Access Journals (Sweden)
Liang Xu
2016-08-01
Full Text Available Abstract Background Mapping tropical forest structure is a critical requirement for accurate estimation of emissions and removals from land use activities. With the availability of a wide range of remote sensing imagery of vegetation characteristics from space, development of finer resolution and more accurate maps has advanced in recent years. However, the mapping accuracy relies heavily on the quality of input layers, the algorithm chosen, and the size and quality of inventory samples for calibration and validation. Results By using airborne lidar data as the “truth” and focusing on the mean canopy height (MCH as a key structural parameter, we test two commonly-used non-parametric techniques of maximum entropy (ME and random forest (RF for developing maps over a study site in Central Gabon. Results of mapping show that both approaches have improved accuracy with more input layers in mapping canopy height at 100 m (1-ha pixels. The bias-corrected spatial models further improve estimates for small and large trees across the tails of height distributions with a trade-off in increasing overall mean squared error that can be readily compensated by increasing the sample size. Conclusions A significant improvement in tropical forest mapping can be achieved by weighting the number of inventory samples against the choice of image layers and the non-parametric algorithms. Without future satellite observations with better sensitivity to forest biomass, the maps based on existing data will remain slightly biased towards the mean of the distribution and under and over estimating the upper and lower tails of the distribution.
Carroll, Raymond J.
2011-03-01
In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.
Directory of Open Access Journals (Sweden)
Manuel Llorca
2014-03-01
Full Text Available In this paper we advocate using the latent class model (LCM approach to control for technological differences in traditional efficiency analysis of regulated electricity networks. Our proposal relies on the fact that latent class models are designed to cluster firms by uncovering differences in technology parameters. Moreover, it can be viewed as a supervised method for clustering data that takes into account the same (production or cost relationship that is analysed later, often using nonparametric frontier techniques. The simulation exercises show that the proposed approach outperforms other sample selection procedures. The proposed methodology is illustrated with an application to a sample of US electricity transmission firms for the period 2001–2009.
Graziani, Rebecca; Guindani, Michele; Thall, Peter F.
2015-01-01
Summary The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212
A ¤nonparametric dynamic additive regression model for longitudinal data
DEFF Research Database (Denmark)
Martinussen, T.; Scheike, T. H.
2000-01-01
dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...
DEFF Research Database (Denmark)
Effraimidis, Georgios; Dahl, Christian Møller
In this paper, we develop a fully nonparametric approach for the estimation of the cumulative incidence function with Missing At Random right-censored competing risks data. We obtain results on the pointwise asymptotic normality as well as the uniform convergence rate of the proposed nonparametric...
Non-parametric tests of productive efficiency with errors-in-variables
Kuosmanen, T.K.; Post, T.; Scholtes, S.
2007-01-01
We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans
Dirichlet Process Parsimonious Mixtures for clustering
Chamroukhi, Faicel; Bartcus, Marius; Glotin, Hervé
2015-01-01
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixtur...
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
Random matrix improved subspace clustering
Couillet, Romain; Kammoun, Abla
2017-01-01
This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Wesselink, Christiaan; Heeg, Govert P.; Jansonius, Nomdo M.
Objective: To compare prospectively 2 perimetric progression detection algorithms for glaucoma, the Early Manifest Glaucoma Trial algorithm (glaucoma progression analysis [GPA]) and a nonparametric algorithm applied to the mean deviation (MD) (nonparametric progression analysis [NPA]). Methods:
A local non-parametric model for trade sign inference
Blazejewski, Adam; Coggins, Richard
2005-03-01
We investigate a regularity in market order submission strategies for 12 stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest neighbor with three predictor variables achieves an average out-of-sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.
Efficient nonparametric n -body force fields from machine learning
Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro
2018-05-01
We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.
Non-parametric Bayesian networks: Improving theory and reviewing applications
International Nuclear Information System (INIS)
Hanea, Anca; Morales Napoles, Oswaldo; Ababei, Dan
2015-01-01
Applications in various domains often lead to high dimensional dependence modelling. A Bayesian network (BN) is a probabilistic graphical model that provides an elegant way of expressing the joint distribution of a large number of interrelated variables. BNs have been successfully used to represent uncertain knowledge in a variety of fields. The majority of applications use discrete BNs, i.e. BNs whose nodes represent discrete variables. Integrating continuous variables in BNs is an area fraught with difficulty. Several methods that handle discrete-continuous BNs have been proposed in the literature. This paper concentrates only on one method called non-parametric BNs (NPBNs). NPBNs were introduced in 2004 and they have been or are currently being used in at least twelve professional applications. This paper provides a short introduction to NPBNs, a couple of theoretical advances, and an overview of applications. The aim of the paper is twofold: one is to present the latest improvements of the theory underlying NPBNs, and the other is to complement the existing overviews of BNs applications with the NPNBs applications. The latter opens the opportunity to discuss some difficulties that applications pose to the theoretical framework and in this way offers some NPBN modelling guidance to practitioners. - Highlights: • The paper gives an overview of the current NPBNs methodology. • We extend the NPBN methodology by relaxing the conditions of one of its fundamental theorems. • We propose improvements of the data mining algorithm for the NPBNs. • We review the professional applications of the NPBNs.
Nonparametric predictive inference for combined competing risks data
International Nuclear Information System (INIS)
Coolen-Maturi, Tahani; Coolen, Frank P.A.
2014-01-01
The nonparametric predictive inference (NPI) approach for competing risks data has recently been presented, in particular addressing the question due to which of the competing risks the next unit will fail, and also considering the effects of unobserved, re-defined, unknown or removed competing risks. In this paper, we introduce how the NPI approach can be used to deal with situations where units are not all at risk from all competing risks. This may typically occur if one combines information from multiple samples, which can, e.g. be related to further aspects of units that define the samples or groups to which the units belong or to different applications where the circumstances under which the units operate can vary. We study the effect of combining the additional information from these multiple samples, so effectively borrowing information on specific competing risks from other units, on the inferences. Such combination of information can be relevant to competing risks scenarios in a variety of application areas, including engineering and medical studies
Transition redshift: new constraints from parametric and nonparametric methods
Energy Technology Data Exchange (ETDEWEB)
Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110015 (India); Pires, Nilza, E-mail: nrani@physics.du.ac.in, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: npires@dfte.ufrn.br [Departamento de Física Teórica e Experimental, UFRN, Campus Universitário, Natal, RN 59072-970 (Brazil)
2015-12-01
In this paper, we use the cosmokinematics approach to study the accelerated expansion of the Universe. This is a model independent approach and depends only on the assumption that the Universe is homogeneous and isotropic and is described by the FRW metric. We parametrize the deceleration parameter, q(z), to constrain the transition redshift (z{sub t}) at which the expansion of the Universe goes from a decelerating to an accelerating phase. We use three different parametrizations of q(z) namely, q{sub I}(z)=q{sub 1}+q{sub 2}z, q{sub II} (z) = q{sub 3} + q{sub 4} ln (1 + z) and q{sub III} (z)=½+q{sub 5}/(1+z){sup 2}. A joint analysis of the age of galaxies, strong lensing and supernovae Ia data indicates that the transition redshift is less than unity i.e. z{sub t} < 1. We also use a nonparametric approach (LOESS+SIMEX) to constrain z{sub t}. This too gives z{sub t} < 1 which is consistent with the value obtained by the parametric approach.
Discrete non-parametric kernel estimation for global sensitivity analysis
International Nuclear Information System (INIS)
Senga Kiessé, Tristan; Ventura, Anne
2016-01-01
This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.
Nonparametric predictive inference for combining diagnostic tests with parametric copula
Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.
2017-09-01
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.
Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines
Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.
