WorldWideScience

Sample records for nonoptimal growth conditions

  1. Behaviorally inhibited individuals demonstrate significantly enhanced conditioned response acquisition under non-optimal learning conditions.

    Science.gov (United States)

    Holloway, J L; Allen, M T; Myers, C E; Servatius, R J

    2014-03-15

    Behavioral inhibition (BI) is an anxiety vulnerability factor associated with hypervigilance to novel stimuli, threat, and ambiguous cues. The progression from anxiety risk to a clinical disorder is unknown, although the acquisition of defensive learning and avoidance may be a critical feature. As the expression of avoidance is also central to anxiety development, the present study examined avoidance acquisition as a function of inhibited temperament using classical eyeblink conditioning. Individuals were classified as behaviorally inhibited (BI) or non-inhibited (NI) based on combined scores from the Adult and Retrospective Measures of Behavioural Inhibition (AMBI and RMBI, respectively). Acquisition was assessed using delay, omission, or yoked conditioning schedules of reinforcement. Omission training was identical to delay, except that the emission of an eyeblink conditioned response (CR) resulted in omission of the unconditioned airpuff stimulus (US) on that trial. Each subject in the yoked group was matched on total BI score to a subject in the omission group, and received the same schedule of CS and US delivery, resulting in a partial reinforcement training schedule. Delay conditioning elicited significantly more CRs compared to the omission and yoked contingencies, the latter two of which did not differ from each other. Thus, acquisition of an avoidance response was not apparent. BI individuals demonstrated enhanced acquisition overall, while partial reinforcement training significantly distinguished between BI and NI groups. Enhanced learning in BI may be a function of an increased defensive learning capacity, or sensitivity to uncertainty. Further work examining the influence of BI on learning acquisition is important for understanding individual differences in disorder etiology in anxiety vulnerable cohorts.

  2. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  3. Conditioning biomass for microbial growth

    Energy Technology Data Exchange (ETDEWEB)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  4. Caffeine enhances memory performance in young adults during their non-optimal time of day

    Directory of Open Access Journals (Sweden)

    Stephanie M Sherman

    2016-11-01

    Full Text Available Many college students struggle to perform well on exams in the early morning. Although students drink caffeinated beverages to feel more awake, it is unclear whether these actually improve performance. After consuming coffee (caffeinated or decaffeinated, college-age adults completed implicit and explicit memory tasks in the early morning and late afternoon (Experiment 1. During the morning, participants ingesting caffeine demonstrated a striking improvement in explicit memory, but not implicit memory. Caffeine did not alter memory performance in the afternoon. In Experiment 2, participants engaged in cardiovascular exercise in order to examine whether increases in physiological arousal similarly improved memory. Despite clear increases in arousal, exercise did not improve memory performance compared to a stretching control condition. These results suggest that caffeine has a specific benefit for memory during students’ non-optimal time of day – early morning. These findings have real-world implications for students taking morning exams.

  5. EVALUACIÓN DE DOS MÉTODOS DE EXTRACCIÓN DE ADN A PARTIR DE BIOPSIAS FIJADAS EN FORMALINA Y EMBEBIDAS EN PARAFINA EN CONDICIONES NO ÓPTIMAS Evaluation of Two Methods DNA Extraction from Formalin-Fixed, Paraffin-Embedded Tissues on Non-Optimal Conditions

    Directory of Open Access Journals (Sweden)

    JAVIER ANDRÉS BUSTAMANTE

    2011-08-01

    contribute to the fragmentation of genetic material. In order to optimize the procedure, two methods for DNA extraction from paraffin embedded tissue non-optimal conditions were used. 47 blocks containing paraffin-embedded biopsies of pleura, lung and pericardium from 24 patients (66.6% males older than 18 years, with biopsy proven chronic granulomatous inflammation referred to the Department of Pathology at University hospital of Valle between 2002 and 2007 were selected. Each sample was subjected to 10 cuts and was to two methods of DNA extraction: 1. conventional and 2. QIAamp-DNA mini kit®. The efficiency of the extracted DNA, was assessed by spectrophotometry and PCR amplification of a fragment of the housekeeping gene GAPDH. The concentration of DNA samples extracted by the conventional method was of 65.52 ng/µL ± 11.47 (mean ± SE and the 260/280 absorbance ratio ranged between 0.52 and 2.30 the average concentration of DNA of the samples extracted by the commercial method was 60.89 ng/µL ± 6.02 (mean ± SE, with an absorbance that fluctuated between 0 and 2.64. The DNA obtained was amplified by PCR, of 47 samples extracted by both methods, 25 and 23 respectively the GAPDH gene amplified successfully. The methods used to obtain DNA showed similar performance, highlighting the potential utility of both extraction methods for the retrospective studies from paraffin embedded tissues in unsuitable conditions.

  6. The dark side of intuition: aging and increases in nonoptimal intuitive decisions.

    Science.gov (United States)

    Mikels, Joseph A; Cheung, Elaine; Cone, Jeremy; Gilovich, Thomas

    2013-04-01

    When making decisions, people typically draw on two general modes of thought: intuition and reason. Age-related changes in cognition and emotion may impact these decision processes: Although older individuals experience declines in deliberative processes, they experience stability or improvement in their emotional processes. Recent research has shown that when older adults rely more on their intact emotional abilities versus their declining deliberative faculties, the quality of their decisions is significantly improved. But how would older adults fare under circumstances in which intuitive/affective processes lead to nonoptimal decisions? The ratio bias paradigm embodies just such a circumstance, offering individuals a chance to win money by drawing, say, a red jellybean from one of two dishes containing red and white jellybeans. People will often choose to draw from a dish with a greater absolute number of winners (nine red beans and 91 white beans; 9%) than a dish with a greater probability of winning (one red bean and nine white beans; 10%) due to a strong emotional pull toward the greater number. We examined whether older adults (N = 30) would make more nonoptimal decisions on the ratio bias task than young adults (N = 30). We found that older adults did make more nonoptimal choices than their younger counterparts and that positive affect was associated with nonoptimal choices.

  7. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt.

    Science.gov (United States)

    Vrancken, G; Rimaux, T; Wouters, D; Leroy, F; De Vuyst, L

    2009-10-01

    The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.

  8. Optimal growth conditions for Isochrysis galbana

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Cohen, Z.; Abeliovich, A.

    1986-01-01

    Environmental and nutritional growth conditions of the unicellular microalga Isochrysis galbana were studied under laboratory conditions. The information obtained was used for cultivating the alga in outdoor miniponds. Outdoor cultures stayed monoalgal and free of predators as long as the temperature did not fall below 19 degrees C and the rate of dilution did not exceed 40% of the culture's volume. Isochrysis galbana grown in outdoor cultures provided lipid concentrations of 24-28% of ash free dry matter. 12 references.

  9. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  10. Plant growth conditions alter phytolith carbon.

    Science.gov (United States)

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  11. A non-optimized follower load path may cause considerable intervertebral rotations.

    Science.gov (United States)

    Dreischarf, Marcel; Zander, Thomas; Bergmann, Georg; Rohlmann, Antonius

    2010-09-17

    Osseoligamentous spinal specimens buckle under even a small vertical compressive force. To allow higher axial forces, a compressive follower load (FL) was suggested previously that approximates the curvature of the spine without inducing intervertebral rotation in both the frontal and the sagittal planes. In in vitro experiments and finite element analyses, the location of the FL path is subjected to estimation by the investigator. Such non-optimized FLs may induce bending and so far it is still unknown how this affects the results of the study and their comparability. A symmetrical finite element model of the lumbar spine was employed to simulate upright standing while applying a follower load. In analogy to in vitro experiments, the path of this FL was estimated seven times by different members of our institute's spine group. Additionally, an optimized FL path was determined and additional moments of +/-7.5Nm were applied to simulate flexion and extension. Application of the optimized 500N compressive FL causes only a marginal alteration of the curvature (cardan angle L1-S1 in sagittal plane <0.25 degrees). An individual estimation of the FL path, however, results in flexions of up to 10.0 degrees or extensions of up to 12.3 degrees. The resulting angles for the different non-optimized FL paths depend on the magnitude of the bending moment applied and whether a differential or an absolute measurement is taken. A preceding optimization of the location of the FL path would increase the comparability of different studies.

  12. Growth of Corophium volutator under laboratory conditions

    NARCIS (Netherlands)

    Kater, B.J.; Jol, J.G.; Smit, M.G.D.

    2008-01-01

    Temperature-dependent growth is an important factor in the population model of Corophium volutator that was developed to translate responses in a 10-day acute bioassay to ecological consequences for the population. The growth rate, however, was estimated from old data, based on a Swedish population.

  13. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle a...

  14. Dependence of Limited Growth Rate of High-Quality Gem Diamond on Growth Conditions

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu; MA Hong-An; LI Shang-Sheng; XIAO Hong-Yu; ZHANG Ya-Fei; HUANG Guo-Feng; MA Li-Qiu; JIA Xiao-Peng

    2007-01-01

    The growth rate of diamond has been investigated for a long time and researchers have been attempting to enhance the growth rate of high-quality gem diamond infinitely. However, it has been found according to previous research results that the quality of diamond is debased with the increase of growth rate. Thus, under specific conditions, the growth rate of high-quality diamond cannot exceed a limited value that is called the limited growth rate of diamond. We synthesize a series of type Ib gem diamonds by temperature gradient method under high pressure and high temperature (HPHT) using the as-grown {100} face. The dependence of limited growth rate on growth conditions is studied. The results show that the limited growth rate increases when synthetic temperature decreases, also when growth time is prolonged.

  15. [Influence endophytic bacteria to promote plants growth in stress conditions].

    Science.gov (United States)

    Napora, Anna; Kacprzak, Małgorzata; Nowak, Kamil; Grobelak, Anna

    2015-01-01

    The growth of plants under stress conditions is often assisted by microorganisms colonizing the rhizosphere (the root zone of the highest microbial activity). One of the most important bacterial groups to encourage the growth of plants (PGPB) are endophytes. These microorganisms penetrate living cells of plants and there they lead the microbiological activity as endosymbionts. These microorganisms can effectively promote the growth of plants under stress conditions and stimulate biochemical activities: nitrogen fixation, production of growth hormones (auxins, cytokinins and gibberellins), reduction of the high concentration of ethylene as well as facilitation of the collection plant minerals and water. This paper is an attempt to summarize the current state of knowledge about the biochemical activity of bacterial endophytes.

  16. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon......Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  17. Changes in alpine plant growth under future climate conditions

    Directory of Open Access Journals (Sweden)

    A. Rammig

    2010-06-01

    Full Text Available Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971–2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  18. Optimizing Growth Conditions for Digoxin Production in Digitalis lanata Ehrh

    Institute of Scientific and Technical Information of China (English)

    Herman A. van Wietmarschen; Hansjo¨ rg Hagels; Ron Peters; Jolanda Heistek; Jan van der Greef; Mei Wang

    2016-01-01

    Objective: Digoxin is a therapeutic cardenolide widely used to treat various heart conditions such as atrial flutter, atrial fibrillation and heart failure in both Western as well as Chinese medicine. Digoxin is extracted from cultivated Digitalis lanata Ehrh. plants, known as Mao Hua Yang Di Huang in Chinese medicine. This manuscript presents two studies that were conducted to optimize the cultivation conditions for digoxin production in the TCM Mao Hua Yan Di Huang in a greenhouse under GAP conditions. Methods: Two experiments were designed in which 4 growth conditions were compared. Levels of digoxin, gitoxin, digitoxin, α-acetyl-digoxin,β-acetyl-digoxin were measured using HPLC-UV and compared between the conditions. Results: Normal soil, no CO2 enrichment combined with a cold shock was found to be the optimal condition for producing digoxin in the first experiment. Gitoxin content was significantly lower in plants grown in this condition. Mechanical stress as well as the time of harvesting showed no statistically significant differences in the production of cardenolides. In the second experiment the optimal condition was found to be a combination of cold nights, sun screen, fertilizer use and no milled soil. Conclusion: This study shows that digoxin production can be increased by controlling the growth conditions of D. lanata Ehrh. The effect of cold was important in both experiments for improving digoxin production. Cultivating Chinese herbal medicines in optimized greenhouse conditions might be an economically attractive alternative to regular open air cultivation.

  19. Investigation of the Best Saccharomyces cerevisiae Growth Condition

    Science.gov (United States)

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Introduction Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. Methods In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Conclusion Owing to the yeast cells’ low-cost production and their structural characteristics, they could be used as potent drug carriers. Funding This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences. PMID:28243411

  20. Stability of melt crystal growth under microgravity conditions

    Science.gov (United States)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  1. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    Science.gov (United States)

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell attachment and growth when conditioning by this agent. These findings take crucial steps in informing clinical practice on dentine-conditioning

  2. Pheasant sexual ornaments reflect nutritional conditions during early growth.

    Science.gov (United States)

    Ohlsson, Thomas; Smith, Henrik G; Råberg, Lars; Hasselquist, Dennis

    2002-01-01

    Differences in growth conditions during early life have been suggested to cause long-lasting effects on morphology and quality of adult birds. We experimentally investigated the effect of early growth conditions on the expression of sexual ornaments later in life in male ring-necked pheasants (Phasianus colchicus). We also investigated the effects on immune function, as it could be a functional link between early nutrition and ornament expression. We manipulated the dietary protein intake during the first eight weeks post hatching. Males receiving fodder with 27% protein during the first three weeks of life grew larger and more colourful wattles when sexually mature than males receiving a low-protein diet (20.5% protein). Spur length was unaffected by diet treatment. Manipulation of food protein levels during weeks 4-8 after hatching had no effect on the development of ornaments. The different protein treatments had no long-term effect on either humoral or cell-mediated immune responses. There was, however, a positive relationship between spur length and cell-mediated immune responsiveness. Our study shows that expression of a sexual ornament in adult pheasants reflects nutritional conditions early in life. Because the expression of secondary sexual ornaments is affected by conditions during early growth, by selecting more ornamented males, females would choose mates that are superior at handling early nutritional stress. If the susceptibility to early nutritional stress also has a hereditary basis, females may benefit by obtaining 'good genes'.

  3. Pre-Optimization Conditions for Haematococcus pluvialis Growth

    Directory of Open Access Journals (Sweden)

    Nurul Asmidar Hanan

    2013-01-01

    Full Text Available The green microalgae Haematococcus pluvialis is one of the most beneficial microalgae due to its production of astaxanthin that has great commercial interest because of its antioxidant properties. A two level factorial design (2LFD was used to pre-optimize conditions to grow H. pluvialis. The variables involved were pH, inoculum size, temperature and presence or absence of light. The results were analyzed by analysis of variance (ANOVA. ANOVA analysis showed that inoculum size of 40%, temperature of 30oC and presence of light had significant effects on H. pluvialis growth whereas production pH had insignificant effect. The established model from the ANOVA analysis had a significant value with Pmodel > F = 0.0074 and the R² value of 0.9989. The expected growth was 1.08879 (Table 5 and the optimized growth was 1.178 (Table 5.

  4. Media and growth conditions for induction of secondary metabolite production

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    2012-01-01

    -defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity......Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well...

  5. Media and growth conditions for induction of secondary metabolite production

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    2012-01-01

    Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well......-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity...

  6. Impact of Nonoptimal Intakes of Saturated, Polyunsaturated, and Trans Fat on Global Burdens of Coronary Heart Disease.

    Science.gov (United States)

    Wang, Qianyi; Afshin, Ashkan; Yakoob, Mohammad Yawar; Singh, Gitanjali M; Rehm, Colin D; Khatibzadeh, Shahab; Micha, Renata; Shi, Peilin; Mozaffarian, Dariush

    2016-01-20

    Saturated fat (SFA), ω-6 (n-6) polyunsaturated fat (PUFA), and trans fat (TFA) influence risk of coronary heart disease (CHD), but attributable CHD mortalities by country, age, sex, and time are unclear. National intakes of SFA, n-6 PUFA, and TFA were estimated using a Bayesian hierarchical model based on country-specific dietary surveys; food availability data; and, for TFA, industry reports on fats/oils and packaged foods. Etiologic effects of dietary fats on CHD mortality were derived from meta-analyses of prospective cohorts and CHD mortality rates from the 2010 Global Burden of Diseases study. Absolute and proportional attributable CHD mortality were computed using a comparative risk assessment framework. In 2010, nonoptimal intakes of n-6 PUFA, SFA, and TFA were estimated to result in 711 800 (95% uncertainty interval [UI] 680 700-745 000), 250 900 (95% UI 236 900-265 800), and 537 200 (95% UI 517 600-557 000) CHD deaths per year worldwide, accounting for 10.3% (95% UI 9.9%-10.6%), 3.6%, (95% UI 3.5%-3.6%) and 7.7% (95% UI 7.6%-7.9%) of global CHD mortality. Tropical oil-consuming countries were estimated to have the highest proportional n-6 PUFA- and SFA-attributable CHD mortality, whereas Egypt, Pakistan, and Canada were estimated to have the highest proportional TFA-attributable CHD mortality. From 1990 to 2010 globally, the estimated proportional CHD mortality decreased by 9% for insufficient n-6 PUFA and by 21% for higher SFA, whereas it increased by 4% for higher TFA, with the latter driven by increases in low- and middle-income countries. Nonoptimal intakes of n-6 PUFA, TFA, and SFA each contribute to significant estimated CHD mortality, with important heterogeneity across countries that informs nation-specific clinical, public health, and policy priorities. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Human STEAP3 maintains tumor growth under hypoferric condition

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Taichi, E-mail: tisobe@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Eishi, E-mail: e-baba@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Arita, Shuji, E-mail: arita.s@nk-cc.go.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Komoda, Masato, E-mail: komoda@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamura, Shingo, E-mail: tamshin@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shirakawa, Tsuyoshi, E-mail: t-w-r@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ariyama, Hiroshi, E-mail: hariyama@kyumed.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takaishi, Shigeo, E-mail: takaishi@med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kusaba, Hitoshi, E-mail: hkusaba@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); and others

    2011-11-01

    Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition. -- Highlights: {yields} STEAP3 expression results in increment of stored intracellular iron. {yields} Iron deprivation induces expression of STEAP3. {yields} Colorectal cancer expresses STEAP3 highly and stores iron much. {yields} STEAP3 expressing tumors preserves growth even in mice being hypoferremia.

  8. Conditioned medium from neural stem cells inhibits glioma cell growth.

    Science.gov (United States)

    Li, Z; Zhong, Q; Liu, H; Liu, P; Wu, J; Ma, D; Chen, X; Yang, X

    2016-10-31

    Malignant glioma is one of the most common brain tumors in the central nervous system. Although the significant progress has been made in recent years, the mortality is still high and 5-year survival rate is still very low. One of the leading causes to the high mortality for glioma patients is metastasis and invasion. An efficient method to control the tumor metastasis is a promising way to treat the glioma. Previous reports indicated that neural stem cells (NSCs) were served as a delivery vector to the anti-glioma therapy. Here, we used the conditioned medium from rat NSCs (NSC-CM) to culture the human glioblastoma cell lines. We found that NSC-CM could inhibit the glioma cell growth, invasion and migration in vitro and attenuate the tumor growth in vivo. Furthermore, this anti-glioma effect was mediated by the inactivation of mitogen activated protein kinase (MAPK) pathway. Above all, this study provided the direct evidence to put forward a simple and efficient method in the inhibition of glioma cells/tumor growth, potentially advancing the anti-glioma therapy.

  9. Growth conditions determine the DNF2 requirement for symbiosis.

    Directory of Open Access Journals (Sweden)

    Fathi Berrabah

    Full Text Available Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.

  10. Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions.

    Science.gov (United States)

    Dudai, N; Putievsky, E; Chaimovitch, D; Ben-Hur, M

    2006-10-01

    In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant

  11. Aging yeast gain a competitive advantage on non-optimal carbon sources.

    Science.gov (United States)

    Frenk, Stephen; Pizza, Grazia; Walker, Rachael V; Houseley, Jonathan

    2017-06-01

    Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single-celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age-related loss of fitness in single-celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life-history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single-celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age-linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time

    Directory of Open Access Journals (Sweden)

    Chantranupong Lynne

    2012-03-01

    Full Text Available Abstract Background Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. Results We adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. Conclusions The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.

  13. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamakawa

    2015-12-01

    Full Text Available Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF 2, FGF10, and vascular endothelial growth factor (VEGF, termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming.

  14. Stability of antibiotics under growth conditions for thermophilic anaerobes

    Energy Technology Data Exchange (ETDEWEB)

    Peteranderl, R.; Shotts, E.B. Jr.; Wiegel, J. (Univ. of Georgia, Athens (United States))

    1990-06-01

    It was shown that the inhibitory effect of kanamycin and streptomycin in a growing culture of Clostridium thermohydrosulfuricum JW 102 is of limited duration. To screen a large number of antibiotics, their stability during incubation under the growth conditions of thermophilic clostridia was determined at 72 and 50C by using a 0.2% yeast extract-amended prereduced mineral medium with a pH of 7.3 or 5.0. Half-lives were determined in a modified MIC test with Escherichia coli, Staphylococcus aureus, and Bacillus megaterium as indicator strains. All compounds tested were similar at the two temperatures or more stable at 50 than at 72C. The half-life (t{sub 1/2}) at pH 7.3 and 72C ranged from 3.3 h (k = 7.26 day{sup {minus}1}, where k (degradation constant) = 1/t{sub 1/2}) for ampicillin to no detectable loss of activity for kanamycin, neomycin, and other antibiotics. Apparently some compounds became more potent during incubation. A change to pH 5.0 caused some compounds to become more labile to become more stable than at pH 7.3.

  15. Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity

    Directory of Open Access Journals (Sweden)

    Júlia Santos

    2012-01-01

    Full Text Available The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS. Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.

  16. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    Science.gov (United States)

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  17. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    NARCIS (Netherlands)

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources th

  18. Effect of cultivation conditions on growth and antifungal activity of ...

    African Journals Online (AJOL)

    Administrator

    Growth and production of antifungal agent by Mycena leptocephala was investigated in ... plus glucose were used as carbon source and yeast extract was used as nitrogen source. .... basidiomycetes from wood – A review Int. Biodeterio. Bull.

  19. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation

    DEFF Research Database (Denmark)

    Shebelut, Conrad W.; Jensen, Rasmus Bugge; Gitai, Zemer

    2009-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation...... determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated....

  20. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation▿ †

    OpenAIRE

    Shebelut, Conrad W.; Jensen, Rasmus B.; Gitai, Zemer

    2008-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated.

  1. Growth conditions regulate the requirements for Caulobacter chromosome segregation.

    Science.gov (United States)

    Shebelut, Conrad W; Jensen, Rasmus B; Gitai, Zemer

    2009-02-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated.

  2. Deformation and crack growth response under cyclic creep conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brust, F.W. Jr. [Battelle Memorial Institute, Columbus, OH (United States)

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  3. Growth of juvenile Arctica islandica under experimental conditions

    Science.gov (United States)

    Witbaard, R.; Franken, R.; Visser, B.

    1998-02-01

    In two laboratory experiments, the effects of temperature and food availability on the growth of 10- to 23-mm high specimens of the bivalve Arctica islandica were estimated. Each experimental set-up consisted of 5 treatments in which either the food supply or the temperature differed. It was demonstrated that Arctica is able to grow at temperatures as low as 1°C. A tenfold increase of shell growth was observed at temperatures between 1° and 12°C. The greatest change in growth rate took place between 1° and 6°C. Average instantaneous shell growth varies between 0.0003 at 1°C to 0.0032/day at 12°C. The results suggest that temperature hardly affects the time spent in filtration, whereas particle density strongly influences that response. Starved animals at 9°C have their siphons open during only 12% of the time, whereas the siphons of optimally fed animals were open on average during 76% of the observations. Increased siphon activity corresponded to high shell and tissue growth. At 9°C, average shell growth at the optimum cell density of 20×106 cell/l was 3.1 mm corresponding to an instantaneous rate of 0.0026/day. An algal cell density ( Isochrysis galbana, Dunaliella marina) ranging between 5 and 7×106 cell/l is just enough to keep shells alive at 9°C. Carbon conversion efficiency at 9°C is estimated to vary between 11 and 14%.

  4. Interactions between Economic Growth and Unemployment Condition in Asian Region

    OpenAIRE

    Syh Han Ang; Nanthakumar Loganathan

    2013-01-01

    This study is aimed to examine the relationship between GDP growth and unemployment rate for developed and developing Asian countries over the period 1980-2010. This study has applied the Okun’s law framework to estimate the co-integration dynamic and weak or strong Granger-causality for relationship between GDP growth and unemployment rate with ARDL approach. The results found that developed and developing Asian countries have achieved the negative sign for the long run coefficient as well...

  5. Optimizing Growth Conditions for Digoxin Production in Digitalis lanata Ehrh

    Directory of Open Access Journals (Sweden)

    Herman A. van Wietmarschen

    2016-08-01

    Full Text Available Objective: Digoxin is a therapeutic cardenolide widely used to treat various heart conditions such as atrial flutter, atrial fibrillation and heart failure in both Western as well as Chinese medicine. Digoxin is extracted from cultivated Digitalis lanata Ehrh. plants, known as Mao Hua Yang Di Huang in Chinese medicine. This manuscript presents two studies that were conducted to optimize the cultivation conditions for digoxin production in the TCM Mao Hua Yan Di Huang in a greenhouse under GAP conditions.

  6. Quantifying the effects of land conditions on rice growth.

    NARCIS (Netherlands)

    Casanova, D.

    1998-01-01

    This thesis represents detailed research on the "rice-soils-weather" system of the Ebro Delta (Spain) providing knowledge on how temperature, radiation, soil properties and farm management determine rice growth. After an introductory chapter, the findings are developed step-by-step. (i) Chapter 2 is

  7. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  8. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    Science.gov (United States)

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  9. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    Directory of Open Access Journals (Sweden)

    Takayuki Hoson

    2014-05-01

    Full Text Available The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  10. Therapeutic potential of growth factors in pulmonary emphysematous condition.

    Science.gov (United States)

    Muyal, Jai Prakash; Muyal, Vandana; Kotnala, Sudhir; Kumar, Dhananjay; Bhardwaj, Harsh

    2013-04-01

    Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.

  11. Properties of kenaf from various cultivars, growth and pulping conditions

    Science.gov (United States)

    James S. Han; Ernest S. Miyashita; Sara J. Spielvogel

    1999-01-01

    The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...

  12. A Transition from Eutectic Growth to Dendritic Growth Induced by High Undercooling Conditions

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 魏炳波

    2003-01-01

    Cu-8 wt.%Al eutectic alloy was undercooled by up to 187K (0.14 TE) using a drop tube technique. The crystal growth and phase selection mechanisms were investigated during containerless rapid solidification. It is found that the microstructural morphology is characterized by lamellar eutectic growth at small undercoolings. However,if the liquid alloy is undercooled by more than 25K, eutectic growth will be suppressed completely and the dendritic growth of (Gu) solid solution dominates its solidification process. When the undercooling exceeds 153 K, a microstructural transition from coarse dendrite to equiaxed dendrite takes place.

  13. Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles K.; Manes, Nathan P.; Smith, Richard D.; Heffron, Fred

    2010-01-08

    Host–pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S.typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple,ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation with organic solvents. The enriched peptidome was analyzed by both LC–MS/MS and LC–MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.

  14. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition

    Directory of Open Access Journals (Sweden)

    Yachana Jha

    2013-09-01

    Full Text Available The possible role of plant growth-promoting rhizobacteria (PGPR to alleviate salt stress during plant growth has been studied on paddy rice (Oryza sativa L. 'GJ-17' under greenhouse conditions; the study included growth parameters, mineral concentration, and antioxidant enzyme level. Salinity reduced plant growth, but PGPR inoculation reduced its harmful effect up to 1% salinity. Plants inoculated with PGPR under saline conditions showed 16% higher germination, 8% higher survival, 27% higher dry weight, and 31% higher plant height. Similarly, PGPR inoculated plants showed increased concentrations of N(26%, P (16%, K (31%, and reduced concentrations of Na (71% and Ca (36% as compared to non-inoculated control plants under saline conditions. Plants inoculated with PGPR under saline conditions also showed significant variations in antioxidant levels and growth physiology. Results suggested that inoculation with PGPR Bacillus pumilus and Pseudomonas pseudoalcaligenes in salt-stressed plants could help to alleviate salt stress in the paddy.

  15. Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates.

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Frases, Susana; Fialho Monteiro, Paulo Cezar; Gutierrez-Galhardo, Maria Clara; Zancopé-Oliveira, Rosely Maria; Nosanchuk, Joshua D

    2009-04-01

    Sporothrix schenckii is known to produce DHN melanin on both conidial and yeast cells, however little information is available regarding the factors inducing fungal melanization. We evaluated whether culture conditions influenced melanization of 25 Brazilian S. schenckii strains and one control strain (ATCC 10212). Tested conditions included different media, pH, temperature, incubation time, glucose concentrations, and presence or absence of tricyclazole or L-DOPA. Melanization was reduced on Sabouraud compared to defined chemical medium. The majority of strains produced small amounts of melanin at 37 degrees C and none melanized at basic pH. Increased glucose concentrations did not inhibit melanization, rather increasing glucose enhanced pigment production in 27% of strains. Melanin synthesis was also enhanced by the addition of L-DOPA and its addition to medium with tricyclazole, an inhibitor of melanin synthesis, resulted in fungal melanization, including hyphal melanin production. Our results suggest that different S. schenckii strains have distinct control of melanization and that this fungus can use phenolic compounds to enhance melanization in vitro.

  16. Systemic regulation of soybean nodulation by acidic growth conditions.

    Science.gov (United States)

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  17. Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Frases, Susana; Monteiro, Paulo Cezar Fialho; Gutierrez-Galhardo, Maria Clara; Zancopé-Oliveira, Rosely Maria; Nosanchuk, Joshua D.

    2009-01-01

    Sporothrix schenckii is known to produce DHN melanin on both conidial and yeast cells, however little information is available regarding the factors inducing fungal melanization. We evaluated whether culture conditions influenced melanization of 25 Brazilian S. schenckii strains and one control strain (ATCC 10212). Tested conditions included different media, pH, temperature, incubation time, glucose concentrations, and presence or absence of tricyclazole or L-DOPA. Melanization was reduced on Sabouraud compared to defined chemical medium. The majority of strains produced small amounts of melanin at 37°C and none melanized at basic pH. Increased glucose concentrations did not inhibit melanization, rather increasing glucose enhanced pigment production in 27% of strains. Melanin synthesis was also enhanced by the addition of L-DOPA and its addition to medium with tricyclazole, an inhibitor of melanin synthesis, resulted in fungal melanization, including hyphal melanin production. Our results suggest that different S. schenckii strains have distinct control of melanization and that this fungus can use phenolic compounds to enhance melanization in vitro. PMID:19328867

  18. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  19. Seminal, adventitious and lateral root growth and physiological responses in rice to upland conditions

    Institute of Scientific and Technical Information of China (English)

    杨玲; 郑炳松; 毛传澡; 易可可; 吴运荣; 吴平; 陶勤南

    2003-01-01

    Understanding the growth and physiological responses of rice to upland conditions would be helpful for designing treatments to improve the tolerance of rice under a rainfed system. The objective of this study was to investigate the initiation,elongation and membrane stability of seminal, lateral and adventitious roots of upland rice after 9-d upland condition treatment. Compared with control roots under waterlogged conditions, upland water deficiency conditions favor seminal and lateral root growth over adventitious root growth by accelerating seminal root elongation, promoting lateral root initiation and elongation, and reducing the elongation and number of adventitious roots. Enhanced total root number and length resulted in increase of total root dry weight and thereby increasing the root-to-shoot ratio. Organic compound leakage from seminal root tips and adventitious roots increased progressively to some extent with upland culture duration, while significant increases in seminal root tips were the consequence of loss of membrane integrity caused by the upland-condition enhanced growth.

  20. Effects of plant-soil feedback on tree seedling growth under arid conditions

    NARCIS (Netherlands)

    Meijer, S.S.; Holmgren, M.; Putten, van der W.H.

    2011-01-01

    Aims: Plants are able to influence their growing environment by changing biotic and abiotic soil conditions. These soil conditions in turn can influence plant growth conditions, which is called plant–soil feedback. Plant–soil feedback is known to be operative in a wide variety of ecosystems ranging

  1. Effects of plant–soil feedback on tree seedling growth under arid conditions

    NARCIS (Netherlands)

    Meijer, S.S.; Holmgren, M.; Van der Putten, W.H.

    2011-01-01

    Aims Plants are able to influence their growing environment by changing biotic and abiotic soil conditions. These soil conditions in turn can influence plant growth conditions, which is called plant–soil feedback. Plant–soil feedback is known to be operative in a wide variety of ecosystems ranging f

  2. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  3. IMF and Economic Growth : the Effects of Programs, Loans, and Compliance with Conditionality

    OpenAIRE

    Dreher, Axel

    2004-01-01

    In theory, the IMF could influence economic growth via several channels, among them advice to policy makers, money disbursed under its programs, and its conditionality. This paper tries to separate those effects empirically. Using panel data for 98 countries over the period 1970-2000 it analyzes whether IMF involvement influences economic growth in program countries. Consistent with the results of previous studies, it is shown that IMF programs reduce growth rates when their endogeneity is ac...

  4. Growth of immature Chironomus calligraphus (Diptera, Chironomidae in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Rita de Cássia S.A. Canteiro

    2011-12-01

    Full Text Available Chironomidae larvae are important macroinvertebrates in limnic environments, but little knowledge exists about their biometrics development characteristics. This study aims to describe the immature Chironomus calligraphus Goeldi, 1905 under laboratory conditions by the accomplishment of thirteen egg masses from eggs eclosion to adults emergency, at controlled room temperature (25ºC and photoperiod (12-12h. Larvae were feed ad libitum with "Alcon Basic - MEP 200 Complex" fish food and commercial dehydrated Spirulina. The postures had a mean length of 9 ± 1 mm (n = 13 and 348 ± 66 eggs. The brownish colored eggs with elliptical shape had length of 160.3 ± 17.7 µm (n = 130, being arranged as an organized string in a pseudo spiral form. The time duration from the first to the four instars were three, four, four and eight days, and the average length of a cephalic capsule to each one of the instars (66.3 ± 12.3 µm, 102.9 ± 22.1 µm, 159 ± 24.6 µm, 249.2 ± 29.7 µm, n = 456 were significantly different (ANOVA, p Larvas de Chironomidae são importantes componentes emambientes límnicos, mas pouca informação está disponívelsobre as características biométricas em seu desenvolvimento. Este estudo objetivou descrever os imaturos de Chironomus calligraphus Goeldi, 1905 em condições de laboratório, através do acompanhamento de treze posturas da espécie desde aeclosão dos ovos até a emergência dos adultos, sob temperatura (25ºC e fotoperíodo controlados (12-12 h. As larvas foram alimentadas com ração para peixes "Alcon Basic - MEP 200 Complex" e Spirulina comercial desidratada. A postura apresentou comprimento médio de 9 ± 1 mm (n = 13 e348 ± 66 ovos. Estes, de cor amarronzada e formato elíptico, apresentaram comprimento de 160,3 ± 17,7 µm (n = 130, arranjados como uma fita em formato pseudo-espiralado. Aduração do primeiro ao quarto estágio foi de três, quatro,quatro e oito dias, e os comprimentos médios da c

  5. The Equilibrium and Growth Stability of Winter Wheat Root and Shoot Under Different Soil Water Conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi-hong; CHEN Xiao-yuan; LUO Yuan-pei

    2007-01-01

    The equilibrium between root, shoot and growth stability under different soil water conditions were investigated in a tube experiment of winter wheat. The water supplying treatments included: sufficient irrigation at whole growth phase, moderate deficiency irrigation at whole growth phase, serious deficiency irrigation at whole growth phase, sufficient irrigation at jointing stage, tillering stage, flowering stage, and fillering respectively, after moderate and serious water deficit during their previous growth stage. Root and shoot biomass were measured. On the basis of the cooperative root-shoot interactions model, the equilibrium and growth stability were studied on the strength of the kinetics system theory. There was only one varying equilibrium point between the root and shoot over the life time of the winter wheat plant. Water stress prolonged the duration of stable growth, the more serious the water deficit, the longer the period of stable growth.The duration of stable growth was shortened and that of unstable growth was prolonged after water recovery. The growth behavior of the plants exposed to moderate water deficit shifted from stable to unstable until the end of the growth,after rewatering at flowering. In the life-time of the crop, the root and shoot had been adjusting themselves in structure and function so as to maintain an equilibrium, but could not achieve the equilibrium state for long. They were always in an unbalanced state from the beginning to the end of growth. This was the essence of root-shoot equilibrium. Water stress inhibited the function of root and shoot, reduced root shoot interactions, and as a result, the plant growth gradually tended to stabilize. Rewatering enhanced root shoot interactions, prolonged duration of instable growth. Rewatering at flowering could upset the inherent relativity during the long time of stable growth from flowering to filling stage, thus leading to unstable growth and enhanced dry matter accumulating rate

  6. Growth Promotion of Glycyrrhiza glabra L. by Salt-Tolerant Plant Growth Promotion Rhizobacteria under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Jabborova D

    2016-04-01

    Full Text Available Salinity stress is one of the most serious factors limiting the productivity of agriculture. Plant growth promotion rhizobacteria (PGPR which produce phytohormones is one of the options to mitigate salt stress in plants and improve their growth and improvement under saline conditions. We study the effect of salt-tolerant P.putidaNUU8strain on plant growth of Glycyrrhizaglabra L. under saline soils. The treatment inoculation of P. putidaNUU8strainstatistically significantly increased roots and shoots length plant–1 over the control under a pot experiment. The results showed that inoculation of Glycyrrhizaglabra with of salt-tolerant P.putidaNUU8can enhance salt tolerance and plant growth under soil saline conditions. In our previous study we reported that the salinity did not inhibit the IAA production by strain. Strain P. putidaNUU8appeared to produce IAA in media contained NaCl up to 9 % and it was able to growth at high salt condition.Salt-stressed Glycyrrhizaglabra inoculated with the P. putidaNUU8sharply increased than uninoculated plants. Inoculation of P. putidaNUU8 strain significantly improved the root length 56% and shoots lenth 49% of Glycyrrhizaglabracompared with uninoculated control.