2011-01-01
Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433
Nonparametric Integrated Agrometeorological Drought Monitoring: Model Development and Application
Zhang, Qiang; Li, Qin; Singh, Vijay P.; Shi, Peijun; Huang, Qingzhong; Sun, Peng
2018-01-01
Drought is a major natural hazard that has massive impacts on the society. How to monitor drought is critical for its mitigation and early warning. This study proposed a modified version of the multivariate standardized drought index (MSDI) based on precipitation, evapotranspiration, and soil moisture, i.e., modified multivariate standardized drought index (MMSDI). This study also used nonparametric joint probability distribution analysis. Comparisons were done between standardized precipitation evapotranspiration index (SPEI), standardized soil moisture index (SSMI), MSDI, and MMSDI, and real-world observed drought regimes. Results indicated that MMSDI detected droughts that SPEI and/or SSMI failed to do. Also, MMSDI detected almost all droughts that were identified by SPEI and SSMI. Further, droughts detected by MMSDI were similar to real-world observed droughts in terms of drought intensity and drought-affected area. When compared to MMSDI, MSDI has the potential to overestimate drought intensity and drought-affected area across China, which should be attributed to exclusion of the evapotranspiration components from estimation of drought intensity. Therefore, MMSDI is proposed for drought monitoring that can detect agrometeorological droughts. Results of this study provide a framework for integrated drought monitoring in other regions of the world and can help to develop drought mitigation.
Nonparametric adaptive age replacement with a one-cycle criterion
International Nuclear Information System (INIS)
Coolen-Schrijner, P.; Coolen, F.P.A.
2007-01-01
Age replacement of technical units has received much attention in the reliability literature over the last four decades. Mostly, the failure time distribution for the units is assumed to be known, and minimal costs per unit of time is used as optimality criterion, where renewal reward theory simplifies the mathematics involved but requires the assumption that the same process and replacement strategy continues over a very large ('infinite') period of time. Recently, there has been increasing attention to adaptive strategies for age replacement, taking into account the information from the process. Although renewal reward theory can still be used to provide an intuitively and mathematically attractive optimality criterion, it is more logical to use minimal costs per unit of time over a single cycle as optimality criterion for adaptive age replacement. In this paper, we first show that in the classical age replacement setting, with known failure time distribution with increasing hazard rate, the one-cycle criterion leads to earlier replacement than the renewal reward criterion. Thereafter, we present adaptive age replacement with a one-cycle criterion within the nonparametric predictive inferential framework. We study the performance of this approach via simulations, which are also used for comparisons with the use of the renewal reward criterion within the same statistical framework
Nonparametric Bayes Classification and Hypothesis Testing on Manifolds
Bhattacharya, Abhishek; Dunson, David
2012-01-01
Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028
Bayesian nonparametric meta-analysis using Polya tree mixture models.
Branscum, Adam J; Hanson, Timothy E
2008-09-01
Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.
Performances of non-parametric statistics in sensitivity analysis and parameter ranking
International Nuclear Information System (INIS)
Saltelli, A.
1987-01-01
Twelve parametric and non-parametric sensitivity analysis techniques are compared in the case of non-linear model responses. The test models used are taken from the long-term risk analysis for the disposal of high level radioactive waste in a geological formation. They describe the transport of radionuclides through a set of engineered and natural barriers from the repository to the biosphere and to man. The output data from these models are the dose rates affecting the maximum exposed individual of a critical group at a given point in time. All the techniques are applied to the output from the same Monte Carlo simulations, where a modified version of Latin Hypercube method is used for the sample selection. Hypothesis testing is systematically applied to quantify the degree of confidence in the results given by the various sensitivity estimators. The estimators are ranked according to their robustness and stability, on the basis of two test cases. The conclusions are that no estimator can be considered the best from all points of view and recommend the use of more than just one estimator in sensitivity analysis
Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...
DEFF Research Database (Denmark)
Brix, Lau; Christoffersen, Christian P. V.; Kristiansen, Martin Søndergaard
was then categorized into groups by the k-means clustering method. Finally, the cluster containing the vessel under investigation was selected manually by a single mouse click. All calculations were performed on a Nvidia 8800 GTX graphics card using the Compute Unified Device Architecture (CUDA) extension to the C...
Akhtar, Naveed; Mian, Ajmal
2017-10-03
We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.
A robust nonparametric method for quantifying undetected extinctions.
Chisholm, Ryan A; Giam, Xingli; Sadanandan, Keren R; Fung, Tak; Rheindt, Frank E
2016-06-01
How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per-species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions. © 2016 Society for Conservation Biology.
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2008-01-01
Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.
Clustering high dimensional data
DEFF Research Database (Denmark)
Assent, Ira
2012-01-01
High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...
Kernel bandwidth estimation for non-parametric density estimation: a comparative study
CSIR Research Space (South Africa)
Van der Walt, CM
2013-12-01
Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...
DEFF Research Database (Denmark)
Ackerman, Margareta; Ben-David, Shai; Branzei, Simina
2012-01-01
We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...
Examples of the Application of Nonparametric Information Geometry to Statistical Physics
Directory of Open Access Journals (Sweden)
Giovanni Pistone
2013-09-01
Full Text Available We review a nonparametric version of Amari’s information geometry in which the set of positive probability densities on a given sample space is endowed with an atlas of charts to form a differentiable manifold modeled on Orlicz Banach spaces. This nonparametric setting is used to discuss the setting of typical problems in machine learning and statistical physics, such as black-box optimization, Kullback-Leibler divergence, Boltzmann-Gibbs entropy and the Boltzmann equation.
Screen Wars, Star Wars, and Sequels: Nonparametric Reanalysis of Movie Profitability
W. D. Walls
2012-01-01
In this paper we use nonparametric statistical tools to quantify motion-picture profit. We quantify the unconditional distribution of profit, the distribution of profit conditional on stars and sequels, and we also model the conditional expectation of movie profits using a non- parametric data-driven regression model. The flexibility of the non-parametric approach accommodates the full range of possible relationships among the variables without prior specification of a functional form, thereb...
Froelich, Markus; Puhani, Patrick
2004-01-01
Based on a nonparametrically estimated model of labor market classifications, this paper makes suggestions for immigration policy using data from western Germany in the 1990s. It is demonstrated that nonparametric regression is feasible in higher dimensions with only a few thousand observations. In sum, labor markets able to absorb immigrants are characterized by above average age and by professional occupations. On the other hand, labor markets for young workers in service occupations are id...
Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices
Hiroyuki Kasahara; Katsumi Shimotsu
2006-01-01
In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...
DEFF Research Database (Denmark)
Bauckhage, C.; Drachen, Anders; Sifa, Rafet
2015-01-01
of the causes, the proliferation of behavioral data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall complexity of the data. Clustering...... and other techniques for player profiling and play style analysis have, therefore, become popular in the nascent field of game analytics. However, the proper use of clustering techniques requires expertise and an understanding of games is essential to evaluate results. With this paper, we address game data...... scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature normalization are discussed and open problems in the context of game analytics...
Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs
Moreno, R.; Bazán, A. M.
2017-10-01
The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.
Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G
2018-03-01
Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.
Directory of Open Access Journals (Sweden)
VELİ AKEL
2013-06-01
Full Text Available In this study, single index models are applied to a free survivorship bias database of 51 A and 51 B Types Turkish mutual funds using monthly returns over 5 years from 2000 to 2004. Then, it has been investigated whether mutual fund managers have market timing ability. Turkish Institutional Investment Managers’ Association A and B Type Fund Indexes are firstly used as benchmark portfolios. The challenging question is whether Turkish mutual funds have performance persistency over the short and long term or not. This study uses both parametric and non-parametric techniques to examine performance persistence. The overall conclusion is that Type A mutual funds managers do not have stock selection and market timing ability. However, Type B mutual funds managers do have stock selection ability. Type A mutual funds show evidence of relative and absolute persistence in the short term while Type B mutual funds show significant results of relative and absolute persistence in both of the terms. Although there are various results in performance persistence of mutual funds, the repeat winner phenomenon is stronger over shorter periods of evaluation. Consequently, it seems that Turkish mutual funds have performance persistency at least for the short term.
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier
2014-05-01
The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.
Directory of Open Access Journals (Sweden)
SANGCHAN KANTABUTRA
2009-04-01
Full Text Available This paper examines urban-rural effects on public upper-secondary school efficiency in northern Thailand. In the study, efficiency was measured by a nonparametric technique, data envelopment analysis (DEA. Urban-rural effects were examined through a Mann-Whitney nonparametric statistical test. Results indicate that urban schools appear to have access to and practice different production technologies than rural schools, and rural institutions appear to operate less efficiently than their urban counterparts. In addition, a sensitivity analysis, conducted to ascertain the robustness of the analytical framework, revealed the stability of urban-rural effects on school efficiency. Policy to improve school eff iciency should thus take varying geographical area differences into account, viewing rural and urban schools as different from one another. Moreover, policymakers might consider shifting existing resources from urban schools to rural schools, provided that the increase in overall rural efficiency would be greater than the decrease, if any, in the city. Future research directions are discussed.
An Evaluation of Parametric and Nonparametric Models of Fish Population Response.
Energy Technology Data Exchange (ETDEWEB)
Haas, Timothy C.; Peterson, James T.; Lee, Danny C.
1999-11-01
Predicting the distribution or status of animal populations at large scales often requires the use of broad-scale information describing landforms, climate, vegetation, etc. These data, however, often consist of mixtures of continuous and categorical covariates and nonmultiplicative interactions among covariates, complicating statistical analyses. Using data from the interior Columbia River Basin, USA, we compared four methods for predicting the distribution of seven salmonid taxa using landscape information. Subwatersheds (mean size, 7800 ha) were characterized using a set of 12 covariates describing physiography, vegetation, and current land-use. The techniques included generalized logit modeling, classification trees, a nearest neighbor technique, and a modular neural network. We evaluated model performance using out-of-sample prediction accuracy via leave-one-out cross-validation and introduce a computer-intensive Monte Carlo hypothesis testing approach for examining the statistical significance of landscape covariates with the non-parametric methods. We found the modular neural network and the nearest-neighbor techniques to be the most accurate, but were difficult to summarize in ways that provided ecological insight. The modular neural network also required the most extensive computer resources for model fitting and hypothesis testing. The generalized logit models were readily interpretable, but were the least accurate, possibly due to nonlinear relationships and nonmultiplicative interactions among covariates. Substantial overlap among the statistically significant (P<0.05) covariates for each method suggested that each is capable of detecting similar relationships between responses and covariates. Consequently, we believe that employing one or more methods may provide greater biological insight without sacrificing prediction accuracy.
Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality
Directory of Open Access Journals (Sweden)
Zhanchao Li
2013-01-01
Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.
Data clustering algorithms and applications
Aggarwal, Charu C
2013-01-01
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as fea
Online Nonparametric Bayesian Activity Mining and Analysis From Surveillance Video.
Bastani, Vahid; Marcenaro, Lucio; Regazzoni, Carlo S
2016-05-01
A method for online incremental mining of activity patterns from the surveillance video stream is presented in this paper. The framework consists of a learning block in which Dirichlet process mixture model is employed for the incremental clustering of trajectories. Stochastic trajectory pattern models are formed using the Gaussian process regression of the corresponding flow functions. Moreover, a sequential Monte Carlo method based on Rao-Blackwellized particle filter is proposed for tracking and online classification as well as the detection of abnormality during the observation of an object. Experimental results on real surveillance video data are provided to show the performance of the proposed algorithm in different tasks of trajectory clustering, classification, and abnormality detection.
An adaptive distance measure for use with nonparametric models
International Nuclear Information System (INIS)
Garvey, D. R.; Hines, J. W.
2006-01-01
Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction
Katz, R
1992-11-01
Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.
Yuri, Yoshimi; Takabatake, Shinichi; Nishikawa, Tomoko; Oka, Mari; Fujiwara, Taro
2016-05-12
Frailty among older people is associated with an increased risk of needing care. There have been many reports on preventive care programs for frail older people, but few have shown positive effects on disability prevention. Physical exercise programs for frail older people affect elements such as physical fitness and balance, but are less effective for disability outcomes and are not followed up in the longer term. We developed a life goal-setting technique (LGST). Our objective was to determine the effect of a LGST plus standard preventive care program for community-dwelling frail older people. We used a cluster nonrandomized controlled trial with seven intervention and nine matched control groups, with baseline assessment and follow-up at 3, 6, and 9 months. Participants were 176 frail older people, aged 65 years or over, living in the community in Izumi, Osaka, Japan. All participants attended regular 120 min preventive care exercise classes each week, over 3 months. They also received oral care and nutrition education. The intervention groups alone received life goal-setting support. We assessed outcomes longitudinally, comparing pre-intervention with follow-up. The primary outcome measure was health improvement according to the Japanese Ministry of Health, Labour and Welfare's "Kihon Checklist" for assessment of frailty and quality of life (QOL), analyzed with a two-way ANOVA and post-test comparison. Secondary outcomes included physical functions and assessment of life goals. The improvement on the Kihon Checklist for the intervention group was approximately 60 % from baseline to 9-months follow-up; the control group improved by approximately 40 %. The difference between groups was significant at 3-month (p = 0.043) and 6-month (p = 0.015) follow-ups but not at 9-month (p = 0.098) follow-up. Analysis of QOL yielded a significant time × group interaction effect (p = 0.022). The effect was significant at 3 months in the intervention
International Nuclear Information System (INIS)
Fahidy, Thomas Z.
2009-01-01
A major advantage of NST lies in the unimportance of the probability distribution of observations. In this paper, the sign test, the rank-sum test, the Kruskal-Wallis test, the Friedman test, and the runs test illustrate the potential of certain rapid NST for the evaluation of electrochemical process performance.
Measuring the Influence of Networks on Transaction Costs Using a Nonparametric Regression Technique
DEFF Research Database (Denmark)
Henningsen, Geraldine; Henningsen, Arne; Henning, Christian H.C.A.
All business transactions as well as achieving innovations take up resources, subsumed under the concept of transaction costs. One of the major factors in transaction costs theory is information. Firm networks can catalyse the interpersonal information exchange and hence, increase the access to non......-public information so that transaction costs are reduced.Many resources that are sacrificed for transaction costs are inputs that also enter the technical production process. As most production data do not distinguish between these two usages of inputs, high transaction costs result in reduced observed productivity...
DEFF Research Database (Denmark)
Henningsen, Geraldine; Henningsen, Arne; Henning, Christian
2011-01-01
All business transactions as well as achieving innovations take up resources, subsumed under the concept of transaction costs (TAC). One of the major factors in TAC theory is information. Information networks can catalyse the interpersonal information exchange and hence, increase the access...... to nonpublic information. Our analysis shows that information networks have an impact on the level of TAC. Many resources that are sacrificed for TAC are inputs that also enter the technical production process. As most production data do not separate between these two usages of inputs, high transaction costs...
Measuring the influence of networks on transaction costs using a non-parametric regression technique
DEFF Research Database (Denmark)
Henningsen, Géraldine; Henningsen, Arne; Henning, Christian H.C.A.
All business transactions as well as achieving innovations take up resources, subsumed under the concept of transaction costs. One of the major factors in transaction costs theory is information. Firm networks can catalyse the interpersonal information exchange and hence, increase the access to non......-public information so that transaction costs are reduced. Many resources that are sacrificed for transaction costs are inputs that also enter the technical production process. As most production data do not distinguish between these two usages of inputs, high transaction costs result in reduced observed productivity...
Classification of thermal-hydraulics using scenarios of non-parametric techniques
International Nuclear Information System (INIS)
Villamizar, M.; Martorell, S.; Sanchez-Saez, F.; Villanueva, J. F.; Carlos, S.; Sanchez, A.
2013-01-01
The objective of the study is to apply a probabilistic neural network (PNN) that allow to classify sheath temperature trajectory from the beginning of the accident to the stabilization of the plant from a certain inputs and a starting from these groups establish models that predict the clad temperature peaking.
DEFF Research Database (Denmark)
Henningsen, Geraldine; Henningsen, Arne; Henning, Christian
2011-01-01
to nonpublic information. Our analysis shows that information networks have an impact on the level of TAC. Many resources that are sacrificed for TAC are inputs that also enter the technical production process. As most production data do not separate between these two usages of inputs, high transaction costs...