  7. Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli.

    Directory of Open Access Journals (Sweden)

    Viswanadham Sridhara

    Full Text Available A widely studied problem in systems biology is to predict bacterial phenotype from growth conditions, using mechanistic models such as flux balance analysis (FBA. However, the inverse prediction of growth conditions from phenotype is rarely considered. Here we develop a computational framework to carry out this inverse prediction on a computational model of bacterial metabolism. We use FBA to calculate bacterial phenotypes from growth conditions in E. coli, and then we assess how accurately we can predict the original growth conditions from the phenotypes. Prediction is carried out via regularized multinomial regression. Our analysis provides several important physiological and statistical insights. First, we show that by analyzing metabolic end products we can consistently predict growth conditions. Second, prediction is reliable even in the presence of small amounts of impurities. Third, flux through a relatively small number of reactions per growth source (∼10 is sufficient for accurate prediction. Fourth, combining the predictions from two separate models, one trained only on carbon sources and one only on nitrogen sources, performs better than models trained to perform joint prediction. Finally, that separate predictions perform better than a more sophisticated joint prediction scheme suggests that carbon and nitrogen utilization pathways, despite jointly affecting cellular growth, may be fairly decoupled in terms of their dependence on specific assortments of molecular precursors.

  8. Effect of Plant Growth-Promoting Rhizobacteria on Growth,Nodulation and Nutrient Accumulation of Lentil Under Controlled Conditions

    Institute of Scientific and Technical Information of China (English)

    M.ZAFAR; M.K.ABBASI; M.A.KHAN; A.KHALIQ; T.SULTAN; M.ASLAM

    2012-01-01

    Application of plant growth-promoting rhizobacteria (PGPR) has been shown to increase legume growth and development under field and controlled environmental conditions.The present study was conducted to isolate plant growth-promoting rhizobacteria (PGPR) from the root nodules of lentil (Lens culinaris Medik.) grown in arid/semi-arid region of Punjab,Pakistan and examined their plant growth-promoting abilities.Five bacterial isolates were isolated,screened in vitro for plant growth-promoting (PGP)characteristics and their effects on the growth of lentil were assessed under in vitro,hydroponic and greenhouse (pot experiment)conditions.All the isolates were Gram negative,rod-shaped and circular in form and exhibited the plant growth-promoting attributes of phosphate solubilization and auxin (indole acetic acid,IAA) production.The IAA production capacity ranged in 0.5-11.0 μgmL-1and P solubilization ranged in 3 16 mg L-1.When tested for their effects on plant growth,the isolated strains had a stimulatory effect on growth,nodulation and nitrogen (N) and phosphorus (P) uptake in plants on nutrient-deficient soil.In the greenhouse pot experiment,application of PGPR significantly increased shoot length,fresh weight and dry weight by 65%,43% and 63% and the increases in root length,fresh weight and dry weight were 74%,54% and 92%,respectively,as compared with the uninoculated control.The relative increases in growth characteristics under in vitro and hydroponic conditions were even higher.PGPR also increased the number of pods per plant,1000-grain weight,dry matter yield and grain yield by 50%,13%,28% and 29%,respectively,over the control.The number of nodules and nodule dry mass increased by 170% and 136%,respectively.After inoculation with effective bacterial strains,the shoot,root and seed N and P contents increased,thereby increasing both N and P uptake in plants. The root elongation showed a positive correlation (R2 =0.67) with the IAA

  9. Response of Streptococcus suis to iron-restricted growth conditions at high and low oxygen availability.

    Science.gov (United States)

    Winterhoff, Nora; Goethe, Ralph; Gruening, Petra; Valentin-Weigand, Peter

    2004-01-01

    Streptococcus suis (S. suis) is an important pathogen in pigs and has to overcome strict iron limitations in its host environment. Here, we studied iron-restricted growth of a highly virulent S. suis strain in vitro at aerobic and CO2-enriched growth conditions. At both conditions, depleting of iron in the culture medium with nitrilotriacetic acid (NTA) resulted in decreased growth rates and down regulation of several proteins. Sensitivity to NTA was significantly higher at aerobic versus CO2-enriched conditions. Growth could not be restored by addition of host iron sources such as ferritin, hemin, hemoglobin, lactoferrin or transferrin. Accordingly, S. suis was not able to produce detectable amounts of siderophores. On the other hand, growth at iron-restricted conditions was fully restored by addition of Mn2+ (at aerobic and CO2-enriched conditions) or Mg2+ (only at CO2-enriched conditions). In conclusion our results suggest that, unlike many other bacteria, S. suis adapts to iron restricted conditions by a change in its metabolism in order to replace Fe2+ by Mn2+ or Mg2+ rather than by expressing specific iron uptake systems.

  10. Growth Characteristics of Tetraselmis sp.-1 in Phototrophic, Mixotrophic and Heterotrophic Conditions

    Institute of Scientific and Technical Information of China (English)

    Shen Jihong(沈继红); Yu Junhong; Lin Xuezheng; Li Guangyou; Liu Fayi

    2004-01-01

    Tetraselmis sp.-1 is a new microalgae strain constructed by cell fusion technique. In this paper, the growth characteristics of Tetraselmis sp.-1 under different culture conditions are investigated. The growth kinetic models are obtained, the assimilation of C and NH4+ is investigated and the assimilation efficiency of Tetraselmis sp.-1 under different culture conditions is calculated. The results show that different culture conditions do not have obvious influence on carbon absorbance, but have significant influence on nitrogen absorbance, C∶N is maximum under heterotrophic condition, while minimum under phototrophic condition. The assimilation efficiency (η) of Tetraselmis sp.-1 has the highest value in heterotrophic condition and largely higher than those in phototrophic and mixotrophic conditions.

  11. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space.

    Science.gov (United States)

    Hoson, T; Soga, K; Wakabayashi, K; Hashimoto, T; Karahara, I; Yano, S; Tanigaki, F; Shimazu, T; Kasahara, H; Masuda, D; Kamisaka, S

    2014-01-01

    Cortical microtubules are involved in plant resistance to hypergravity, but their roles in resistance to 1 g gravity are still uncertain. To clarify this point, we cultivated an Arabidopsis α-tubulin 6 mutant (tua6) in the Cell Biology Experiment Facility on the Kibo Module of the International Space Station, and analyzed growth and cell wall mechanical properties of inflorescences. Growth of inflorescence stems was stimulated under microgravity conditions, as compared with ground and on-orbit 1 g conditions. The stems were 10-45% longer and their growth rate 15-55% higher under microgravity conditions than those under both 1 g conditions. The degree of growth stimulation tended to be higher in the tua6 mutant than the wild-type Columbia. Under microgravity conditions, the cell wall extensibility in elongating regions of inflorescences was significantly higher than the controls, suggesting that growth stimulation was caused by cell wall modifications. No clear differences were detected in any growth or cell wall property between ground and on-orbit 1 g controls. These results support the hypothesis that cortical microtubules generally play an important role in plant resistance to the gravitational force.

  12. Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems.

    Science.gov (United States)

    Camper, A K; McFeters, G A; Characklis, W G; Jones, W L

    1991-08-01

    The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.

  13. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  14. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide.

    Science.gov (United States)

    Berg, J D; Matin, A; Roberts, P V

    1982-01-01

    Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic environments were more resistant than those grown under commonly employed batch culture conditions. In particular, bacteria grown at submaximal rates were more resistant than their counterparts grown at mumax. The most resistant populations encountered in this study were those grown at D values of 0.02 h-1 and 0.06 h-1 at 25 degrees C. Growth at 15 degrees C led to greater resistance than did growth at 37 degrees C. The conditions that produced relatively resistant phenotypes were much closer to those found in most natural environments than are the typical conditions of batch culture methods. The importance of major physiological changes that can be induced by the antecedent growth environment is discussed in light of the possible modes of action of several disinfectants. PMID:6756305

  15. Conditional random slope: A new approach for estimating individual child growth velocity in epidemiological research.

    Science.gov (United States)

    Leung, Michael; Bassani, Diego G; Racine-Poon, Amy; Goldenberg, Anna; Ali, Syed Asad; Kang, Gagandeep; Premkumar, Prasanna S; Roth, Daniel E

    2017-09-10

    Conditioning child growth measures on baseline accounts for regression to the mean (RTM). Here, we present the "conditional random slope" (CRS) model, based on a linear-mixed effects model that incorporates a baseline-time interaction term that can accommodate multiple data points for a child while also directly accounting for RTM. In two birth cohorts, we applied five approaches to estimate child growth velocities from 0 to 12 months to assess the effect of increasing data density (number of measures per child) on the magnitude of RTM of unconditional estimates, and the correlation and concordance between the CRS and four alternative metrics. Further, we demonstrated the differential effect of the choice of velocity metric on the magnitude of the association between infant growth and stunting at 2 years. RTM was minimally attenuated by increasing data density for unconditional growth modeling approaches. CRS and classical conditional models gave nearly identical estimates with two measures per child. Compared to the CRS estimates, unconditional metrics had moderate correlation (r = 0.65-0.91), but poor agreement in the classification of infants with relatively slow growth (kappa = 0.38-0.78). Estimates of the velocity-stunting association were the same for CRS and classical conditional models but differed substantially between conditional versus unconditional metrics. The CRS can leverage the flexibility of linear mixed models while addressing RTM in longitudinal analyses. © 2017 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

  16. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    Science.gov (United States)

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  17. Bulk water phase and biofilm growth in drinking water at low nutrient conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 131C, for at least 385 days to allow......In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used...... the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day1. The bulk water phase bacteria exhibited a higher activity than the biofilmbacteria in terms of culturability, cell-specific ATP content...

  18. [Development of a predictive program for microbial growth under various temperature conditions].

    Science.gov (United States)

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo

    2006-12-01

    A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.

  19. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    Science.gov (United States)

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  20. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    Science.gov (United States)

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  1. A novel strategy to identify the critical conditions for growth-induced instabilities.

    Science.gov (United States)

    Javili, A; Steinmann, P; Kuhl, E

    2014-01-01

    Geometric instabilities in living structures can be critical for healthy biological function, and abnormal buckling, folding, or wrinkling patterns are often important indicators of disease. Mathematical models typically attribute these instabilities to differential growth, and characterize them using the concept of fictitious configurations. This kinematic approach toward growth-induced instabilities is based on the multiplicative decomposition of the total deformation gradient into a reversible elastic part and an irreversible growth part. While this generic concept is generally accepted and well established today, the critical conditions for the formation of growth-induced instabilities remain elusive and poorly understood. Here we propose a novel strategy for the stability analysis of growing structures motivated by the idea of replacing growth by prestress. Conceptually speaking, we kinematically map the stress-free grown configuration onto a prestressed initial configuration. This allows us to adopt a classical infinitesimal stability analysis to identify critical material parameter ranges beyond which growth-induced instabilities may occur. We illustrate the proposed concept by a series of numerical examples using the finite element method. Understanding the critical conditions for growth-induced instabilities may have immediate applications in plastic and reconstructive surgery, asthma, obstructive sleep apnoea, and brain development. © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of site conditions and methods of cultivation on growth of sawtooth oak plantations

    Institute of Scientific and Technical Information of China (English)

    Luozhong TANG; Mukui YU; Dan ZHAO; Chunfeng YAN; Zhilong LIU; Shengzuo FANG

    2009-01-01

    The effects of site conditions and cultivation on the growth of sawtooth oak {Quercus acutissima Carr.) plantations were evaluated at the Hongyashan forest farm, in Chuzhou City, Anhui Province, China. The results indicate that the position on the slope, the amount of gravel and the thickness of the soil were important factors in the growth of the sawtooth oak. Lower slope positions with small amounts of gravel and a thick soil were better for the growth of this species than middle slope positions with more gravel and a thin soil. Given the site conditions of the hilly and mountainous areas in Chuzhou City, the mixed Chinese fir (Cunninghamia lanceolata Hook.) and sawtooth oak forests did not improve forest productivity compared with pure sawtooth oak forests. Both urea and compound fertilizers promoted the growth of sawtooth oak, as did site preparation and intercropping. Two years after planting, the height growth of ordinary seedlings with a starting height of 0.6 m was higher than that of supper seedlings with a starting height of 1.0 m. Compared with planting, the early growth of the coppices was faster, but the later growth of the coppices was slower.

  3. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    Science.gov (United States)

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  4. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  5. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  6. Growth dynamics variation of different larch provenances under the mountain conditions in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kulej, M. [Univ. of Agriculture, Cracow (Poland). Section of Seed Production and Selection

    1995-12-31

    The results of 25-year investigations based on measurements and statistical analysis concerning the growth dynamics variation of larch provenances from the entire area of Poland are reported in this paper. This is the first larch provenance experiment in Poland under mountain conditions. The results obtained showed a significant variability among the provenances tested as regards the basic growth characters (height, d.b.h., growth index) at the age of 5, 8, 11, 15, 20 and 25 years. The larch from Klodzko and Proszkow turned out to be the best in respect of growth during the entire 25-years period. Decidedly bad were provenances from Marcule, Grojec, Rawa mazowiecka and Kroscienko. We cannot forecast the future growth of larch when trees are 5-years old since such prognosis may carry an error. However, on the basis of the results obtained it may be concluded that when trees are about 8 years old the stabilization of the position of individual provenances as regards growth takes place. The height growth curves for the individual provenances during the 25-years period (with exception of the provenance from Marcule) fall within the interval {+-} 0,5S from the compensated curve for the entire population studied. All larch provenances in the experiment had reached the height growth culmination. A greatest differentiation in respect of this character occurred in case of the provenances from Sudetes. 27 refs, 4 figs, 8 tabs

  7. Growth and Modeling of Staphylococcus aureus in Flour Products under Isothermal and Nonisothermal Conditions.

    Science.gov (United States)

    Cao, Hui; Wang, Tingting; Yuan, Min; Yu, Jingsong; Xu, Fei

    2017-03-01

    This study was conducted to investigate the growth of Staphylococcus aureus in traditional Chinese flour products under isothermal (10, 15, 20, 25, 30, and 37°C) and nonisothermal (10 to 20, 20 to 30, and 25 to 37°C) conditions. Then, models for the growth of S. aureus in flour products as a function of storage temperature, pH, and water activity (aw) were developed, and the goodness of fit of models was evaluated using the determination coefficient (R(2)), root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af). Based on the above information, S. aureus growth in steamed bread under nonisothermal conditions was predicted from experiments performed under isothermal conditions. It was shown that different combinations of temperature and aw in flour products have a strong influence on the growth of S. aureus . The modified Gompertz model was found to be more suitable for describing the growth data of S. aureus in flour products, with an R(2) of >0.99 and an RMSE of aureus were in agreement with the reported experimental ones, with RMSE aureus in flour products.

  8. Effect of putative mitoviruses on in vitro growth of Gremmeniella abietina isolates under different laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Romeralo, C.; Botella, L.; Santamaria, O.; Diez, J.

    2012-07-01

    Mitoviruses have been found in several forest pathogens (i.e. Cryphonectria parasitica, Gremmeniella abietina), and because they have been shown to reduce the virulence of host fungi there is a growing interest in studying their use as a biocontrol. This study was carried out to test the effect of temperature (5 degree centigrade, 15 degree centigrade, 25 degree centigrade and 35 degree centigrade), pH (4, 5, 7 and 9) and osmotic potential (-0.6, -1.2, -1.8 and 2.4 MPa) on the mycelial growth of seven G. abietina isolates under controlled laboratory conditions. Four of the isolates hosted mitoviruses and three of them did not. During the experiment, mycelial growth was recorded every week for a period of 8 weeks. Results showed no differences in growth behavior between mitovirus infected and non-infected isolates when placed under different pH modifications. However, the mitovirus-infected isolates presented larger mycelial growth than the mitovirus-free ones when at the fungi's optimal growing temperature of 15 degree centigrade. When growing at certain osmotic potentials (-0.6 and -1.8 MPa) a reduction in growth of the mitovirus-infected isolates was observed. The results of this experiment suggest that mycelial growth among non-infected isolates and isolates naturally infected by mitovirus vary under different culture conditions, thus providing further insight into the effects of mitovirus on Gremmeniella abietina isolates. (Author) 57 refs.

  9. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    Science.gov (United States)

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  10. Growth and condition of juvenile chum and pink salmon in the northeastern Bering Sea

    Science.gov (United States)

    Wechter, Melissa E.; Beckman, Brian R.; Andrews, Alexander G., III; Beaudreau, Anne H.; McPhee, Megan V.

    2017-01-01

    As the Arctic continues to warm, abundances of juvenile Pacific salmon (Oncorhynchus spp.) in the northern Bering Sea are expected to increase. However, information regarding the growth and condition of juvenile salmon in these waters is limited. The first objective of this study was to describe relationships between size, growth, and condition of juvenile chum (O. keta) and pink (O. gorbuscha) salmon and environmental conditions using data collected in the northeastern Bering Sea (NEBS) from 2003-2007 and 2009-2012. Salmon collected at stations with greater bottom depths and cooler sea-surface temperature (SST) were longer, reflecting their movement further offshore out of the warmer Alaska Coastal Water mass, as the season progressed. Energy density, after accounting for fish length, followed similar relationships with SST and bottom depth while greater condition (weight-length residuals) was associated with warm SST and shallower stations. We used insulin-like growth factor-1 (IGF-1) concentrations as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found fish exhibited higher IGF-1 concentrations in 2010-2012 than in 2009, although these differences were not clearly attributable to environmental conditions. Our second objective was to compare size and condition of juvenile chum and pink salmon in the NEBS between warm and cool spring thermal regimes of the southeastern Bering Sea (SEBS). This comparison was based on a hypothesis informed by the strong role of sea-ice retreat in the spring for production dynamics in the SEBS and prevailing northward currents, suggesting that feeding conditions in the NEBS may be influenced by production in the SEBS. We found greater length (both species) and condition (pink salmon) in years with warm thermal regimes; however, both of these responses changed more rapidly with day of year in years with cool springs. Finally, we compared indicators of energy allocation between even and odd brood

  11. Growth trajectories of the human embryonic head and periconceptional maternal conditions

    NARCIS (Netherlands)

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-01-01

    STUDY QUESTION: Can growth trajectories of the human embryonic head be created using 3D ultrasound (3D-US) and virtual reality (VR) technology, and be associated with second trimester fetal head size and periconceptional maternal conditions? SUMMARY ANSWER: Serial first trimester head circumference

  12. Photophysiological variability of microphytobenthic diatoms after growth in different types of culture conditions

    NARCIS (Netherlands)

    Forster, R.M.; Martin-Jézéquel, V.R.

    2005-01-01

    Microphytobenthic diatoms have great ecological importance in estuarine and coastal marine ecosystenis, yet many aspects of their physiology have not been investigated under controlled conditions. This work describes patterns in growth rates and photosynthesis in different types of culture for sever

  13. Understanding growth limitation in wheat and sunflower under low phosphorus conditions.

    NARCIS (Netherlands)

    Rodriguez, D.

    1998-01-01

    The study described in this thesis focuses on the understanding of growth of leaf area and biomass in wheat and sunflower under low phosphorus conditions.Chapters 2 and 3 address the question whether P-deficiency limits leaf area expansion directly by inhibiting the individual leaf expansion, or thr

  14. Growth Process Conditions of Tungsten Oxide Thin Films Using Hot-Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Houweling, Z.S.; Geus, J.W.; de Jong, M.; Harks, P.P.R.M.L.; van der Werf, C.H.M.; Schropp, R.E.I.

    2011-01-01

    We report the growth conditions of nanostructured tungsten oxide (WO3−x) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was

  15. Necessary and sufficient conditions for the existence of the UMRE estimator in growth curve models

    Institute of Scientific and Technical Information of China (English)

    吴启光

    1995-01-01

    The necessary and sufficient conditions are derived for the existence of the uniformly minimum risk equivariant (UMRE) estimator of regression coefficient matrix in normal growth carve models with arbitrary covariance matrix or uniform oovananoe structure or serial covariance structure under an affine group and a transitive group of transformations for quadratic losses and matrix losses, respectively.

  16. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions.

    Science.gov (United States)

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-08-20

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h(-1) at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h(-1) and D. geothermalis DSM-11302 biomass reached 1.4 g·L(-1) in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc(-1); cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX(-1)·h(-1), respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  17. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    Science.gov (United States)

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  18. Factors limiting performance in a multitone intensity-discrimination task: disentangling non-optimal decision weights and increased internal noise.

    Directory of Open Access Journals (Sweden)

    Daniel Oberfeld

    Full Text Available To identify factors limiting performance in multitone intensity discrimination, we presented sequences of five pure tones alternating in level between loud (85 dB SPL and soft (30, 55, or 80 dB SPL. In the "overall-intensity task", listeners detected a level increment on all of the five tones. In the "masking task", the level increment was imposed only on the soft tones, rendering the soft tones targets and loud tones task-irrelevant maskers. Decision weights quantifying the importance of the five tone levels for the decision were estimated using methods of molecular psychophysics. Compatible with previous studies, listeners placed higher weights on the loud tones than on the soft tones in the overall-intensity condition. In the masking task, the decisions were systematically influenced by the to-be-ignored loud tones (maskers. Using a maximum-likelihood technique, we estimated the internal noise variance and tested whether the internal noise was higher in the alternating-level five-tone sequences than in sequences presenting only the soft or only the loud tones. For the overall-intensity task, we found no evidence for increased internal noise, but listeners applied suboptimal decision weights. These results are compatible with the hypothesis that the presence of the loud tones does not impair the precision of the representation of the intensity of the soft tones available at the decision stage, but that this information is not used in an optimal fashion due to a difficulty in attending to the soft tones. For the masking task, in some cases our data indicated an increase in internal noise. Additionally, listeners applied suboptimal decision weights. The maximum-likelihood analyses we developed should also be useful for other tasks or other sensory modalities.

  19. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    Science.gov (United States)

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  20. Deep Soil Conditions Make Mediterranean Cork Oak Stem Growth Vulnerable to Autumnal Rainfall Decline in Tunisia

    Directory of Open Access Journals (Sweden)

    Lobna Zribi

    2016-10-01

    Full Text Available Tree rings provide fruitful information on climate features driving annual forest growth through statistical correlations between annual tree growth and climate features. Indices built upon tree growth limitation by carbon sequestration (source hypothesis or drought-driven cambial phenology (sink hypothesis can be used to better identify underlying processes. We used both analytical frameworks on Quercus suber, a sparsely studied species due to tree ring methodological issues, and growing on a favorable sub-humid Mediterranean climate and deep soil conditions in Tunisia (North Africa. Statistical analysis revealed the major role of autumnal rainfall before the growing season on annual tree growth over the 1918–2008 time series. Using a water budget model, we were able to explain the critical role of the deep soil water refill during the wet season in affecting both the drought onset controlling growth phenology and the summer drought intensity affecting carbon assimilation. Analysis of recent climate changes in the region additionally illustrated an increase in temperatures enhancing the evaporative demand and advancing growth start, and a decline in rainfalls in autumn, two key variables driving stem growth. We concluded on the benefits of using process-based indices in dendrochronological analysis and identified the main vulnerability of this Mediterranean forest to autumnal rainfall decline, a peculiar aspect of climate change under summer-dry climates.

  1. Data on Vietnamese patients׳ behavior in using information sources, perceived data sufficiency and (non)optimal choice of health care provider.

    Science.gov (United States)

    Vuong, Quan Hoang

    2016-06-01

    This data article introduces a data set containing 1459 observations that can enable researchers to examine issues related to and perform statistical investigations into questions of relationships between sources of health care information, data sufficiency, trust levels between patients and healthcare experts (and the advice). The data set also records assessment of Vietnamese patients on whether their choice of health care provider is best available (optimal vs. nonoptimal). The data come from a survey in many hospitals in Hanoi and several neighboring provinces/cities in the North of Vietnam, during the last quarter of 2015. Variables that can be useful for future analysis include sources and availability of information, cost, and amount of time for seeking information. The quality of information and health professionals' credibility are critical factors in helping patients choose a health care provider. Mendeley Data, v1 http://dx.doi.org/10.17632/gmbz53tpwc.1; and can enable the modeling after useful discrete data models such as BCL, with one example being provided in this data article.

  2. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    Science.gov (United States)

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters.

  3. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents.

    Directory of Open Access Journals (Sweden)

    Jennifer M Colquhoun

    Full Text Available Biological processes that govern bacterial proliferation and survival in the host-environment(s are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s. Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in

  4. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.

    Directory of Open Access Journals (Sweden)

    Patrick Kiefer

    Full Text Available BACKGROUND: The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases. METHODOLOGY/PRINCIPAL FINDINGS: We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.

  5. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  6. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    Science.gov (United States)

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.

    1999-01-01

    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  7. Evaluation of growth and flowering of Chenopodium quinoa Willd. under Polish conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Gęsiński

    2012-12-01

    Full Text Available The material presented refers to the estimation of growth and the flowering (Chenopodium quinoa Willd. under Polish conditions. The species has been a South-American pseudocereal cultivated in the traditional form in the Andean region for over 5 thousand years. Its advantage, apart from low soil and climate requirements, is that it shows high nutritive value. The Chenopodium quinoa protein is especially valuable with its amino acid composition which is better balanced than that of wheat or maize. It shows a better share of egzogenic aminoacids. Field examinations were carried out in 1999-2001 at the Experiment Station of Cultivar Testing at Chrząstowo. The experiment involved two cultivars from two various growing regions: America and Europe. Analyses were made to include development stages, plant growth dynamics, inflorescences development dynamics, inflorescence habit and flowering. Differences were recorded in the growth and development models of the cultivars researched. The European cultivar had a short compact inflorescence with a short flowering period, reaching 120 cm. American cultivar plants were high (160 cm; they showed a slower continuous growth, loose big-in-size inflorescence, and a long period of flowering. The plants ended their growing season over the flowering stage or seed formation. The adequate growth, the course of flowering and, as a result, a stable yielding of the European cultivar make the group suitable for the cultivation under Polish conditions. This breeding group should also be the parent material for the cultivation of the Polish cultivar of Chenopodium quinoa.

  8. Influence of Different Growth Conditions on the Kefir Grains Production, used in the Kefiran Synthesis

    Directory of Open Access Journals (Sweden)

    Carmen Rodica Pop

    2014-11-01

    Full Text Available The purpose of this study was to optimize the kefir grains biomass production, using milk as culture media. The kefir grains were cultured at different changed conditions (temperature, time, shaker rotating speed, culture media supplemented to evaluate their effects. Results showed that optimal culture conditions were using the organic skim milk, incubated at 25°C for 24 hours with a rotation rate of 125 rpm. According to results, the growth rate was 38.9 g/L for 24 h, at 25°C using the organic milk - OSM, 36.87 g/L during 24 hours, optimal time for propagation process gave 37.93 g/L kefir grains biomass when the effect of temperature level was tested. The homogenization of medium with shaker rotating induced a greater growth rate, it was obtained 38.9 g/L for 24 h, at 25°C using rotation rate at 125 rpm. The growing medium (conventional milk supplemented with different minerals and vitamins may lead to improve the growth conditions of kefir grains biomass. The optimization of the growth environment is very important for achieving the maximum production of kefir grains biomass, substrate necessary to obtain the polysaccharide kefiran

  9. Steroid-regulated growth of DDT1MF-2 cells is profoundly influenced by culture conditions.

    Science.gov (United States)

    Lamb, D J; Ray, M

    1995-12-01

    DDT1MF-2 cells provide an ideal model for studying tumor-growth-stimulation by steroids. These cells progress to a rapidly proliferating, androgen-independent state after prolonged culture without androgen. After brief culture in different lots of fetal bovine serum (FBS), some lots induced a permanent state of hormone-independence in cells that had been androgen-responsive. To test the hypothesis that factors influenced androgen-responsive growth even after removal of serum, hormone-responsive DDT1MF-2 cells (7000 cells/well) were plated in medium Dulbecco's Modified Eagle Medium/F-12 Nutrition Mixture (1:1)/1% ITS with (a) 0.1% FBS, (b) 0.1% NuSerum (c) 0.1% Hyclone, or (d) MCDB-110/0.1% ITS with 5 ng/ml bFGF. On Days 2-8, medium was replaced with D-MEM/F12/ITS with 10 nM testosterone (T), 10 nM triamcinolone acetonide (TA), or ethanol (control) and the cells counted. While testosterone induced a 1.4-fold increase in cell growth after exposure to FBS or NuSerum, maximal testosterone effect (3-6-fold increase) was observed after Hyclone. Hydroxyflutamide antagonized the fivefold increase in growth observed with testosterone, with a slight decrease of growth with cAMP for cells plated in Hyclone. Androgen-independent cells were unaffected by testosterone, hydroxyflutamide, or 8Br-cAMP [medium (a)]. Maximal inhibition by triamcinolone acetonide (0.25 of control) was observed with medium (d). The effect of testosterone and triamcinolone acetonide on secretion of mitogenic activity into conditioned medium was also evaluated. Although conditioned media from control and testosterone-treated cells were mitogenic in a dose-dependent manner, the media from cells treated with triamcinolone acetonide and testosterone+TA conditioned medium was not mitogenic--but, of note, it was not growth inhibitory.

  10. Using Gambusia affinis growth and condition to assess estuarine habitat quality: A comparison of indices

    Science.gov (United States)

    Piazza, Bryan P.; La Peyre, M.K.

    2010-01-01

    Numerous indices have been used to estimate fish growth and condition however, differences in sensitivity and reliability of the methods have hampered efforts to identify appropriate indicators for routine evaluation of habitat quality in the field. We compared common morphometric (length, weight, somatic growth, length-weight condition) and biochemical (RNA:DNA ratio, relative DNA content, energy density) growth indices on the same wild-caught mosquitofish Gambusia affinis to examine their usefulness as indicators of habitat quality. A laboratory experiment was used to quantify growth rates of wild-caught G. affinis under different feeding treatments. Field studies consisted of both a short-term enclosure experiment (10 d) and weekly (7 wk) fish collections to compare growth indices in managed inflow and reference marshes during a winter/spring freshwater pulse event in upper Breton Sound, Louisiana, USA. Marshes flooded by restored freshwater pulses were capable of producing optimum growth (0.001 g DW d-1 DW = dry weight) and energetically valuable habitat (>6000 cal g-1 DW) for trophic transport. Because of differences in timing of response, morphometric and biochemical indices were generally not directly correlated, but there was clear agreement in direction and magnitude of response. The most striking difference in timing was that biochemical indices (RNA:DNA) responded more slowly to treatments than did morphometric growth indices. While gross patterns are comparable between indicators, differences in sensitivity and response time between indicators suggest that choice of indicator needs to be accounted for in interpretation and analysis of effects. ?? Inter-Research 2010, www.int-res.com.

  11. The list of strains and growth conditions - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ge list Name list of images Large image The zip file of the images (Large image) Small image The zip file of the...switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us The... Rice Growth Monitoring for The Phenotypic Functional Analysis The list of strains and gr...owth conditions Data detail Data name The list of strains and growth conditions DOI 10.18908/lsdba.nbdc00945...-001 Description of data contents The list of strains and growth conditions for respective samples. Data fil

  12. Nucleation and growth by diffusion under Ostwald-Freundlich boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Iwamatsu, Masao, E-mail: iwamatsu@ph.ns.tcu.ac.jp [Department of Physics, Faculty of Liberal Arts and Sciences, Tokyo City University, Setagaya-ku, Tokyo 158-8557 (Japan)

    2014-02-14

    The critical radius of a nucleus grown by diffusion in a solution is studied thermodynamically as well as kinetically. The thermodynamic growth equation called Zeldovich equation of classical nucleation theory and the kinetic diffusional growth equation combined with the Ostwald-Freundlich boundary condition lead to the same critical radius. However, it should be pointed out that the diffusional equation may lead to a kinetic critical radius that is different from the thermodynamic critical radius, thus indicating the possibility of kinetically controlling the critical radius of a nucleus.

  13. In vitro maintenance, under slow-growth conditions, of oil palm germplasm obtained by embryo rescue

    Directory of Open Access Journals (Sweden)

    Julcéia Camillo

    2015-05-01

    Full Text Available The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.

  14. In vitro storage of cedar shoot cultures under minimal growth conditions.

    Science.gov (United States)

    Renau-Morata, Begoña; Arrillaga, Isabel; Segura, Juan

    2006-07-01

    We developed procedures for slow-growth storage of Cedrus atlantica and Cedrus libani microcuttings of juvenile and adult origin, noting factors favouring the extension of subculture intervals. Microcuttings could be stored effectively up to 6 months at 4 degrees C and reduced light intensity, provided that they were grown on a diluted modified MS medium. The addition of 6% mannitol to the storage media affected negatively survival and multiplication capacity of the cultures. The slow-growth storage conditions used in our experiments did not induce remarkable effects on both RAPD variability and average DNA methylation in the species.

  15. The Critical Conditions for the Growth of Silicon Dioxide on Silicon.

    Science.gov (United States)

    Ghidini, Gabriella

    The use of thermally grown SiO(,2) as a coating on Si is wide spread in the modern technology of semiconductor devices. The properties and methods of preparation of SiO(,2) have been studied for many years, but for the increasing importance of high quality thin films of oxide (less than 200 (ANGSTROM)), a better understanding of the initial growth of SiO(,2) will be helpful for the improvement of the actual methods of growing thin films. The subject of this thesis is the study of the critical conditions for the nucleation and growth of SiO(,2) on Si at low oxidant gas (O(,2) gas and H(,2)O vapor) pressures and high temperatures. For O(,2) pressures between 5 x 10('-5) and 5 x 10('-2) Torr and substrate temperatures between 890-1150(DEGREES)C, the critical O(,2) pressure for the nucleation and growth of SiO(,2) was determined as a function of the substrate temperature. The observed critical conditions for growth are consistent with a theoretical model which focuses on the kinetics of SiO(,2) cluster growth and on the thermodynamics of the competing etching reaction leading to the production of SiO. With H(,2)O vapor between 7 x 10('-5) and 3 x 10('-1) Torr and substrate temperature between 890-1280(DEGREES)C two critical behaviours were observed, indicating both the coverage of the surface by some compound (SiO(,x) + H) not passivating completely the surface and the subsequent growth of SiO(,2). A study of the SiO(,2) growth features has also been carried out and evidence for epitaxial growth of cubic (beta)-cristobalite on Si(100) is found. The influence of doping of the Si substrate on the critical conditions for P, B, As heavily-doped samples is also determined. The critical oxygen pressure is only influenced by P atoms, which seem to enhance the nucleation and growth of SiO(,2).

  16. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi.

    Science.gov (United States)

    Weitz, H J; Ballard, A L; Campbell, C D; Killham, K

    2001-08-21

    The effects of temperature, light and pH on mycelial growth and luminescence of four naturally bioluminescent fungi were investigated. Cultures of Armillaria mellea, Mycena citricolor, Omphalotus olearius and Panellus stipticus were grown at 5 degrees C, 15 degrees C, 22 degrees C and 30 degrees C, under 24 h light, 12 h light/12 h dark and 24 h dark, and at a pH ranging from 3.5 to 7 in three separate experiments. Temperature and pH had a significant effect on mycelial growth and bioluminescence, however light did not. Bioluminescence and mycelial growth were optimum at 22 degrees C and pH 3-3.5, the exception being M. citricolor for which bioluminescence and growth were optimum at pH 5-6 and pH 4, respectively. With the exception of M. citricolor, bioluminescence and mycelial growth were greater under 24 h darkness. An understanding of the effect of culture conditions on mycelial growth and luminescence is necessary for the future application of bioluminescent fungi as biosensors.

  17. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions.

    Science.gov (United States)

    Blomqvist, Johanna; Nogué, Violeta Sànchez; Gorwa-Grauslund, Marie; Passoth, Volkmar

    2012-07-01

    The effect of glucose and oxygen limitation on the growth and fermentation performances of Dekkera bruxellensis was investigated in order to understand which factors favour its propagation in ethanol or wine plants. Although D. bruxellensis has been described as a facultative anaerobe, no growth was observed in mineral medium under complete anaerobiosis while growth was retarded under severe oxygen limitation. In a continuous culture with no gas inflow, glucose was not completely consumed, most probably due to oxygen limitation. When an air/nitrogen mixture (O(2)-content ca. 5%) was sparged to the culture, growth became glucose-limited. In co-cultivations with Saccharomyces cerevisiae, ethanol yields/g consumed sugar were not affected by the co-cultures as compared to the pure cultures. However, different population responses were observed in both systems. In oxygen-limited cultivation, glucose was depleted within 24 h after challenging with S. cerevisiae and both yeast populations were maintained at a stable level. In contrast, the S. cerevisiae population constantly decreased to about 1% of its initial cell number in the sparged glucose-limited fermentation, whereas the D. bruxellensis population remained constant. To identify the requirements of D. bruxellensis for anaerobic growth, the yeast was cultivated in several nitrogen sources and with the addition of amino acids. Yeast extract and most of the supplied amino acids supported anaerobic growth, which points towards a higher nutrient demand for D. bruxellensis compared to S. cerevisiae in anaerobic conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  18. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Malcolm J [Los Alamos National Laboratory

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  19. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium.