Gianola, Daniel; Wu, Xiao-Lin; Manfredi, Eduardo; Simianer, Henner
2010-10-01
A Bayesian nonparametric form of regression based on Dirichlet process priors is adapted to the analysis of quantitative traits possibly affected by cryptic forms of gene action, and to the context of SNP-assisted genomic selection, where the main objective is to predict a genomic signal on phenotype. The procedure clusters unknown genotypes into groups with distinct genetic values, but in a setting in which the number of clusters is unknown a priori, so that standard methods for finite mixture analysis do not work. The central assumption is that genetic effects follow an unknown distribution with some "baseline" family, which is a normal process in the cases considered here. A Bayesian analysis based on the Gibbs sampler produces estimates of the number of clusters, posterior means of genetic effects, a measure of credibility in the baseline distribution, as well as estimates of parameters of the latter. The procedure is illustrated with a simulation representing two populations. In the first one, there are 3 unknown QTL, with additive, dominance and epistatic effects; in the second, there are 10 QTL with additive, dominance and additive × additive epistatic effects. In the two populations, baseline parameters are inferred correctly. The Dirichlet process model infers the number of unique genetic values correctly in the first population, but it produces an understatement in the second one; here, the true number of clusters is over 900, and the model gives a posterior mean estimate of about 140, probably because more replication of genotypes is needed for correct inference. The impact on inferences of the prior distribution of a key parameter (M), and of the extent of replication, was examined via an analysis of mean body weight in 192 paternal half-sib families of broiler chickens, where each sire was genotyped for nearly 7,000 SNPs. In this small sample, it was found that inference about the number of clusters was affected by the prior distribution of M. For a
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
A Non-Parametric Surrogate-based Test of Significance for T-Wave Alternans Detection
Nemati, Shamim; Abdala, Omar; Bazán, Violeta; Yim-Yeh, Susie; Malhotra, Atul; Clifford, Gari
2010-01-01
We present a non-parametric adaptive surrogate test that allows for the differentiation of statistically significant T-Wave Alternans (TWA) from alternating patterns that can be solely explained by the statistics of noise. The proposed test is based on estimating the distribution of noise induced alternating patterns in a beat sequence from a set of surrogate data derived from repeated reshuffling of the original beat sequence. Thus, in assessing the significance of the observed alternating patterns in the data no assumptions are made about the underlying noise distribution. In addition, since the distribution of noise-induced alternans magnitudes is calculated separately for each sequence of beats within the analysis window, the method is robust to data non-stationarities in both noise and TWA. The proposed surrogate method for rejecting noise was compared to the standard noise rejection methods used with the Spectral Method (SM) and the Modified Moving Average (MMA) techniques. Using a previously described realistic multi-lead model of TWA, and real physiological noise, we demonstrate the proposed approach reduces false TWA detections, while maintaining a lower missed TWA detection compared with all the other methods tested. A simple averaging-based TWA estimation algorithm was coupled with the surrogate significance testing and was evaluated on three public databases; the Normal Sinus Rhythm Database (NRSDB), the Chronic Heart Failure Database (CHFDB) and the Sudden Cardiac Death Database (SCDDB). Differences in TWA amplitudes between each database were evaluated at matched heart rate (HR) intervals from 40 to 120 beats per minute (BPM). Using the two-sample Kolmogorov-Smirnov test, we found that significant differences in TWA levels exist between each patient group at all decades of heart rates. The most marked difference was generally found at higher heart rates, and the new technique resulted in a larger margin of separability between patient populations than
Energy Technology Data Exchange (ETDEWEB)
Peterson, James T.
1999-12-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network.
Multilevel Latent Class Analysis: Parametric and Nonparametric Models
Finch, W. Holmes; French, Brian F.
2014-01-01
Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…
International Nuclear Information System (INIS)
Geraedts, J.M.P.
1983-01-01
Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)
... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...
Neutrosophic Hierarchical Clustering Algoritms
Directory of Open Access Journals (Sweden)
Rıdvan Şahin
2014-03-01
Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.
Pearce, Iris
1985-01-01
Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...
Queiroz, Dayane Andrade
2015-01-01
Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...
Energy Technology Data Exchange (ETDEWEB)
Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.
2004-05-26
We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.
SHERSTIUK S.V.; POSYLAYEVA K.I.
2013-01-01
In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.
International Nuclear Information System (INIS)
Kuosmanen, Timo
2012-01-01
Electricity distribution network is a prime example of a natural local monopoly. In many countries, electricity distribution is regulated by the government. Many regulators apply frontier estimation techniques such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) as an integral part of their regulatory framework. While more advanced methods that combine nonparametric frontier with stochastic error term are known in the literature, in practice, regulators continue to apply simplistic methods. This paper reports the main results of the project commissioned by the Finnish regulator for further development of the cost frontier estimation in their regulatory framework. The key objectives of the project were to integrate a stochastic SFA-style noise term to the nonparametric, axiomatic DEA-style cost frontier, and to take the heterogeneity of firms and their operating environments better into account. To achieve these objectives, a new method called stochastic nonparametric envelopment of data (StoNED) was examined. Based on the insights and experiences gained in the empirical analysis using the real data of the regulated networks, the Finnish regulator adopted the StoNED method in use from 2012 onwards.
Globular clusters and galaxy halos
International Nuclear Information System (INIS)
Van Den Bergh, S.
1984-01-01
Using semipartial correlation coefficients and bootstrap techniques, a study is made of the important features of globular clusters with respect to the total number of galaxy clusters and dependence of specific galaxy cluster on parent galaxy type, cluster radii, luminosity functions and cluster ellipticity. It is shown that the ellipticity of LMC clusters correlates significantly with cluster luminosity functions, but not with cluster age. The cluter luminosity value above which globulars are noticeably flattened may differ by a factor of about 100 from galaxy to galaxy. Both in the Galaxy and in M31 globulars with small core radii have a Gaussian distribution over luminosity, whereas clusters with large core radii do not. In the cluster systems surrounding the Galaxy, M31 and NGC 5128 the mean radii of globular clusters was found to increase with the distance from the nucleus. Central galaxies in rich clusters have much higher values for specific globular cluster frequency than do other cluster ellipticals, suggesting that such central galaxies must already have been different from normal ellipticals at the time they were formed
Energy Technology Data Exchange (ETDEWEB)
Constantinescu, C C; Yoder, K K; Normandin, M D; Morris, E D [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Kareken, D A [Department of Neurology, Indiana University School of Medicine, Indianapolis, IN (United States); Bouman, C A [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN (United States); O' Connor, S J [Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN (United States)], E-mail: emorris@iupui.edu
2008-03-07
We previously developed a model-independent technique (non-parametric ntPET) for extracting the transient changes in neurotransmitter concentration from paired (rest and activation) PET studies with a receptor ligand. To provide support for our method, we introduced three hypotheses of validation based on work by Endres and Carson (1998 J. Cereb. Blood Flow Metab. 18 1196-210) and Yoder et al (2004 J. Nucl. Med. 45 903-11), and tested them on experimental data. All three hypotheses describe relationships between the estimated free (synaptic) dopamine curves (F{sup DA}(t)) and the change in binding potential ({delta}BP). The veracity of the F{sup DA}(t) curves recovered by nonparametric ntPET is supported when the data adhere to the following hypothesized behaviors: (1) {delta}BP should decline with increasing DA peak time, (2) {delta}BP should increase as the strength of the temporal correlation between F{sup DA}(t) and the free raclopride (F{sup RAC}(t)) curve increases, (3) {delta}BP should decline linearly with the effective weighted availability of the receptor sites. We analyzed regional brain data from 8 healthy subjects who received two [{sup 11}C]raclopride scans: one at rest, and one during which unanticipated IV alcohol was administered to stimulate dopamine release. For several striatal regions, nonparametric ntPET was applied to recover F{sup DA}(t), and binding potential values were determined. Kendall rank-correlation analysis confirmed that the F{sup DA}(t) data followed the expected trends for all three validation hypotheses. Our findings lend credence to our model-independent estimates of F{sup DA}(t). Application of nonparametric ntPET may yield important insights into how alterations in timing of dopaminergic neurotransmission are involved in the pathologies of addiction and other psychiatric disorders.
DEFF Research Database (Denmark)
Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha
2018-01-01
sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....
Electronic and chemical properties of indium clusters
International Nuclear Information System (INIS)
Rayane, D.; Khardi, S.; Tribollet, B.; Broyer, M.; Melinon, P.; Cabaud, B.; Hoareau, A.