    Science.gov (United States)

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-11-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497).

  20. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    Science.gov (United States)

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  1. Effect of Different Growth Conditions on Certain Biochemical Parameters of Different Cyanobacterial Strains

    Directory of Open Access Journals (Sweden)

    Hammouda, O. E.

    2012-01-01

    Full Text Available Aims: Variation in the traditional growth medium conditions to enhance the production of lipids, carbohydrates, protein and the free amino acids content of three cyanobacterial species. Methodology and Results: Three species of cyanobacteria (Anabaena laxa, Anabaena fertilissima and Nostoc muscorum were collected from the culture collection of Soils, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, to investigate their biochemical composition under different growth conditions, using BG110 (nitrogen free as growth medium. These conditions were represented by control medium, static glucose medium with (1%, w/v, aerated medium (aerated by bubbling technique depending on CO2 normally existed in air with a concentration of 0.03%, molasses medium (0.7%, v/v and aerated medium enriched with glucose (1%, w/v. Lipid content, total carbohydrates, soluble proteins and free amino acids were determined at the previous conditions. Glucose at 0.7% (w/v was the most favorable for lipid production in A. laxa, where it exhibited the highest lipid content (427 μg/g fresh wt.. Increasing molasses concentration up to 0.7% (v/v produced an increase in lipid contents of the tested cyanobacterial strains. The highest lipid content of both N. muscorum (366.2 μg/g fresh wt. and A. laxa (357.4 μg/g fresh wt. were recorded at molasses concentrations of 0.1 and 0.7% (v/v, respectively. A. laxa expressed high significant values for both proteins (31.6 μg/mL and free amino acids (40.5 mg/g dry wt. after 6 days of incubation period under aerated enriched glucose condition (1%, w/v. Also, at the same growth conditions, A. fertilissima exhibited high significant values for carbohydrates at 4th day (876.8 mg/g dry wt.. Conclusion, significance and impact of study: Aerated enriched glucose medium (1%, w/v was the best growth medium condition used in the present study.

  2. Seedling survival and growth of Aquilaria malaccensis in different microclimatic conditions of northeast India

    Institute of Scientific and Technical Information of China (English)

    P.Saikia; M.L.Khan

    2012-01-01

    We studied seedling survival and growth of Aquilaria malaccensis in three different environmental conditions (homegardens,green house and in different canopy conditions) of northeast India.Results show that mean seasonal survival was highest in green house (95.53%±2.33),followed by homegardens (89.3%±1.89) and different canopy conditions (77.62%±6.73); the highest values were found during February to April for both the homegardens (96%± 1.68) and green house (98% ± 0.88) and lowest during November to January (78%±2.99) in homegardens and May to July (90%±4.53) in green house.In case of transplanted seedlings in different canopy conditions,mean seasonal survival was highest during May to July (98%±1.92) and lowest during August to October (66%±12.81).However,mean seasonal growth of collar diameter was highest in different canopy conditions (23.99%±1.76)compared to green house (21.52%±2.70) and homegardens (12.44%±1.33) and it was highest during rainy season (May to July) and lowest during dry winter (November to January) in all the three experimental sites.These variations may be due to the different microclimatic conditions as well as nutrient status of the soil in all the three experimental sites.Although,seedling quality plays a great role in their survival and growth,based on the result of green house experiment,it can be concluded that maintenance of seedlings in green house conditions during their early growth period may improve both the survival and growth for large scale plantation of the species.Thus,the species can be reintroduced in its natural forest range to compensate the loss of natural population of this precious species in northeast India.

  3. Growth and Survival of Some Probiotic Strains in Simulated Ice Cream Conditions

    Science.gov (United States)

    Homayouni, A.; Ehsani, M. R.; Azizi, A.; Razavi, S. H.; Yarmand, M. S.

    A Completely Randomized Design (CRD) experiment was applied in triplicates to evaluate the survival of four probiotic strains in simulated ice cream conditions. The growth and survival rate of these probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Bifidobacterium longum) in varying amount of sucrose (10, 15, 20 and 25%), oxygen scavenging components (0.05% L-cysteine and 0.05% L-ascorbate) and temperatures (4 and -20°C) during different periods of time (1, 2 and 3 months) were evaluated in MRS-broth medium. Optical density at 580 nm was used to measure growth. Lactobacilli strains proved to be highly resistant in comparison with Biffidobacteria strains. The viable cell number of Lactobacillus casei in different sucrose concentrations, different oxidoreduction potentials and refrigeration temperature was 1x1010, 2x108 and 5x107 cfu mL-1, respectively. Growth and survival rate of Lactobacillus casei showed to be the highest.

  4. THE EMPLOYMENT – PRODUCTIVITY – SALARY RELATION, A CONDITION FOR ACHIEVING LONG - TERM ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Mihai CHIRILA

    2005-01-01

    Full Text Available The employment-productivity-salary correlation is essential towards setting up conditions for economic growth andlasting social stability. An influence exists from technological changes, current stage of economic development,peculiarities of labour offer, employers – trade-unions interaction, etc. The analysis covers long-term and short-termcycles. In keeping with specificity of development stages, national economy witnesses an interval of productivitygrowth facilitating maximized employment and a rise in salary too. A lower growth rate indicates difficulties inassimilating new technologies; a higher growth rate generates instability in employing labour. Thus, the exercise ofstrong pressure is shown to exist on economic and technological structures. Likewise, this is what happens whenproductivity goes ahead of the separate analyses of the correlations between employment and productivity, on theone hand, and productivity and salary, on the other.

  5. In vitro conservation of Piper aduncum and Piper hispidinervum under slow-growth conditions

    Directory of Open Access Journals (Sweden)

    Tatiane Loureiro da Silva

    2011-04-01

    Full Text Available The objective of this work was to evaluate in vitro storage of Piper aduncum and P. hispidinervum under slow-growth conditions. Shoots were stored at low temperatures (10, 20 and 25°C, and the culture medium was supplemented with osmotic agents (sucrose and mannitol - at 1, 2 and 3% and abiscisic acid - ABA (0, 0.5, 1.0, 2.0 and 3.0 mg L-1. After six-months of storage, shoots were evaluated for survival and regrowth. Low temperature at 20ºC was effective for the in vitro conservation of P. aduncum and P. hispidinervum shoots. In vitro cultures maintained at 20ºC on MS medium showed 100% survival with slow-growth shoots. The presence of mannitol or ABA, in the culture medium, negatively affected shoot growth, which is evidenced by the low rate of recovered shoots.

  6. Influence of growth conditions on the performance of InP nanowire solar cells

    Science.gov (United States)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A.; Plissard, Sebastien R.; Wang, Jia; Koenraad, Paul M.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2016-11-01

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  7. Influence of growth conditions on the performance of InP nanowire solar cells.

    Science.gov (United States)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A; Plissard, Sebastien R; Wang, Jia; Koenraad, Paul M; Haverkort, Jos E M; Bakkers, Erik P A M

    2016-11-11

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  8. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    Science.gov (United States)

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  9. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    Science.gov (United States)

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  10. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    Science.gov (United States)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    model. The method can be also used to predict fatigue crack growth under constant amplitude and spectrum loading in various environmental conditions such as vacuum, air, and corrosive environment providing that appropriate limited constant amplitude fatigue crack growth data obtained in the same environment are available. The proposed methodology is equally suitable for fatigue analysis of smooth, notched, and cracked components.

  11. Influence of cell growth conditions and medium composition on EGFP photostability in live cells.

    Science.gov (United States)

    Mamontova, Anastasia V; Bogdanov, Alexey M; Lukyanov, Konstantin A

    2015-05-01

    Photostability is a key characteristic of fluorescent proteins. It was recently demonstrated that green fluorescent protein (GFP) photobleaching in live cells can be suppressed by changes in medium composition. Here we show that Ham's F12 medium provides very high enhanced GFP (EGFP) photostability during fluorescence microscopy of live cells. This property of Ham's F12 medium is associated with decreased concentrations of riboflavin and pyridoxine, and increased concentrations of FeSO4, cyanocobalamine, lipoic acid, hypoxanthine, and thymidine compared with DMEM. We also found that the rate of EGFP photobleaching strongly depends on cell growth conditions such as cell density and the concentration of serum. We conclude that both imaging medium composition and the physiological state of the cells can strongly affect the photostability of fluorescent proteins. Thus, accurate comparison of the photostabilities of fluorescent proteins should be performed only in side-by-side analysis in identical cell growth conditions and media.

  12. Crystal habit and growth conditions of brushite, CaHPO 4 ṡ 2H 2O

    Science.gov (United States)

    Abbona, F.; Christensson, F.; Angela, M. Franchini; Madsen, H. E. Lundager

    1993-08-01

    Brushite, a polar compound, has been grown from aqueous solutions at 25 and 40°C in a large interval of concentrations, pH and supersaturations. The great variety of morphologies (aggregates, twins, regular and irregular crystals) are described and related to the growth conditions. The polar habit of brushite appears only under definite conditions. Four types of twins have been found, one of them occuring only at 40°C. The experimental crystal habit is compared to the theoretical crystal habit derived from the structure by the periodic bond chain (PBC) method. The form {111}, which has a high frequency, shows morphological instability due to its S character. The role played by the wrong incorporation of HPO 2-4 in the kinks in forming the [010] twins and the irregular crystals is pointed out. The growth mechanisms of the most important faces are also discussed.

  13. ЕFFECT OF PLANT GROWTH REGULATORS IN THE CONDITIONS OF ANTHROPOGENIC ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2016-08-01

    Full Text Available The paper analyses the general (GА, nM pyruvic acid/ml∙second and specific (SA, nM pyruvic acid /mg second transferase enzyme activity of protein metabolism (Аlanine aminotransferase ALT, EC 2.6.1.2, and Аspartate aminotransferase, AST, EC 2.6.1.1 in Salix alba L. leaves, that planted on the banks of Mokra Sura River (anthropogenic polluted, increased level of salinity and Shpakova River (relatively clean, control which are parts of Dnipro River Basin of Steppe Dnipro Region. We used the plant growth regulator “Kornevin” in order to accelerate rooting and reducing of exogenous pressures on the plant. We registered the Aminotransferase nonspecific reaction towards anthropogenic pressure, which was associated with the formation of non-specific mechanisms of adaptation to support the homeostasis. We revealed the significant differences between experiment and control in index of protein synthesis and metabolism depending on the conditions of growth and development. Protective and leveling effects of growth regulator have been proved. The advisability of using the "Kornevin" as an adaptogene and a protector in variable environmental conditions have been indicated. Salix alba L., increased level of salinity, growth regulators, alaninaminotransferase, aspartataminotransferase, adaptogene, anthropogenic factors

  14. Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space.

    Science.gov (United States)

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2002-10-01

    Seedlings of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia and an ethylene-resistant mutant etr1-1) were cultivated for 68.5, 91.5 and 136 h on board during the Space Shuttle STS-95 mission, and changes in the elongation growth and the cell wall properties of hypocotyls were analyzed. Elongation growth of dark-grown hypocotyls of both Columbia and etr1-1 was stimulated under microgravity conditions in space. There were no clear differences in the degree of growth stimulation between Columbia and etr1-1, indicating that the ethylene level was not abnormally high in the cultural environment of this space experiment. Microgravity also increased the mechanical extensibility of cell walls in both cultivars, and such an increase was attributed to the increase in the apparent irreversible extensibility. The levels of cell wall polysaccharides per unit length of hypocotyls decreased in space. Microgravity also reduced the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction. Also, the activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls increased under microgravity conditions. These results suggest that microgravity reduces the molecular mass of xyloglucans by increasing xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell wall polysaccharides seem to be involved in an increase in the cell wall extensibility, leading to growth stimulation of Arabidopsis hypocotyls in space.

  15. Monoraphidium sp. as an algal feedstock for biodiesel: Determining optimal growth conditions in wastewater

    Science.gov (United States)

    Davidson, Zachary William

    This thesis set out to investigate different conditions for growth of the freshwater algal species Monoraphidium sp. for use as a feedstock for biodiesel. The algae was inoculated into effluent gathered from a local water treatment plant and placed into 50gal mesocosms. Cells were grown at large scale in wastewater, harvested, and run through extractions to collect lipids (26%DW). The lipids were then turned into biodiesel. The algae also removed most of the pollutants in the wastewater, lowering nitrate and phosphate levels usually to less than 1mg/L. Erlenmeyer flask cultures (1L) were used to determine optimal growth conditions for temperature (10°C), light intensity (30microE/m2/sec with a 10 hour photoperiod), and initial inoculation density (1x104cells/mL). The addition of bicarbonate during the initial or exponential growth phase had no effect on growth. It was concluded that Monoraphidium sp. grown in USDA Hardiness Zone 5 is capable of producing biodiesel.

  16. Modelling of Grain Growth Kinetics in Porous Ceramic Materials under Normal and Irradiation Conditions

    Directory of Open Access Journals (Sweden)

    Mikhail S. Veshchunov

    2009-09-01

    Full Text Available Effect of porosity on grain growth is both the most frequent and technologically important situation encountered in ceramic materials. Generally this effect occurs during sintering, however, for nuclear fuels it also becomes very important under reactor irradiation conditions. In these cases pores and gas bubbles attached to the grain boundaries migrate along with the boundaries, in some circumstances giving a boundary migration controlled by the movement, coalescence and/or sintering of these particles. New mechanisms of intergranular bubble and pore migration which control the mobility of the grain boundary under normal and irradiation conditions are reviewed in this paper.

  17. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions.

    Science.gov (United States)

    McClure, Ryan; Tjaden, Brian; Genco, Caroline

    2014-01-01

    In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the "sRNAome" of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.

  18. Effect of Growth Conditions on Yield and Heme Content of Vitreoscilla

    OpenAIRE

    Lamba, Parveen; Webster, Dale A.

    1980-01-01

    Vitreoscilla, a gliding bacterium in the Beggiatoaceae, is an obligate aerobe in which cytochrome o functions as the terminal oxidase. Protoheme IX is the only heme type present in this organism. The yield and heme content of Vitreoscilla cells grown in yeast extract, peptone, and acetate were dependent on growth conditions. Cells harvested in early stationary phase contained roughly three times as much heme as cells in early log phase. There was an optimal shaking rate for maximum heme conte...

  19. On Stability and the Spectrum Determined Growth Condition for Spatially Periodic Systems

    Science.gov (United States)

    2005-01-01

    On Stability and the Spectrum Determined Growth Condition for Spatially Periodic Systems Makan Fardad and Bassam Bamieh Abstract— We consider...difficult. This work is partially supported by AFOSR Grant FA9550-04-1-0207. M. Fardad and B. Bamieh are with the Department of Me- chanical and...Environmental Engineering, University of California, Santa Barbara, CA 93105-5070. email: fardad @engineering.ucsb.edu, bamieh@engineering.ucsb.edu. In this

  20. Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions

    Directory of Open Access Journals (Sweden)

    VANDIMILLI A. LIMA

    Full Text Available ABSTRACT Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN and blue (BN both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade. The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

  1. Initial growth of Bauhinia variegata trees under different colored shade nets and light conditions

    Directory of Open Access Journals (Sweden)

    Renata Bachin Mazzini-Guedes

    2014-12-01

    Full Text Available Bauhinia variegata and B. variegata var. candida, commonly known as orchid trees, are small sized trees widely used for urban forestry and landscaping. Adult plants grow under full sun; in Brazil, however, seedlings are generally cultivated in commercial nurseries under natural half-shading. The objective of this study was to evaluate the influence of different colored shade nets and light conditions on the initial growth of B. variegata and B. variegata var. candida. The influence of six light conditions (red net with 50% shading; blue net with 50% shading; black net with 70% shading; black net with 50% shading; black net with 30% shading; and full sun on the initial growth of B. variegata and B. variegata var. candida were evaluated along 160 days, and growth relationships were calculated. Seedlings showed more efficiency on the use of photoassimilated compounds when grown under full sun. Such condition is the most appropriate for seedling production of B. variegata and B. variegata var. candida, contradicting what has been performed in practice.

  2. Seed priming for better growth and yield of safflower (Carthamus tinctorius under saline condition

    Directory of Open Access Journals (Sweden)

    Elouaer Mohamed Aymen

    2012-08-01

    Full Text Available Salinity is considered as a major abiotic stress affecting crop production in arid and semi-arid region. In field condition, poor germination and decrease of seedling growth results in poor establishment and occasionally crop failure. Many research studies have shown that seed priming is an efficient method for increasing plant growth and improvement of yield in saline condition. That’s why; this experiment was conducted to evaluate the effects of KCl priming on the growth traits and yield of Tunisian safflower under salinity conditions. Seeds were primed with KCl (5 g/l for 24 h at 20°C. Primed (P and un-primed (NP seeds were directly sown in the field and followed during eight months of plant cycle. Experiments were conducted using various water irrigations concentrations induced by NaCl (0, 3, 6, 9 and 12 g/l. Results showed that plant height of primed seeds was greater than that of un-primed seeds. Numbers of branches per plant, fresh and dry weight, heads number per plant, petals and grains yield of plants derived from primed seeds were higher compared with un-primed seeds.

  3. The Proteome of Dissimilatory Metal-reducing Microorganism Geobacter Sulfurreducens under Various Growth Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y-H R.; Hixson, Kim K.; Giometti, Carol S.; Stanley, A; Esteve-Nunez, A; Khare, Tripti; Tollaksen, Sandra L.; Zhu, Wenhong; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.; Mester, Tunde; Lovley, Derek R.

    2006-05-16

    The global protein analysis of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under eight different growth conditions in order to enhance the potential that genes would be expressed. Over 3,187 gene products, representing about 92% of the total predicted gene products in the genome, were detected. The AMT approach was able to identify a much higher number of proteins than could be detected with the 2-D PAGE approach. A high proportion of predicted proteins in most protein role categories were detected with the highest number of proteins identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Localization studies indicated that computational predictions of cytochrome location were limited. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.

  4. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.

    Science.gov (United States)

    Ding, Yan-Huai R; Hixson, Kim K; Giometti, Carol S; Stanley, Ann; Esteve-Núñez, Abraham; Khare, Tripti; Tollaksen, Sandra L; Zhu, Wenhong; Adkins, Joshua N; Lipton, Mary S; Smith, Richard D; Mester, Tünde; Lovley, Derek R

    2006-07-01

    The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six different growth conditions in order to enhance the potential that a wide range of genes would be expressed. The AMT tag approach was able to identify a much greater number of proteins than could be detected with the 2-D PAGE approach. With the AMT approach over 3,000 gene products were identified, representing about 90% of the total predicted gene products in the genome. A high proportion of predicted proteins in most protein role categories were detected; the highest number of proteins was identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT tag approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.

  5. Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition

    Institute of Scientific and Technical Information of China (English)

    S. K. UPADHYAY; J. S. SINGH; D. P. SINGH

    2011-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity stress by reducing the content of Na+ available for plant uptake. In this study, native bacterial strains of wheat rhizosphere in soils of Varanasi, India, were screened to identify the EPS-producing salt-tolerant rhizobacteria with plant growth-promoting traits. The various rhizobacteria strains were isolated and identified using 16S rDNA sequencing. The plant growth-promoting effect of inoculation of seedlings with these bacterial strains was evaluated under soil salinity conditions in a pot experiment. Eleven bacterial strains which initially showed tolerance up to 80 g L-1 NaCl also exhibited an EPS-producing potential. The results suggested that the isolated bacterial strains demonstrated some of the plant growth-promoting traits such as phosphate solubilizing ability and production of auxin, proline, reducing sugars, and total soluble sugars, Furthermore, the inoculated wheat plants had an increased biomass compared to the un-inoculated plants.

  6. Effect of Different Cultural Condition on the Growth of Fusarium moniliforme Causing Bakanae Disease

    Directory of Open Access Journals (Sweden)

    Ramesh Singh Yadav

    2014-06-01

    Full Text Available n this study, Fusarium moniliforme causal organism of Bakanae disease has been isolated from infected rice seeds variety Pusa Basmati-1121 by using blotter technique. The effects of temperature, pH and carbon source on radial growth rate were assessed on potato dextrose broth medium. Precise characterisation of the growth conditions for such a fungal pathogen has an evident interest to understand and to prevent spoilage of rice crops. Study was carried out to check the effect of temperature (15–50 °C, pH (2-10, and different carbon sources (glucose, dextrose, sucrose, rice husk and sugarcane bagasse on the growth Fusarium moliniforme. Optimum temperature and pH for growth was 20 °C and 5.0 with maximum dry mycelium weight and sporulation i.e. 2.168 gm 1.806 million spores / 100ml respectively. Maximum growth was observed when rice husk was used as sole carbon source (2.432 gm and 1.68 million spore/ 100 ml however maximum sporulation (0.984 million spore/ 100 ml was achieved when sugarcane bagasse was used as sole carbon source.

  7. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    Science.gov (United States)

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening

  8. Growth Responses of Fish During Chronic Exposure of Metal Mixture under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Saima Naz and Muhammad Javed

    2013-07-01

    Full Text Available Growth responses of five fish species viz. Catla catla, Labeo rohita, Cirrhina mrigala, Ctenopharyngodon idella and Hypophthalmichthys molitrix were determined, separately, under chronic exposure of binary mixture of metals (Zn+Ni at sub-lethal concentrations (1/3rd of LC50 for 12 weeks. Randomized complete block design (RCBD was followed to conduct this research work. The groups (10 fish each of Catla catla, Labeo rohita, Cirrhina mrigala, Ctenopharyngodon idella and Hypophthalmichthys molitrix having almost similar weights were investigated for their growth responses and metals bioaccumulation patterns in their body organs during chronic exposure of Zn+Ni mixture. The bioaccumulation of metals in the fish body organs viz. gills, liver, kidney, fins, bones, muscle and skin were also determined before and after growth trails under the stress of metals mixture. The exposure of fish to sub-lethal concentrations of mixture caused significant impacts on the average wet weight increments of five fish species. Ctenopharyngodon idella and Labeo rohita attained significantly higher weights, followed by that of Hypophthalmichthys molitrix, Cirrhina mrigala and Catla catla. However, the growth of metals mixture exposed fish species was significantly lesser than that of control fish (un-stressed. Significantly variable condition factor values reflected the degree of fish well-beings that correlated directly with fish growth and metal exposure concentration. Any significant change in feed intake, due to stress, is reflected in terms of fish growth showing the impacts of metal mixture on fish growth were either additive or antagonist / synergistic. Accumulation of all the metals in fish body followed the general order: liver>kidney>gills> skin >muscle> fins >bones.

  9. Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation.

    Science.gov (United States)

    Van Wamel, Willem J B; Hendrickx, Antoni P A; Bonten, Marc J M; Top, Janetta; Posthuma, George; Willems, Rob J L

    2007-02-01

    A genetic subpopulation of Enterococcus faecium, called clonal complex 17 (CC-17), is strongly associated with hospital outbreaks and invasive infections. Most CC-17 strains contain a putative pathogenicity island encoding the E. faecium variant of enterococcal surface protein (Esp). Western blotting, flow cytometric analyses, and electron microscopy showed that Esp is expressed and exposed on the surface of E. faecium, though Esp expression and surface exposure are highly varied among different strains. Furthermore, Esp expression depends on growth conditions like temperature and anaerobioses. When grown at 37 degrees C, five of six esp-positive E. faecium strains showed significantly increased levels of surface-exposed Esp compared to bacteria grown at 21 degrees C, which was confirmed at the transcriptional level by real-time PCR. In addition, a significant increase in surface-exposed Esp was found in half of these strains when grown at 37 degrees C under anaerobic conditions compared to the level in bacteria grown under aerobic conditions. Finally, amounts of surface-exposed Esp correlated with initial adherence to polystyrene (R(2) = 0.7146) and biofilm formation (R(2) = 0.7535). Polystyrene adherence was competitively inhibited by soluble recombinant N-terminal Esp. This study demonstrates that Esp expression on the surface of E. faecium (i) varies consistently between strains, (ii) is growth condition dependent, and (iii) is quantitatively correlated with initial adherence and biofilm formation. These data indicate that E. faecium senses and responds to changing environmental conditions, which might play a role in the early stages of infection when bacteria transit from oxygen-rich conditions at room temperature to anaerobic conditions at body temperature. In addition, variation of surface exposure may explain the contrasting findings reported on the role of Esp in biofilm formation.

  10. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    Science.gov (United States)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  11. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    Science.gov (United States)

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-02-05

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes.

  12. Effect of culture conditions on the growth of biomass Yarrowia lipolytica - producing protein feed

    Directory of Open Access Journals (Sweden)

    O. S. Korneeva

    2016-01-01

    Full Text Available Fodder yeast is highly valuable protein-vitamin products. Protein digestibility by yeast and amino acid content, superior proteins of animal origin. Fodder yeast protein digested in animals by 95 %. The biological value of yeast protein is determined by the presence of a significant amount of essential amino acids. Moreover, yeast cells contain many vitamins microelement and a significant amount of fat, in which the predominant unsaturated fatty acid. Currently, fodder yeast successfully used in livestock and poultry, so the demand for them is increasing every year. For the production of fodder yeast using a yeast having the necessary technological properties: the ability of rapid growth in aerobic conditions to form protein, amino acids and vitamins, resistant crop production, the development of resistance to foreign microorganisms. Intensive education yeast biomass contributes to a number of conditions, including pH, temperature and aeration of the culture occupy an important place. The main criterion for comparison and selection of a culture medium for this is the speed of its growth and ability to assimilate all of the nutrients with high economic factor. It depends on the performance of the enterprise, energy consumption and other technical - economic performance. The effect of pH of the medium on the biomass accumulation of yeast Yarrowia lipolytica. Found that at pH 5,2 - 5,5 observed maximum growth rate of the yeast cells. The effect of temperature on the accumulation of yeast biomass. The temperature of the culture medium determines the intensity of metabolism in cells. It was found that the optimal growth temperature of the culture Yarrowia lipolytica is 33 0C. The effect of aeration on the growth rate of yeast cells. Tro-established that the maximum increase of biomass was obtained with the aeration of 70 cm3 /cm3hrs.

  13. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    Science.gov (United States)

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  14. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    Science.gov (United States)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against

  15. Effect of mycorrhizas application on plant growth and nutrient uptake in cucumber production under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ortas, I.

    2010-07-01

    Mycorrhizas application in horticultural production in the Eastern Mediterranean region of Turkey has been studied under field conditions for several years. The effects of different arbuscular mycorrhizal fungi (AMF) have been evaluated under field conditions for cucumber production. The parameters measured were seedling survival, plant growth and yield, and root colonization. In 1998 and 1999, Glomus mosseae and Glomus etunicatum inoculated cucumber seedlings were treated with and without P (100 kg P2O5 ha-1) application. A second experiment was set up to evaluate the response of cucumber to the inoculation with a consortia of indigenous mycorrhizae, G. mosseae, G. etunicatum, Glomus clarum, Glomus caledonium and a mixture of these four species. Inoculated and control non inoculated cucumber seedlings were established under field conditions in 1998, 2001, 2002 and 2004. Seedling quality, seedling survival under field conditions and yield response to mycorrhiza were tested. Fruits were harvested periodically; at blossom, plant leaves and root samples were taken for nutrient content and mycorrhizal colonization analysis respectively. The field experiment results showed that mycorrhiza inoculation significantly increased cucumber seedling survival, fruit yield, P and Zn shoot concentrations. Indigenous mycorrhiza inoculum was successful in colonizing plant roots and resulted in better plant growth and yield. The relative effectiveness of each of the inocula tested was not consistent in the different experiments, although inoculated plants always grew better than control no inoculated. The most relevant result for growers was the increased survival of seedlings. (Author) 20 refs.

  16. A Molecular Dynamics Study on the Constraint Conditions of the Particle Growth Process in Laser Synthesis of Nanopowders

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available Laser-induced chemical vapor deposition (LICVD is a nanopowder synthesis method in which the nanoparticles of a synthetic product undergo nucleation, growth, and agglomeration. The growth process is crucial because it directly determines the growth rate and final size of nanoparticles. In this paper, the nanoparticle growth process is analyzed through a molecular dynamics study, and the process is divided into five steps. In addition, this study explains the microscopic heat and mass transfer processes that occur in the surrounding space and on the particulate surface. Three constraint conditions that may restrict the growth process, namely, transfer constraint, surface constraint, and temperature constraint conditions, are proposed and modeled. To calculate the final diameter and the nanoparticle growth rate, formulae for the constraint conditions are developed. The behavior of four gases in the particulate growth zone is discussed in detail.

  17. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian

    2008-01-01

    Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP....../mol of glucose. With maltose as the energy source, the increase in biomass yield amounted to 51% compared with an aerobic culture that lacked haemin. This higher ATP yield was obtained by redirecting pyruvate metabolism from lactate to acetate production, and from savings through respiration. However, even after...

  18. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    Science.gov (United States)

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.

  19. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    Science.gov (United States)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  20. Exploring the optimum conditions for maximizing the microbial growth of Candida intermedia by response surface methodology.

    Science.gov (United States)

    Yönten, Vahap; Aktaş, Nahit

    2014-01-01

    Exploring optimum and cost-efficient medium composition for microbial growth of Candida intermedia Y-1981 yeast culture growing on whey was studied by applying a multistep response surface methodology. In the first step, Plackett-Burman (PB) design was utilized to determine the most significant fermentation medium factors on microbial growth. The medium temperature, sodium chloride and lactose concentrations were determined as the most important factors. Subsequently, the optimum combinations of the selected factors were explored by steepest ascent (SA) and central composite design (CCD). The optimum values for lactose and sodium chloride concentrations and medium temperature were found to be 18.4 g/L, 0.161 g/L, and 32.4°C, respectively. Experiments carried out at the optimum conditions revealed a maximum specific growth rate of 0.090 1/hr; 42% of total lactose removal was achieved in 24 h of fermentation time. The obtained results were finally verified with batch reactor experiments carried out under the optimum conditions evaluated.

  1. Fatigue-crack growth behavior of Type 347 stainless steels under simulated PWR water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Yoon, Ji-Hyun; Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fatigue crack growth rate (FCGR) curve of stainless steel exists in ASME code section XI, but it is still not considering the environmental effects. The longer time nuclear power plant is operated, the more the environmental degradation issues of materials pop up. There are some researches on fatigue crack growth rate of S304 and S316, but researches of FCGR of S347 used in Korea nuclear power plant are insufficient. In this study, the FCGR of S347 stainless steel was evaluated in the PWR high temperature water conditions. The FCGRs of S347 stainless steel under pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO) and frequency. 1. FCGRs of SS347 were slower than that in ASME XI and environmental effect did not occur when frequency was higher than 1Hz. 2. Fatigue crack growth is accelerated by corrosion fatigue and it is more severe when frequency is slower than 0.1Hz. 3. Increase of crack tip opening time increased corrosion fatigue and it deteriorated environmental fatigue properties.

  2. Response of the bacterial symbiont Holospora caryophila to different growth conditions of its host.

    Science.gov (United States)

    Castelli, Michele; Lanzoni, Olivia; Fokin, Sergei I; Schrallhammer, Martina; Petroni, Giulio

    2015-02-01

    Previous studies on bacterial symbionts of ciliates have shown that some symbionts can be maintained relatively well under standard laboratory conditions whereas others are frequently lost, especially when the host is cultivated at a high division rate. In this study, the variation in infection level by the endosymbiont Holospora caryophila within its host population Paramecium octaurelia was investigated in response to three alimentary treatments and a subsequent starvation phase. The response of the ciliates was determined as a nearly exponential growth rate with different slopes in each treatment, proportional to the amount of food received. The initial infection level was higher than 90%. After 24 days of exponential host's growth, the prevalence remained stable at approximately 90% in all treatments, even after a subsequent starvation phase of 20 days. However, at intermediate time-points in both the feeding and the starvation phase, fluctuations in the presence of the intracellular bacteria were observed. These results show that H. caryophila is able to maintain its infection under the tested range of host growth conditions, also due to the possibility of an effective re-infection in case of partial loss.

  3. Transsynaptic EphB/Ephrin-B signaling regulates growth of presynaptic boutons required for classical conditioning.

    Science.gov (United States)

    Li, Wei; Zheng, Zhaoqing; Keifer, Joyce

    2011-06-01

    Learning-related presynaptic remodeling has been documented in only a few systems, and its molecular mechanisms are largely unknown. Here we describe a role for the bidirectional EphB/ephrin-B signaling system in structural plasticity of presynaptic nerve terminals using an in vitro model of classical conditioning. Conditioning or BDNF application induced significant growth of auditory nerve presynaptic boutons that convey the conditioned stimulus to abducens motor neurons. Interestingly, bouton enlargement occurred only for those synapses apposed to motor neuron dendrites rather than to somata. Phosphorylation of ephrin-B1, but not EphB2, was induced by both conditioning and BDNF application and was inhibited by postsynaptic injections of ephrin-B antibody. Finally, suppression of postsynaptic ephrin-B function inhibited presynaptic bouton enlargement that was rescued by activation of EphB2 by ephrin-B1-Fc. These data provide evidence for ephrin-B-induced EphB2 forward signaling in presynaptic structural plasticity during classical conditioning. They also reveal a functional interaction between BDNF/TrkB and the Eph/ephrin signaling systems in the coordination of presynaptic and postsynaptic modifications during conditioning.

  4. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions.

    Science.gov (United States)

    Santos, A M; Janssen, M; Lamers, P P; Evers, W A C; Wijffels, R H

    2012-01-01

    The effect of elevated pH and salt concentration on the growth of the freshwater microalga Neochloris oleoabundans was investigated. A study was conducted in 24-well plates on the design of a growth medium and subsequently applied in a photobioreactor. An artificial seawater medium with reduced Ca(2+) and PO(4)(3-) could prevent mineral precipitation at high pH levels. Growth was characterized in this new medium at pH 8.1 and at pH 10.0, with 420 mM of total salts. Specific growth rates of 0.08 h(-1) at pH 8.1 and 0.04 h(-1) at pH 10.0 were obtained under controlled turbidostat cultivation. The effect of nitrogen starvation on lipid accumulation was also investigated. Fatty acids content increased not only with nitrogen limitation but also with a pH increase (up to 35% in the dry biomass). Fluorescence microscopy gave visual proof that N. oleoabundans accumulates oil bodies when growing in saline conditions at high pH.

  5. Effect of some Trichoderma spp. isolates on promoting growth of cucumber seedlings under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    M. Taghinasab Darzi

    2012-12-01

    Full Text Available This experiment was performed to investigate the effect of some Trichoderma spp. isolates as growth promoters of cucumber (Cucumis sativus L. seedlings under greenhouse conditions. Inoculai of 19 Thrichoderma spp. isolates were prepared from disinfected wheat grain. The upper half of the soil in pots (containing field soil and sand was mixed with these inoculai at 3% ratio and the pots were irrigated with tap water for 28 days. After four weeks, the seedlings were sampled for growth comparison on stem length, root length and total fresh weight. The results showed that some isolates improved significantly the cucumber seedlings’ growth and others had inhibitory effect. Application of Trichoderma spp. 17 and T. longibraciatum increased stem length more than 74% as compared to control. Also, these isolates increased significantly P<0.05 the total fresh weight about 40% and 25%, respectively, as compared to control. Furthermore, Trichoderma sp. 19 decreased significantly the stem length, root length and total fresh weight as compared to control. These results show the ability of Persian Trichoderma spp. isolates in promoting cucumber growth and its potential for other plants.

  6. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  7. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav

    2015-01-01

    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  8. Growth and bromatologic value of Typha sp. under semi-arid conditions

    Directory of Open Access Journals (Sweden)

    Jorge Messias Leal do Nascimento

    2015-03-01

    Full Text Available Typha sp. plants are rustic and have accelerated development. However, their real growth and potential to animal nutrition are not so well-known. This study aimed to evaluate the shoot biomass production, growth dynamics and chemicalbromatological composition of Typha sp. plants at different cutting heights, under semiarid conditions. A total of four cutting heights (60 cm, 100 cm, 140 cm and 180 cm were evaluated in a complete randomized design, with five replicates. Plants presented similar production of leaf biomass and heart of palm up to 140 cm height, with higher leaf accumulation above this value. Its heart of palm grows up to 112.5 cm and, above this height, only leaf elongation occurs. It is not recommended to cut this plant bellow 140 cm height, otherwise that can affect the pseudo-stem formation (heart of palm, which supports the leaf biomass accumulation.

  9. Numerical study of the relationship between growth condition and atomic arrangement of InGaN

    Energy Technology Data Exchange (ETDEWEB)

    Kangawa, Y.; Kakimoto, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Ito, T. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Koukitu, A. [SRI for Future Nano-science and Technology, Institute of Symbiotic Science and Technology, Tokyo University of A and T, Koganei, Tokyo 184-8588 (Japan)

    2007-06-15

    Monte Carlo simulations of InGaN MOVPE were carried out to investigate the relationship between growth conditions and atomic arrangement in thin films grown on (0001) and (11 anti 20). In the case of small input partial pressures of indium, it was found that compositional instability was enhanced during the site exchanging process instead of the adsorption process. Moreover, it was found that compositional fluctuation in thin films grown on (11 anti 20) is smaller than that in thin films grown on (0001). This suggests that accumulated stress near the growth surface influences the compositional fluctuation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions

    Science.gov (United States)

    Pan, Weichun; Xu, Jin; Tsukamoto, Katsuo; Koizumi, Masako; Yamazaki, Tomoya; Zhou, Ru; Li, Ang; Fu, Yuying

    2013-08-01

    Motivated by the enhancement of protein quality under microgravity condition, the behaviors of crystal growth under various gravity conditions have been monitored via Foton Satellite and parabolic flight. We found that the normal growth rate and the step velocity would be enhanced only at high protein concentration. Although the difference of diffusion between monomer lysozyme molecule and main impurity species in HWEL dimer may be able to explain this enhancement in long period at high protein concentration, it is not valid at low lysozyme concentration and it can't explain the results obtained by parabolic flight, in which microgravity condition maintained only about 20 s. In order to compromise this contradiction, cluster, universal existing in protein solution, has been picked up. The dynamic light scattering technique figured out dimer is served as the seed for cluster formation. Due to its large size, cluster keeps still under microgravity. Via this mechanism, the purification of lysozyme above crystal surface has been achieved. We also found the two supergravity (˜1.5 g) periods immediately before and after microgravity period have different effects on the step velocity. The pre-MG period depresses the step velocity while the post-MG enhances it. This odd phenomenon ascribes to two factors: (1) the flow rate modification and (2) the purity of protein solution immediate above crystal surface.

  11. Impact of growth conditions on susceptibility of five microbial species to alkaline stress.

    Science.gov (United States)

    Brändle, Nathalie; Zehnder, Matthias; Weiger, Roland; Waltimo, Tuomas

    2008-05-01

    The effects of different growth conditions on the susceptibility of five taxa to alkaline stress were investigated. Enterococcus faecalis ATCC 29212, Streptococcus sobrinus OMZ 176, Candida albicans ATCC 90028, Actinomyces naeslundii ATCC 12104, and Fusobacterium nucleatum ATCC 10953 were grown as planktonic cells, allowed to adhere to dentin for 24 hours, grown as monospecies or multispecies biofilms on dentin under anaerobic conditions with a serum-enriched nutrient supply at 37 degrees C for 5 days. In addition, suspended biofilm microorganisms and 5-day old planktonic multispecies cultures were used. Microbial recovery upon direct exposure to saturated calcium hydroxide solution (pH 12.5) for 10 and 100 minutes was compared with control exposure to physiologic saline. Planktonic microorganisms were most susceptible; only E. faecalis and C. albicans survived in saturated solution for 10 minutes, the latter also for 100 minutes. Dentin adhesion was the major factor in improving the resistance of E. faecalis and A. naeslundii to calcium hydroxide, whereas the multispecies context in a biofilm was the major factor in promoting resistance of S. sobrinus to the disinfectant. In contrast, the C. albicans response to calcium hydroxide was not influenced by the growth condition. Adherence to dentin and interspecies interactions in a biofilm appear to differentially affect the sensitivity of microbial species to calcium hydroxide.

  12. Growth regulation mechanisms in higher plants under microgravity conditions - changes in cell wall metabolism.

    Science.gov (United States)

    Hoson, T; Kamisaka, S; Wakabayashi, K; Soga, K; Tabuchi, A; Tokumoto, H; Okamura, K; Nakamura, Y; Mori, R; Tanimoto, E; Takeba, G; Nishitani, K; Izumi, R; Ishioka, N; Kamigaichi, S; Aizawa, S; Yoshizaki, I; Shimazu, T; Fukui, K

    2000-06-01

    During Space Shuttle STS-95 mission, we cultivated seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) and Arabidopsis (Arabidopsis thaliana L. cv. Columbia and cv. etr1-1) for 68.5, 91.5, and 136 hr on board, and then analyzed changes in the nature of their cell walls, growth, and morphogenesis under microgravity conditions. In space, elongation growth of both rice coleoptiles and Arabidopsis hypocotyls was stimulated. Also, the increase in the cell wall extensibility, especially that in the irreversible extensibility, was observed for such materials. The analyses of the amounts, the structure, and the physicochemical properties of the cell wall constituents indicated that the decreases in levels and molecular masses of cell wall polysaccharides were induced under microgravity conditions, which appeared to contribute to the increase in the wall extensibility. The activity of certain wall enzymes responsible for the metabolic turnover of the wall polysaccharides was increased in space. By the space flight, we also confirmed the occurrence of automorphogenesis of both seedlings under microgravity conditions; rice coleoptiles showed an adaxial bending, whereas Arabidopsis hypocotyls elongated in random directions. Furthermore, it was shown that spontaneous curvatures of rice coleoptiles in space were brought about uneven modifications of cell wall properties between the convex and the concave sides.

  13. Human conditions of insulin-like growth factor-I (IGF-I deficiency

    Directory of Open Access Journals (Sweden)

    Puche Juan E

    2012-11-01

    Full Text Available Abstract Insulin-like growth factor I (IGF-I is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions. IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.

  14. Growth and Eco-Physiological Performance of Cotton Under Water Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-yan; Isoda Akihiro; LI Mao-song; WANG Dao-long

    2007-01-01

    A cotton cultivar Xinluzao 8 was grown under four levels of water stress treatments (normal irrigation, slight, mild and severe water stress) from the initial reproductive growth stage in Shihezi, Xinjiang, China, in 2002, to evaluate the growth and eco-physiological performances. Under water stress conditions, the transpiration ability decreased while the leaf temperature increased. Although the relative leaf water content decreased as water stress increased, the differences among the treatments were small, indicating that cotton has high ability in maintaining water in leaf. The stomatal density increased as water stress increased, while the maximum stomatal aperture reduced only in the severest stressed plants.The time of the maximum stomatal aperture was delayed in the mild and severe stressed plants. When severe stress occurred, the stomata were kept open until the transpiration decreased to nearly zero, suggesting that the stomata might not be the main factor in adjusting transpiration in cotton. Cotton plant has high adaptation ability to water stress conditions because of decrease in both stomatal conductance and hydraulic conductance from soil-to-leaf pathway. The actual quantum yield of photosystem Ⅱ (PS Ⅱ) decreased under water stress conditions, while the maximum quantum yield of PS Ⅱ did not vary among treatments, suggesting that PS Ⅱ would not be damaged by water stress. The total dry weight reduced as water stress increased.

  15. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen, E-mail: chen.zhou.2@asu.edu [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Vannela, Raveender [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Hayes, Kim F. [Department of Civil and Environmental Engineering, University of Michigan (United States); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States)

    2014-05-01

    Highlights: • Extended incubation time to 16 days allowed significant FeS crystallization. • A weakly acidic pH greatly enhanced particle growth of mackinawite. • Microbial metabolism of different donors systematically altered the ambient pH. • Greater sulfide accumulation stimulated mackinawite transformation to greigite. - Abstract: Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor – affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe{sub 1+x}S). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe{sub 3}S{sub 4}) when the free sulfide concentration was 29.3 mM. Furthermore, sufficient free Fe{sup 2+} led to the additional formation of vivianite [Fe{sub 3}(PO{sub 4}){sub 2}·8(H{sub 2}O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics.

  16. Large-scale changes in bloater growth and condition in Lake Huron

    Science.gov (United States)

    Prichard, Carson G.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Riley, Stephen C.

    2016-01-01

    Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum

  17. Growth conditions of 0-group plaice Pleuronectes platessa in the western Wadden Sea as revealed by otolith microstructure analysis

    Science.gov (United States)

    Cardoso, Joana F. M. F.; Freitas, Vânia; de Paoli, Hélène; Witte, Johannes IJ.; van der Veer, Henk W.

    2016-05-01

    Growth studies based on population-based growth estimates are limited by the fact that they do not take into account differences in age/size structure within the population. To overcome these problems, otolith microstructure analysis is often used to estimate individual growth. Here, we analyse growth of 0-group plaice in the western Wadden Sea in two years: a year preceded by a mild winter (1995) and a year preceded by a severe winter (1996). Growth was analysed by combining information on individual growth based on otolith analysis with predictions of maximum growth (= under optimal food conditions) based on a Dynamic Energy Budget model. Otolith analysis revealed that settlement occurred earlier in 1995 than in 1996. In both years, one main cohort was found, followed by a group of late settlers. No differences in mean length-at-age were found between these groups. DEB modelling suggested that growth was not maximal during the whole growing season: realized growth (the fraction of maximum growth realized by 0-group plaice) declined in the summer, although this decline was relatively small. In addition, late settling individuals exhibited lower realized growth than individuals from the main cohort. This study confirms that growth conditions for 0-group plaice are not optimal and that a growth reduction occurs in summer, as suggested in previous studies.

  18. THE INFLUENCE OF POLYMERIC GROWTH REGULATORS ON MORPHOLOGICAL AND PHYSIOLOGICAL PARAMETERS OF RICE IN SALINE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Tretyakova O. I.

    2016-04-01

    Full Text Available The article studies the influence of polymeric in the form of formers and growth regulators on the growth and development of rice plants when grown in saline conditions. We controlled the effect of salinity on grows regulators and vigor, seed germination, root and shoot weight, the content of photosynthetic pigments parameters, induction curves of delayed fluorescence, the indicators of structure of harvest, grain yield. It was found, that pre-sowing seed soaking in solutions of polymer grows regulators has a stimulating effect on the growth and development of rice plants in the early stages: we significantly increased germination and emergence, dry weight of root and shoot compared to control. At different stages of ontogeny rice, the absolute content of pigments in the leaves and the relationship between the individual variants change. The absolute content of pigments in leaves and their relationship between experiences at different stages of ontogeny change. In the period of intensive vegetative growth from seedling stage the content of total chlorophyll is maximum, and by the end of the growing season it decreases. It can be assumed that the salinity of the substrate significantly reduces the productivity of photosynthesis in young plants, possibly due to imbalance of ions in the cell, the older it gets – the weaker the phenomenon is and even becomes reversed. The second maximum IR ZF increases during the growing season from germination to flowering, then decreases to the beginning of ripening in all embodiments. The same dynamics is characteristic of the magnitude of the proton gradient in the membranes of chloroplasts tylakoids. Salt protection effect of growth regulators on grain yield is significant on both backgrounds of mineral nutrition

  19. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    Directory of Open Access Journals (Sweden)

    Klaudia BRÜCKOVÁ

    2016-12-01

    Full Text Available The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa. Lettuce plants were grown in three types of conditions, in greenhouse (I. variant, behind clear glass in field (II. variant and in open field conditions (III. variant. Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Multiplex® 3 (Force-A, France. It was estimated that green lettuce varieties had a greater flavonols content compared to red lettuce varieties in all experimental variants. The highest level of flavonols was detected in leaves of green variety Zoltán (1.218 RU and in red lettuce had the highest amount of flavonols in variety Carmesi (1.095 RU. At the same time red lettuce varieties were characterized by higher anthocyanins content. Parameter anthocyanin index is correlated with visible red coloration of leaves. The highest content of anthocyanins was detected in variety Oakly (0.867 RU. Under the open field conditions was found statistically significant higher (P < 0.05 flavonols and anthocyanins level in both green and red lettuce leaves compared to greenhouse conditions. It may be connected with intensification of flavonoids biosynthesis and accumulation which normally stimulated by sun irradiation, especially UV-B radiation.

  20. Mothers determine offspring size in response to own juvenile growth conditions

    Science.gov (United States)

    Taborsky, Barbara

    2006-01-01

    Through non-genetic maternal effects, mothers can tailor offspring phenotype to the environment in which young will grow up. If juvenile and adult ecologies differ, the conditions mothers experienced as juveniles may better predict their offspring's environment than the adult environment of mothers. In this case maternal decisions about investment in offspring quality should already be determined during the juvenile phase of mothers. I tested this hypothesis by manipulating juvenile and adult maternal environments independently in a cichlid fish. Females raised in a poor environment produced larger young than females raised without food limitations, irrespective of the feeding conditions experienced during adulthood. This maternal boost was due to a higher investment in eggs and to faster larval growth. Apparently, mothers prepare their offspring for similar environmental conditions to those they encountered as juveniles. This explanation is supported by the distribution of these fishes under natural conditions. Juveniles live in a different and much narrower range of habitats than adults. Therefore, the habitat mothers experienced as juveniles will allow them to predict their offspring's environment better than the conditions in the adult home range. PMID:17148368

  1. Features of Scots pine radial growth in conditions of provenance trial.

    Science.gov (United States)

    Kuzmin, Sergey; Kuzmina, Nina

    2013-04-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast

  2. Optimal Growth Conditions for Selective Ge Islands Positioning on Pit-Patterned Si(001

    Directory of Open Access Journals (Sweden)

    Bergamaschini R

    2010-01-01

    Full Text Available Abstract We investigate ordered nucleation of Ge islands on pit-patterned Si(001 using an original hybrid Kinetic Monte Carlo model. The method allows us to explore long time-scale evolution while using large simulation cells. We analyze the possibility to achieve selective nucleation and island homogeneity as a function of the various parameters (flux, temperature, pit period able to influence the growth process. The presence of an optimal condition where the atomic diffusivity is sufficient to guarantee nucleation only within pits, but not so large to induce significant Ostwald ripening, is clearly demonstrated.

  3. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose.

    Science.gov (United States)

    Ruka, Dianne R; Simon, George P; Dean, Katherine M

    2012-06-20

    An extensive matrix of different growth conditions including media, incubation time, inoculum volume, surface area and media volume were investigated in order to maximize the yield of bacterial cellulose produced by Gluconacetobacter xylinus, which will be used as reinforcement material to produce fully biodegradable composites. Crystallinity was shown to be controllable depending on the media and conditions employed. Samples with significant difference in crystallinity in a range from 50% to 95% were produced. Through experimental design, the yield of cellulose was maximized; primarily this involved reactor surface area design, optimized media and the use of mannitol being the highest cellulose-producing carbon source. Increasing the volume of the media did achieve a higher cellulose yield, however this increase was not found to be cost or time effective.

  4. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

    DEFF Research Database (Denmark)

    He, Lian; Xiu, Yu; Jones, J. Andrew

    2017-01-01

    Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this study, 13C-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities...... of the temporal metabolic changes in each stage, we performed 13C-MFA via isotopomer analysis of fast-turnover free metabolites. The results indicate strikingly stable flux ratios in the central metabolism throughout the early growth stages. In the late stages, however, the high producer rewired its flux......, and to profile their metabolic adjustments resulting from external perturbations during fermentation. The two strains were first grown at 37°C in stage 1, and then the temperature was transitioned to 20°C in stage 2 for the optimal expression of the violacein synthesis pathway. After induction, violacein...

  5. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

    Science.gov (United States)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny

    2017-10-01

    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  6. Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses effectively suppress growth of malignant pleural mesothelioma.

    Science.gov (United States)

    Harada, Akiko; Uchino, Junji; Harada, Taishi; Nakagaki, Noriaki; Hisasue, Junko; Fujita, Masaki; Takayama, Koichi

    2017-01-01

    Malignant mesothelioma (MM) incidence is increasing drastically worldwide as an occupational disease resulting from asbestos exposure. However, no curative treatment for MM of advanced stage is available. Thus, new therapeutic approaches for MM are required. Because malignant pleural mesothelioma (MPM) cells spread along the pleural surface in most patients, MPM can be targeted using intrapleural therapeutic approaches. In this study, we investigated the effectiveness of the intrapleural instillation of a replication-competent adenovirus as an oncolytic agent against MPM. We constructed a vascular endothelial growth factor promoter-based conditionally replicative adenovirus (VEGF-CRAd) that replicates exclusively in VEGF-expressing cells. All of the MM cell lines that we tested expressed VEGF mRNA, and VEGF-CRAd selectively replicated in these MM cells and exerted a direct concentration-dependent oncolytic effect in vitro. Furthermore, our in vivo studies showed that pre-infection of MM cells with VEGF-CRAd potently suppressed MPM tumor formation in nude mice, and that intrapleural instillation of VEGF-CRAd prolonged the survival time of tumor-bearing mice. Our results indicate that VEGF-CRAd exerts an oncolytic effect on MM cells and that intrapleural instillation of VEGF-CRAd is safe and might represent a promising therapeutic strategy for MPM. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    Science.gov (United States)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  8. Measurement of microbial growth in the low nutrient conditions of a simulated subsurface environment

    Science.gov (United States)

    Hand, V. L.; Boult, S.; Vaughan, D. J.; Beadle, I. R.; Humphreys, P.; Wogelius, R. A.

    2003-04-01

    The growth of bacteria in natural porous media may alter porosity and permeability, and therefore hydraulic conductivity. Changes are due both to pore clogging caused by the production of bacterial extracellular polysaccharides (EPS) and the formation of secondary mineral precipitates. Pore clogging has implications not only for fluid flow, but also for contaminant transport. Most biofilm research has been conducted under nutrient rich conditions, quite different from the actual subsurface environment. There is therefore a general need for studies under environmentally relevant conditions. The main objectives were to determine growth under environmental conditions and to produce reproducible homogeneously coated columns of porous media for further experiments on metal transport. Six short columns (length 25mm; diameter 20mm) instrumented with pressure, pH and dissolved oxygen sensors were used. Growth and reproducibility of the biofilm are related to the flow rate, the concentration of the nutrients and the grain size of the porous medium substrate. Two types of porous media were used; a single mineral quartz media with a constant grain size and a natural mixed mineral assemblage of non-uniform grain size. Nutrient used was a landfill derived carbon source present in synthetic trench leachate (STL) diluted with synthetic groundwater (SGW) by a factor of 100. The STL was pumped through each column at a constant, environmentally relevant flow rate of 0.109 ml/min. Experiments were performed under both aerobic and anaerobic conditions contained in a temperature-controlled room at 10^oC. Measurement of the pressure increase within the column apparatus was made, as an increase in pressure is relative to the resistance of the media to flow and indicates biofilm formation and pore clogging within the column. Monitoring of dissolved oxygen shows the metabolic conditions of the bacteria and also the biological oxygen demand. Column effluent was analysed for changes in

  9. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions.

    Science.gov (United States)

    Siragusa, Sonya; De Angelis, Maria; Calasso, Maria; Campanella, Daniela; Minervini, Fabio; Di Cagno, Raffaella; Gobbetti, Marco

    2014-01-16

    This study aimed at investigating the proteomic adaptation of Lactobacillus plantarum strains. Cultivation of L. plantarum strains under food-like conditions (wheat flour hydrolyzed, whey milk, tomato juice) affected some metabolic traits (e.g., consumption of carbohydrates and synthesis of organic acids) compared to de Man, Rogosa and Sharpe (MRS) broth. The analysis of the fermentation profile showed that the highest number of carbon sources metabolized by L. plantarum strains was found using cells cultivated in media containing low concentration of glucose or no glucose at all. The proteomic maps of the strains were comparatively determined after growth on MRS broth and under food-like conditions. The amount of proteins depended on strain and, especially, on culture conditions. Proteins showing decreased or increased amounts under food-like conditions were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Changes of the proteome concerned proteins that are involved in carbohydrate transport and metabolism, energy metabolism, Sec-dependent secretion system, stress response, nucleotide metabolism, regulation of nitrogen metabolism, and protein biosynthesis. A catabolic repression by glucose on carbohydrate transport and metabolism was also found. The characterization of the proteomes in response to changing environmental conditions could be useful to get L. plantarum strains adapted for specific applications. Microbial cell performance during food biotechnological processes has become one of the greatest concerns all over the world. L. plantarum is a lactic acid bacterium with a large industrial application for fermented foods or functional foods (e.g., probiotics). The present study compared the fermentation and proteomic profiling of L. plantarum strains during growth under food-like conditions and under optimal laboratory conditions (MRS broth). This study provides specific mechanisms of proteomic adaptation involved in the microbial performances

  10. Biological identification and determination of optimum growth conditions for four species ofNavicula

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaobo; PANG Shaojun; LIU Feng; SHAN Tifeng; LI Jing

    2014-01-01

    Four species in the genus Navicula were isolated using the serial dilution method. Based on scanning elec-tron microscopy (SEM) and sequence comparisons of two segments of genes (small ribosomal subunit and large subunit of Rubisco), the species were identified asNavicula perminuta,N. pseudacceptata,N. vara, andN. rhynchocephala. Based on phylogenetic analysis and culture trials,there was a close relationship betweenN. perminutaandN. vara. Growth of these species was evaluated using measurements of optical density at 680 nm (OD680) under various environmental factors. Results showed that the optimum culture conditions were 25°C, 50-100 μmol photons m-2 s-1, pH 8.0, and salinities from 25 to 30. However, the favor-able salinity forN. perminuta was surprisingly high at 35. Nutrient requirement analysis demonstrated that growth ofNavicula depended on the availability of SiO32-. Their relative growth rates (RGR) peaked at the highest tested level (0.25 mmol/L). The optimal concentrations of NO3-and PO43- were 3.6 mmol/L and 0.18 mmol/L, respectively. Culture of theseNavicula species for abalone or sea cucumber aquaculture should take these factors into consideration.

  11. The growth and flowering of Salvia splendens Sellow ex Roem. et Schult. under flowerbed conditions

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2012-12-01

    Full Text Available The aim of the study was to determine the influence of accompanying plants as well as bark mulching, common for green areas, on the growth, flowering and decorative values of scarlet sage Salvia splendens Sellow ex Roem. et Schult. The field experiment included two cultivars of sage: ‘Red Torreador’ and ‘Luna’; two species of accompanying plants: French marigold – Tagetes patula nana L. ‘Petit Gold’ and flossflower – Ageratum houstonianum Mill.; as well as pine bark mulching. The control group was a monoculture of scarlet sage, without mulching. Pine bark mulching had a beneficial influence on almost all growth and flowering characteristics of scarlet sage. The plants growing on mulched soil were higher, had more leaves and branches as well as their inflorescences were longer and had more whorls than the plants growing without mulching. S. splendens growing with other species had fewer leaves and fewer branches. Its side stems and lateral inflorescences were shorter. The accompanying species also limited the mass of scarlet sage. The vicinity of marigold and flossflower had no influence on the height of S. splendens plants, the number of whorls and flowers within inflorescences. The growth of scarlet sage was largely modified by weather conditions; the plants grew best between June 20th and July 18th, with the best decorative effect achieved in July. The drought caused the flowers to dry out during the second half of the summer each year, limiting the decorative values of sage.

  12. Carcass analog addition enhances juvenile Atlantic salmon (Salmo salar) growth and condition

    Science.gov (United States)

    Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph

    2013-01-01

    Our study used historic marine-derived nutrient (MDN) delivery timing to simulate potential effects of restored connectivity on juvenile Atlantic salmon (ATS; Salmo salar) growth and condition. Four headwater streams were stocked with ATS young of the year (YOY) and received carcass analog additions (0.10 kg·m–2 wetted area) in treatment reaches to match the timing of sea lamprey (Petromyzon marinus) spawning. Individual ATS mass was 33%–48% greater and standard length was 9%–15% greater in treatment reaches relative to control reaches for 4 months following nutrient additions. Percent total lipids in YOY ATS were twice as great in treatment reaches 1 month following carcass analog additions and remained elevated in treatment fish for 2 more months. Absolute growth rates, based on otolith microstructure analysis, correlated with water temperature fluctuations in all reaches and were elevated by an average of 0.07 mm·day–1 in treatment reaches for 1 month following carcass analog additions. Simulated sea lamprey MDNs increased juvenile ATS growth, which, via potential increases in overwinter survival and decreases in smolt age, may contribute to population persistence and ecosystem productivity.

  13. Conveyance Systems and Vegetative Growth in Peach (Prunuspersica (l. Batch high low Tropical Conditions

    Directory of Open Access Journals (Sweden)

    Luis Gómez

    2012-10-01

    Full Text Available Fruit trees known as deciduous species are native to the northern temperate zones that are well adapted to environmental conditions in regions of high Colombian Andean tropics, especially in the highlands boyacense where approximately 80% of the planted area. Conveyance systems (pruning of fruit plants are management practices which apply technical criteria for productivity in temperate climates producing countries. It is known in Boyacá, except traditional open vessel driving and other forms of effects, which is why the study was to evaluate six different types of driving on the vegetative growth of two peach varieties. We measured plant height, stem diameter, length of primary branches, percentage of lignification, and canopy projection based on each form (treatment. Was observed that the different types of pruning positively influenced with respect to the absolute control in the vegetative growth of the plants and the lignification of the primary branches, with the highest incidence in the range Rubidoux. The results also showed that the more a tree height growth and lignification of primary branches was husito.

  14. Effect of cloud microphysics on particle growth under mixed phase conditions

    Science.gov (United States)

    Pfitzenmaier, Lukas; Dufournet, Yann; Unal, Christine; Russchenberg, Herman; Myagkov, Alexander; Seifert, Patric

    2015-04-01

    Mixed phase clouds contain both ice particles and super-cooled cloud water droplets in the same volume of air. Currently, one of the main challenges is to observe and understand how ice particles grow by interacting with liquid water within the mixed-phase clouds. In the mid latitudes this process is one of the most efficient processes for precipitation formation. It is particularly important to understand under which conditions growth processes are most efficient within such clouds. The observation of microphysical cloud properties from the ground is one possible approach to study the liquid-ice interaction that play a role on the ice crystal growth processes. The study presented here is based on a ground-based multi-sensor technique. Dataset of this study was taken during the ACCEPT campaign (Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques) at Cabauw The Netherlands, autumn 2014. Measurements with the Transportable Atmospheric RAdar (TARA), S-band precipitation radar profiler, from the Delft Technical University, and Ka-band cloud radar systems were performed in cooperation with the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. All the radar systems had full Doppler capabilities. In addition , TARA and one of the Ka-band radar systems had full polarimetric capabilities as well, in order to get information of the ice phase within mixed-phase cloud systems. Lidar, microwave radiometer and radiosonde measurements were combined to describe the liquid phase within such clouds. So a whole characterisation of microphysical processes within mixed-phase cloud systems could be done. This study shows how such a combination of instruments is used to: - Detect the liquid layer within the ice clouds - Describe the microphysical conditions for ice particle growth within mixed phase clouds based on cloud hydrometeor shape, size, number concentration obtained from measurements The project aims to observe

  15. Influence of Growth Conditions on Magnetite Nanoparticles Electro-Crystallized in the Presence of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Saba Mosivand

    2013-05-01

    Full Text Available Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg−1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3−δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.

  16. Influence of growth conditions on magnetite nanoparticles electro-crystallized in the presence of organic molecules.

    Science.gov (United States)

    Mosivand, Saba; Monzon, Lorena M A; Kazeminezhad, Iraj; Coey, J Michael D

    2013-05-17

    Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg-1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3-δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.

  17. Survival, food consumption and growth of Norway lobster (Nephrops norvegicus) kept in laboratory conditions.

    Science.gov (United States)

    Mente, Elena

    2010-09-01

    Successful commercial aquaculture of crustacean species is dependent on satisfying their nutritional requirements and on producing rapidly growing and healthy animals. The results of the present study provide valuable information for feeding habits and growth of Nephrops norvegicus L., 1758) under laboratory conditions. The aim of the present study was to examine food consumption, growth and physiology of the Norway lobster N. norvegicus under laboratory conditions. N. norvegicus (15 g wet weight) were distributed into 1001 tanks consisting of five numbered compartments each. They were fed the experimental diets (frozen mussels and pellets) for a period of 6 months. A group of starved Nephrops was stocked and fasted for 8 months. Although Nephrops grew well when fed the frozen mussels diet, feeding on a dry pellet feed was unsatisfactory. The starvation group, despite the fact that showed the highest mortality (50%), exhibited a remarkable tolerance to the lack of food supply. The study offers further insight by correlating the amino acid profiles of Nephrops tail muscle with the two diets. The deviations from the mussel's diet for asparagine, alanine and glutamic acid suggest a deficiency of these amino acids in this diet. The results of the present study showed that the concentrations of free amino acids are lower in relative amount than those of protein-bound amino acids, except for arginine, proline and glycine. The present study contributes to the improvement of our knowledge on nutritional requirements of the above species.

  18. Growth condition study of algae function in ecosystem for CO2 bio-fixation.

    Science.gov (United States)

    Tsai, David Dah-Wei; Ramaraj, Rameshprabu; Chen, Paris Honglay

    2012-02-06

    Algae niche play a crucial role on carbon cycle and have great potential for CO(2) sequestration. This study was to investigate the CO(2) bio-fixation by the high rate pond (HRP) to mimic the algae function of nature. All the reactors can keep CO(2) consumption efficiencies over 100%. The statistical analyses proved HRPs were close to the natural system from all the growth conditions. The HRP could show the "natural optimization as nature" to perform as well as the artificial reactor of continuously stirred tank reactor (CSTR). In the nutrition study, the carbon mass balance indicated CO(2) was the main carbon source. Accordingly, the HRPs can keep a neutral pH range to provide dissolved oxygen (DO), to promote total nitrogen (TN)/total phosphorous (TP) removal efficiencies and to demonstrate self-purification process. Furthermore, the observations of different nitrogen species in the reactors demonstrated that the major nitrogen source was decided by pH. This finding logically explained the complex nitrogen uptake by algae in nature. Consequently, this study took advantage of HRP to explore the processes of efficient CO(2) uptake with the corresponding growth condition in the ecosystem. Those results contributed the further understanding of the role of CO(2) bio-fixation in nature and demonstrated HRP could be a potential ecological engineering alternative.

  19. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives

    Directory of Open Access Journals (Sweden)

    Düregger Katharina

    2016-09-01

    Full Text Available Thrombocytes can be concentrated in blood derivatives and used as autologous transplants e.g. for wound treatment due to the release of growth factors such as platelet derived growth factor (PDGF. Conditions for processing and storage of these platelet-rich blood derivatives influence the release of PDGF from the platelet-bound α-granules into the plasma. In this study Platelet rich plasma (PRP and Platelet concentrate (PC were produced with a fully automated centrifugation system. Storage of PRP and PC for 1 h up to 4 months at temperatures between −20°C and +37°C was applied with the aim of evaluating the influence on the amount of released PDGF. Storage at −20°C resulted in the highest release of PDGF in PRP and a time dependency was determined: prolonged storage up to 1 month in PRP and 10 days in PC increased the release of PDGF. Regardless of the storage conditions, the release of PDGF per platelet was higher in PC than in PRP.

  20. Proposal of a Simple Plant Growth System under Microgravity Conditions in Space

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro; Tsukamoto, Koya; Yamashita, Youichirou

    2012-07-01

    Plant culture in space has multiple functions for human life support such as providing food and purifying air and water. It is also suggested that crew can relieve their stress by watching growing plants and by enjoying fresh vegetable food during staying for several months in the International Space Station. Under such circumstances, it is an utmost importance to develop plant culture equipment that can be handled more easily by crew. This study aims to develop an easy-to-use plant growth system with modification of commercial household plant culture equipment. The item is equipped with a peltier device for cooling air and collecting water vapor in the growth room. The study was conducted to examine the performance of the equipment under microgravity conditions that were created by the parabolic airplane flights. As a result, the temperature of the peltier device was affected under the microgravity conditions due to the absence of heat convection. When an air flow was made with an air circulation fan, the temperature of the peltier device was stable to gravity changes. The water recycling method for an automatic nutrient solution supply system in the closed plant culture equipment under microgravity is proposed. In addition, a high output white LEDs showing a good performance for growing leafy vegetables will be introduced.

  1. Plasticity of Streptomyces coelicolor membrane composition under different growth conditions and during development

    Directory of Open Access Journals (Sweden)

    Mario eSandoval-Calderón

    2015-12-01

    Full Text Available Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921 and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.

  2. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    Science.gov (United States)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  3. Growth and Yield Characters of Potato Genotypes Grown in Drought and Irrigated Conditions of Nepal

    Directory of Open Access Journals (Sweden)

    Binod Prasad Luitel

    2015-09-01

    Full Text Available This experiment was conducted to assess the genotypic variation for the growth, yield and yield components of potato grown under drought and irrigated conditions at Hattiban Research Farm, Khumaltar during the summer cropping season (Feb.-May of the two consecutive years (2013 and 2014. The results revealed that canopy cover, stem height and number of leavers were more sensitive to drought and the effect was more pronounced in early cultivar Desiree. Stem height and leaf number of plant were more (36% and 45%, respectively reduced in Desiree than other genotypes. Mean tuber number decreased by 55% under drought condition. Drought stress reduced marketable tuber number by 79% as compared to irrigated treatment. Drought stress reduced the marketable tuber yield from 70% to 87%. The clones CIP 392242.25 and LBr-40 had relatively lower yield loss, and less drought susceptibility index under drought indicating their tolerance to drought in field condition. Further experiment is recommended to study the physiological parameters of these genotypes under different water and soil conditions.

  4. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  5. Cultural Conditions for Mycelial Growth and Molecular Phylogenetic Relationship in Different Wild Strains of Schizophyllum commune.

    Science.gov (United States)

    Alam, Nuhu; Cha, Youn Jeong; Shim, Mi Ja; Lee, Tae Soo; Lee, U Youn

    2010-03-01

    The common split-gilled mushroom, Schizophyllum commune is found throughout the world on woody plants. This study was initiated to evaluate conditions for favorable vegetative growth and to determine molecular phylogenetic relationship in twelve different strains of S. commune. A suitable temperature for mycelial growth was obtained at 30℃. This mushroom grew well in acidic conditions and pH 5 was the most favorable. Hamada, glucose peptone, Hennerberg, potato dextrose agar and yeast malt extract were favorable media for growing mycelia, while Lilly and glucose tryptone were unfavorable. Dextrin was the best and lactose was the less effective carbon source. The most suitable nitrogen sources were calcium nitrate, glycine, and potassium nitrate, whereas ammonium phosphate and histidine were the least effective for the mycelial growth of S. commune. The genetic diversity of each strain was investigated in order to identify them. The internal transcribed spacer (ITS) regions of rDNA were amplified using PCR. The size of the ITS1 and ITS2 regions of rDNA from the different strains varied from 129 to 143 bp and 241 to 243 bp, respectively. The sequence of ITS1 was more variable than that of ITS2, while the 5.8S sequences were identical. A phylogenetic tree of the ITS region sequences indicated that the selected strains were classified into three clusters. The reciprocal homologies of the ITS region sequences ranged from 99 to 100%. The strains were also analyzed by random amplification of polymorphic DNA (RAPD) with 20 arbitrary primers. Twelve primers efficiently amplified the genomic DNA. The number of amplified bands varied depending on the primers used or the strains tested. The average number of polymorphic bands observed per primer was 4.5. The size of polymorphic fragments was obtained in the range of 0.2 to 2.3 kb. These results indicate that the RAPD technique is well suited for detecting the genetic diversity in the S. commune strains tested.

  6. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  7. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions

    Indian Academy of Sciences (India)

    A Karthikeyan; K Chandrasekaran; M Geetha; R Kalaiselvi

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g−1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  8. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress and mixotrophic growth conditions

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2012-10-01

    Full Text Available Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C

  9. Flowers and olive fruits (Olea Europaea l. growth under tropic conditions.

    Directory of Open Access Journals (Sweden)

    José Francisco García Molano

    2012-11-01

    Full Text Available It was relatively easy the olive adaptation in tropical area for its evergreen and rustic condition where there were found trees with a very good development and production according to different studies that show the existence of some varieties of ancient trees located in villa de Leyva, Sáchica and Sutamarchán; however these varieties did not prosper as farming and they were abandoned. In the last ten years the olive farming has taken interest again and now there has been planted new crops through the existent material in the region, the production started three years later, for that reason it was taken the cultural, environmental, economic and scientific interest. This study aimed to know the performance of the development and trees growth planted take into account some edaphoclimatic conditions of the ‘Alto Ricaurte’. There were chosen thirty nine trees which the treatment one corresponded to olives of thirty years in production and the treatment two corresponded to three years plants which they had started their production. This plant material had been identified genetically by means of molecular analysis with a classification from one to ten considering that it did not correspond to the denomination that these varieties had in this region. The study shows that genotype four has trees at both ages, which the analysis of results was made take into account the age of this one, observing different behavior in flowering that it seems to be influenced because of climate conditions meanwhile that the planted development and growth did not show any difference in genotypes neither ages.

  10. Early developed section of the jaw as an index of prenatal growth conditions in adult roe deer Capreolus capreolus

    DEFF Research Database (Denmark)

    Høye, Toke Thomas; Forchhammer, Mads Cedergreen

    2006-01-01

    -maturing bones are poor predictors of resource limitations during early development, as later benign conditions may lead to compensatory growth. We analysed the temporal growth dynamics of different sections of the lower jaw of roe deer Capreolus capreolus and found that the medioanterior section of the lower...... post partum and, as such, potentially leaves a fingerprint of prenatal growth conditions that is evident even in adult individuals. This supports earlier findings in ungulates of a shift in skeletal growth spurts after weaning, and suggests that the choice of skeletal index for population and cohort......Increasing evidence suggests that conditions in early life have important consequences for ultimate body size and fitness. Skeletal parts are often used as retrospective indices of body size and growth constraints because of their resistance to seasonal variation in resource availability. Yet, slow...

  11. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Science.gov (United States)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  12. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  13. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  14. Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions.

    Directory of Open Access Journals (Sweden)

    Christopher J Day

    Full Text Available The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS and the infrequently passaged, original, virulent (11168-O isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25 degrees C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure.