1989-01-01
Indium clusters are produced by the inert gas condensation technique. The ionization potentials are found higher for small clusters than for the Indium atom. This is explained by the p character of the bonding as in aluminium. Doubly charge clusters are also observed and fragmentation processes discussed. Finally small Indium clusters 3< n<9 are found very reactive with hydrocarbon. (orig.)
Structure and bonding in clusters
International Nuclear Information System (INIS)
Kumar, V.
1991-10-01
We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab
Nonparametric Bayesian density estimation on manifolds with applications to planar shapes.
Bhattacharya, Abhishek; Dunson, David B
2010-12-01
Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics, medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean quotient manifolds. To conduct nonparametric inferences, one may define notions of centre and spread on this manifold and work with their estimates. However, it is useful to consider full likelihood-based methods, which allow nonparametric estimation of the probability density. This article proposes a broad class of mixture models constructed using suitable kernels on a general compact metric space and then on the planar shape space in particular. Following a Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained under which the Kullback-Leibler property holds, implying large support and weak posterior consistency. Gibbs sampling methods are developed for posterior computation, and the methods are applied to problems in density estimation and classification with shape-based predictors. Simulation studies show improved estimation performance relative to existing approaches.
Integrative cluster analysis in bioinformatics
Abu-Jamous, Basel; Nandi, Asoke K
2015-01-01
Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o
Cluster analysis of track structure
International Nuclear Information System (INIS)
Michalik, V.
1991-01-01
One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
Directory of Open Access Journals (Sweden)
Rabia Ece OMAY
2013-06-01
Full Text Available In this study, relationship between gross domestic product (GDP per capita and sulfur dioxide (SO2 and particulate matter (PM10 per capita is modeled for Turkey. Nonparametric fixed effect panel data analysis is used for the modeling. The panel data covers 12 territories, in first level of Nomenclature of Territorial Units for Statistics (NUTS, for period of 1990-2001. Modeling of the relationship between GDP and SO2 and PM10 for Turkey, the non-parametric models have given good results.
Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system
Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.
Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.
2018-03-01
We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
Directory of Open Access Journals (Sweden)
Jinchao Feng
2018-03-01
Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.
Fronczyk, Kassandra; Kottas, Athanasios
2014-03-01
We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. © 2013, The International Biometric Society.
Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja
Taskinen, Sara
2015-01-01
Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.
International Nuclear Information System (INIS)
Schaeffer, R.
1987-01-01
The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory
Nonparametric Analysis of Right Censored Data with Multiple Comparisons
Shih, Hwei-Weng
1982-01-01
This report demonstrates the use of a computer program written in FORTRAN for the Burroughs B6800 computer at Utah State University to perform Breslow's (1970) generalization of the Kruskal-Wallis test for right censored data. A pairwise multiple comparison procedure using Bonferroni's inequality is also introduced and demonstrated. Comparisons are also made with a parametric F test and the original Kruskal-Wallis test. Application of these techniques to two data sets indicate that there is l...
International Nuclear Information System (INIS)
Gomez, S.L.; Lenart, V.M.
2015-01-01
This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n 2 increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)
Energy Technology Data Exchange (ETDEWEB)
Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)
2015-10-01
This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)
Rights, Jason D; Sterba, Sonya K
2016-11-01
Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.
Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression
Yoo, W.W.; Ghosal, S
2016-01-01
In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a
Does Private Tutoring Work? The Effectiveness of Private Tutoring: A Nonparametric Bounds Analysis
Hof, Stefanie
2014-01-01
Private tutoring has become popular throughout the world. However, evidence for the effect of private tutoring on students' academic outcome is inconclusive; therefore, this paper presents an alternative framework: a nonparametric bounds method. The present examination uses, for the first time, a large representative data-set in a European setting…
Testing a parametric function against a nonparametric alternative in IV and GMM settings
DEFF Research Database (Denmark)
Gørgens, Tue; Wurtz, Allan
This paper develops a specification test for functional form for models identified by moment restrictions, including IV and GMM settings. The general framework is one where the moment restrictions are specified as functions of data, a finite-dimensional parameter vector, and a nonparametric real ...
A structural nonparametric reappraisal of the CO2 emissions-income relationship
Azomahou, T.T.; Goedhuys - Degelin, Micheline; Nguyen-Van, P.
Relying on a structural nonparametric estimation, we show that co2 emissions clearly increase with income at low income levels. For higher income levels, we observe a decreasing relationship, though not significant. We also find thatco2 emissions monotonically increases with energy use at a
Wei, Jiawei
2011-07-01
We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.
Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems
DEFF Research Database (Denmark)
Georgiadis, Stylianos; Limnios, Nikolaos
2016-01-01
In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...
Low default credit scoring using two-class non-parametric kernel density estimation
CSIR Research Space (South Africa)
Rademeyer, E
2016-12-01
Full Text Available This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either...
DEFF Research Database (Denmark)
Ramirez, José Rangel; Sørensen, John Dalsgaard
2011-01-01
This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian u...
Non-parametric production analysis of pesticides use in the Netherlands
Oude Lansink, A.G.J.M.; Silva, E.
2004-01-01
Many previous empirical studies on the productivity of pesticides suggest that pesticides are under-utilized in agriculture despite the general held believe that these inputs are substantially over-utilized. This paper uses data envelopment analysis (DEA) to calculate non-parametric measures of the
Analyzing cost efficient production behavior under economies of scope : A nonparametric methodology
Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.
2008-01-01
In designing a production model for firms that generate multiple outputs, we take as a starting point that such multioutput production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost-efficient
Analyzing Cost Efficient Production Behavior Under Economies of Scope : A Nonparametric Methodology
Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.
2006-01-01
In designing a production model for firms that generate multiple outputs, we take as a starting point that such multi-output production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost efficient
The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models
GROENEBOOM, PIET; JONGBLOED, GEURT; WELLNER, JON A.
2008-01-01
In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.
A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)
Arenson, Ethan A.; Karabatsos, George
2017-01-01
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
2003-01-01
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
A non-parametric Bayesian approach to decompounding from high frequency data
Gugushvili, Shota; van der Meulen, F.H.; Spreij, Peter
2016-01-01
Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture of normal densities.
Mittag, Kathleen Cage
Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…
Nonparametric estimation of the stationary M/G/1 workload distribution function
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted
2005-01-01
In this paper it is demonstrated how a nonparametric estimator of the stationary workload distribution function of the M/G/1-queue can be obtained by systematic sampling the workload process. Weak convergence results and bootstrap methods for empirical distribution functions for stationary associ...
A non-parametric method for correction of global radiation observations
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Perers, Bengt
2013-01-01
in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...
Nonparametric estimation in an "illness-death" model when all transition times are interval censored
DEFF Research Database (Denmark)
Frydman, Halina; Gerds, Thomas; Grøn, Randi
2013-01-01
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times ...
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
A comparative study of non-parametric models for identification of ...
African Journals Online (AJOL)
However, the frequency response method using random binary signals was good for unpredicted white noise characteristics and considered the best method for non-parametric system identifica-tion. The autoregressive external input (ARX) model was very useful for system identification, but on applicati-on, few input ...
A non-parametric hierarchical model to discover behavior dynamics from tracks
Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.
2012-01-01
We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José
2015-01-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),
A Deterministic Annealing Approach to Clustering AIRS Data
Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander
2012-01-01
We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique
Random matrix improved subspace clustering
Couillet, Romain
2017-03-06
This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.
Quantum annealing for combinatorial clustering
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
Directory of Open Access Journals (Sweden)
Vangelis Sakkalis
2008-01-01
Full Text Available There is an important evidence of differences in the EEG frequency spectrum of control subjects as compared to epileptic subjects. In particular, the study of children presents difficulties due to the early stages of brain development and the various forms of epilepsy indications. In this study, we consider children that developed epileptic crises in the past but without any other clinical, psychological, or visible neurophysiological findings. The aim of the paper is to develop reliable techniques for testing if such controlled epilepsy induces related spectral differences in the EEG. Spectral features extracted by using nonparametric, signal representation techniques (Fourier and wavelet transform and a parametric, signal modeling technique (ARMA are compared and their effect on the classification of the two groups is analyzed. The subjects performed two different tasks: a control (rest task and a relatively difficult math task. The results show that spectral features extracted by modeling the EEG signals recorded from individual channels by an ARMA model give a higher discrimination between the two subject groups for the control task, where classification scores of up to 100% were obtained with a linear discriminant classifier.
Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
Directory of Open Access Journals (Sweden)
Yuquan Cang
2014-01-01
Full Text Available We study the asymptotic behavior of the sequence Sn=∑i=0n-1K(nαSiH1(Si+1H2-SiH2, as n tends to infinity, where SH1 and SH2 are two independent subfractional Brownian motions with indices H1 and H2, respectively. K is a kernel function and the bandwidth parameter α satisfies some hypotheses in terms of H1 and H2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motion SH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.
Young star clusters in nearby molecular clouds
Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.
2018-06-01
The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.
Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li
2014-05-01
Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods
Directory of Open Access Journals (Sweden)
Anil Kumar Kar
2015-09-01
New hydrological insights for the region: This study establishes different possible key RG networks using Hall’s method, analytical hierarchical process (AHP, self organization map (SOM and hierarchical clustering (HC using the characteristics of each rain gauge occupied Thiessen polygon area. Efficiency of the key networks is tested by artificial neural network (ANN, Fuzzy and NAM rainfall-runoff models. Furthermore, flood forecasting has been carried out using the three most effective RG networks which uses only 7 RGs instead of 14 gauges established in the Kantamal sub-catchment, Mahanadi basin. The Fuzzy logic applied on the key RG network derived using AHP has shown the best result for flood forecasting with efficiency of 82.74% for 1-day lead period. This study demonstrates the design procedure of key RG network for effective flood forecasting particularly when there is difficulty in gathering the information from all RGs.
Minku, Leandro L.
2017-10-06
Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.
DEFF Research Database (Denmark)
Böcker, S.; Baumbach, Jan
2013-01-01
. The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...
DEFF Research Database (Denmark)
Linnet, Kristian
2005-01-01
Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors......Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors...
Pottawattamie County School System, Council Bluffs, IA.
The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…
DEFF Research Database (Denmark)
Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan
2000-01-01
A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...
Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL
2011-05-31
Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
Massey, Richard; Kitching, Thomas; Nagai, Daisuke
2010-01-01
The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...
Leroux, Elizabeth; Ducros, Anne
2008-01-01
Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...
Cheng, Man; Jin, Xubin; Mu, Lili; Wang, Fangyu; Li, Wei; Zhong, Xiaoling; Liu, Xuan; Shen, Wenchen; Liu, Ying; Zhou, Yan
2016-09-01
In utero electroporation (IUE) is commonly used to study cortical development of cerebrum by downregulating or overexpressing genes of interest in neural progenitor cells (NPCs) of small mammals. However, exogenous plasmids are lost or diluted over time. Furthermore, gene knockdown based on short-hairpin RNAs may exert nonspecific effects that lead to aberrant neuronal migration. Genomic engineering by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has great research and therapeutic potentials. Here we integrate the CRISPR/Cas9 components into the piggyBac (PB) transposon system (the CRISPR/Cas9-PB toolkit) for cortical IUEs. The mouse Sry-related HMG box-2 (Sox2) gene was selected as the target for its application. Most transduced cortical NPCs were depleted of SOX2 protein as early as 3 days post-IUE, whereas expressions of SOX1 and PAX6 remained intact. Furthermore, both the WT Cas9 and the D10A nickase mutant Cas9n showed comparable knockout efficiency. Transduced cortical cells were purified with fluorescence-activated cell sorting, and effective gene editing at the Sox2 loci was confirmed. Thus, application of the CRISPR/Cas9-PB toolkit in IUE is a promising strategy to study gene functions in cortical NPCs and their progeny. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dense Fe cluster-assembled films by energetic cluster deposition
International Nuclear Information System (INIS)
Peng, D.L.; Yamada, H.; Hihara, T.; Uchida, T.; Sumiyama, K.
2004-01-01
High-density Fe cluster-assembled films were produced at room temperature by an energetic cluster deposition. Though cluster-assemblies are usually sooty and porous, the present Fe cluster-assembled films are lustrous and dense, revealing a soft magnetic behavior. Size-monodispersed Fe clusters with the mean cluster size d=9 nm were synthesized using a plasma-gas-condensation technique. Ionized clusters are accelerated electrically and deposited onto the substrate together with neutral clusters from the same cluster source. Packing fraction and saturation magnetic flux density increase rapidly and magnetic coercivity decreases remarkably with increasing acceleration voltage. The Fe cluster-assembled film obtained at the acceleration voltage of -20 kV has a packing fraction of 0.86±0.03, saturation magnetic flux density of 1.78±0.05 Wb/m 2 , and coercivity value smaller than 80 A/m. The resistivity at room temperature is ten times larger than that of bulk Fe metal
Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D
2015-01-01
The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.
On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests
Directory of Open Access Journals (Sweden)
Aaditya Ramdas
2017-01-01
Full Text Available Nonparametric two-sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being designed and analyzed, both for the unidimensional and the multivariate setting. Inthisshortsurvey,wefocusonteststatisticsthatinvolvetheWassersteindistance. Usingan entropic smoothing of the Wasserstein distance, we connect these to very different tests including multivariate methods involving energy statistics and kernel based maximum mean discrepancy and univariate methods like the Kolmogorov–Smirnov test, probability or quantile (PP/QQ plots and receiver operating characteristic or ordinal dominance (ROC/ODC curves. Some observations are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two-sample testing’s classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.
Nonparametric NAR-ARCH Modelling of Stock Prices by the Kernel Methodology
Directory of Open Access Journals (Sweden)
Mohamed Chikhi
2018-02-01
Full Text Available This paper analyses cyclical behaviour of Orange stock price listed in French stock exchange over 01/03/2000 to 02/02/2017 by testing the nonlinearities through a class of conditional heteroscedastic nonparametric models. The linearity and Gaussianity assumptions are rejected for Orange Stock returns and informational shocks have transitory effects on returns and volatility. The forecasting results show that Orange stock prices are short-term predictable and nonparametric NAR-ARCH model has better performance over parametric MA-APARCH model for short horizons. Plus, the estimates of this model are also better comparing to the predictions of the random walk model. This finding provides evidence for weak form of inefficiency in Paris stock market with limited rationality, thus it emerges arbitrage opportunities.
Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors
Directory of Open Access Journals (Sweden)
Xibin Zhang
2016-04-01
Full Text Available This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP growth rates among the organisation for economic co-operation and development (OECD and non-OECD countries.
Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection
Kumar, Sricharan; Srivistava, Ashok N.
2012-01-01
Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.
Bornkamp, Björn; Ickstadt, Katja
2009-03-01
In this article, we consider monotone nonparametric regression in a Bayesian framework. The monotone function is modeled as a mixture of shifted and scaled parametric probability distribution functions, and a general random probability measure is assumed as the prior for the mixing distribution. We investigate the choice of the underlying parametric distribution function and find that the two-sided power distribution function is well suited both from a computational and mathematical point of view. The model is motivated by traditional nonlinear models for dose-response analysis, and provides possibilities to elicitate informative prior distributions on different aspects of the curve. The method is compared with other recent approaches to monotone nonparametric regression in a simulation study and is illustrated on a data set from dose-response analysis.
Promotion time cure rate model with nonparametric form of covariate effects.
Chen, Tianlei; Du, Pang
2018-05-10
Survival data with a cured portion are commonly seen in clinical trials. Motivated from a biological interpretation of cancer metastasis, promotion time cure model is a popular alternative to the mixture cure rate model for analyzing such data. The existing promotion cure models all assume a restrictive parametric form of covariate effects, which can be incorrectly specified especially at the exploratory stage. In this paper, we propose a nonparametric approach to modeling the covariate effects under the framework of promotion time cure model. The covariate effect function is estimated by smoothing splines via the optimization of a penalized profile likelihood. Point-wise interval estimates are also derived from the Bayesian interpretation of the penalized profile likelihood. Asymptotic convergence rates are established for the proposed estimates. Simulations show excellent performance of the proposed nonparametric method, which is then applied to a melanoma study. Copyright © 2018 John Wiley & Sons, Ltd.