  15. Effects of Arbuscular Mycorrhiza Fungi on Growth Characteristics of Dactylis glomerata L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Apostolos P. KYRIAZOPOULOS

    2014-06-01

    Full Text Available Limited information is available regarding the selection of effective mycorrhizae and the exploitation of their beneficial effects on the enhancement of the forage production of Dactylis glomerata under the predicted warmer and drier conditions in the Mediterranean region. The objective of this study was to test the effects of Glomus intraradices, Glomus mosseae and their mix inoculation on growth characteristics and dry matter production of Dactylis glomerata in relation to full and limited irrigation. The experiment was conducted in Orestiada, Northeastern Greece. Limited irrigation significantly decreased yield and yield components of Dactylis glomerataover the full irrigation. Drought stressed plants had significantly higher root dry weight as a response for better survival under water deficit conditions. The Arbuscular mycorrhizal fungi (AMF inoculated plants had significant higher shoot dry weight, tiller height and number of leaves in comparison to the non-inoculated plants. On the contrary, under drought stress conditions all AMF plants had lower root dry weights than control plants. Among the studied mycorrhizae species, Glomus intraradices performed better than Glomus mosseae and their mixture as it increased S/R ratio, tiller height and number of leaves.

  16. Vitamin B12 Production by Marine Bacteria in Organic Substrate Limited, Slow Growth Conditions

    Science.gov (United States)

    Villegas-Mendoza, J.; Cajal-Medrano, R.; Maske, H.

    2016-02-01

    The conditions and processes governing the B12 vitamin dissemination through planktonic organisms are little understood. It is generally assumed that bacteria produce B12 vitamin and the whole auxotrophic plankton community consumes it. We used natural marine bacteria communities and marine bacteria Dinoroseobacter shibae cultures, growing in substrate-limited continuous cultures at low specific growth rates [0.1 to 1 d-1] to measure intracellular and dissolved B12 production, bacterial and viral abundance, particulate organic carbon, and nitrogen, bacterial production, oxygen consumption, carbon dioxide production, ETS activity, and taxonomic composition. We find dissolved B12 vitamin at concentrations between 0 to 1.4 pM with no relation to growth or respiration rates. The intracellular B12 vitamin normalized to cell volume ranged between 1x10-2 to 4.6x10-2 pmol μm3 showing a significant relationship with growth rate [y=0.02(m)1.07; r2=0.78; p≤0.05; y=intracellular B12 production, pmol μm3 day-1; m=specific growth rate, day-1], and respiration rates [y=2.4ln(x)-2.66; r2=0.87; p≤0.05; x=CO2 production, μM day-1]. The vitamin B12 producing bacteria D. shibae, showed a dissolved B12 concentration between 0 and 1.8 pM, whereas intracellular B12 normalized to cell volume varied between 1.1x10-2 to 1.8x10-2 pmol μm-3, responding significantly to growth rate [y=0.01(m)0.56; r2=0.85; p≤0.05], and to respiration rates [y=3.01ln(x)-7.56, r2=0.97, p≤0.05; x=CO2 production, μM day-1]. The lack of correlation of dissolved B12 vitamin with the metabolic activity suggests that the dissolved B12 concentration depends on the interactions among vitamin B12 producers and consumers while the bacterial metabolism is regulating the intracellular production of B12 vitamin.

  17. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  18. How Much Growth Can We Expect? A Conditional Analysis of R-CBM Growth Rates by Level of Performance

    Science.gov (United States)

    Silberglitt, Benjamin; Hintze, John M.

    2007-01-01

    This study examined the reading growth rates of 7,544 students in Grades 2-6, measured over 1 year using Reading-Curriculum-Based Measurement (R-CBM) benchmark assessments administered in the fall, winter, and spring. The authors used hierarchical linear modeling to establish and compare student rates of growth within each grade level based on…

  19. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  20. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice.

    Directory of Open Access Journals (Sweden)

    Seth eFaith

    2012-10-01

    Full Text Available In refining methodology to develop a mouse model for inhalation of Francisella tularensis, it was noted that both relative humidity and growth media impacted the aerosol concentration of the live vaccine strain (LVS of F. tularensis. A relative humidity of less than 55% had a negative impact on the spray factor, the ratio between the concentration of LVS in the aerosol and the nebulizer. The spray factor was significantly higher for LVS grown in brain heart infusion (BHI broth than LVS grown in Mueller-Hinton broth (MHb or Chamberlain’s Chemically Defined Medium (CCDM. The variability between aerosol exposures was also considerably less with BHI. LVS grown in BHI survived desiccation far longer than MHb-grown or CCDM-grown LVS (~70% at 20 minutes for BHI compared to <50% for MHb and CCDM. Removal of the capsule by hypertonic treatment impacted the spray factor for CCDM-grown LVS or MHb-grown LVS but not BHI-grown LVS, suggesting the choice of culture media altered the adherence of the capsule to the cell membrane. The choice of growth media did not impact the LD50 of LVS but the LD99 of BHI-grown LVS was 1 log lower than that for MHb-grown LVS or CCDM-grown LVS. Splenomegaly was prominent in mice that succumbed to MHb- and BHI-grown LVS but not CCDM-grown LVS. Environmental factors and growth conditions should be evaluated when developing new animal models for aerosol infection, particularly for vegetative bacterial pathogens.

  1. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.

    Directory of Open Access Journals (Sweden)

    Rola S Mahmoud

    Full Text Available A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

  2. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.

    Science.gov (United States)

    Mahmoud, Rola S; Narisawa, Kazuhiko

    2013-01-01

    A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

  3. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Kongstad, J.; Schmidt, I. K.

    2012-01-01

    The evidence that is currently available demonstrates that future changes in precipitation patterns will affect plant carbon uptake. However, the outcome in terms of success, productivity and fecundity depends upon individual species and different responses of various growth forms. Examination...... of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and d13C along with vegetation cover and biomass...... rewetting increased leaf nitrogen and photosynthesis in the grass much more than for the dwarf shrub. These different strategies may have a considerable impact on carbon uptake and on the ability of a species to compete, as future climatic changes are likely to extend the summer drought period together...

  4. Experimental investigation of the influence of electric field on frost layer growth under natural convection condition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of direct current (DC) electric field on the thickness and mass of frost on a cold vertical plate was investigated. The photos of frost layer growth were taken with and without the presence of electric field, and results showed that the electric field has a strong influence on the frost thickness. The influences of cold plate temperature and ambient temperature on frost thickness and frost mass were also investigated under the natural convection condition with electric field. Experimental results demonstrated that the cold plate temperature has very strong effect on the frost layer thickness, but its influence on frost mass is minor; the influence of ambient temperature on the frost mass is more obvious than that on the frost thickness.

  5. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    Science.gov (United States)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  6. [Study on the growth characteristics and root exudates of three wetlands plants at different culture conditions].

    Science.gov (United States)

    Lu, Song-Liu; Hu, Hong-Ying; Sun, Ying-Xue; Yang, Jia

    2009-07-15

    Wetland plants are the important component of constructed wetlands and their root exudates provide the interior hydrocarbon for denitrification. In this study, the growth characteristics and root exudates of Canna indica, Zizania caduciflora and Lythrum salicari in different culture conditions were researched. The results showed that the average biomass initial/biomass in 120 days growth of Canna indica, Zizania caduciflora and Lythrum salicari were 9.1, 3.7, and 4.7, respectively. There was a positive correlation between the root exudates and the biomass of plants, but the release rate of root exudates decreased with the biomass increase. The root exudates release rates of unit biomass were 0.92, 0.47, 0.43 mg x (g x d)(-1) for Lythrum salicari, Canna indica and Zizania caduciflora, respectively. And the root exudates of those three plants are mainly organic acids and arylprotein based on the three-dimensional fluorescence spectrum analysis. The results ofthis study also indicate that Canna indiea and Lythrum salicari are befitting wetlands plants.

  7. Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Rodriguez Carlos A

    2005-06-01

    Full Text Available Abstract Background Streptococcus pneumoniae, particularly penicillin-resistant strains (PRSP, constitute one of the most important causes of serious infections worldwide. It is a fastidious microorganism with exquisite nutritional and environmental requirements to grow, a characteristic that prevents the development of useful animal models to study the biology of the microorganism. This study was designed to determine optimal conditions for culture and growth of PRSP. Results We developed a simple and reproducible method for culture of diverse strains of PRSP representing several invasive serotypes of clinical and epidemiological importance in Colombia. Application of this 3-step culture protocol consistently produced more than 9 log10 CFU/ml of viable cells in the middle part of the logarithmic phase of their growth curve. Conclusion A controlled inoculum size grown in 3 successive steps in supplemented agar and broth under 5% CO2 atmosphere, with pH adjustment and specific incubation times, allowed production of great numbers of PRSP without untimely activation of autolysis mechanisms.

  8. Effects of lead (Pb on Jatropha curcas L. growth under hydroponic conditions

    Directory of Open Access Journals (Sweden)

    Enrico Palchetti

    2016-12-01

    Full Text Available The contamination of the environment with pollutants, like heavy metals from human activity, has caused the loss of agricultural land. One possible solution could be the utilization of phytoremediation technique with particular plant, capable of absorbing the contaminants from soil. Jatropha curcas, an important plant for the biodiesel production, in particular in tropical areas, has the capacity to grown in marginal land, compromised for food cultivation. The experiment was conducted in hydroponic conditions with the objective to evaluate the response and growth parameters of juvenile plants grown in presence of different Pb levels (0-100-200 mg/L. It was possible to study the interaction in the plant between some mineral element (Ca, Mg, Zn and Fe and morphological parameters and Pb, and evaluate some tolerance indicators. Results showed that the plants were able to grow in presence of Pb and to accumulate high levels of heavy metal in the roots, followed by the stems and leaves. However, Jatropha curcas subjected to Pb treatment demonstrated stunted growth and alterations in mineral elements contents. The results suggest that J. curcas may tolerate the levels of Pb imposed, but there is low translocation of heavy metal to aerial tissues, within the time period of analysis.

  9. Effects of Culture Conditions on Growth and Docosahexaenoic Acid Production from Schizochytrium limacinum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of temperature, initial pH, salinity of culture medium, and carbon and nitrogen sources on growth and docosahexaenoic acid (C22: 6 n-3, DHA) production from Schizochytrium limacinum OUC88 were investigated in the present study. The results revealed that the optimal temperature, initial pH and salinity level of the medium for DHA production were 23 ℃, 7.0 and 18,respectively. Glucose was proved the best carbon source for the growth and DHA production from S. limacinum. Among the nitrogen sources tested, soybean cake hydrolysate, a cheap by-product, was found to be effective for the accumulation of DHA in S. limacinum cells. In addition, increasing the concentration of carbon sources in the medium caused a significant increase in cell biomass;however, accumulation of DHA in cells was mainly stimulated by the ratio of C/N in the medium. Under the optimal culture conditions, the maximum DHA yield achieved in flasks was 4.08 g L-1 after 5 d of cultivation.

  10. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions.

    Science.gov (United States)

    Upadhyay, Sudhir Kumar; Singh, Jay Shankar; Saxena, Anil Kumar; Singh, Devendra Pratap

    2012-07-01

    Two plant growth-promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co-inoculated with these two PGPR strains, and grown under different salinity regimes (2-6 dS m(-1) ), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co-inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co-inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m(-1) , when compared with the control. The results indicate that co-inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.

  11. Growth and production of irrigated vitória pineapple grown in semi-arid conditions

    Directory of Open Access Journals (Sweden)

    Rodinei Facco Pegoraro

    2014-09-01

    Full Text Available This study aimed to evaluate the growth characteristics of irrigated Vitória pineapple plants grown in semi-arid conditions and determine its developmental stages based on those characteristics. It was used a randomized block design with four replicates. The experimental treatments were: plant harvest at 270, 330, 390, 450, 510, 570, 690, 750, and 810 days after planting (DAP. The following variables were determined: plant height, stem diameter, D-leaf length, D-leaf fresh and dry mass, biomass production of plants and plant parts (organs, and vegetative biomass. Five phenological stages are proposed based on vegetative biomass production: 80% (V5. The maximum growth rate for plant height, D-leaf length, and stem diameter was observed at the end of the phenological stage V1 (390-411 DAP, and at the end of stage V5 these plant traits had average values of 106, 82, and 7 cm, respectively. The maximum biomass accumulation rates were observed at stages V4 and V5, resulting in a final fruit yield and total fresh biomass of 72 t ha-1 and 326 t ha-1, respectively. Finally, we estimated that 80% of the accumulated biomass may remain in the field after fruit and slip harvest, and could be incorporated as plant residue into the soil.

  12. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions.

    Science.gov (United States)

    North, Kathryn Anne; Ehlting, Barbara; Koprivova, Anna; Rennenberg, Heinz; Kopriva, Stanislav

    2009-10-01

    Improving nutrient use efficiency of crop plants, especially at low input, is essential to ensure sustainable food production in the future. In order to address the genetic basis of nutrient use efficiency in a model system, growth of Arabidopsis ecotypes at normal and low nitrogen (N) supply was compared. The ecotypes differed significantly in the extent of growth reduction in limiting conditions. The fresh weight of Shahdara and Ws grown at 1mM nitrate was reduced by 30% compared to control, whereas Col-0 and Ga-0 were almost unaffected. Total N content was reduced in all ecotypes by 10-30%. The capacity to store nitrate correlated with the tolerance to low N; in Shahdara and Ws, but not in Col-0 and Ga-0, nitrate content on low N was significantly reduced compared to control nutrition. The mRNA levels for genes of nitrate uptake and assimilation were only moderately affected by the treatment. The transcript levels of nitrate reductase NIA1 and nitrite reductase were higher in the ecotypes tolerant to low N (Col-0 and Ga-0) with normal N nutrition but on low N they were reduced to a much higher extent than the sensitive ecotypes (Shahdara and Ws). It seems that a higher capacity to keep nitrate reserves at low N, perhaps due to the ability to turn down nitrate reduction rate, is responsible for a better tolerance of Col-0 and Ga-0 to low N supply.

  13. Winter Growth of Carps under Different Semi-Intensive Culture Conditions

    Directory of Open Access Journals (Sweden)

    Nadia Nazish* and Abdul Mateen

    2011-04-01

    Full Text Available The experiment was planned to observe the influence of different semi intensive culture conditions i.e. organic and inorganic fertilizer with rice polish on the growth of carps during winter season. Two earthen ponds were selected and each pond was stocked with Silver carp (Hypophthalmichthys molitrix, Rohu (Labeo rohita and Mori (Cirrhinus mrigala at the ratio of 1:2:1 respectively with a total number of 44 fishes. Pond 1 was treated with poultry dropping and urea while pond 2 was treated with poultry dropping, urea and rice polish. The ponds were treated with at the rate of 0.2 g N/100g of wet body weight of fish. Fertilizers were added on weekly basis while rice polish was added daily. Total net fish production of pond 1 and pond 2 was remained 797.3 and 1033.0 kg/ha/year. The pond treated with fertilizer and artificial feed (rice polish showed 3.6% more fish production than the pond treated only with fertilizer. The physico-chemical parameters were measured on weekly basis. Temperature, light penetration, pH and planktonic biomass showed non-significant difference in both ponds. Pond 2 which was treated with poultry dropping, urea and rice polish showed 1.26 times greater fish growth than pond 1 which was treated with poultry dropping and urea.

  14. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    He, Lian [Washington Univ., St. Louis, MO (United States); Xiu, Yu [Rensselaer Polytechnic Inst., Troy, NY (United States); Beijing Univ. of Chemical Technology (China); Jones, J. Andrew [Rensselaer Polytechnic Inst., Troy, NY (United States); Hamilton College, Clinton, NY (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Tang, Yinjie J. [Washington Univ., St. Louis, MO (United States); Koffas, Mattheos A. G. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-12-23

    Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this paper, 13C-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities, and to profile their metabolic adjustments resulting from external perturbations during fermentation. The two strains were first grown at 37 °C in stage 1, and then the temperature was transitioned to 20 °C in stage 2 for the optimal expression of the violacein synthesis pathway. After induction, violacein production was minimal in stage 3, but accelerated in stage 4 (early production phase) and 5 (late production phase) in the high producing strain, reaching a final concentration of 1.5 mmol/L. On the contrary, ~0.02 mmol/L of violacein was obtained from the low producing strain. To have a snapshot of the temporal metabolic changes in each stage, we performed 13C-MFA via isotopomer analysis of fast-turnover free metabolites. The results indicate strikingly stable flux ratios in the central metabolism throughout the early growth stages. In the late stages, however, the high producer rewired its flux distribution significantly, which featured an upregulated pentose phosphate pathway and TCA cycle, reflux from acetate utilization, negligible anabolic fluxes, and elevated maintenance loss, to compensate for nutrient depletion and drainage of some building blocks due to violacein overproduction. The low producer with stronger promoters shifted its relative fluxes in stage 5 by enhancing the flux through the TCA cycle and acetate overflow, while exhibiting a reduced biomass growth and a minimal flux towards violacein synthesis. Finally, interestingly, the addition of the violacein precursor (tryptophan) in the medium inhibited high producer but enhanced low producer's productivity, leading to hypotheses of unknown pathway regulations (such as metabolite

  15. Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates.

    Science.gov (United States)

    Gabig, M; Obuchowski, M; Wegrzyn, A; Szalewska-Pałasz, A; Thomas, M S; Wegrzyn, G

    1998-08-01

    Bacteriophage lambda is unable to lysogenize Escherichia coli hosts harbouring the rpoA341 mutation due to a drastic reduction in transcription from CII-activated lysogenic promoters (pE, pI and paQ). In addition, the level of early transcripts involved in the lytic pathway of lambda development is also decreased in this genetic background due to impaired N-dependent antitermination. Here, it is demonstrated that despite the reduced level of early lytic pL- and pR-derived transcripts, lytic growth of bacteriophage lambda is not affected in rich media. The level of the late lytic, pR-derived transcripts also remains unaffected by the rpoA341 mutation under these conditions. However, it was found that whilst there is no significant difference in the phage burst size in rpoA+ and rpoA341 hosts growing in rich media, phage lambda is not able to produce progeny in the rpoA341 mutant growing in minimal medium, in contrast to otherwise isogenic rpoA+ bacteria. Provision of an excess of the phage replication proteins O and P in trans or overproduction of the antitermination protein N restore the ability of phage lambda to produce progeny in the rpoA341 mutant under the latter conditions. These results suggest that in rich media phage lambda produces some early proteins in excess of that needed for its effective propagation and indicate that replication proteins may be limiting factors for phage lytic growth in poor media.

  16. Effects of temperature boundary conditions on equiaxed dendritic growth in phase-field simulations of binary alloy

    Institute of Scientific and Technical Information of China (English)

    于艳梅; 杨根仓; 赵达文; 吕衣礼

    2002-01-01

    By the phase-field approach, the dendritic growth in binary alloy melt was simulated respectively using two types of temperature boundary conditions, i.e., the constant temperature boundary by which the boundary temperature was fixed at the initial temperature, and Zero-Neumann temperature boundary. The influences of the temperature boundary conditions on numerical results are investigated. How to choose appropriate temperature boundary conditions is proposed. The results show that: 1) when the computation region is limited to a changeless size, the Zero-Neumann and constant temperature boundary conditions lead to the different dendritic growth behaviors, and the Zero-Neumann condition is preferable to the constant temperature condition; 2) when the computation region is enlarged continually with the computational time according to the increasing thermal diffusion scale, the two types of temperature boundary conditions achieve the consistent tip velocities and tip radii, and they both are appropriate choices.

  17. Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.

    Directory of Open Access Journals (Sweden)

    Md Abdul Muktadir

    2016-01-01

    Full Text Available Several experiments were carried out to establish an efficient regenerating protocol for cultivated eggplant varieties. Among the five varieties cultured on Murashige and Skoog (MS medium with free plant growth regulator (PGR, Nayantara performed better considering the number of shoots/explant (2.48. Considering explant types and culture conditions, better performance was observed (3.68 shoots/explant when seed germination in the dark was proceeded by bottom hypocotyl segments cultured under dark conditions. A higher rate of shoot regeneration was observed in Nayantara when cultured in Zeatin Riboside (ZR and Thidizuron (TDZ supplemented MS medium. The highest number of shoots per explant was produced on MS medium supplemented with 2.0 mg/L ZR and 0.1 mg/L indole acetic acid (6.65 shoots/explant. Proliferation and elongation of the regenerated shoots were obtained in the MS medium with free PGR. The best rooting performance was observed in MS medium supplemented with 2.0 mg/L indole butyric acid. Plantlets with well developed roots and shoots were successfully transferred to soil.

  18. Influence of the Assembly Conditions on the Growth and Disassembly of Layer-by-Layer Films

    Science.gov (United States)

    Vishvakant Mankad, Ravin

    A central aim of our research is to capitalize upon the versatility of the Layer-by-layer (LbL) assembly technique and explore parameters to control the film properties for tailored applications. The objective of this work is to investigate immersion time as a parameter to tune film properties and analyze the kinetics of LbL assembly. Multilayer films prepared using strong polycation poly (diallyldimethylammonium chloride) (PDDA) and strong polyanion poly (styrene sulfonate) (PSS), or the weak polyanion poly (acrylic acid) (PAA), and/or the synthetic clay Laponite were assembled using the solution dip LbL procedure. We also investigate the disassembly kinetics of these multilayers upon exposure to different pH conditions. UV-vis spectroscopy and AFM were used to measure the adsorption and desorption of polymers and film surface morphology. The kinetics of multilayer growth for strong polyelectrolyte system were observed to be different than for the weak polyelectrolyte system. Multilayer films of strong polyelectrolyte system of PDDA/PSS or clay system of PDDA/Laponite were found to be stable upon exposure to different pH conditions for very long times. LbL offers a convenient method to produce ultrathin films with nanometer scale control for various applications, e.g., drug delivery, optical coating, battery electrolytes and gas barriers.

  19. Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2015-11-01

    The influence of rotating magnetic fields (RMF) on species transport and interface stability during the growth of Cd0.96Zn0.04Te:In crystals by using the traveling heater method (THM), under microgravity and terrestrial conditions, is numerically investigated. The numerical results are compared to ground and space experiments. The modeling of THM under ground conditions shows very deleterious effects of the natural convection on the morphological stability of the growth interface. The vertical flow transports the liquid of low Te concentration from the dissolution interface to the growth interface, which is consequently destabilized. The suppression of this flow, in low-gravity conditions, results in higher morphological stability of the growth interface. Application of RMF induces a two flow cell pattern, which has a destabilizing effect on the growth interface. Simulations performed by varying the magnetic field induction in the range of 1 - 3 mT show optimal conditions for the growth with a stable interface at low strength of the magnetic field (B = 1 mT). Computations of indium distribution show a better homogeneity of crystals grown under purely diffusive conditions. Rotating magnetic fields of B = 1 mT induce low intensity convection, which generates concentration gradients near the growth interface. These numerical results are in agreement with experiments performed during the FOTON M4 space mission, showing good structural quality of Cd0.96Zn0.04Te crystals grown at very low gravity level. Applying low intensity rotating magnetic fields in ground experiments has no significant influence on the flow pattern and solute distribution. At high intensity of RMF (B = 50 mT), the buoyancy convection is damped near the growth front, resulting in a more stable advancing interface. However, convection is strengthening in the upper part of the liquid zone, where the flow becomes unsteady. The multi-cellular unsteady flow generates temperature oscillations, having

  20. Optimum scratch assay condition to evaluate connective tissue growth factor expression for anti-scar therapy.

    Science.gov (United States)

    Moon, Heekyung; Yong, Hyeyoung; Lee, Ae-Ri Cho

    2012-02-01

    To evaluate a potential anti-scar therapy, we first need to have a reliable in vitro wound model to understand dermal fibroblast response upon cell injury and how cytokine levels are changed upon different wound heal phases. An in vitro wound model with different scratch assay conditions on primary human foreskin fibroblast monolayer cultures was prepared and cytokine levels and growth properties were evaluated with the aim of determining optimum injury conditions and observation time. Morphological characteristics of differently scratched fibroblasts from 0 to 36 h post injury (1 line, 2 lines and 3 lines) were investigated. The expression of connective tissue growth factor, CTGF, which is a key mediator in hyper-tropic scarring, and relative intensity of CTGF as a function of time were determined by western blot and gelatin Zymography. After injury (1 line), CTGF level was increased more than 2-fold within 1 h and continuously increased up to 3-fold at 6 h and was leveled down to reach normal value at 36 h, at which cell migration was complete. In more serious injury (2 lines), higher expression of CTGF was observed. The down regulation of CTGF expression after CTGF siRNA/lipofectamine transfection in control, 1 line and 2 lines scratch conditions were 40%, 75% and 55%, respectively. As a model anti-CTGF based therapy, CTGF siRNA with different ratios of linear polyethyleneimine (PEI) complexes (1:1, 1:5, 1:10, 1:20 and 1:30) were prepared and down-regulation efficacy of CTGF was evaluated with our optimized scratch assay, which is 1 line injury at 6 h post injury observation time. As the cationic linear PEI ratio increased, the down regulation efficacy was increased from 20% (1:20) to 55% (1:30). As CTGF level was increased to the highest at 6 h and leveled down afterwards, CTGF level at 6 h could provide the most sensitive response upon CTGF siRNA transfection. The scratch assay in the present study can be employed as a useful experimental tool to differentiate

  1. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    Science.gov (United States)

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m(-1) salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m(-1) . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize.

  2. Comparison of faecal and optimal growth conditions on in vitro pharmacodynamic activity of marbofloxacin against Escherichia coli.

    Science.gov (United States)

    Pellet, T; Gicquel-Bruneau, M; Sanders, P; Laurentie, M

    2006-06-01

    The objective of the study was to compare the in vitro activity of marbofloxacin against Escherichia coli (E. coli) strains with differing marbofloxacin susceptibility levels under optimal growth conditions and under condition mimicking faecal environment in time-kill kinetic studies. Under optimal growth conditions, marbofloxacin exerted a bactericidal concentration-dependent activity against all E. coli strains with bactericidal concentrations equal to 1 or 4 times MIC. Under faecal growth conditions, marbofloxacin maintained a bactericidal concentration-dependent activity but a 4- to 16-fold increase in bactericidal concentration was required to produce a similar magnitude of effect at 8 h. The bactericidal activity decreased between 8 and 24 h and allowed a residual bacterial population to subsist with a significant regrowth for some of them. Under no-growth conditions, marbofloxacin produced a very low decrease of non-dividing bacteria during a short time. No concentration produced a reduction > or = 3log10 in viable count excepted for two susceptible strains at concentration > or = 64 x MIC after 4 h exposure. The pharmacodynamic parameters from time-kill kinetic studies provide a useful means of studying antimicrobial activity. The importance of using different growth conditions is indicated by the difference in the killing of E. coli in the absence of active dividing cells and in the presence of autoclaved faecal content, both of which have a detrimental effect on the activity of marbofloxacin.

  3. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    Science.gov (United States)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-03-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  4. Growth curve of locally adapted pantaneiro cows raised under natural conditions

    Directory of Open Access Journals (Sweden)

    Eleonora Araújo Barbosa

    2013-11-01

    Full Text Available The objective of this study was to use morphometric and ultrasound evaluations to estimate the growth curve of the Pantaneiro cattle breed, raised in its natural habitat, aiming at the re-insertion of this breed in production systems. One hundred and three females, aging from months to 11 years, and raised on native pastures, were evaluated. The animals belonged to the Conservation Nucleus of Embrapa Pantanal, located in the Pantanal of Mato Grosso do Sul (Brazil. Weight, thoracic perimeter (TP, body length (BL, rump height (RH, height at withers (HW, hip height (HH, depth (DP, distance between the ilia (DI (cm and rib-eye area (REA were measured. To relate the measurements with the age of the animals, the univariate regression model was used, assigning the variable response to gamma distribution. The Pearson correlation between variables was also estimated. The inflection point of the growth curve was 37 months for HH; between 38 and 39 months for TP and HW; between 40 and 41 months for DI, HH and DP; and 45 months for BL. The REA results could not fit in a statistical model. The majority of the variables presented a correlation above 60% among themselves, except for REA × Age, of 15.81%; REA × HW, of 34.44%; HH × Age, of 46.19; HH × DI, of 58.07%; REA × HH, of 24.57%; and REA × TP, of 39.9%. The cows showed maturity age at 40 months, which may have occurred because they were raised in natural farming conditions. In Pantaneiro cows reared in extensive systems only on natural pastures, the use of ultrasound is not effective to estimate the curve of muscular development, perhaps because this breed was not selected for weight gain.

  5. Growth Responses of Acacia mangium and Paraserianthes falcataria Seedlings on Different Soil Origin under Nursery Condition

    Directory of Open Access Journals (Sweden)

    Tirtha Ayu Paramitha

    2015-12-01

    Full Text Available The objective of the present study was to examine the growth responses of Acacia mangium (mangium and Paraserianthes falcataria (sengon seedlings growing on different soil origin under nursery condition. This study was started in September 2012 and terminated in March 2013.  The seedlings were grown from seeds sown in a plastic box filled with sterilized sands. One week after sowing, the seedlings were transplanted into polybags contained sterilized soils originated from secondary forest, Imperata cylindrica grassland and ex-coal mining. The number of all seedlings were 180 seedlings consisted of 3 different soils, 2 species of seedlings with 10 seedlings replicated 3 times. Assessment was conducted one week after transplanting, then subsequently monitored every 2 weeks, except dry weighing and counting nodules were performed at the end of the study. A completely randomized design was used in this study. The data was analyzed using Costat software. The study resulted that the different of soil origin influenced on all growth variables of mangium and sengon of 4.5 months old. The survival rate of seedlings, height and diameter increments, dry weight and root nodules were better in both species of seedlings growing on soil originated from secondary forest and Imperata grassland compared with the soil from ex-coal mining. But the survival rates of sengon seedlings were higher than that of mangium on these three soils. The highest dry weight of sengon seedlings was achieved on soil originated from secondary forest. In the present study, soil originated from secondary forest increased more in weight of shoot than root, so that the shoot-root ratio was unbalanced more than one. Based on the results of this study, it is recommended that soil from secondary forest and Imperata grassland can be used as growing media for mangium and sengon seedlings in the nursery.

  6. Growth process conditions of tungsten oxide thin films using hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z. Silvester, E-mail: Z.S.Houweling@uu.nl [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, John W. [Electron Microscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Jong, Michiel de; Harks, Peter-Paul R.M.L.; Werf, Karine H.M. van der; Schropp, Ruud E.I. [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Process parameters to control hot-wire CVD of WO{sub 3-x} are categorized. Black-Right-Pointing-Pointer Growth time, oxygen partial pressure, filament and substrate temperature are varied. Black-Right-Pointing-Pointer Chemical and crystal structure, optical bandgap and morphology are determined. Black-Right-Pointing-Pointer Oxygen partial pressure determines the deposition rate up to as high as 36 {mu}m min{sup -1}. Black-Right-Pointing-Pointer Nanostructures, viz. wires, crystallites and closed crystallite films, are controllably deposited. - Abstract: We report the growth conditions of nanostructured tungsten oxide (WO{sub 3-x}) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was varied from 6.0 Multiplication-Sign 10{sup -6} to 1.0 mbar and the current through the filaments was varied from 4.0 to 9.0 A, which constitutes a filament temperature of 1390-2340 Degree-Sign C in vacuum. It is observed that the deposition rate of the films is predominantly determined by the oxygen partial pressure; it changes from about 1 to about 36,000 nm min{sup -1} in the investigated range. Regardless of the oxygen partial pressure and filament temperature used, thin films with a nanogranular morphology are obtained, provided that the depositions last for 30 min or shorter. The films consist either of amorphous or partially crystallized WO{sub 3-x} with high averaged transparencies of over 70% and an indirect optical band gap of 3.3 {+-} 0.1 eV. A prolonged deposition time entails an extended exposure of the films to thermal radiation from the filaments, which causes crystallization to monoclinic WO{sub 3} with diffraction maxima due to the (0 0 2), (2 0 0) and (0 2 0) crystallographic planes, furthermore the nanograins sinter and the films exhibit a cone

  7. ISOLATION AND GROWTH OF DINOFLAGELLATE, Scrippsiella sp. AND DIATOM, Melosira cf. moniliformis IN CONTROLLED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wa Iba

    2014-06-01

    Full Text Available The growth of the dinoflagellate, Scrippsiella sp. from Narragansett Bay, USA and the chain-forming benthic diatom, Melosira cf. moniliformis from Kendari Bay, Indonesia was evaluated under optimized laboratory conditions to investigate potential new candidates for shrimp aquaculture hatchery feeds. Isolation of microalgae was performed using capillary pipets in f/8-Si for Scrippsiella sp. and f/2 for M. cf. moniliformis. Isolated cells were placed in an incubator with a photoperiod of 12:12 hour (light : dark cycle, at light intensities of 62-89 μmol photons.m-2.s and at temperature of 20oC. Microalgae cells were cultured in 150-mL Erlenmeyer flasks containing 100 mL of f/2-Si medium for Scrippsiella spin triplicates and in 50-mL culture tubes containing 20 mL of f/2 medium for M. cf. moniliformis in four replicates. The cells in culture flasks were used in cell counting experiments while those in tubes were for fluorometer trials. Growth evaluation was conducted every 2-3 days. The diatom, M. cf. moniliformis was in logarithmic phase when observed at 2 to 7 days after inoculation and showed a high growth rate (μ = 0.52 day-1 and high division rate (k = 0.76 day-1, 1 division every 1.3 days. Logarithmic phase of Scrippsiella in culture flasks was started on day 7 to 30 (μ = 0.17 day-1 and k = 0.25 day-1 or 1 division every 4 days. In culture tubes, Scrippsiella sp. reached logarithmic phase at day 21 to 47 (μ = 0.12 day-1 and k = 0.18 day-1, 1 division every 5.65 days. This study indicates that M. cf. moniliformis can be used for aquaculture hatcheries feed but further study for the nutrition composition is needed. Scrippsiella sp. is potentially toxic for aquaculture at high densities, therefore they should be assessed carefully if used for aquaculture feeds.

  8. ADAPTATION TO UNFAVORABLE CONDITIONS OF GROWTH: PATHOGENICITY OF ACHOLEPLASMA LAIDLAWII PG8

    Directory of Open Access Journals (Sweden)

    Maxim V. Trushin

    2006-11-01

    Full Text Available ABSTRACT:As a result of cultivation of A. laidlawii PG8 cells on the deficient medium during 480 days, the mycoplasma culture adapted in vitro to unfavorable growth conditions was obtained. The culture consisted of cells with sizes less than 0.2 µm and features of A. laidlawii PG8 ultramicroforms, nanocells. A. laidlawii PG8 culture adapted in vitro to unfavorable growth conditions shows more evident phytopathogenicity than the unadapted one. Infecting plants V. minor L. by A. laidlawii PG8 culture adapted in vitro to UGC resulted in the appearance of chloroses in 75%, necrosis – 50%, leaves marcescence – 50% and abnormalities of bine development in 30% of plants through 12 days, while infecting plants by A. laidlawii PG8 culture unadapted to UGC led to respective signs in 40%, 25%, 25% and 0% of samples, respectively, through 30 days. The ability of A. laidlawii PG8 to form UMF resistant to stress factors in UGC with high phytopathogenic potential seems to demand a new approach to investigate the precise mechanisms of interacting the mycoplasma with host organisms.RESUMENComo resultado del cultivo de células de A. laidlawii PG8 en medio deficiente durante 480 días, fue obtenido un cultivo de mycoplasma adaptado in vitro a las condiciones desfavorables del crecimiento. El cultivo consistió en células con tamaño menor de 0.2 µm y características PG8 ultramicroformas de A. laidlawii nanocélulas. El cultivo de A. laidlawii PG8 adaptado in vitro a condiciones desfavorables del crecimiento muestra más evidente fitopatogenicidad que el inadaptado. Plantas infectadas V. minor L. por el cultivo del A. laidlawii PG8 adaptado in vitro a UGC dio como resultado la aparición de clorosis en el 75%, necrosis en el 50%, marcescencia de las hojas en el 50% y anormalidades del desarrollo del bine en el 30% de plantas a los 12 días, mientras que las plantas infectadas por el cultivo del A. laidlawii PG8 inadaptado a UGC, condujo a dichos signos en

  9. Fatigue behaviour and crack growth of ferritic steel under environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herter, K.H.; Schuler, X.; Weissenberg, T. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    The assessment of fatigue and cyclic crack growth behaviour of safety relevant components is of importance for the ageing management with regard to safety and reliability. For cyclic stress evaluation different codes and standards provide fatigue analysis procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as a limiting criteria the influence of different factors like e.g. environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed in the low cycle fatigue (LCF) und high cycle fatigue (HCF) regime with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and high temperature (HT) boiling water reactor environment to extend the state of knowledge of environmentally assisted fatigue (EAF) as it can occur in boiling water reactor (BWR) plants. Using the reactor pressure vessel (RPV) steel 22NiMoCr3-7 experimental data were developed to verify the influence of BWR coolant environment (high purity water as well as sulphate containing water with 90 ppb SO{sub 4} at a test temperature of 240 C and an oxygen content of 400 ppb) on the fatigue life and to extend the basis for a reliable estimation of the remaining service life of reactor components. Corresponding experiments in air were performed to establish reference data to determine the environmental correction factor F{sub en} accounting for the environment. The experimental results are compared with international available mean data curves, the new design curves and on the basis of the environmental factor F{sub en}. Furthermore the behaviour of steel 22NiMoCr3-7 in oxygenated high temperature water under transient loading conditions was investigated with respect to crack initiation and cyclic crack growth. In this process the stress state of the specimen and the chemical composition of

  10. Short Communication Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar-ul-Hye

    2013-05-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR containing ACC-deaminase in combination with rhizobia can improve the growth and nodulation in plants by suppressing the endogenous level of ethylene. In the present study, ten strains, each of PGPR and rhizobia from the previously screened cultures were tested for their effect as co-inoculants on growth and nodulation of lentil in growth pouches under axenic conditions. Results showed that most of the combinations improved the lentil growth as compared to the un-inoculated control. Maximum increase in shoot length (1.87 fold, root length (1.97 fold and total biomass (1.98 fold over the un-inoculated control was observed in the treatment where the lentil seedlings were inoculated with the combination Z24P10. Co-inoculation also improved the nodulation in lentil and the maximum number of nodules plant-1 (24 nodules were observed in the combination Z22P10. However, there was no nodulation in few combinations. It is concluded that the co-inoculation with rhizobia and PGPR containing ACC-deaminase has improved the growth and nodulation in lentil under axenic conditions and the selected combinations may be evaluated in pot and field trials

  11. Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions.