Filippi, Sarah; Holmes, Chris C; Nieto-Barajas, Luis E
2016-11-16
In this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to large data sets. In this regard we find that the formal calculation of the Bayes factor for a dependent-vs.-independent DPM joint probability measure is not feasible computationally. To address this we present Bayesian diagnostic measures for characterising evidence against a "null model" of pairwise independence. In simulation studies, as well as for a real data analysis, we show that our approach provides a useful tool for the exploratory nonparametric Bayesian analysis of large multivariate data sets.
Riihimäki, Jaakko; Sund, Reijo; Vehtari, Aki
2010-06-01
Effective utilisation of limited resources is a challenge for health care providers. Accurate and relevant information extracted from the length of stay distributions is useful for management purposes. Patient care episodes can be reconstructed from the comprehensive health registers, and in this paper we develop a Bayesian approach to analyse the length of care episode after a fractured hip. We model the large scale data with a flexible nonparametric multilayer perceptron network and with a parametric Weibull mixture model. To assess the performances of the models, we estimate expected utilities using predictive density as a utility measure. Since the model parameters cannot be directly compared, we focus on observables, and estimate the relevances of patient explanatory variables in predicting the length of stay. To demonstrate how the use of the nonparametric flexible model is advantageous for this complex health care data, we also study joint effects of variables in predictions, and visualise nonlinearities and interactions found in the data.
Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks
Gray-Davies, Tristan; Holmes, Chris C.; Caron, François
2018-01-01
We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F (y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates. PMID:29623150
A nonparametric empirical Bayes framework for large-scale multiple testing.
Martin, Ryan; Tokdar, Surya T
2012-07-01
We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.
DEFF Research Database (Denmark)
Carrao, Hugo; Sepulcre, Guadalupe; Horion, Stéphanie Marie Anne F
2013-01-01
This study evaluates the relationship between the frequency and duration of meteorological droughts and the subsequent temporal changes on the quantity of actively photosynthesizing biomass (greenness) estimated from satellite imagery on rainfed croplands in Latin America. An innovative non-parametric...... and non-supervised approach, based on the Fisher-Jenks optimal classification algorithm, is used to identify multi-scale meteorological droughts on the basis of empirical cumulative distributions of 1, 3, 6, and 12-monthly precipitation totals. As input data for the classifier, we use the gridded GPCC...... for the period between 1998 and 2010. The time-series analysis of vegetation greenness is performed during the growing season with a non-parametric method, namely the seasonal Relative Greenness (RG) of spatially accumulated fAPAR. The Global Land Cover map of 2000 and the GlobCover maps of 2005/2006 and 2009...
von Hirschhausen, Christian R.; Cullmann, Astrid
2005-01-01
Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...
Ambrogioni, Luca; Güçlü, Umut; van Gerven, Marcel A. J.; Maris, Eric
2017-01-01
This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a deep neural network, trained by minimizing the negative log likelihood. This generalizes the popular quantized softmax approach, which can be seen ...
Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches
Wang, Wenshuo; Xi, Junqiang; Zhao, Ding
2017-01-01
Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to extract primitive driving patterns from time series driving data without prior knowledge of the number...
Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality
Li, Zhanchao; Gu, Chongshi; Wu, Zhongru
2013-01-01
The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...
A simple non-parametric goodness-of-fit test for elliptical copulas
Directory of Open Access Journals (Sweden)
Jaser Miriam
2017-12-01
Full Text Available In this paper, we propose a simple non-parametric goodness-of-fit test for elliptical copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins. Nominal level and power of the proposed test are investigated in a Monte Carlo study. An empirical application illustrates our goodness-of-fit test at work.
Bootstrapping the economy -- a non-parametric method of generating consistent future scenarios
Müller, Ulrich A; Bürgi, Roland; Dacorogna, Michel M
2004-01-01
The fortune and the risk of a business venture depends on the future course of the economy. There is a strong demand for economic forecasts and scenarios that can be applied to planning and modeling. While there is an ongoing debate on modeling economic scenarios, the bootstrapping (or resampling) approach presented here has several advantages. As a non-parametric method, it directly relies on past market behaviors rather than debatable assumptions on models and parameters. Simultaneous dep...
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data
DEFF Research Database (Denmark)
Tan, Qihua; Thomassen, Mads; Burton, Mark
2017-01-01
the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray...... time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health....
Directory of Open Access Journals (Sweden)
Luiz Fernando Novack
2013-04-01
improved in all athletes collectively. CONCLUSION: The results make us conclude that group distribution by K Means Clustering technique can be performed using physiological responses of athletes in an attempt to optimize training for professional soccer players with focus on the common main training needs regardless of their tactical function played on the field.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
Directory of Open Access Journals (Sweden)
Ibsen Chivatá Cárdenas
2008-05-01
Full Text Available This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro-logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes, multinomial probability distribu-tion and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools. This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty en-compassed the whole range (domain of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, rele-vant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory proce-dure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions
Dai, Wenlin; Tong, Tiejun; Zhu, Lixing
2017-01-01
Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.
Smooth semi-nonparametric (SNP) estimation of the cumulative incidence function.
Duc, Anh Nguyen; Wolbers, Marcel
2017-08-15
This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Dai, Wenlin
2017-09-01
Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.
Progressive Exponential Clustering-Based Steganography
Directory of Open Access Journals (Sweden)
Li Yue
2010-01-01
Full Text Available Cluster indexing-based steganography is an important branch of data-hiding techniques. Such schemes normally achieve good balance between high embedding capacity and low embedding distortion. However, most cluster indexing-based steganographic schemes utilise less efficient clustering algorithms for embedding data, which causes redundancy and leaves room for increasing the embedding capacity further. In this paper, a new clustering algorithm, called progressive exponential clustering (PEC, is applied to increase the embedding capacity by avoiding redundancy. Meanwhile, a cluster expansion algorithm is also developed in order to further increase the capacity without sacrificing imperceptibility.
Merging K-means with hierarchical clustering for identifying general-shaped groups.
Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan
2018-01-01
Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.
Directory of Open Access Journals (Sweden)
Jocelyn H Bolin
2014-04-01
Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.
Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C
2014-01-01
Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.
Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J
2011-06-01
In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.
Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations
International Nuclear Information System (INIS)
Arimescu, V.E.; Heins, L.
2001-01-01
Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect
Clustering with Obstacles in Spatial Databases
El-Zawawy, Mohamed A.; El-Sharkawi, Mohamed E.
2009-01-01
Clustering large spatial databases is an important problem, which tries to find the densely populated regions in a spatial area to be used in data mining, knowledge discovery, or efficient information retrieval. However most algorithms have ignored the fact that physical obstacles such as rivers, lakes, and highways exist in the real world and could thus affect the result of the clustering. In this paper, we propose CPO, an efficient clustering technique to solve the problem of clustering in ...
Minku, Leandro L.; Hou, Siqing
2017-01-01
baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number
Diagnostic tools for nearest neighbors techniques when used with satellite imagery
Ronald E. McRoberts
2009-01-01
Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....
Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.
Li, Zhaonan; Xu, Xinyi; Shen, Junshan
2017-11-10
In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.
Böhning, Dankmar; Karasek, Sarah; Terschüren, Claudia; Annuß, Rolf; Fehr, Rainer
2013-03-09
Life expectancy is of increasing prime interest for a variety of reasons. In many countries, life expectancy is growing linearly, without any indication of reaching a limit. The state of North Rhine-Westphalia (NRW) in Germany with its 54 districts is considered here where the above mentioned growth in life expectancy is occurring as well. However, there is also empirical evidence that life expectancy is not growing linearly at the same level for different regions. To explore this situation further a likelihood-based cluster analysis is suggested and performed. The modelling uses a nonparametric mixture approach for the latent random effect. Maximum likelihood estimates are determined by means of the EM algorithm and the number of components in the mixture model are found on the basis of the Bayesian Information Criterion. Regions are classified into the mixture components (clusters) using the maximum posterior allocation rule. For the data analyzed here, 7 components are found with a spatial concentration of lower life expectancy levels in a centre of NRW, formerly an enormous conglomerate of heavy industry, still the most densely populated area with Gelsenkirchen having the lowest level of life expectancy growth for both genders. The paper offers some explanations for this fact including demographic and socio-economic sources. This case study shows that life expectancy growth is widely linear, but it might occur on different levels.
Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...
Noninvasive neuromodulation in cluster headache
DEFF Research Database (Denmark)
Láinez, Miguel J A; Jensen, Rigmor
2015-01-01
PURPOSE OF REVIEW: Neuromodulation is an alternative in the management of medically intractable cluster headache patients. Most of the techniques are invasive, but in the last 2 years, some studies using a noninvasive device have been presented. The objective of this article is to review the data...... using this approach. RECENT FINDINGS: Techniques as occipital nerve stimulation or sphenopalatine ganglion stimulation are recommended as first-line therapy in refractory cluster patients, but they are invasive and maybe associated with complications. Noninvasive vagal nerve stimulation with an external...... device has been tried in cluster patients. Results from clinical practice and a single randomized clinical trial have been presented showing a reduction of the number of cluster attacks/week in the patients treated with the device. The rate of adverse events was low and most of them were mild. SUMMARY...
Curceac, S.; Ternynck, C.; Ouarda, T.
2015-12-01
Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed
Wang, Yuanjia; Garcia, Tanya P; Ma, Yanyuan
2012-01-01
This work presents methods for estimating genotype-specific distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators which do not assume parametric density models and are easy to implement. They are based on the inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). The AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington's Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated non-carrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared to non-carriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic testing, and in facilitating future subjects at risk
International Nuclear Information System (INIS)
McIntee, Erin; Viglino, Emilie; Rinke, Caitlin; Kumor, Stephanie; Ni Liqiang; Sigman, Michael E.
2010-01-01
Laser-induced breakdown spectroscopy (LIBS) has been investigated for the discrimination of automobile paint samples. Paint samples from automobiles of different makes, models, and years were collected and separated into sets based on the color, presence or absence of effect pigments and the number of paint layers. Twelve LIBS spectra were obtained for each paint sample, each an average of a five single shot 'drill down' spectra from consecutive laser ablations in the same spot on the sample. Analyses by a nonparametric permutation test and a parametric Wald test were performed to determine the extent of discrimination within each set of paint samples. The discrimination power and Type I error were assessed for each data analysis method. Conversion of the spectral intensity to a log-scale (base 10) resulted in a higher overall discrimination power while observing the same significance level. Working on the log-scale, the nonparametric permutation tests gave an overall 89.83% discrimination power with a size of Type I error being 4.44% at the nominal significance level of 5%. White paint samples, as a group, were the most difficult to differentiate with the power being only 86.56% followed by 95.83% for black paint samples. Parametric analysis of the data set produced lower discrimination (85.17%) with 3.33% Type I errors, which is not recommended for both theoretical and practical considerations. The nonparametric testing method is applicable across many analytical comparisons, with the specific application described here being the pairwise comparison of automotive paint samples.
DEFF Research Database (Denmark)
Christensen, Kim; Hounyo, Ulrich; Podolskij, Mark
In this paper, we propose a nonparametric way to test the hypothesis that time-variation in intraday volatility is caused solely by a deterministic and recurrent diurnal pattern. We assume that noisy high-frequency data from a discretely sampled jump-diffusion process are available. The test...... inference, we propose a new bootstrap approach, which leads to almost correctly sized tests of the null hypothesis. We apply the developed framework to a large cross-section of equity high-frequency data and find that the diurnal pattern accounts for a rather significant fraction of intraday variation...
Nonparametric bootstrap analysis with applications to demographic effects in demand functions.
Gozalo, P L
1997-12-01
"A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt
Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.
Energy Technology Data Exchange (ETDEWEB)
Lopez Fontan, J.L.; Costa, J.; Ruso, J.M.; Prieto, G. [Dept. of Applied Physics, Univ. of Santiago de Compostela, Santiago de Compostela (Spain); Sarmiento, F. [Dept. of Mathematics, Faculty of Informatics, Univ. of A Coruna, A Coruna (Spain)
2004-02-01
The application of a statistical method, the local polynomial regression method, (LPRM), based on a nonparametric estimation of the regression function to determine the critical micelle concentration (cmc) is presented. The method is extremely flexible because it does not impose any parametric model on the subjacent structure of the data but rather allows the data to speak for themselves. Good concordance of cmc values with those obtained by other methods was found for systems in which the variation of a measured physical property with concentration showed an abrupt change. When this variation was slow, discrepancies between the values obtained by LPRM and others methods were found. (orig.)
Bhattacharya, Abhishek; Dunson, David B
2012-08-01
This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.
Kerschbamer, Rudolf
2015-05-01
This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.
Non-parametric system identification from non-linear stochastic response
DEFF Research Database (Denmark)
Rüdinger, Finn; Krenk, Steen
2001-01-01
An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...
Evaluating Mixture Modeling for Clustering: Recommendations and Cautions
Steinley, Douglas; Brusco, Michael J.
2011-01-01
This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…
Nonparametric Identification of Glucose-Insulin Process in IDDM Patient with Multi-meal Disturbance
Bhattacharjee, A.; Sutradhar, A.
2012-12-01
Modern close loop control for blood glucose level in a diabetic patient necessarily uses an explicit model of the process. A fixed parameter full order or reduced order model does not characterize the inter-patient and intra-patient parameter variability. This paper deals with a frequency domain nonparametric identification of the nonlinear glucose-insulin process in an insulin dependent diabetes mellitus patient that captures the process dynamics in presence of uncertainties and parameter variations. An online frequency domain kernel estimation method has been proposed that uses the input-output data from the 19th order first principle model of the patient in intravenous route. Volterra equations up to second order kernels with extended input vector for a Hammerstein model are solved online by adaptive recursive least square (ARLS) algorithm. The frequency domain kernels are estimated using the harmonic excitation input data sequence from the virtual patient model. A short filter memory length of M = 2 was found sufficient to yield acceptable accuracy with lesser computation time. The nonparametric models are useful for closed loop control, where the frequency domain kernels can be directly used as the transfer function. The validation results show good fit both in frequency and time domain responses with nominal patient as well as with parameter variations.
kruX: matrix-based non-parametric eQTL discovery.
Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom
2014-01-14
The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.
Chiu, Chun-Huo; Wang, Yi-Ting; Walther, Bruno A; Chao, Anne
2014-09-01
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. © 2014, The International Biometric Society.
Ryu, Duchwan
2010-09-28
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.
Parametric and nonparametric Granger causality testing: Linkages between international stock markets
De Gooijer, Jan G.; Sivarajasingham, Selliah
2008-04-01
This study investigates long-term linear and nonlinear causal linkages among eleven stock markets, six industrialized markets and five emerging markets of South-East Asia. We cover the period 1987-2006, taking into account the on-set of the Asian financial crisis of 1997. We first apply a test for the presence of general nonlinearity in vector time series. Substantial differences exist between the pre- and post-crisis period in terms of the total number of significant nonlinear relationships. We then examine both periods, using a new nonparametric test for Granger noncausality and the conventional parametric Granger noncausality test. One major finding is that the Asian stock markets have become more internationally integrated after the Asian financial crisis. An exception is the Sri Lankan market with almost no significant long-term linear and nonlinear causal linkages with other markets. To ensure that any causality is strictly nonlinear in nature, we also examine the nonlinear causal relationships of VAR filtered residuals and VAR filtered squared residuals for the post-crisis sample. We find quite a few remaining significant bi- and uni-directional causal nonlinear relationships in these series. Finally, after filtering the VAR-residuals with GARCH-BEKK models, we show that the nonparametric test statistics are substantially smaller in both magnitude and statistical significance than those before filtering. This indicates that nonlinear causality can, to a large extent, be explained by simple volatility effects.
Robust non-parametric one-sample tests for the analysis of recurrent events.
Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia
2010-12-30
One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population. Copyright © 2010 John Wiley & Sons, Ltd.