    Science.gov (United States)

    Shafiei, Rasoul; Delvigne, Frank; Babanezhad, Manoochehr; Thonart, Philippe

    2013-05-15

    Acetic acid bacteria (AAB) are used in production of vinegars. During acetic acid fermentation, AAB encounter various aggressive conditions which may lead to a variety of cellular disorders. Previous researches mainly studied the influences of different carbon sources on tolerance of AAB to ethanol and acetic acid. In this study, different techniques were used comparatively to investigate the effects of preadaptation on the ability of A. senegalensis to tolerate ethanol and acetic acid. In general, the carbon sources used for preadaptation of A. senegalensis exhibited significant effects on the tolerance of cells to stressors. Flow-cytometric assessments of preadapted cells in ethanol showed that 87.3% of the cells perform respiration after exposure to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid. However, 58.4% of these preadapted cells could keep their envelope integrity under the stress condition. They could also grow rapidly (μmax=0.39/h) in the stress medium (E5A3) with a high yield (>80%). A. senegalensis grown in glucose exhibited a low tolerance to acetic acid. Analysis of their respiration capacity, membrane integrity and culturability revealed that almost all the population were dead after exposure to 5% (v/v) ethanol and 3% (w/v) acetic acid. In contrast, exposure of A. senegalensis preadapted in a mixture of glucose and acetic acid to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid, exhibited an intact respiration system and cellular membrane integrity in 80.3% and 50.01% of cells, respectively. Moreover, just 24% of these cells could keep their culturability under that stress condition. In summary, cell envelope integrity, growth and culturability are more susceptible to pH and acetic acid stresses whereas respiration system is less subjected to damages under stress condition. In addition, preadaptation of A. senegalensis in a mixture of glucose and acetic acid enables it to tolerate and grow in ethanol and

  12. Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on wheat growth under different conditions.

    Science.gov (United States)

    Inostroza, N G; Barra, P J; Wick, L Y; Mora, M L; Jorquera, M A

    2017-02-01

    Plant growth-promoting rhizobacteria (PGPR) are studied as complements/alternatives to chemical fertilizers used in agriculture. However, poor information exists on the potential of PGPR from undisturbed ecosystems. Here, we have evaluated the plant growth-promoting (PGP) effect of rhizobacterial consortia from undisturbed Chilean arid ecosystems (Consortium C1) and agro-ecosystems (Consortium C2) on plant biomass production. The PGP effects of C1 and C2 were assayed in wheat seedlings (Triticum aestivum L.) grown in pots under growth chamber conditions and in pots placed in an open greenhouse under natural conditions, using two different Chilean Andisols (Piedras Negras and Freire series) kept either at 30 or 60% of their maximum water holding capacity (MWHC). PGP effects depended on the soil type, MWHC and the growth conditions tested. Although both consortia showed PGB effects in artificial soils relative to controls in growth chambers, only C1 provoked a PGP effect at 60% MWHC in phosphorus-poor soil of the 'Piedras Negras' series. At natural conditions, however, only C1 exhibited statistically significant PGP effects at 30% MWHC in 'Piedras Negras', yet and most importantly allowed to maintain similar plant biomass as at 60% MWHC. Our results support possible applications of rhizobacterial consortia from arid ecosystems to improve wheat growth in Chilean Andisols under water shortage conditions. Wheat seedling inoculated with rhizobacterial consortia obtained from an undisturbed Chilean arid ecosystem showed improved growth in phosphorus-poor and partly dry soil. Arid ecosystems should be considered in further studies as an alternative source of microbial inoculants for agro-ecosystems subjected to stressful conditions by low nutrients and/or adverse climate events. © 2016 The Society for Applied Microbiology.

  13. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: a contribution to the alternative method to preserve foods without using chemical preservatives.

    Science.gov (United States)

    Dang, T D T; Mertens, L; Vermeulen, A; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F

    2010-01-31

    The aim of the study was to develop mathematical models describing growth/no growth (G/NG) boundaries of the highly resistant food spoilage yeast-Zygosaccharomyces bailii-in different environmental conditions, taking acidified sauces as the target product. By applying these models, the stability of products with characteristics within the investigated pH, a(w) and acetic acid ranges can be evaluated. Besides, the well-defined no growth regions can be used in the development of guidelines regarding formulation of new shelf-stable foods without using chemical preservatives, which would facilitate the innovation of additive-free products. Experiments were performed at different temperatures and periods (22 degrees C for 45 and 60days, 30 degrees C for 45days) in 150 modified Sabouraud media characterized by high amount of sugars (glucose and fructose, 15% (w/v)), acetic acid (0.0-2.5% (v/v), 6 levels), pH (3.0-5.0, 5 levels) and a(w) (0.93-0.97, 5 levels). These time and temperature combinations were chosen as they are commonly applied for shelf-stable foods. The media were inoculated with ca. 4.5 log CFU/ml and yeast growth was monitored daily using optical density measurements. Every condition was examined in 20 replicates in order to yield accurate growth probabilities. Three separate ordinary logistic regression models were developed for different tested temperatures and incubation time. The total acetic acid concentration was considered as variable for all models. In general, when one intrinsic inhibitory factor became more stringent, the G/NG boundary shifted to less stressful conditions of the other two factors, resulting in enlarged no growth zones. Abrupt changes of growth probability often occurred around the transition zones (between growth and no growth regions), which indicates that minor variations in environmental conditions near the G/NG boundaries can cause a significant impact on the growth probability. When comparing growth after 45days between the

  14. Diet and weaning age affect the growth and condition of Dover sole (Solea solea L.

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The effect of diet type (frozen Artemia biomass and two inert diets: micro-bound [MB] and micro-extruded [ME] and two weaning ages (early weaning and late weaning, 50 and 64 days after hatching, respectively were studied in Solea solea larvae. The experiment lasted 56 and 42 days for early and late weaning, respectively. The mortality results showed the highest values for late weaning (39% in the Artemia treatment. No significant differences in mortality were observed between the inert diets. The final dry weight values were higher for late weaning than for early weaning. At both weaning ages, fish receiving the same treatments had similar tendencies for dry weight and standard length. Fish fed with MB presented significantly higher dry weight and standard length, followed by ME, while the lowest values at both weaning ages were recorded for the Artemia treatment. Similar amounts of highly unsaturated fatty acid fractions among the inert diets were reflected by the absence of significant differences in the susceptibility to oxidation (thiobarbituric acid reactive substances testing; however, significant differences were found in carbohydrate, protein and lipid contents of whole-body homogenates for both early and late weaning. At the end of the experiment no significant differences in biochemical contents were observed between the two inert diets. The results of this study suggest that weaning starting on day 50 (early weaning, using a good quality inert diet, leads to higher survival, growth and fish condition.

  15. Evaluation of morphological variation and biomass growth of Nostoc commune under laboratory conditions.

    Science.gov (United States)

    Diao, Yi; Yang, Zujun

    2014-05-01

    Nostoc commune is a blue green alga used for health food and herbal medicine due to its nutritional values and antioxidant properties. However, wild type N. commune has been decreasing in quantity as a result of ever-growing market demand and environmental pollution. Therefore, artificial culture of N. commune is important as it can bring great social and economic benefits. In this article, N. commune was cultured in BG11 medium, under which condition morphological variation and biomass growth of N. commune were investigated. Results indicated that concentration, fresh weight and dry weight of the colony increased fastest at 40 rpm from the 1st day to 14th day and the fresh and dry weight increased as the culturing time was prolonged, and reached 27.22 g l⁻¹ and 0.88 g l⁻¹ respectively on 56th day. Aggregated cell mass formed on 4th day and it expanded to asteriated colonies on 10th day. Single microcolonies formed on the 21st day had diameters 200-250 μm. Macrocolonies obtained after 28 days had diameters of 5 mm on 42nd day. Discoid colonies were formed as macrocolonies ruptured on 49th day and the diameter reached 15 mm on 56th day. Results of the present study can promote large-scale industrial production of N. commune.

  16. The effect of isolation on reproduction and growth of Pseudosuccinea columella (Pulmonata: Lymnaeidae: a snail-conditioned water experiment

    Directory of Open Access Journals (Sweden)

    Gutiérrez Alfredo

    2002-01-01

    Full Text Available A snail-conditioned water experiment was conducted in Pseudosuccinea columella to test the possible role of a chemical interaction between snails on the diminished growth and fecundity rates found for snails raised in pairs compared to those raised in complete isolation. The results permit to discard the hypothesis of an inhibition of growth and reproduction between snails due to factors released into the water.

  17. Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone

    Science.gov (United States)

    Escribano, Rubén; Bustos-Ríos, Evelyn; Hidalgo, Pamela; Morales, Carmen E.

    2016-09-01

    Zooplankton production is critical for understanding marine ecosystem dynamics. This work estimates copepod growth and production in the coastal upwelling and coastal transition zones off central-southern Chile (~35 to 37°S) during a 3-year time series (2004, 2005, and 2006) at a fixed shelf station, and from spring-summer spatial surveys during the same period. To estimate copepod production (CP), we used species-biomasses and associated C-specific growth rates from temperature dependent equations (food-saturated) for the dominant species, which we assumed were maximal growth rates (gmax). Using chlorophyll-a concentrations as a proxy for food conditions, we determined a size-dependent half-saturation constant with the Michaelis-Menten equation to derive growth rates (g) under the effect of food limitation. These food-dependent C-specific growth rates were much lower (absence of bottom-up control, allowing copepods to grow without limitation due to food resources.

  18. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    Science.gov (United States)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    day, which is the largest temperature variability as measured so far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly 1 week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  20. Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat.

    Science.gov (United States)

    Miyamoto, K; Yamamoto, R; Fujii, S; Soga, K; Hoson, T; Shimazu, T; Masuda, Y; Kamisaka, S; Ueda, J

    1999-12-01

    The effects of simulated microgravity conditions produced by a horizontal clinostat on the entire life cycle of Arabidopsis thaliana ecotype Columbia and Landsberg erecta were studied. Horizontal clinorotation affected little germination of seeds, growth and development of rosette leaves and roots during early vegetative growth stage, and the onset of the bolting of inflorescence axis and flower formation in reproductive growth stage, although it suppressed elongation of inflorescence axes. The clinorotation substantially reduced the numbers of siliques and seeds in Landsberg erecta, and completely inhibited seed production in Columbia. Seeds produced in Landsberg erecta on the clinostat were capable of germinating and developing rosette leaves normally on the ground. On the other hand, growth of pin formed mutant (pin/pin) of Arabidopsis ecotype Enkheim, which has a unique structure of inflorescence axis with no flower and extremely low levels of auxin polar transport activity, was inhibited and the seedlings frequently died during vegetative stage on the clinostat. Seed formation and inflorescence growth of the seedlings with normal shape (pin/+ or +/+) were also suppressed on the clinostat. These results suggest that the growth and development of Arabidopsis, especially in reproductive growth stage, is suppressed under simulated microgravity conditions on a clinostat. To complete the life cycle probably seems to be quite difficult, although it is possible in some ecotypes.

  1. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2012-02-01

    The growth and lipid productivity of an isolated microalga Chlorella vulgaris ESP-31 were investigated under different media and cultivation conditions, including phototrophic growth (NaHCO(3) or CO(2), with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO(2), with light). C. vulgaris ESP-31 preferred to grow under phototrophic (CO(2)), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.e., Basal medium and Modified Bristol's medium), reaching a biomass concentration of 2-5 g/l. The growth on nitrogen-limiting MBL medium resulted in higher lipid accumulation (20-53%) but slower growth rate. Higher lipid content (40-53%) and higher lipid productivity (67-144 mg/l/d) were obtained under mixotrophic cultivation with all the culture media used. The fatty acid composition of the microalgal lipid comprises over 60-68% of saturated fatty acids (i.e., palmitic acid (C16:0), stearic acid (C18:0)) and monounsaturated acids (i.e., oleic acid (C18:1)). This lipid composition is suitable for biodiesel production.

  2. Growth, condition, and mortality of caribou (Rangifer tarandus groenlandicus in the Sisimiut Population, West Greenland

    Directory of Open Access Journals (Sweden)

    Vidar Holthe

    1984-05-01

    Full Text Available Growth and condition of the Sisimiut caribou was anlysed by means of mandible length, carcass weight, and back fat indices. Mandible lenght showed unchanged growth conditions since the late 1960s, and growth stops at 4 years of age. The Sisimiut caribou seems to be smaller than North American caribous, Greenlandic semi-domesticated reindeer and of same size or smaller than Scandinavian reindeer. Carcass weight showed similar results, however cow growth rate seems not to prolong sexual maturation. Back fat deposits were less than what is known from other reindeer and caribou populations. Sex and age distribution of mandibles from various materials and survival curves based on the same material shows — an uneven distribution between bulls and cows and a relatively large proportion of old cows in the bag from the last years, which seems to be caused by a light hunting pressure when the population peaked in the 1960s. Heavy natural mortality for animals born before or after a winter with unfavorable snow conditions was also showed.Vækst, kondition og dødelighed hos vildren (Rangifer tarandus groenlandicus i Sisimiut-bestanden, Vestgrønland.Abstract in Danish / Sammendrag: Vækst- og konditionsforhold for Sisimiut-vildrenbestanden i Vestgrønland er beskrevet ved hjæip af underkæbelængde, slagtevægt og rygfedt. Undersøgelsen af kæbelængde viste, at vækstforholdene havde været uforandret siden sidste halvdel af 1960-erne, at væksten standser ved 4-års alderen, samt at Sisimiut-vildrenen er mindre end de nordamerikanske caribou, Itinnera-tamrenen og på størrelse med eller mindre end skandinaviske rensdyr. Dette viste sig også ved sammenligninger af slagtevægt. Vægten af simlerne er dog ikke så ringe, at der kan iagttages nogen forsinkelse i kønsmodningen. Fedtreserverne ved indgangen til vinteren synes at være dårligere end i andre undersøgte rensdyrbestande. Køns- og aldersfordelingen blandt forskellige typer af indsamlet k

  3. DOES SINGLE INTRAMUSCULAR APPLICATION OF AUTOLOGOUS CONDITIONED PLASMA INFLUENCE SYSTEMIC CIRCULATING GROWTH FACTORS?

    Directory of Open Access Journals (Sweden)

    Gert Schippinger

    2012-09-01

    Full Text Available Platelet-rich plasma (PRP has been employed to treat sports injuries to possibly accelerate healing and regeneration. This method offers some potential, especially for athletes. Growth factors are generally prohibited by the World Anti Doping Agency with exception to PRP which may induce adverse effects. The aim of this study was to evaluate any systemic increase of growth factors such as Insulin Like Growth Factor-1, Endothelial Growth Factors, Platelet-Derived Growth Factors, Fibroblast Growth Factors, Vascular-Endothelial Growth Factor and Transforming Growth Factors after local intramuscular administration of PRP in young, healthy male subjects keeping in mind adverse treatment effects. Enriched plasma from centrifuged blood samples was injected into the gluteus muscle. Venous blood was collected and serum prepared before as well as 0.5, 3 and 24 hours after PRP administration. Growth factors were analyzed using ELISA test kits. No significant systemic increase of growth factor levels was found after PRP injection except TGF-ß2. For that reason the PRP method may be applied for muscle injury treatment in elite athletes although further studies are necessary to clarify the response to the unspecific increased TGF-ß2 blood levels, which could increase the risk for local fibrosis

  4. The realization of the potential productivity of the potato under the influence of synthetic growth regulators in different hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Владимир Алексеевич Варавкин

    2015-06-01

    Full Text Available Plants Solanum tuberosum L. of Sateen variety treated by synthetic regulators of new generation with the growth of them in different hydrothermal conditions enhance the ability to form tubers, to increase their mass, the accumulation of dry matter and starch. Regulation of the intensity of the tuber formation, the growth of their mass, accumulation of dry matter and starch using biologically active substances has a dependency on the evolving hydrothermal conditions during the growing season of potato and chemical nature of agents

  5. Modification of MCF-10A cells with pioglitazone and serum-rich growth medium increases soluble factors in the conditioned medium, likely reducing BT-474 cell growth.

    Science.gov (United States)

    Khoo, Boon Yin; Miswan, Noorizan; Balaram, Prabha; Nadarajan, Kalpanah; Elstner, Elena

    2012-01-01

    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.

  6. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.

    Science.gov (United States)

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2017-06-01

    Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth.

  7. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  8. Evaluating the growth parameters of soybean in response to plant growth promoting fungi under Mazandaran climate conditions

    Directory of Open Access Journals (Sweden)

    mohammad yazdani

    2016-05-01

    Full Text Available Abstract In low-input cropping systems, the natural roles of microorganisms in maintaining soil fertility may be more important than conventional system. In order to investigate the effects of plant growth promoting fungi on improvement of growth and development in soybean (cv: JK an experiment was conducted at the research farm of Sari Agricultural Sciences and Natural Resources University during the 2011-2012 growing seasons. Treatments were arranged in a factorial experiment based a completely randomized block design with three replications. The first factor was six levels of fungi: inoculation T. harzianum and AMF genus Glumus: G. mosseae, G. intraradices, and co-inoculation of T. harzianum + G. mosseae, T. harzianum + G. intraradices and non-inoculation (control. The second factor was three levels of phosphorus (0, 70 and 140 kg.ha-1 from superphosphate trip. Results showed that inoculation of T. harzianum and G. mosseae significantly had maximum chlorophyll content up to 17% and 16% at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage as compared to the control respectively. The greatest effect was recorded at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage significant increase in terms of chlorophyll content. In addition, the dry weights and chlorophyll content of soybean plants in reduced phosphorous dosage (70 kg.ha-1 and co-inoculated with T. harzianum + G. mosseae as well as conventional phosphorous dosage were significantly higher than the non-inoculated plants. In this experiment, at reduce phosphate fertilizer (P0%: 0 treatment, not affected of plant growth promoting fungi compared to control. But, reduced phosphorous dosage (70 kg.ha-1 was more affected.

  9. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  10. Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification.

    Science.gov (United States)

    Milenkovic, Srdjan; Hassel, Achim Walter; Schneider, André

    2006-04-01

    The effects of the solidification parameters, such as growth rate and temperature gradient, on the distance and diameter of Re nanowires have been examined. Both the spacing and diameter increase with decreasing growth rate and temperature gradient, respectively. The ratio of fiber spacing to diameter is 9.1. In addition, it was demonstrated that the temperature gradient influences interface undercooling in the same way as the growth rate and may be used as an additional parameter to control fiber spacing and diameter.

  11. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus).

    Science.gov (United States)

    Hoa, Ha Thi; Wang, Chun-Li

    2015-03-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms.

  12. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    Science.gov (United States)

    Hoa, Ha Thi

    2015-01-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms. PMID:25892910

  13. Growth of champa fruit under agroecological conditions of Miraflores, Boyacá, Colombia

    Directory of Open Access Journals (Sweden)

    Helber Enrique Balaguera-López

    2012-12-01

    Full Text Available The objective of this work was to analyze the growth of champa fruit (Campomanesia lineatifolia as a function of growing-degree days (GDD in the municipality of Miraflores, in Boyacá, Colombia. Thirty trees were selected at random, and 100 flowers in full bloom were marked in each tree. From the 26th day after flowering until harvest, 10 samples were taken every 15 days to determine the fruit parameters and growth rate. Temperature was recorded to calculate the GDD. From flowering until harvest, 1,489.1 GDD were accumulated over 145 days. Dry and fresh matter mass of pulp, seed, and total fruit were fitted to a logistic growth model, and three growth stages (S1, S2 and S3 were defined. In the S1, growth was slow, and the relative growth remained nearly stable, whereas the absolute growth rate (AGR increased slowly. In the S2, maximum growth was observed. In the S3, which corresponds to maturation, dry mass increased gradually, and the AGR decreased, while the fresh pulp and total mass did not cease to increase. The polar and equatorial diameters increased linearly, while the volume followed an exponential model. Champa fruit show a simple sigmoid growth curve.

  14. Effect of cultivation conditions on Seimatosporium hypericinum growth and form morfological structures

    Directory of Open Access Journals (Sweden)

    Beata Zimowska

    2013-12-01

    Full Text Available The present study deals with effects of the air temperature, and the type of medium on the growth and form morfological structures of six Seimatosporium hypericinum isolates tested. St Jonh's Wort extract agar, St Jonh's Wort plant agar and PDA, oatmeal agar has been recognized as most useful for growth and sporulation of S.hypericinum. Mineral agar, appeared the least useful for growth and form acervuli and conidia. S.hypericinum can develop in a wide range of temperature, but the optimum one for the growth and sporulation of the fungus vary between 20°C and 28°C.

  15. Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless under operating conditions of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ki Deuk; Hong, Seok Min; Kim, Dae Whan; Lee, Bong Sang [Korea Atomic Energy Research Institute, Nuclear Materials Safety Research Division, Daejeon (Korea, Republic of); Kim, Seon Jin [Hanyang University, Division of materials science and engineering, Seoul (Korea, Republic of)

    2017-06-15

    The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

  16. Selection of the Bacteria Being Able to Degrade Kerosene and Study on the Growth Conditions of the Bacteria

    Institute of Scientific and Technical Information of China (English)

    LI; Ping; ZHUO; Feng-ping; GAO; Li-hong; CAI; Ming

    2012-01-01

    [Objective] The study aimed at selecting the predominant strains being able to degrade kerosene and studying its best growth conditions. [Method] Choosing kerosene as the only carbon source, we selected and separated the predominant strains being able to degrade kerosene from the contaminated soil near petrochemical plants, and then optimized the grow conditions of the bacteria. [Result] The best conditions for the bacteria growth were determined as follows, that is, temperature was 30 ℃, pH=7, salinity was 2.5%, and the rotational speed of the thermostatic shake was 190 r/min. Under the optimal conditions, the degradation rate of kerosene by the bacteria cultured for three days reached 42.6%. [Conclusion] The research could provide scientific references for the restoration of polluted soil by kerosene.

  17. Evaluation of growth conditions and DNA extraction techniques used in the molecular analysis of dermatophytes.

    Science.gov (United States)

    Gnat, S; Nowakiewicz, A; Ziółkowska, G; Trościańczyk, A; Majer-Dziedzic, B; Zięba, P

    2017-05-01

    Recent molecular methods for diagnosis of superficial mycoses have determined the need for a rapid and easy method of extracting DNA. The aim of study was to determine growth conditions and techniques of DNA extraction for Microsporum canis, Trichophyton mentagrophytes and T. verrucosum. Samples were prepared of each of the DNA extraction methods (phenol-chloroform, CTAB and four different kits) for all of the incubation periods (4, 7 and 10 days) of the cultures on the solid and in the liquid medium. The highest DNA concentrations were obtained using the phenol-chloroform method. The concentration of DNA extracted with the CTAB method accounted for 62·21%, for kits it corresponded from 35·53 to 15·41%. The analysis of the DNA weight yield revealed the highest isolation efficiency of the phenol-chloroform method, 1 mg of mycelium yielded 223·8 μg DNA. Lower DNA yield (by 39·32%) was obtained with the CTAB method; in the case of kits by 68·46-85·32%. In most of the techniques, the DNA yield on the solid medium was higher. In summary, the highest DNA yield was noted in the 7-day cultures and extraction with the phenol-chloroform method. Importantly, the type of culture was not relevant for the diagnostic result. Most mycoses are caused by fungi that reside in nature. The severity of the infection depends on the pathogenic attributes, socioeconomic factors and local environmental conditions. Recent diagnosis increasingly relies on not only the clinical features. Molecular identifications have determined the need for a rapid and easy method of extracting DNA. Usually two factors have to be considered: maximize the DNA yield and ensure that the extracted DNA is susceptible to enzymatic reactions. These data suggest that phenol-chloroform methods and a 7-day culture period may be useful for validation and constitute the first step of molecular diagnosis of dermatophytes. © 2017 The Society for Applied Microbiology.

  18. Effect of diet supplementation on growth and reproduction in camels under arid range conditions

    Directory of Open Access Journals (Sweden)

    Abdouli H.

    2001-01-01

    Full Text Available Eighteen pregnant dromedary females (Camelus dromedarius were used to determine the effect of concentrate supplement on growth and reproductive performances in peri-partum period. The females were divided into supplemented (n = 9; S and unsupplemented (n = 9; C experimental groups. All animals grazed, with one mature male, 7 to 8 hours per day on salty pasture rangelands. During night, they were kept in pen, where each female of group S received 4 kg per day of concentrate supplement during the last 3 months of gestation and 5 kg per day during the first 3 months post-partum. During the last 90 days of gestation daily body weight gain (DBG was at least tenfold more important in group S than in group C (775 g vs. 72 g respectively. Supplementation affected birth weight of offspring (30.3 kg vs. 23.4 kg and its DBG (806 g vs. 430 g in group S and group C respectively. During the post-partum period, females in group S gained in weight (116 g per day whereas females in group C lost more than 200 g per day. The mean post-partum interval to the first heat and the percentage of females in heat were 29.5 day and 44.4/ vs. 41.2 day and 71.4/ for the C and S groups, respectively. We conclude that under range conditions, dietary supplementation of dromedary during late pregnancy stage and post-partum period improves productive and reproductive parameters.

  19. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    Directory of Open Access Journals (Sweden)

    Khing Boon Kuan

    Full Text Available Plant growth-promoting rhizobacteria (PGPR may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate, the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50 and ear harvest (D65. The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1 and 25.5% (304 mg N2 fixed plant-1 of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize

  20. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    Science.gov (United States)

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  1. Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions.

    Science.gov (United States)

    Longhi, Daniel Angelo; Dalcanton, Francieli; Falcão de Aragão, Gláucia Maria; Carciofi, Bruno Augusto Mattar; Laurindo, João Borges

    2013-10-21

    Mathematical models taking temperature variations into account are useful in predicting microbial growth in foods, like meat products, for which Lactobacillus plantarum is a mesophilic and one of the main spoiling bacterium. The current study assessed the ability of the main primary models and their non-isothermal versions to predict L. plantarum growth under constant and variable temperature. Experimental data of microbial growth were obtained in MRS medium under isothermal conditions (4, 8, 12, 16, 20, and 30°C) which were used to obtain the secondary models. The experimental data under non-isothermal conditions (periodically oscillating temperature between the plateaus 4-12, 5-15, and 20-30°C) were used to validate the non-isothermal models. The bias factors indicated that all assessed models provided safe predictions of the microorganism growth at the non-isothermal conditions. Overall, despite the very good performance of the primary models (isothermal), none of the models was able to predict with accuracy the L. plantarum growth under temperature variations, mainly when the temperature range was close to refrigeration temperature. Incorporating the complex microbial adaptation mechanisms into the predictive models is a challenge to be overcome.

  2. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    Science.gov (United States)

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha(-1) in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  3. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    Science.gov (United States)

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  4. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions

    NARCIS (Netherlands)

    Cipriano, M.A.P.; Lupatini, M.; Santos, L.; Silva, M. da; Roesch, L.F.W.; Destefano, S.; Freitas, S.; Kuramae, E.E.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are well described and recommended for several crops worldwide. However, one of the most common problems in PGPR research is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial

  5. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions

    NARCIS (Netherlands)

    Santos, A.M.; Janssen, M.G.J.; Lamers, P.P.; Evers, W.A.C.; Wijffels, R.H.

    2012-01-01

    The effect of elevated pH and salt concentration on the growth of the freshwater microalga Neochloris oleoabundans was investigated. A study was conducted in 24-well plates on the design of a growth medium and subsequently applied in a photobioreactor. An artificial seawater medium with reduced Ca(2

  6. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    Science.gov (United States)

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions.

  7. Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter.

    Science.gov (United States)

    Taylor, R H; Dunn, M L; Ogden, L V; Jefferies, L K; Eggett, D L; Steele, F M

    2013-05-01

    The objective of this study was to better understand the effect of butter composition and emulsion structure on growth and survival of Clostridium sporogenes, used as a surrogate for C. botulinum in canned butter. The lack of a thermal process step in commercially available canned butter raises questions of potential safety, because it is hermetically sealed and generally exhibits anaerobic growth conditions, which are optimal for Clostridium botulinum growth. Without thermal processing, low-acid canned foods must have inhibitory factors present to prevent C. botulinum growth. Some potential intrinsic inhibitory factors, or hurdles, within butter include: reduced water activity, acidity in cultured products, elevated salt content, and the micro-droplet nature of the aqueous phase in the butter emulsion. It was hypothesized that a normal, intact butter emulsion would have sufficient hurdles to prevent C. botulinum growth, whereas a broken butter emulsion would result in a coalesced aqueous phase that would allow for C. botulinum growth. Batch-churned butter was inoculated with C. sporogenes; butter samples with varying salt contents (0, 0.8, 1.6, and 2.4% wt/wt NaCl) were prepared and stored in coated steel cans for varying times (1 or 2 wk) and temperatures (22 or 41°C) to determine temperature and emulsion structure effects on C. sporogenes growth. Samples stored at 41°C showed a significant increase in C. sporogenes growth compared with those stored at 22°C. Furthermore, NaCl addition was found to have a significant effect on C. sporogenes growth, with 0.8% NaCl promoting more growth than 0%, but with decreases in growth observed at 1.6 and 2.4%. Uninoculated control plates were also found to have bacterial growth; this growth was attributed to other anaerobic bacteria present within the cream. It was concluded that removal of the hurdle created by the micro-droplet size of the emulsion aqueous phase could result in C. botulinum growth even at elevated salt

  8. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  9. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    Science.gov (United States)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global

  10. Rapid Hypoeutectic Growth Within a Highly Undercooled Liquid Under Containerless Condition

    Institute of Scientific and Technical Information of China (English)

    韩秀君; 姚文静; 魏炳波

    2002-01-01

    Rapid hypoeutectic growth from a highly undercooled liquid was accomplished by containerless processing Ni32%Sb hypoeutectic alloy in a 3m drop tube. The containerless state during the free fall of the droplet produces substantial undercooling up to 350K (0.24TL ). The growth mechanism is found to transform from primary α-Ni dendrite plus lamellar eutectic to lamellar eutectic and finally to anomalous eutectic if droplet undercooling exceeds the two thresholds of 112K and 242K, respectively. Based on the current eutectic and dendritic growth models, the eutectic coupled zone is calculated and used to explain the growth mechanism transition. Calculations also indicate that the growth of α-Ni primary dendrite was mainly controlled by solute diffusion.

  11. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  12. A Miniature Condition in Brahman Cattle is Associated with a Single Nucleotide Mutation Within the Growth Hormone Gene

    Science.gov (United States)

    Miniature Brahman cattle at the USDA ARS in Brooksville, FL have normal proportioned growth but are approximately 70% of normal mature height and weight when compared with Brahman cattle in the same heard. Pedigree analyses suggest that the condition is inherited as a recessive allele. The miniature...

  13. Growth and condition of juvenile coho salmon Oncorhynchus kisutch relate positively to species richness of trophically transmitted parasites.

    Science.gov (United States)

    Losee, J P; Fisher, J; Teel, D J; Baldwin, R E; Marcogliese, D J; Jacobson, K C

    2014-11-01

    The aims of this study were first, to test the hypothesis that metrics of fish growth and condition relate positively to parasite species richness (S(R)) in a salmonid host; second, to identify whether S(R) differs as a function of host origin; third, to identify whether acquisition of parasites through marine v. freshwater trophic interactions was related to growth and condition of juvenile salmonids. To evaluate these questions, species diversity of trophically transmitted parasites in juvenile coho salmon Oncorhynchus kisutch collected off the coast of the Oregon and Washington states, U.S.A. in June 2002 and 2004 were analysed. Fish infected with three or more parasite species scored highest in metrics of growth and condition. Fish originating from the Columbia River basin had lower S(R) than those from the Oregon coast, Washington coast and Puget Sound, WA. Parasites obtained through freshwater or marine trophic interactions were equally important in the relationship between S(R) and ocean growth and condition of juvenile O. kisutch salmon.

  14. Growth condition dependence of photoluminescence polarization in (100) GaAs/AlGaAs quantum wells at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Iba, Satoshi; Saito, Hidekazu; Yuasa, Shinji [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Central 2, Tsukuba, Ibaraki 305-8568 (Japan); Watanabe, Ken; Ohno, Yuzo [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2015-08-28

    We conducted systematic measurements on the carrier lifetime (τ{sub c}), spin relaxation time (τ{sub s}), and circular polarization of photoluminescence (P{sub circ}) in (100) GaAs/AlGaAs multiple quantum wells grown by molecular beam epitaxy (MBE). The τ{sub c} values are strongly affected by MBE growth conditions (0.4–9 ns), whereas the τ{sub s} are almost constant at about 0.13 ns. The result suggests that spin detection efficiency [τ{sub s}/(τ{sub c} + τ{sub s})], which is expected to be proportional to a steady-state P{sub circ}, is largely dependent on growth condition. We confirmed that the P{sub circ} has similar dependence on growth condition to those of τ{sub s}/(τ{sub c} + τ{sub s}) values. The study thus indicates that choosing the appropriate growth condition of the QW is indispensable for obtaining a high P{sub circ} from a spin-polarized light-emitting diode (spin-LED)

  15. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    Science.gov (United States)

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  16. A comparison of least squares and conditional maximum likelihood estimators under volume endpoint censoring in tumor growth experiments.

    Science.gov (United States)

    Roy Choudhury, Kingshuk; O'Sullivan, Finbarr; Kasman, Ian; Plowman, Greg D

    2012-12-20

    Measurements in tumor growth experiments are stopped once the tumor volume exceeds a preset threshold: a mechanism we term volume endpoint censoring. We argue that this type of censoring is informative. Further, least squares (LS) parameter estimates are shown to suffer a bias in a general parametric model for tumor growth with an independent and identically distributed measurement error, both theoretically and in simulation experiments. In a linear growth model, the magnitude of bias in the LS growth rate estimate increases with the growth rate and the standard deviation of measurement error. We propose a conditional maximum likelihood estimation procedure, which is shown both theoretically and in simulation experiments to yield approximately unbiased parameter estimates in linear and quadratic growth models. Both LS and maximum likelihood estimators have similar variance characteristics. In simulation studies, these properties appear to extend to the case of moderately dependent measurement error. The methodology is illustrated by application to a tumor growth study for an ovarian cancer cell line.

  17. Optimization of GaN Nanorod Growth Conditions for Coalescence Overgrowth

    Science.gov (United States)

    2016-02-04

    forms a three-dimensional (3-D) structure for providing us with larger device varieties in the applications to light-emitting diode (LED), solar ...nanowires grown by selective area growth homoepitaxy, Nano Lett. 15 (2015) 1117-1121. [23] T. Song, W.I. Park , U. Paik, Epitaxial growth of one...97 (2010) 151909. [25] Y.H. Ra, R. Navamathavan, J.H. Park , C.R. Lee, Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW

  18. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Mori, Ryuji; Saiki, Mizue; Nakamura, Yukiko; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    2002-09-01

    We analyzed the growth rate and the cell wall properties of coleoptiles of rice seedlings grown at 23.6 degrees C for 68.5, 91.5 and 136 h during the Space Shuttle STS-95 mission. In space, elongation growth of coleoptiles was stimulated and the cell wall extensibility increased. Also, the levels of the cell wall polysaccharides per unit length of coleoptiles and the relative content of the high molecular mass matrix polysaccharides decreased in space. These differences in the cell wall polysaccharides could be involved in increasing the cell wall extensibility, leading to growth stimulation of rice coleoptiles in space.

  19. FORECASTING OF ECONOMIC GROWTH OF REGION IN CONDITIONS OF DEFICIENCY OF THE INFORMATION

    Directory of Open Access Journals (Sweden)

    S.L. Sadov

    2007-12-01

    Full Text Available The new approach to forecasting economic growth of the region, showing minimal requirements to a supply with information, is offered in clause. It is based on combinatory likelihood modelling of dependence of a parameter of economic growth from its reliability. The method we shall apply to regions with the expressed branch specialization for the period before realization of structural reorganization of economy. In the conclusion the forecast of growth of Republic Komi VRP up to 2020 is given − is shown, that it will make 4 − 6% a year at preservation of energy raw specializations.

  20. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.).

    Science.gov (United States)

    Shaharoona, B; Arshad, M; Zahir, Z A

    2006-02-01

    This study was conducted to test the hypothesis that the bacterial strains possessing 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity may also promote growth of inoculated plants and could increase nodulation in legumes upon co-inoculation with rhizobia. Several rhizobacteria were isolated from maize rhizosphere through enrichment on ACC as a sole N source. Purified isolates were screened for growth promotion in maize under axenic conditions and for in vitro ACC-deaminase activity. A significant positive correlation was observed between in vitro ACC-deaminase activity of bacterial cells and root elongation. None of the isolates produced auxins. Bradyrhizobium japonicum produced less amount of auxins but did not carry ACC-deaminase activity. Results of pot experiment revealed that co-inoculation with Bradyrhizobium and plant growth promoting rhizobacteria (PGPR) isolates enhanced the nodulation in mung bean compared with inoculation with Bradyrhizobium alone. It is highly expected that inoculation with rhizobacteria containing ACC-deaminase hydrolysed endogenous ACC into ammonia and alpha-ketobutyrate instead of ethylene. Consequently, root and shoot growth as well as nodulation were promoted. The ACC-deaminase trait could be employed as an efficient tool to screen effective PGPR, which could be successfully used as biofertilizers to increase the growth of inoculated plants as well as nodulation in legumes.

  1. Fecundity, survival, and growth of the seahorse Hippocampus ingens (Pisces: Syngnathidae under semi-controlled conditions

    Directory of Open Access Journals (Sweden)

    A.A Ortega-Salas

    2006-12-01

    Full Text Available Estudiamos la fecundidad, supervivencia, y crecimiento del caballito de mar, Hippocampus ingens en condiciones semi-controladas. Tres machos reproductores silvestres de 14.8, 24.5 y 32.0 g produjeron 1 598, 1 703 y 1 658 jóvenes. La densidad utilizada fue de 12 jóvenes por acuario de 60 l. Se agruparon en 1, 12 y 20 días de nacidos por acuario. La supervivencia fue de 78.5, 38.1 y 41.0 % en 35 días. Se les alimentó con una mezcla de rotíferos B. plicatilis y nauplios de Artemia para después transferirlos a estanques de 100 000 l a una densidad de 50/1 000 l, donde se les alimentó con Artemia adulta durante 60 días más. Crecieron de un promedio de 0.7, 1.5, y 2.7 a 4.5, 5.4 6.7 cm, respectivamente, en 95 días. La temperatura del agua marina utilizada varió de 17 a 23 ºC.We studied fecundity, survival, and growth of the seahorse Hippocampus ingens under semi-controlled conditions. Three wild brood stock mature males of 14.8, 24.5, and 32.0 g released 1 598, 1 703, and 1 658 juveniles. Juvenile stocking densities of 12 were settled in 60-l aquariums in groups of 1, 12, and 20 days old organisms. The rate of survival was 21.5, 61.9, and 59.0 %, respectively, in 35 days. Juveniles were fed a mix diet of rotifers B. plicatilis and Artemia nauplii, then they were transferred to a cement tank of 100 000 l at a density of 50/1 000 l and fed with live adult Artemia for 60 days more. They grew from an average of 0.7, 1.5, and 2.7 to 4.5, 5.4, and 6.7 cm, respectively, in 95 days. The seawater temperature varied from 17 to 23 ºC. Rev. Biol. Trop. 54 (4: 1099-1102. Epub 2006 Dec. 15.

  2. Whisker growth studies under conditions which resemble those available on an orbiting space station

    Science.gov (United States)

    Hobbs, Herman H.

    1992-01-01

    Minimal funding was provided by NASA with one designated 'mission' being the clear demonstration of the relevance of previously supported whisker growth studies to microgravity research. While in one sense this work has shown the converse, namely, that ambient gravitational fields as high as 1 Earth normal have no relevance to growth of whiskers by hydrogen reduction of metal halides, a case is made that this does not demonstrate lack of relevance to microgravity research. On the contrary, the driving forces for this growth are precisely those which must be understood in order to understand growth in microgravity. The results described suggest that knowledge gained from this work may be highly fundamental to our understanding of the genesis of metal crystals. Time and money ran out before this work could be considered complete. At least another year's study and analysis will be required before publications could be justified.

  3. Diatom production in the marine environment : implications for larval fish growth and condition

    DEFF Research Database (Denmark)

    St. John, Michael; Clemmesen, C.; Lund, T.

    2001-01-01

    to post-yolk-sac larval cod. Results indicate that larval growth rates are significantly influenced by the content of essential fatty acids of the algal food source: growth rates were positively correlated with the content of DHA (C22:6 omega0) and negatively with EPA (C20:5 omega3). The ratio of omega3....../omega6 fatty acids in the algal source had no significant effect. The highest and lowest growth rates were observed in food chains based on H. triquetra and T. weissflogii. respectively (means for days 14-16 of 4.0 and - 4.7). The mixed diatom/dinoflagellate diet resulted in inter- mediate growth rates...

  4. Early development and allometric growth in Nannacara anomala Regan, 1905 (Perciformes: Cichlidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Kupren

    Full Text Available Morphological development and allometric growth of laboratory reared Nannacara anomala were studied from hatching to the loss of larval characters and beginning of squamation (18 days post-hatching at 26°C. The mean total length (TL of larvae and juveniles increased from 3.74 mm at hatching to 9.60 mm at metamorphosis. Morphogenesis and differentiation were most intense during the first week of development. During this period (TL interval = 3.74 - 4.84 mm there was an evident priority to enhance the feeding and swimming capabilities by promoting accelerated growth in the head and tail regions. Following this period, there was a major decrease in growth coefficients, indicating a change in growth priorities. Observations on the early development of Nannacara anomala confirmed the basic uniformity development of a substrate brooding cichlid.

  5. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen‐limited or anaerobic conditions

    National Research Council Canada - National Science Library

    Blomqvist, Johanna; Nogué, Violeta Sànchez; Gorwa‐Grauslund, Marie; Passoth, Volkmar

    2012-01-01

    The effect of glucose and oxygen limitation on the growth and fermentation performances of Dekkera bruxellensis was investigated in order to understand which factors favour its propagation in ethanol or wine plants. Although D...

  6. Biological and environmental initial conditions shape the trajectories of cognitive and social-emotional development across the first years of life.

    Science.gov (United States)

    Feldman, Ruth; Eidelman, Arthur I

    2009-01-01

    Human development is thought to evolve from the dynamic interchange of biological dispositions and environmental provisions; yet the effects of specific biological and environmental birth conditions on the trajectories of cognitive and social-emotional growth have rarely been studied. We observed 126 children at six time-points from birth to 5 years. Intelligence, maternal sensitivity, and child social engagement were repeatedly tested. Effects of neonatal vagal tone (VT) and maternal postpartum depressive symptoms on growth-rates were assessed. Cognitive development showed a substantial growth-spurt between 2 and 5 years and social engagement increased rapidly across the first year and more gradually thereafter. VT improved cognitive and social-emotional growth-rates across the first year, whereas maternal depressive symptoms interfered with growth from 2 to 5 years. Differences between infants with none, one, or two non-optimal birth conditions increased with age. Findings shed light on the dynamics of early development as it is shaped by biological and environmental initial conditions.

  7. Validation of Growth and Nutrient Uptake Models for Tomato on a Gravelly South Florida Soil Under Greenhouse Conditions

    Institute of Scientific and Technical Information of China (English)

    D.A.CHIN; X.H.FAN; Y.C.LI

    2011-01-01

    The Soil and Water Assessment Tool (SWAT) has been widely used throughout the world to model crop growth and nutrient uptake in various types of soils. A greenhouse experiment was performed to validate the process equations embedded in SWAT for describing the growth and nutrient uptake of tomatoes in south Florida. The scaled growth curve of greenhouse-grown tomatoes was in close agreement with the theoretical model for field conditions, with the scaling factors being the maximum canopy height and the potential heat units. Similarly, the scaled leaf area index (LAI) growth curve and the scaled root depth curve for greenhousegrown tomatoes agreed with the SWAT functions, with the scaling factors being the maximum LAI and maximum root depth. The greenhouse experiment confirmed that the growth of biomass is a linear function of the intercepted photosynthetically active radiation.The fractions of nutrients in the plant biomass under greenhouse conditions were found to be on the order of 60% of those fractions observed in the field. Values of the initial P distribution (0.2 mg kg-1), initial ratio of mineral stable P to mineral active P (50:1),and initial ratio of humic N to humic P (2.4:1) were determined from soil measurements and can be used for field simulations. The conventional saturation-excess model for soil-water percolation was used to predict the movement of water in the top 10 cm of the greenhouse containers and the results agreed well with measurements.

  8. Predicting plant performance under simultaneously changing environmental conditions – the interplay between temperature, light and internode growth

    Directory of Open Access Journals (Sweden)

    Katrin eKahlen

    2015-12-01

    Full Text Available Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system’s analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modelling temperature effects on plant development and growth is discussed.

  9. Predicting Plant Performance Under Simultaneously Changing Environmental Conditions-The Interplay Between Temperature, Light, and Internode Growth.

    Science.gov (United States)

    Kahlen, Katrin; Chen, Tsu-Wei

    2015-01-01

    Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates, and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system's analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modeling temperature effects on plant development and growth is discussed.

  10. The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Angui; Liu, Zhijian; Zhu, Xiaobin; Liu, Ying [School of Environmental and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an, Shannxi 710055 (China); Wang, Qingqin [China Academy of Building Research, Beijing 100013 (China)

    2010-04-15

    To investigate the effect of air-conditioning parameters (including temperature, relative humidity and air velocity) and deposition dust on microbial growth in supply air duct, a complete test facility according to ASHRAE Standard 62.1-2007 was constructed. A series of experiments for testing microbial concentration (including bacteria and fungus) were conducted under different working conditions (such as different temperatures and relative humidity). The air velocity was constantly kept at 2.0 m/s. Orthogonal design was employed for the analysis of test data. The results indicated that air velocity attenuation down the direction of the supply air affected dust distribution at the bottom of duct, to some extent, and the number of microorganisms was positively correlated with the quantity of dust. In the range of temperature 22-32 C and relative humidity (RH) 40-90%, microbial growth significantly accelerated with higher temperature and RH increasing. The organic compounds composing the dust also had great impact on microbial growth. The basic researches are contributed to control the growth of microorganism and improve the indoor microenvironment in the air-conditioning room. (author)

  11. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions.

  12. Growth response and toxin concentration of cultured Pyrodinium bahamense var. compressum to varying salinity and temperature conditions.

    Science.gov (United States)

    Gedaria, Alice Ilaya; Luckas, Bernd; Reinhardt, Katrin; Azanza, Rhodora V

    2007-09-15

    The growth and toxin production of a Philippine Pyrodinium bahamense isolate in nutrient replete batch cultures were investigated under conditions affected by varying salinity, temperature and combined effects of salinity and temperature. Early exponential growth stage was reached after 7 days with a cell division rate of 0.26 div day(-1). The toxin content reached a peak of 298 fmol cell-1 at mid exponential phase and rapidly declined to 54 fmol cell-1 as it approached the death phase. Only three sets of toxins composed of STX, dcSTX and B1 were detected in which STX made up to 85-98 mol%toxincell-1. P. bahamense was able to grow in salinities and temperatures ranging from 26 per thousand to 36 per thousand and 23 to 36 degrees C, respectively. The optimum growth under varying salinity and temperature conditions was observed at 36 per thousand and 25 degrees C. Toxin content reached a peak of 376 fmol cell-1 at 25 degrees C and was lower (80-116 fmol cell-1) at higher temperatures (32-35 degrees C). Combined effects of salinity and temperature showed that P. bahamense was not able to grow at low salinity and temperature (i.e. below 26 per thousand-28 degrees C). Optimum growth was observed in higher salinities at all temperature conditions.

  13. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions.

    Science.gov (United States)

    Villari, Caterina; Faccoli, Massimo; Battisti, Andrea; Bonello, Pierluigi; Marini, Lorenzo

    2014-09-01

    Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism.

  14. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    Science.gov (United States)

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  15. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

    Science.gov (United States)

    Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R

    2016-07-01

    Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  17. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    Science.gov (United States)

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  18. MediaDB: a database of microbial growth conditions in defined media.

    Science.gov (United States)

    Richards, Matthew A; Cassen, Victor; Heavner, Benjamin D; Ajami, Nassim E; Herrmann, Andrea; Simeonidis, Evangelos; Price, Nathan D

    2014-01-01

    Isolating pure microbial cultures and cultivating them in the laboratory on defined media is used to more fully characterize the metabolism and physiology of organisms. However, identifying an appropriate growth medium for a novel isolate remains a challenging task. Even organisms with sequenced and annotated genomes can be difficult to grow, despite our ability to build genome-scale metabolic networks that connect genomic data with metabolic function. The scientific literature is scattered with information about defined growth media used successfully for cultivating a wide variety of organisms, but to date there exists no centralized repository to inform efforts to cultivate less characterized organisms by bridging the gap between genomic data and compound composition for growth media. Here we present MediaDB, a manually curated database of defined media that have been used for cultivating organisms with sequenced genomes, with an emphasis on organisms with metabolic network models. The database is accessible online, can be queried by keyword searches or downloaded in its entirety, and can generate exportable individual media formulation files. The data assembled in MediaDB facilitate comparative studies of organism growth media, serve as a starting point for formulating novel growth media, and contribute to formulating media for in silico investigation of metabolic networks. MediaDB is freely available for public use at https://mediadb.systemsbiology.net.

  19. Population growth of carmine cochineal in giant cactus pear artificially infested on laboratory conditions

    Directory of Open Access Journals (Sweden)

    Jacinto de Luna Batista

    2009-12-01

    Full Text Available The carmine cochineal (Dactylopius opuntiae is up today, the main pest of the giant cactus pear in the states of Pernambuco, Paraíba and Ceará. This research aimed to measure the population growth of D. opuntiae in cladodes of giant cactus pear infested in the laboratory conditios. Cladodes of giant cactus pear were artificially infested with colonies carmine cochineal. The experiment was initiated on 10/02/2009 and ended 10/03/2009. Shaped population growth is a function of time and infestation levels of initial and final, using a regression analysis with the application ASSISTAT 8.0 Beta. Data were also submitted to analysis of variance - ANOVA using a completely randomized design (CRD with eight treatments and five replications. The comparison of means was done by Tukey test at 5% probability. The results of the regression equations and curves showed that the insect Dactylopius opuntiae had a population growth in geometric progression in all treatments. Treatment eight colonies had the largest population growth where the average was obtained 1223.80 colonies / cladodes in 35 days. The lack of sunshine, average temperature of 22 º C and relative humidity of 75% RH during the study period, particularly favored the growth of the insect population.

  20. The Induction of Metformin Inhibitory Effects on Tumor Cell Growth in Hypoxic Condition.

    Science.gov (United States)

    Safari, Zohreh; Safaralizadeh, Reza; Seyedzadeh, Mir Hadi; Valinezad Orang, Ayla; Zare, Ahad; Hosseinpour Feizi, Mohammad Ali; Kardar, Gholam Ali

    2015-12-01

    It is aimed to evaluate the actual anti-cancerous effects of metformin on cancer cells in hypoxic condition. Non-cancerous cells (HEK293) and cancer cells (MCF-7) were cultured in both hypoxia and normoxia conditions and treated with different concentrations of metformin. The proliferation, apoptosis, and necrosis rate were assessed using MTT test and Annexin V assay. The S6K1 phosphorylation was assessed using western blotting. Zymography was used to measure the activity of metalloproteinase-9 (MMP-9). Metformin treatment inhibited proliferation of cancer cells in the optimal concentration of 10 mM under hypoxia condition, while it showed no effects on non-cancerous cell viability. The statistical analysis of MTT assay indicated that the pro-apoptotic function of metformin for cancer cells under hypoxia condition compared to normoxia was significant with different metformin concentrations (pmetformin treatments for non-cancerous cells under hypoxia condition compared to normoxia was not significant. Western-blot analysis indicated a significant decrease in S6K1 phosphorylation in cancer cells under hypoxia condition (pmetformin concentration only in cancer cell. The results indicate that in hypoxia condition metformin exerts its anti-cancerous function by inhibiting proliferation and tumor progression and inducing cell apoptosis more effectively than normoxia condition. In line with cancer cell conditions, most importantly hypoxic condition, metformin can be considered as a potential anti-cancerous drug.

  1. [Growth patterns of Leymus chinensis clones under different habitat conditions in Songnen Plain of China].

    Science.gov (United States)

    Yang, Yunfei; Zhang, Baotian

    2006-08-01

    A tracking investigation was conducted in the Songnen Plain of China on the experimental clones of Leymus chinensis under cultivation, and the natural clones of this grass in the succession process of vegetation restoration after meadow flooding. The results showed that on aeolian sandy soil where existed enough growth space but no interspecific competition, there was a month interval between the transplanting of two experimental clones, and the sizes of these clones had a one-fold difference by the end of next growth season. During the whole growth season, the vegetative reproduction of the two experimental clones followed the same exponential pattern. After 6 years restoration succession on flooded meadow, the vegetative reproduction of clonal populations in L. chinensis + Carex duriuscula and L. chinensis + weed communities were all accorded with power function. On flooded alkaline meadow where existed interspecific competition, the natural clones could still increase their offspring numbers exponentially, and quickly expand their niche space at the same time.

  2. Heterogeneous nucleation and dendritic growth within undercooled liquid niobium under electrostatic levitation condition

    Science.gov (United States)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2017-09-01

    The physical mechanisms of crystal nucleation and dendritic growth within undercooled niobium were systematically studied by electrostatic levitation and molecular dynamics methods. The maximum undercooling was achieved as 454 K (0.16Tm), while the hypercooling limit was determined as 706 K (0.26Tm). The undercooling probability displayed Poisson distribution and indicated the occurrence of heterogeneous nucleation. The calculated critical nucleus size reduced rapidly with undercooling and the solid-liquid interface energy was deduced to be 0.367 J m-2. In addition, the dendritic growth velocity of pure niobium exhibited a power relation versus undercooling, and reached 41 m s-1 at the maximum undercooling.

  3. Rapid growth of FeAl inter-metallic compound under high undercooling conditions

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2004-01-01

    Fe-58at%Al alloy is undercooled up to 222 K(0.15TL) with the drop tube technique. It is found that there exists a critical undercooling about 185 K, beyond which a "dendrite-equiaxed" growth morphology transition occurs in FeAI intermetallic compound. This transition is characterized by sharp decrease of its grain size. Once the undercooling exceeds 215 K, the peritectic transformation is suppressed completely and a fibrous structure is formed, which results from the cooperative growth of FeAI and FeAl2 compounds.

  4. Population growth of carmine cochineal in giant cactus pear artificially infested on laboratory conditions

    OpenAIRE

    2009-01-01

    The carmine cochineal (Dactylopius opuntiae) is up today, the main pest of the giant cactus pear in the states of Pernambuco, Paraíba and Ceará. This research aimed to measure the population growth of D. opuntiae in cladodes of giant cactus pear infested in the laboratory conditios. Cladodes of giant cactus pear were artificially infested with colonies carmine cochineal. The experiment was initiated on 10/02/2009 and ended 10/03/2009. Shaped population growth is a function of time and infesta...

  5. Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Hu Mei-Hua; Li Shang-Sheng; Ma Hong-An; Su Tai-Chao; Li Xiao-Lei; Hu Qiang; Jia Xiao-Peng

    2012-01-01

    Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions.The assembly of the growth cell was improved and the growth process of diamond was investigated.Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent.The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature.Moreover,the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal.This work is helpful for understanding the growth mechanism of diamond.

  6. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    Science.gov (United States)

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  7. Growth of the fish parasite Ichthyophonus hoferi under food relevant conditions

    DEFF Research Database (Denmark)

    Spanggaard, Bettina; Huss, Hans Henrik

    1996-01-01

    The physical and chemical limits for growth of the internal fish parasite, Ichthyophonus hoferi, have been studied to understand better the ecology of I. hoferi both as a possible food contaminant and a fish pathogen. The effect of temperature (0 degrees-30 degrees C), pH (3-7) and NaCl (0%-10%w/...

  8. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions

    NARCIS (Netherlands)

    Ploss, Tina N.; Reilman, Ewoud; Monteferrante, Carmine G.; Denham, Emma L.; Piersma, Sjouke; Lingner, Anja; Vehmaanpera, Jari; Lorenz, Patrick; van Dijl, Jan Maarten

    2016-01-01

    Background: Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as alpha-amylases, leads to induction of the secretio

  9. Discovery of wall-selective carbon nanotube growth conditions via automated experimentation.

    Science.gov (United States)

    Nikolaev, Pavel; Hooper, Daylond; Perea-López, Nestor; Terrones, Mauricio; Maruyama, Benji

    2014-10-28

    Applications of carbon nanotubes continue to advance, with substantial progress in nanotube electronics, conductive wires, and transparent conductors to name a few. However, wider application remains impeded by a lack of control over production of nanotubes with the desired purity, perfection, chirality, and number of walls. This is partly due to the fact that growth experiments are time-consuming, taking about 1 day per run, thus making it challenging to adequately explore the many parameters involved in growth. We endeavored to speed up the research process by automating CVD growth experimentation. The adaptive rapid experimentation and in situ spectroscopy CVD system described in this contribution conducts over 100 experiments in a single day, with automated control and in situ Raman characterization. Linear regression modeling was used to map regions of selectivity toward single-wall and multiwall carbon nanotube growth in the complex parameter space of the water-assisted CVD synthesis. This development of the automated rapid serial experimentation is a significant progress toward an autonomous closed-loop learning system: a Robot Scientist.

  10. Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg

    DEFF Research Database (Denmark)

    Jakociune, Dziuginta; Bisgaard, Magne; Hervé, Gaëlle

    2014-01-01

    This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert...... whole egg....

  11. Cosmological quintessence accretion onto primordial black holes conditions for their growth to the supermassive scale

    CERN Document Server

    Custodio, P S

    2005-01-01

    In this work we revisit the growth of small primordial black holes (PBHs) immersed in a quintessential field and/or radiation to the supermassive black hole (SMBHs) scale. We show the difficulties of scenarios in which such huge growth is possible. For that purpose we evaluated analytical solutions of the differential equations (describing mass evolution) and point out the strong fine tuning for that conclusions. The timescale for growth in a model with a constant quintessence flux is calculated and we show that it is much bigger than the Hubble time.The fractional gain of the mass is further evaluated in other forms, including quintessence and/or radiation. We calculate the cosmological density $\\Omega$ due to quintessence necessary to grow BHs to the supermassive range and show it to be much bigger than one. We also describe the set of complete equations analyzing the evolution of the BH+quintessence universe, showing some interesting effects such the quenching of the BH mass growth due to the evolution of ...

  12. Growth and activity of reservoir microorganisms under carbon capture and storage conditions

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Krüger, Martin

    2015-04-01

    Carbon capture and storage is a technology to decelerate global warming by reducing CO2 emissions into the atmosphere. To ensure safe long-term storage of CO2 in the underground a number of factors need to be considered. One of them is microbial activity in storage reservoirs, which can lead to the formation of acidic metabolites, H2S or carbonates which then might affect injectivity, permeability, pressure build-up and long-term operability. Our research focused on the effect of high CO2 concentrations on growth and activity of selected thermophilic fermenting and sulphate-reducing bacteria isolated from deep reservoirs. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a certain sterilizing effect on cells. This effect was not observed in control cultures with 100 bar of hydrostatic pressure. However, when provided with a surface for attachment, CO2-inhibited cells restarted growth after CO2 release. The same was observed for organisms able to form spores. Further experiments will examine physiological and molecular properties of the model organism allowing for prediction of its sensitivity and/or adaptability to carbon dioxide in potential future storage sites.

  13. The FDI-Growth Nexus in Latin America : The Role of Source Countries and Local Conditions

    NARCIS (Netherlands)

    Prüfer, P.; Tondl, G.

    2008-01-01

    Foreign Direct Investment (FDI) has surged in Latin America (LA) since the mid 1990s. European and North American FDI is of capital importance. We investigate the FDI-growth nexus in LA allowing for different source countries, regional hetero- geneity, interaction terms with FDI, and more than 20 gr

  14. The FDI-Growth Nexus in Latin America : The Role of Source Countries and Local Conditions

    NARCIS (Netherlands)

    Prüfer, P.; Tondl, G.

    2008-01-01

    Foreign Direct Investment (FDI) has surged in Latin America (LA) since the mid 1990s. European and North American FDI is of capital importance. We investigate the FDI-growth nexus in LA allowing for different source countries, regional hetero- geneity, interaction terms with FDI, and more than 20

  15. Combined influence of growth and drying conditions on the activity of dried Lactobacillus plantarum

    NARCIS (Netherlands)

    Linders, L.J.M.; Kets, E.P.W.; Bont, J.A.M. de; Riet, K.V. van 't

    1998-01-01

    The production of active dried starter cultures can be influenced at several levels in the production process. In this paper the following process factors are discussed: osmotic stress during growth and cell density prior to drying. Contradicting results are reported in the literature on the influen

  16. Conditions for efficient chaos-based communication.

    Science.gov (United States)

    Baptista, Murilo S; Macau, Elbert E; Grebogi, Celso

    2003-03-01

    We find the conditions for a chaotic system to transmit a general source of information efficiently. Transmission of information with very low probability of error is possible if the topological entropy of the transmitted wave signal is greater than or equal to the Shannon entropy of the source message minus the conditional entropy coming from the limitations of the channel (such as equivocation by the noise). This condition may not be always satisfied both due to dynamical constraints and due to the nonoptimal use of the dynamical partition. In both cases, we describe strategies to overcome these limitations.

  17. Modeling Growth Kinetic Parameters of Salmonella Enteritidis SE86 on Homemade Mayonnaise Under Isothermal and Nonisothermal Conditions.

    Science.gov (United States)

    Elias, Susana de Oliveira; Alvarenga, Verônica Ortiz; Longhi, Daniel Angelo; Sant'Ana, Anderson de Souza; Tondo, Eduardo Cesar

    2016-08-01

    During the last decade, a specific strain of Salmonella Enteritidis (named SE86) has been identified as the major etiological agent responsible for salmonellosis in the State of Rio Grande do Sul, Southern Brazil, and the main food vehicle was homemade mayonnaise (HM). This study aimed to model the growth prediction of SE86 on HM under isothermal and nonisothermal conditions. SE86 was inoculated on HM and stored at 7, 10, 15, 20, 25, 30, and 37°C. Growth curves were built by fitting data to the Baranyi's DMFit, generating r(2) values greater than 0.98 for primary models. Secondary model was fitted with Ratkowsky equation, generating r(2) and root mean square error values of 0.99 and 0.016, respectively. Also, the growth of SE86 under nonisothermal conditions simulating abuse temperature during preparation, storage, and serving of HM was studied. Experimental data showed that SE86 did not grow on HM at 7°C for 30 days. At 10°C, no growth was observed until approximately 18 h, and the infective dose (assumed as 10(6) CFU/g) was reached after 8.1 days. However, the same numbers of SE86 were attained after 6 hours at 37°C. Experimental data demonstrated shorter lag times than those generated by ComBase Predictive Models, suggesting that SE86 is very well adapted for growing on HM. SE86 stored under nonisothermal conditions increased population to reach about 10(6) CFU/g after approximately 30 hours of storage. In conclusion, the developed model can be used to predict the growth of SE86 on HM under various temperatures, and considering this pathogen, HM can be produced if safe eggs are used and HM is stored below 7°C.

  18. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing

    Science.gov (United States)

    Flaten, Ellen Marie; Seiersten, Marion; Andreassen, Jens-Petter

    2010-03-01

    Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant kr from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.

  19. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii.

    Science.gov (United States)

    López-Rojas, Rafael; García-Quintanilla, Meritxell; Labrador-Herrera, Gema; Pachón, Jerónimo; McConnell, Michael J

    2016-06-01

    Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments.

  20. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    Science.gov (United States)

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.

  1. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: influence of growth conditions and serotype

    DEFF Research Database (Denmark)

    Buchholtz, Chrstiane; Nielsen, Kristian Fog; L. Milton, Debra

    2006-01-01

    and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron...... tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.layer...... chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL...

  2. Antecedent growth conditions alter retention of environmental Escherichia coli isolates in transiently wetted porous media

    DEFF Research Database (Denmark)

    Yang, H.-H.; Morrow, J. B.; Grasso, D.;

    2008-01-01

    retentive capacity, may present one such approach. Eight environmental E coli isolates were selected to conduct operational retention tests (ORT) with potential biobarrier materials Pyrax or dolomite, or silica glass as control. The conditions in the ORT were chosen to simulate conditioning by manure...

  3. Plastic Growth response of European beech provenances to dry site conditions

    NARCIS (Netherlands)

    Stojnic, S.; Sass, U.G.W.; Orlovic, S.; Matovic, B.; Eilmann, B.

    2013-01-01

    Due to projected global warming, there is a great concern about the ability of European beech to adapt to future climate conditions. Provenance trials provide an excellent basis to assess the potential of various provenances to adjust to given climate conditions. In this study we compared the perfor

  4. Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead

    Science.gov (United States)

    Sauter, S.T.; Connolly, P.J.

    2010-01-01

    We investigated the growth and feeding performance of juvenile steelhead Oncorhynchus mykiss using field measures and bioenergetics modeling. Juvenile steelhead populations were sampled from mid-June through August 2004 at study sites upstream and downstream of Hemlock Dam. The growth and diet of juvenile steelhead were determined for a warm (summer) and subsequent (late summer) transitional period at each study site. Empirical data on the growth and diet of juvenile steelhead and mean daily temperatures were used in a bioenergetics model to estimate the proportion of maximum consumption achieved by juvenile steelhead by site and period. Modeled estimates of feeding performance were better for juvenile steelhead at the upstream compared to the downstream site during both periods. The median condition factor of juvenile steelhead did not change over the summer at the upstream site, but showed a significant decline over time at the downstream site. A negative trend in median condition factor at the downstream site supported bioenergetics modeling results that suggested the warmer stream temperatures had a negative impact on juvenile steelhead. Bioenergetics modeling predicted a lower feeding performance for juvenile steelhead rearing downstream compared to upstream of Hemlock Dam although food availability appeared to be limited at both study sites during the warm period. Warmer water temperatures, greater diel variation, and change in diel pattern likely led to the reduced feeding performance and reduced growth, which could have affected the overall survival of juvenile steelhead downstream of Hemlock Dam. ?? 2010 by the Northwest Scientific Association.

  5. Influence of growth conditions on microstructure and defects in diamond coatings grown by microwave plasma enhanced CVD

    Indian Academy of Sciences (India)

    Kalyan Sundar Pal; Sandip Bysakh; Awadesh Kumar Mallik; Nandadulal Dandapat; Someswar Datta; Bichitra K Guha

    2015-06-01

    Diamond coatings were grown on SiO2/Si substrate under various process conditions by microwave plasma chemical vapour deposition (MPCVD) using CH4/H2 gas mixture. In this paper, we present a microstructural study to elucidate on the growth mechanism and evolution of defects, viz., strain, dislocations, stacking faults, twins and non-diamond impurities in diamond coatings grown under different process conditions. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the diamond coatings. It has been shown that our new approach of prolonged substrate pre-treatment under hydrogen plasma yielded a new growth sequence that the SiO2 layer on the Si substrate was first reduced to yield Si layer of ∼150 nm thickness before diamond was allowed to grow under CH4–H2 plasma, created subsequently. It has also been shown that Si and O as impurity from the substrate hinders the initial diamond growth to yield non-diamond phases. It is being suggested that the crystal defects like twins, stacking faults, dislocations in the diamond grains and dislocations in the intermediate Si layer are generated due to the development of non-uniform stresses during diamond growth at high temperature.

  6. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  7. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    Science.gov (United States)

    Narasimha Chary, Santosh Balaji

    The American Society for Testing and Materials (ASTM) has recently developed a new standard for creep-fatigue crack growth testing, E 2760-10, that supports testing compact specimens, C(T), under load controlled conditions. C(T) specimens are commonly used for fatigue and creep-fatigue crack growth testing under constant-load-amplitude conditions. The use of these specimens is limited to positive load ratios. They are also limited in the amount of crack growth data that can be developed at high stress intensity values due to accumulation of plastic and/or creep strains leading to ratcheting in the specimen. Testing under displacement control can potentially address these shortcomings of the load-controlled tests for which the C(T) geometry is unsuitable. A double edge notch tension-compression, DEN(T-C), specimen to perform displacement controlled creep-fatigue crack growth testing is developed and optimized with the help of finite element and boundary element analyses. Accurate expressions for estimating the fracture mechanics crack tip parameters such as the stress intensity parameter, K, the crack mouth opening displacement (CMOD), and the load-line displacement (LLD) are developed over a wide range of crack sizes for the DEN(T-C) specimen. A new compliance relationship for use in experimental testing has been developed by using the compliance form available in ASTM E-647 standard. Experimentally determined compliance value compared well with the new relation for C15 steel (AISI 1015) and P91 steel tested at room and elevated temperature conditions respectively. Fatigue crack growth rate data generated using the DEN(T-C) specimens on the two metallic materials are in good agreement with the data generated using standard compact specimens; thus validating the stress-intensity factor and the compliance equation for the double edge notch tension-compression specimen. The testing has shown that the DEN(T-C) specimen is prone to crack asymmetry issues. Through

  8. THE EFFECT OF LIGHT SPECTRAL COMPOSITION ON GROWTH AND DEVELOPMENT OF LILIUM CAUCASICUM UNDER IN VITRO CONDITIONS

    Directory of Open Access Journals (Sweden)

    Malyarovskaya V. I.

    2013-12-01

    Full Text Available It is shown that under in vitro conditions, regenerated plants of Lilium caucasicum cultivated in the light of varying intensity and spectral composition didn’t have the same biometric parameters (length and width of leaves or number of micro bulbs. There were established some specific effects of the two main areas of photosynthetically active radiation - blue and red on the growth and development of the plants as well as on the content of photosynthetic pigments

  9. Photogrammetry with an Unmanned Aerial System to Assess Body Condition and Growth of Blainville’s Beaked Whales

    Science.gov (United States)

    2015-09-30

    Body Condition and Growth of Blainville’s Beaked Whales Diane Claridge & Charlotte Dunn Bahamas Marine Mammal Research Organisation P.O. Box... whales , which are known to be sensitive to anthropogenic noise, including navy sonar. Passive acoustics, controlled exposure experiments and telemetry...studies indicate that Blainville’s beaked whales (Mesoplodon densirostris, Md) move away from navy sonar sources and are displaced from their

  10. Biological effects of native and exotic plant residues on plant growth, microbial biomass and N availability under controlled conditions

    OpenAIRE

    Diallo, Mariama-Dalanda; Duponnois, Robin; Guisse, A.; Sall, Saïdou; Chotte, Jean-Luc; Thioulouse, J.

    2006-01-01

    The leaf litter of six tropical tree species (Acacia holosericea, Acacia tortilis, Azadirachta indica, Casuarina equisetifolia, Cordyla pinnata and Faidherbia albida) frequently used in agroforestry plantations in Sahelian and Soudano-Sahelian areas were tested for their influence on soil nitrogen content, microbial biomass and plant growth under controlled greenhouse conditions. Half of the soil was planted with onion (Allium cepa L.) seedlings and the other half was not. Two herbaceous spec...

  11. Effects of storage conditions on quality characteristics of commercial aquafeeds and growth of African catfish Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Solomon Shola Gabriel

    2016-03-01

    Full Text Available This study was conducted to determine the effect of storage conditions on the quality of feed and the aftermath effect of feeding fish with such feeds. Three commercial diets used for this study included Coppens®, Multifeed® and Vital feed®. Feed was stored either by opening the bag to the atmosphere (WO, the bag opened with neck tied using a rubber ring to prevent exposure to the atmosphere (OT or sealed (SC until the start of the feeding trials. The feed was stored under these conditions for six months. Nutrient analyses revealed significant changes in feeds held under the WO condition when compared with other storage conditions. Nutritive changes also varied with commercial feed type. Mould infestation of the feed was noticeable more in the WO condition of storage compared to the SC condition. After feeding C. gariepinus for fifty-six days, lesions were observed on fish fed mouldy feed held under the WO condition, which led to mass mortalities. Growth performance was higher in all fish fed SC stored feed, and for those fed Coppens® and Multifeed® under OT storage conditions. It is advised that storage of fish feeds up to six months should be undertaken with considerable care and attention.

  12. Calcium Addition Affects Germination and Early Seedling Growth of Sweet Sorghum under Saline Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental

  13. Comparative effects of level of dietary fiber and sanitary conditions on the growth and health of weanling pigs.

    Science.gov (United States)

    Montagne, L; Le Floc'h, N; Arturo-Schaan, M; Foret, R; Urdaci, M C; Le Gall, M

    2012-08-01

    There are conflicting results on the growth and health of weanling pigs (Sus scrofa) fed high-fiber diets, and responses may differ according to sanitary conditions. This study was conducted to explore the growth, health, and fecal microbiota of weanling pigs fed either low- or high-fiber diets in 2 different sanitary conditions. Forty-eight pigs weaned at 28 d of age were individually housed in "good" (clean) or "poor" (unclean) sanitary conditions. During 2 consecutive phases, pigs were fed 2 diets containing a low (control) or high level of fiber: 121 or 169 g/kg total dietary fiber (TDF) for Phase I and 146 or 217 g/kg for Phase II, which lasted 15 and 20 d, respectively. This led to 4 experimental treatments in Phase I in a 2 × 2 factorial arrangement (2 sanitary conditions × 2 diets) and 8 experimental treatments in Phase II in a 2 × 2 × 2 factorial arrangement (2 sanitary conditions × 2 diets in Phase I × 2 diets in Phase II). The poor sanitary conditions led to a reduced G:F (0.617 vs. 0.680 for poor and good sanitary conditions, respectively; P = 0.01) over the entire experimental period. The number of pigs with diarrhea in Phase I tended to be greater in the poor sanitary conditions with the high-fiber diet than the control diet (7 vs. 3 pigs, P = 0.07). Enterococcus was prominent in feces of these diarrheic pigs. At 5 wk after weaning, compared with good sanitary conditions, the fecal microbiota of pigs housed in poor sanitary conditions was characterized by more Lactobacillus (9.24 vs. 8.34 log cfu/g, P pigs in poor sanitary conditions contained more total VFA and proportionally more butyrate (9.7 vs. 5.7% for poor and good conditions, respectively, independently of dietary treatment, P pigs fed the high-fiber diet during Phase II contained less Enterococcus bacteria than pigs fed the control diet (4.06 vs. 4.56 log cfu/g; P = 0.05), and more total VFA with a decreased proportion of branched-chain fatty acids (5.0 vs. 6.1%; P = 0.006). To conclude

  14. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    Science.gov (United States)

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  15. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    Directory of Open Access Journals (Sweden)

    Mirtha Henríquez

    Full Text Available Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  16. Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition

    Science.gov (United States)

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng

    2012-06-01

    We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.

  17. Nanocrystallization of Al-based glasses via nucleation and growth under soft impingement conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rassolov, Sergey; Svyrydova, Kateryna; Zhikharev, Igor [A.A. Galkin Donetsk Institute for Physics and Engineering of NAS of Ukraine, 72 R. Luxemburg Str., Donetsk 83114 (Ukraine); Luhansk Taras Shevchenko National University, 2 Oboronna Str., Luhansk 91011 (Ukraine); Tkatch, Victor; Maksimov, Victor [A.A. Galkin Donetsk Institute for Physics and Engineering of NAS of Ukraine, 72 R. Luxemburg Str., Donetsk 83114 (Ukraine); Maslov, Valeriy [G.V. Kurdymov Institute for Metal Physics of the NAS of Ukraine, Kyiv (Ukraine)

    2010-05-15

    The nanocrystallization behaviour of Al{sub 86}Ni{sub 6}Co{sub 2}Gd{sub 3}Y{sub 2}Tb{sub 1} amorphous alloy has been studied by X-ray diffraction methods involving small angle scattering, resistance measurements and differential scanning calorimetry. It has been established that the transformation in amorphous alloy investigated occurs mainly by the growth process at initial state of transformation while at final stage nucleation contributes into formation of nanocomposite structure. In order to describe the nanocrystallization kinetics of the Al-based glasses the analytical kinetic equations in the frames of Kolmogorov-Johnson-Mehl-Avrami model have been proposed and the effective volume diffusion coefficient values which govern the diffusion-limited growth nanocrystals have been determined. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Tailoring nucleation and growth conditions for narrow compositional distributions in colloidal synthesized FePt nanoparticles

    Science.gov (United States)

    Srivastava, Chandan; Nikles, David E.; Thompson, Gregory B.

    2008-11-01

    To eliminate compositional and size variabilities between individual binary nanoparticles, it is essential to control the mechanistic steps involved in nanoparticle synthesis. A common method for synthesizing FePt nanoparticles involves the simultaneous decomposition and reduction in iron and platinum precursors, respectively. This simultaneous nucleation and growth method yields wide composition and size distributions. This paper describes and experimentally validates a methodology needed to tighten composition and size distributions for this process. By engineering the surfactant chemistry with tertiary phosphines to tightly bind the iron atoms in the iron precursor, uniform platinum rich seeds form during the initial stages of the synthesis. A thermodynamically preferred heterogeneous nucleation of iron atoms into these uniform platinum seeds in the subsequent stages produces a final dispersion with uniform particle-to-particle compositions. The paper addresses the understanding for optimizing the nucleation and growth sequences for compositional control in FePt nanoparticles.

  19. Considerations Regarding the Decoupling Thesis under Conditions of Demographic Growth and Industrialization

    Directory of Open Access Journals (Sweden)

    Florina Bran

    2007-12-01

    Full Text Available Many individuals and organizational leaders are well aware that their activities affect the natural environment. This awareness grows out of growing evidence of the effects of environmental use and some thirty years of environmental activism. Our paper aims to look at the worldwide interconnections in the natural environment that result from the use of global commons and other resources. A special emphasis will be given to examine the combined effects of population growth and industrialization as pressures on the natural environment. Together population growth and economic development hasten natural resources consumption, putting pressure on the global commons, spreading disease, threatening species, and extending the impact of global natural disasters. Their interrelated nature will be enlightened thoroughly toward “boom” and “doom” perspectives.

  20. Existence Results for Differential Inclusions with Nonlinear Growth Conditions in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Messaoud Bounkhel

    2013-01-01

    Full Text Available In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is, ẋ(t∈F(t,x(t a.e. on I, x(t∈S, ∀t∈I, x(0=x0∈S, (*, where S is a closed subset in a Banach space , I=[0,T], (T>0, F:I×S→, is an upper semicontinuous set-valued mapping with convex values satisfying F(t,x⊂c(tx+xp, ∀(t,x∈I×S, where p∈ℝ, with p≠1, and c∈C([0,T],ℝ+. The existence of solutions for nonconvex sweeping processes with perturbations with nonlinear growth is also proved in separable Hilbert spaces.

  1. Evaluation of exogenous glucocorticoid injection on preweaning growth performance of neonatal pigs under commercial conditions.

    Science.gov (United States)

    Gaines, A M; Carroll, J A; Allee, G L

    2004-04-01

    Three commercial trials were conducted to evaluate the use of dexamethasone (Dex) and/ or isoflupredone (Predef) in improving preweaning growth performance of neonatal pigs. The objectives of the commercial trials were threefold: 1) to evaluate Predef in comparison with Dex; 2) to address the sexual dimorphic growth response observed in a previous commercial trial; and 3) to determine whether there is any benefit of providing Dex treatment to pigs being fed supplemental milk. In Exp. 1, 276 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included saline (Control), Dex (2 mg/kg BW i.m. injection of Dex), or Predef (2 mg/kg BW i.m. injection of Predef 2X) within 24 h after birth. A treatment effect was observed for BW at weaning (P PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included either an i.m. injection of saline (Control), Dexl (1 mg/kg BW of Dex), or Dex2 (2 mg/kg BW of Dex) within 24 h after birth. No treatment effects were observed for BW at weaning (P = 0.24) or ADG (P = 0.19). In Exp. 3, 342 pigs (Genetiporc) were assigned according to birth weight and sex to two treatments. Treatments included either an i.m. injection of saline or Dex (2 mg/kg BW) within 24 h after birth. All pigs were provided supplemental milk from the time of treatment until weaning age. No treatment effects were observed for BW at weaning (P = 0.13) or ADG (P = 0.11). The negative response to Predef was similar to the growth-suppressive effects observed by others using chronic glucocorticoid treatment. In contrast to our previous findings, Dex did not improve preweaning growth performance regardless of dose or supplemental milk.

  2. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions

    Directory of Open Access Journals (Sweden)

    Hoshino Saiko

    2008-06-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN, a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. Results The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. Conclusion All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.

  3. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method.

    Science.gov (United States)

    Savari, Marzieh; Zarkesh Esfahani, Sayyed Hamid; Edalati, Masoud; Biria, Davoud

    2015-10-01

    Human growth hormone (hGH) is synthesized and stored by somatotroph cells of the anterior pituitary gland and can effect on body metabolism. This protein can be used to treat hGH deficiency, Prader-Willi syndrome and Turner syndrome. The limitations in current technology for soluble recombinant protein production, such as inclusion body formation, decrease its usage for therapeutic purposes. To achieve high levels of soluble form of recombinant human growth hormone (rhGH) we used suitable host strain, appropriate induction temperature, induction time and culture media composition. For this purpose, 32 experiments were designed using Taguchi method and the levels of produced proteins in all 32 experiments were evaluated primarily by ELISA and dot blotting and finally the purified rhGH protein products assessed by SDS-PAGE and Western blotting techniques. Our results indicate that media, bacterial strains, temperature and induction time have significant effects on the production of rhGH. The low cultivation temperature of 25°C, TB media (with 3% ethanol and 0.6M glycerol), Origami strain and a 10-h induction time increased the solubility of human growth hormone.

  4. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    Science.gov (United States)

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-08-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

  5. Featherless and feathered broilers under control versus hot conditions. 2. Breast muscle development and growth in pre- and posthatch periods.

    Science.gov (United States)

    Hadad, Yair; Cahaner, Avigdor; Halevy, Orna

    2014-05-01

    Breast meat yield (% of BW) of featherless broilers (sc/sc) is higher than that of their feathered sibs (+/sc) and contemporary broilers (+/+) under hot temperature (32°C) conditions. This study tested the hypothesis that the advantage to the featherless broiler condition with respect to breast meat yield and quality is due to differences in muscle development during pre- and posthatch periods. Broilers from the 3 genetic groups were reared under normal (26°C) and hot (32°C) conditions and slaughtered on d 29 and 47. Evaluation of myofiber diameter (mean and distribution) and blood-vessel density in breast muscle sections sampled on these days revealed that the fluctuations in breast muscle yields of the different genetic groups under different temperature conditions and the better muscle growth of the featherless broilers are due to changes in muscle hypertrophy and vascularization. In addition, the featherless broilers presented continuous satellite cell proliferation and a slower rate of differentiation compared with the feathered broilers on immediate posthatch period, suggesting a higher reserve of myogenic progeny cells that will contribute to later muscle hypertrophy. In the embryos, breast muscle yield was higher for the featherless versus feathered counterparts between embryonic day (E) 15 and E20. This was manifested in a shift toward higher myofiber diameters in the featherless embryos on E18, and a higher number of myoblasts, which could be explained by higher insulin-like growth factor-I levels in the muscle tissue and lower triiodothyronine levels in the plasma on E17. Together, the data show the advantage of being featherless under hot conditions with regard to breast muscle growth and hypertrophy, and overall performance. Moreover, featherless embryos had increased breast muscle weight compared with their feathered counterparts, likely due to a higher proliferation rate of myoblasts and higher muscle hypertrophy.

  6. Variability in growth and condition of juvenile common two-banded sea bream (Diplodus vulgaris)

    OpenAIRE

    Vicente, Patrícia Nunes, 1980-

    2015-01-01

    Tese de mestrado. Biologia (Ecologia Marinha). Universidade de Lisboa, Faculdade de Ciências, 2015 The objective of this study was to assess the variability in condition for juvenile common two-banded sea bream Diplodus vulgaris in nursery areas of the main Portuguese estuaries using several individual condition indices. Estuaries and coastal lagoons play an important role for juveniles of marine fish because they offer areas with high availability of food, high water temperature and lower...

  7. Growth and Chemical Composition of Pistachio Seedlings under Different Levels of Manganese in Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    T. Poorbafrani

    2016-09-01

    Full Text Available Introduction: Pistachio is one of the most important crops in many regions of Iran with respect of production and export. There are more than 470000 ha of nonbearing and bearing pistachio trees mainly in Kerman province. Despite the economic importance of this crop, very little information is available on its nutritional requirements. Pistachio trees like other crops need to macro and micro nutrients. one of these elements is manganese (Mn. Manganese is an essential mineral nutrient, playing a key role in several physiological processes, particularly photosynthesis, respiration and nitrogen assimilation. This element is normally supplied to the plants by soil. Therefore, soil conditions affect its availability to plants. Soils with high pH, calcareous soils, especially those with poor drainage and high organic matter, are among the soils which produce Mn-deficient plants. Calcium carbonate is the major inactivation factor of Mn in calcareous soils. The soils of Iran are predominantly calcareous in which micronutrients deficiency, including Mn, is observed due to the high pH and nutrient fixation. The objective of this research was to examine the effect of manganese application on growth and chemical composition of pistachio seedlings in some calcareous soils with different chemical and physical properties. Materials and Methods: For this purpose a greenhouse experiment was carried out as factorial (two factors including soil type and Mn levels experiment in completely randomized design with three replications. Treatments were consisted of three levels of Mn (0, 10 and 20 mg Mn Kg-1 soil as Manganese sulfate and 12 different soils from Rafsanjan region in Southern Iran. Soil samples were air dried and crushed to pass through a 2-mm sieve, and some physical and chemical properties of soils such as texture, electrical conductivity, pH, organic matter content, calcium carbonate equivalent, cation exchange capacity and iron, manganese, copper and

  8. Growth Performance, Length-Weight Relationship and Condition Factor of Backcross and Reciprocal Hybrid Catfish Reared in Net Cages

    Directory of Open Access Journals (Sweden)

    Paiboon Panase

    2015-01-01

    Full Text Available This study was designed to investigate the growth performance, Length-Weight Relationship (LWR and condition factor (k-value of reciprocal backcross hybrid catfish (RCBC, Pangasianodon gigas (femalexF1 hybrid (male catfish and backcross hybrid catfish (BC, P. gigas (malexF1 hybrid (female catfish. Moreover, this study also compared the above mentioned species of catfish were compared with P. gigas and F1 hybrid P. gigas (malexP. hypophthalmus (female catfish. The fish were reared in net cages for 5 months (October, 2013-March, 2014. The results showed that, Weight Gain (WG and average daily weight gain (ADG were the highest among the P. gigas (34.45 and 0.20, respectively. The Length Gain (LG, average daily length gain (ADL and Specific Growth Rate (SGR were highest among the RCBC (10.66, 0.062 and 2.34, respectively. While the survival rate (55% was highest among the BC. The Feed Conversion Rate (FCR showed high numbers in all fish except the hybrids. On the other hand, the hybrid species showed lower results in all growth indices except for the survival rate but which had as high a tendency as the RCBC. The LWR revealed “b” values for the P. gigas, RCBC, BC and F1 hybrid that were 2.94, 3.12, 2.67 and 2.03 indicating that P. gigas and RCBC displayed isometric growth while others showed allometric growth. The k-values for each month showed significant differences (p0.05. The results from this study revealed that the RCBC is suitable for the aquaculture industry and moreover, the information collected in this study on LWR and the condition factor of each fish will be useful for fishery management.

  9. In vitro activity of daptomycin against Enterococcus faecalis under various conditions of growth-phases, inoculum and pH.

    Science.gov (United States)

    Argemi, Xavier; Hansmann, Yves; Christmann, Daniel; Lefebvre, Sophie; Jaulhac, Benoit; Jehl, François

    2013-01-01

    Enterococcus faecalis (E. faecalis) has become a major leading cause of nosocomial endocarditis. Treatment of such infections remains problematic and new therapeutic options are needed. Nine E. faecalis strains were tested: six obtained from patients presenting endocarditis, one with isolated bacteremia, and two reference strains. Antibiotics included daptomycin, alone or in combination, linezolid, tigecycline, rifampicin, gentamicin, teicoplanin, ceftriaxone and amoxicillin. Time-kill studies included colony counts at 1, 4 and 24 h of incubation. Significant bactericidal activity was defined as a decrease of ≥3log10CFU/ml after 24 h of incubation. Antibiotics were tested at a low (10(6) CFU/ml) and high (10(9) CFU/ml) inoculum, against exponential- and stationary-phase bacteria. We also performed time kill studies of chemically growth arrested E. faecalis. Various pH conditions were used during the tests. In exponential growth phase and with a low inoculum, daptomycin alone at 60 µg/ml and the combination amoxicillin-gentamicin both achieved a 4-log10 reduction in one hour on all strains. In exponential growth phase with a high inoculum, daptomycin alone was bactericidal at a concentration of 120 µg/ml. All the combinations tested with this drug were indifferent. In stationary phase with a high inoculum daptomycin remained bactericidal but exhibited a pH dependent activity and slower kill rates. All combinations that did not include daptomycin were not bactericidal in conditions of high inoculum, whatever the growth phase. The results indicate that daptomycin is the only antibiotic that may be able of overcoming the effects of growth phase and high inoculum.

  10. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    WANG Xueqing; JIANG Jin; WANG Yuanchao; LUO Weilin; SONG Chunwu; CHEN Junjie

    2006-01-01

    Ephemeral plants in the southern part of Gurbantunggut Desert were systematically monitored from 2002 to 2004 and the meteorological data and soil moisture during the same period were analyzed.The results show that the ephemeral plants germination and growth are sensitive to the changes of water and heat condition. The time for daily temperature over 0℃ in early spring in 2003 was delayed nearly 10 d compared with that in 2002, while the soil water changed little in the same period. Observation showed that there were 28 ephemeral species germinated in 2002, their life period was about 70 d in spring, and the maximum cover of ephemeral synusia reached 46.4%. However, only 17 ephemeral species germinated in 2003, their life period was about 50 d in spring, and their maximum cover was only 20.8%.The height of ephemeral plants was significantly higher in 2002 than that in 2003. It can be seen that ephemeral plant germination and growth in spring are strongly dependent on temperature. The changes of water conditions can affect ephemerals germination and growth as well. Because no heavy precipitation occurred during summer in 2002, only a few ephemerophytes were observed in autumn after ephemerals completed their life circle in early spring. However,about 60 mm precipitation was recorded from July to August both in 2003 and in 2004. Some ephemerals such as Erodium oxyrrhynchum and Carex physodes,etc. covered the dune surface rapidly with a cover >10%. Therefore, the ephemerals not only germinate in autumn after the early spring, some species may germinate in summer if adequate rainfall occurs. The study on responses of ephemerals growth to water and heat conditions not only has a certain ecological significance but also contributes a better understanding to the effect of climate changes on the desert surface stability.

  11. Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions.

    Science.gov (United States)

    Waters, Elaine M; McCarthy, Hannah; Hogan, Siobhan; Zapotoczna, Marta; O'Neill, Eoghan; O'Gara, James P

    2014-01-01

    Rapid screening of biofilm forming capacity by Staphylococcus epidermidis is possible using in vitro assays with 96-well plates. This method first developed by Christensen et al. in 1985 is fast and does not require specialized instruments. Thus, laboratories with standard microbiology infrastructure and a 96-well plate reader can easily use this technique to generate data on the biofilm phenotypes of multiple S. epidermidis strains and clinical isolates. Furthermore, this method can be adapted to gain insights into biofilm regulation and the characteristics of biofilms produced by different S. epidermidis isolates. Although this assay is extremely useful for showing whether individual strains are biofilm-positive or biofilm-negative and distinguishing between form weak, moderate or strong biofilm, it is important to acknowledge that the absolute levels of biofilm produced by an individual strain can vary significantly between experiments meaning that strict adherence to the protocol used is of paramount importance. Furthermore, measuring biofilm under static conditions does not generally reflect in vivo conditions in which bacteria are often subjected to shear stresses under flow conditions. Hence, the biofilm characteristics of some strains are dramatically different under flow and static conditions. Nevertheless, rapid measurement of biofilm production under static conditions is a useful tool in the analysis of the S. epidermidis biofilm phenotype.

  12. Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions

    Science.gov (United States)

    McAuley, Catherine M.; Duffy, Lesley L.; Subasinghe, Nela; Hogg, Geoff; Coventry, John; Fegan, Narelle

    2015-01-01

    Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia). Experiments were conducted at combinations of 4, 15, 22, 37 and 42°C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P < 0.001) in egg yolk (0.427 log10 CFU/mL/h) compared to whole egg (0.312 log10 CFU/mL/h) and egg white (0.029 log10 CFU/mL/h). Attachment to egg shells varied by time (1 or 20 min) and temperature (4, 22 and 42°C), with S. Typhimurium isolates attaching at higher levels (P < 0.05) than S. Sofia after 1 min at 4°C and S. Typhimurium ATCC 14028 attaching at higher (P < 0.05) levels at 22°C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks. PMID:26539536

  13. Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions

    Directory of Open Access Journals (Sweden)

    Catherine M. McAuley

    2015-01-01

    Full Text Available Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia. Experiments were conducted at combinations of 4, 15, 22, 37 and 42°C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P<0.001 in egg yolk (0.427 log10 CFU/mL/h compared to whole egg (0.312 log10 CFU/mL/h and egg white (0.029 log10 CFU/mL/h. Attachment to egg shells varied by time (1 or 20 min and temperature (4, 22 and 42°C, with S. Typhimurium isolates attaching at higher levels (P<0.05 than S. Sofia after 1 min at 4°C and S. Typhimurium ATCC 14028 attaching at higher (P<0.05 levels at 22°C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks.

  14. Growth, condition, diet, and consumption rates of northern pike in three Arizona reservoirs

    Science.gov (United States)

    Flinders, J.M.; Bonar, Scott A.

    2008-01-01

    Northern pike (Esox lucius L.) introductions are controversial in the western United States due to suspected impacts they might have on established sport fisheries and potential illegal introductions. Tbree Arizona reservoirs, Parker Canyon Lake, Upper Lake Mary and Long Lake were sampled to examine the diet, consumption dynamics, and growth of northern pike. Northern pike diets varied by season and reservoir. In Parker Canyon Lake, diets were dominated by rainbow trout in winter and spring and bluegill and green sunfish in the fall. In Long Lake the northern pike ate crayfish in spring and early summer and switched to young of the year common carp in summer and fall. Black crappie, golden shiners, and crayfish were the major prey in Upper Lake Mary during spring, but they switched to stocked rainbow trout in the fall. Northern pike growth was in the high range of growth reported throughout the United States. Estimated northern pike specific consumption rate (scr) of rainbow trout (g/g/d ?? 10-6) was greatest in Upper Lake Mary (scr = 329.1 ?? 23.7 g/g/d ?? 10-6) where stocked fingerling (280 mm TL) rainbow trout stocked in Long Lake (scr = 1.4 ?? 0.1 g/g/d ?? 10-6) and Parker Canyon Lake (scr = 287.2 ?? 15.1 g/g/d ?? 10-6) where catchable-sized rainbow trout were stocked. Managers should consider the cost-benefits of stocking fish >200 mm TL in lakes containing northern pike. ?? Copyright by the North American Lake Management Society 2008.

  15. The Growth Condition and Oil Production of Microalgae with Several Kinds of Plant Hormones

    Institute of Scientific and Technical Information of China (English)

    QIU Chen

    2016-01-01

    Microalgae as an important marine resources, rich in high content of polysaccharide, protein, fatty acids. The fatty acid content of microalgae is high, and its propagation speed is faster than herbaceous plants. It also has a high use value. The experiment tried on the basis of the screening of high yield oil microalgae, add different commonly used plant hormone, using growth monitoring, analysis of product components. Select several plant hormones to improve microalgae products production, provides guidance on the deep research and commercial production.

  16. The effect of growth conditions on production and excretion of extracellular antigens by three ascomycetous yeasts.

    Science.gov (United States)

    Middelhoven, W J; Slingerland, R J; Notermans, S

    1988-01-01

    Ascomycetous yeasts produce extracellular antigens that are almost specific for the species. The antigen production by Hansenula wickerhamii and Stephanoascus ciferrii was independent of the carbon source and was proportional to the final cell density of the cultures. The same was true of chemostat cultures of Stephanoascus ciferrii, irrespective of the dilution rate and whether glucose or ammonia was the limiting nutrient. In cultures of Saccharomyces cerevisiae, however, antigen excretion mainly took place in the late exponential growth phase. Large amounts of antigen were extracted from the cell wall of Saccharomyces cerevisiae. A small amount was detected in the cytoplasm.

  17. Sex reversal, growth, and survival in the guppy Poecilia reticulata (Cyprinodontiformes: Poeciliidae) under laboratory conditions

    OpenAIRE

    Ortega-Salas, A.A.; H Reyes-Bustamante; Reyes B., H.

    2013-01-01

    Just like it is important to obtain robust and heavy fish in short periods in aquaculture, in aquariology it is important to efficiently obtain colorful fish, which are usually males, and this makes sex reversal important.  We studied sex reversal and growth for 120 days in 10-gallon tanks, without aeration, with densities of 1 fry per liter. Temperature varied between 28,2 and 28,7°C. The pH was 8,1 to 8,8 and oxygen concentration 6,2 to 6,8mg/l. Aba Api-balanced food with 25% protein was us...

  18. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions

    Science.gov (United States)

    Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.

    2009-08-01

    A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.

  19. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    Science.gov (United States)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  20. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    Science.gov (United States)

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.

  1. Rapid eutectic growth in undercooled Al-Ge alloy under free fall condition

    Institute of Scientific and Technical Information of China (English)

    刘向荣; 曹崇德; 魏炳波

    2003-01-01

    Eutectic growth in Al-51.6%wt Ge alloy has been investigated during free fall in a drop tube. With decreasing undercooling △T, the microstructural evolution has shown a transition from lamellar eutectic to anomalous eutectic.A maximum cooling rate of 4.2×104K/s and undercooling of up to 240K (0.35TE) are obtained in the experiment.The eutectic coupled zone is calculated on the basis of current eutectic and dendritic growth theories, which covers a composition range from 48%-59% Ge and leans towards the Ge-rich side. The two critical undercoolings for the eutectic transition are △T1*=101K and △T2*=178K. When △T ≤△T1*, the microstructure for Al-51.6% Ge eutectic shows lamellar eutectic. If △T ≥△T2*, the microstructure shows anomalous eutectic. In the intermediate range of △T1* <△T <△T2*, the microstructure is the mixture of the above two types of eutectics.

  2. Contrasted Effects of Biochar on Maize Growth and N Use Efficiency Depending on Soil Conditions

    Science.gov (United States)

    Zhu, Qiaohong; Peng, Xinhua; Huang, Taiqing

    2015-04-01

    Biochar amendment may improve crop growth through its nutrients and indirect fertility. However, this improvement varies in a wide range of biochars, crops, and soils. Our objectives were to determine the response of crop growth to biochar amendment and to assess the N use efficiency relative to the biochar and the soil types. In this pot experiment, we investigated five typical agricultural soils in China amended with two biochars. Four treatments were designed: the soil itself as a control, the soil amended with 1% biochar, the soil with fertilizer NPK, and the soil with added biochar and fertilizer. Biochar amendment increased the maize biomass and the N use efficiency in the red soil (p0.05). In the red soil, the biomass under biochar+NPK was 2.67-3.49 times higher than that of only NPK, and 1.48-1.62 times higher than that of only biochar amendment, 21-36 and 35-42% of which were contributed from biochar fertility and indirect fertility, respectively. This study indicates that biochar amendment is very plausible for the red soil but has a minor or even negative effect on the other four soils in China.

  3. Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions.

    Science.gov (United States)

    Hoson, T; Kamisaka, S; Buchen, B; Sievers, A; Yamashita, M; Masuda, Y

    1996-01-01

    A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.

  4. Implications of soil heterogeneity on growth performance of fast-growing trees under marginal site conditions - an ecophysiological perspective

    Science.gov (United States)

    Veste, Maik; Halke, Christian; Schmitt, Dieter; Mantovani, Dario; Zimmermann, Reiner; Küppers, Manfred; Freese, Dirk

    2017-04-01

    The integration of fast-growing trees and hedgerows has been proposed in order to improve the environmental performance of agricultural systems and to provide woody biomass for bioenergy. Due to the current increase of bioenergy, strong interests are emerging to use marginal lands for short-rotation forestry. Especially in Lower Lusatia (Brandenburg, Germany) large areas of reclaimed post-mining sites are available for the cultivation of short-rotation coppies and agroforesty systems. The dumped overburden material has little or no recent soil organic matter, low nutrient content and low water holding capacity. Our study aim was to evaluate the effects of small-scale spatial and temporal variations of edaphic conditions on plant water relations, photosynthesis and biomass production of black locust (Robinia pseudoacacia) and poplar (Populus spp.) on marginal lands. Particularly, on dumped soils in the post-mining area, due to the adverse edaphic conditions, the stem growth was drastically reduced during summer drought below the critical pre-dawn water potential value of -0.5 MPa. But also on agricultural fields soil depth and soil water availability are the key factors determining the biomass production of poplar and black locust. A reduction of soil N availability as a result of low soil nitrogen content or drought induce nodulation and biological nitrogen fixation (BNF) in Robinia in order to sustain the required nitrogen amounts for plant growth. In our experiment the nodule biomass increased in combination with a decrease of the δ15N values of the leaves under extreme drought stress. Under field conditions the percentage of nitrogen derived from the atmosphere in black locust varies 63% - 83% and emphasized the importance of nitrogen fixations for tree growth on marginal lands. Our investigation under different edaphic conditions and soil water availabilities showed clearly the ecophysiological and morphological plasticity of the investigated tree species and

  5. Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurnia, F.; Hadiyawarman, H.; Jung, C. U.; Liu, C. L. [Hankuk University of Foreign Studies, Yongin (Korea, Republic of); Lee, S. B.; Yang, S. M.; Park, H. W.; Song, S. J.; Hwang, C. S. [Seoul National University, Seoul (Korea, Republic of)

    2010-12-15

    We deposited NiO thin films with SrRuO{sub 3} bottom electrodes on SrTiO{sub 3} (001) substrates by using pulsed laser deposition. The growth temperature and the oxygen pressure were varied in order to obtain NiO films with different structural and electrical properties. We investigated the I-V characteristics of the Pt/NiO/SRO structures and observed a strong dependence of bipolar resistance switching on the growth conditions of the NiO thin films. Stable bipolar memory resistance switching was observed only in the devices with NiO films deposited at 400 .deg. C and 10 mTorr of O{sub 2}. The off-state I-V curve of bipolar switching showed a linear fitting to the Schottky effect, indicating its origin in the NiO/SRO interface. Our results suggest that the growth conditions of NiO may affect the bipolar switching behavior through the film's resistance, the film's crystallinity, or the status of the grain boundaries.

  6. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    Science.gov (United States)

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  7. Effects of acidifying ocean conditions on growth and survival of two life stages of the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Giltz, S.; Taylor, C.

    2016-02-01

    Blue crabs, Callinectes sapidus, begin their larval phase offshore and circulate for approximately 30 days before settling near shore. As crabs transition to the juvenile stage, they move into coastal or estuarine environments characterized by lower salinity. Presently the average pH of the ocean is 8.1, 30% down from the beginning of the industrial revolution and is forecasted to drop to 7.8 by 2100. Decreasing pH causes dissolution of calcium carbonate shells, but the overall effects on crustaceans, such as blue crabs, are unknown. This study investigated the effect of a lower pH environment on the growth, survival, carapace hardness and molt frequency of larval and juvenile blue crabs in the Northern Gulf of Mexico. Larval crabs showed delayed growth under low pH (7.8) conditions compared to crabs in a control (present day) pH (8.1) environment. Population crashes (complete mortality) were experienced in 55% of the low pH aquaria but not in any of the control aquaria, suggesting that acidification poses a mortality risk. Under low pH conditions the intermolt duration decreased in juveniles, but the body length and weight did not differ from crabs raised in the control pH. Larvae (in tanks that did not crash) and juveniles did not experience increased mortality from a lower pH, but there do appear to be sublethal effects on growth and molting that differ between life history stages.

  8. Drop Tower Setup to Study the Diffusion-driven Growth of a Foam Ball in Supersaturated Liquids in Microgravity Conditions

    Science.gov (United States)

    Vega-Martínez, Patricia; Rodríguez-Rodríguez, Javier; van der Meer, Devaraj; Sperl, Matthias

    2017-08-01

    The diffusion-driven growth of a foam ball is a phenomenon that appears in many manufacturing process as well as in a variety of geological phenomena. Usually these processes are greatly affected by gravity, as foam is much lighter than the surrounding liquid. However, the growth of the foam free of gravity effects is still very relevant, as it is connected to manufacturing in space and to the formation of rocks in meteorites and other small celestial bodies. The aim of this research is to investigate experimentally the growth of a bubble cloud growing in a gas-supersaturated liquid in microgravity conditions. Here, we describe the experiments carried out in the drop tower of the Center of Applied Space Technology and Microgravity (ZARM). In few words, a foam seed is formed with spark-induced cavitation in carbonated water, whose time evolution is recorded with two high-speed cameras. Our preliminary results shed some light on how the size of the foam ball scales with time, in particular at times much longer than what could be studied in normal conditions, i.e. on the surface of the Earth, where the dynamics of the foam is already dominated by gravity after several milliseconds.

  9. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions.

    Science.gov (United States)

    Ryan, S; Begley, M; Hill, C; Gahan, C G M

    2010-09-01

    The aim of this study was to examine the contribution of a five-gene islet (lmo0444 - lmo0448) to the growth of Listeria monocytogenes under suboptimal conditions. Bioinformatics and PCR analyses revealed that a five-gene islet is present in c. half of all L. monocytogenes strains examined (66 in total). A deletion mutant that lacks the entire c. 8·7-kb islet was created in L. monocytogenes strain LO28. This mutant was impaired in growth at low pH and at high salt concentrations and demonstrated a decreased ability to survive and grow in a model food system (frankfurters). Transcriptional analysis revealed that the islet is self-regulated in that the product of lmo0445 regulates the expression of the other four genes. A role of the alternative stress sigma factor SigB in regulating the islet was also uncovered. The five-gene islet (herein designated as SSI-1; stress survival islet 1) contributes to the growth of L. monocytogenes under suboptimal conditions. SSI-1 may contribute to the survival of certain strains of L. monocytogenes in food environments. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  10. Arbuscular mycorrhizal fungi increased early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions.

    Science.gov (United States)

    Turjaman, Maman; Tamai, Yutaka; Santoso, Erdy; Osaki, Mitsuru; Tawaraya, Keitaro

    2006-10-01

    Nontimber forest products (NTFPs) represent an important source of income to millions of people in tropical forest regions, but some NTFP species have decreased in number and become endangered due to overexploitation. There is increasing concern that the planting stocks of Dyera polyphylla and Aquilaria filaria are not sufficient to sustain the yield of NTFPs and promote forest conservation. The objective of this study was to determine the effect of two arbuscular mycorrhizal (AM) fungi, Glomus clarum and Gigaspora decipiens, on the early growth of two NTFP species, D. polyphylla and A. filaria, under greenhouse conditions. The seedlings of both species were inoculated with G. clarum or G. decipiens, or uninoculated (control) under greenhouse conditions. Percentage of AM colonization, plant growth, survival rate, and nitrogen (N) and phosphorus (P) concentrations were measured after 180 days of growth. The percentage of AM colonization of D. polyphylla and A. filaria ranged from 87 to 93% and from 22 to 39%, respectively. Colonization by G. clarum and G. decipiens increased plant height, diameter, and shoot and root dry weights. Shoot N and P concentrations of the seedlings were increased by AM colonization by as much as 70-153% and 135-360%, respectively. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than in the control seedlings. The results suggest that AM fungi can accelerate the establishment of the planting stocks of D. polyphylla and A. filaria, thereby promoting their conservation ecologically and sustaining the production of these NTFPs economically.

  11. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  12. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium

    NARCIS (Netherlands)

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-01-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood

  13. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Science.gov (United States)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  14. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions

    DEFF Research Database (Denmark)

    Petersen, Andreas; Aarestrup, Frank Møller; Olsen, John Elmerdahl

    2009-01-01

    significantly when the bacteria were grown under all stress conditions tested, while the cost in 1/3 Luria–Bertani was not significantly changed in a streptomycin+rifampicin mutant. The increase in the fitness cost depended in a nonregular manner on the strain/stress combination. The fitness cost of plasmid...

  15. Effects of sinusoidal endothelial cell conditioned medium on the expressionof connective tissue growth factor in rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing Liu; Fang Liu; Wen Jun Xiao; Ming Hui Huang; Song Min Huang; Yi Ping Wang

    2000-01-01

    AIM To investigate the effects of sinusoidal endothelial cell (SEC) conditioned medium on the expression ofconnective tissue growth factor (CTGF) in rat hepatic stellate cells (HSC).METHODS By in situ collagenase perfusion and two-step Percoll gradient centrifugation, SECs wereisolated and cultured from normally and CCl4-treated Wistar rats, and the SEC conditioned media werecollected. HSCs were prepared from Wistar rats by in situ perfusion and single-step Nycodenz gradient, andwere cultured with SEC conditioned media. Expression of CTGF in HSC was assessed using reversetranscription-polymerase chain reaction (RT-PCR).RESULTS Expression of CTGF was not found in freshly isolated HSC and in primary culture of HSC onday 4 with SEC conditioned media from normal rats, but was present in primary culture of HSC on day 4 withSEC conditioned media from CCl4-induced liver fibrosis rats. Expression of CTGF was observed in culture-activated HSCs, and the effect of SEC conditioned media from CCl4-induced liver fibrosis rats on theexpression of CTGF gene in activated HSCs was not significant.CONCLUSION Expression of CTGF might be relative to the activation of HSC and the liver fibrogenesis,and damaged SECs play a very important role in the early stage of activation of HSC.

  16. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  17. Growth and essential oil production by Martianthus leucocephalus grown under the edaphoclimatic conditions of Feira de Santana, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Bianca Oliveira de Azevedo

    2015-01-01

    Full Text Available ABSTRACT: The semiarid region of Brazil holds a great richness of medicinal and aromatic plants with considerable potential for pharmaceutical, food, cosmetic and biopesticide industries. Martianthus leucocephalus (Mart. Ex Benth. J. F. B. Pastore is endemic to this region, and its essential oils contain a principle compound, isobornyl formate, which demonstrates antimicrobial activity against Bacilus cereus, Staphylococcus aureus and Candida albicans. In spite of its significant pharmacological potential, little is known about its growth. In light of the influence of seasonality on plant growth, development, and secondary metabolism, the present study evaluated the growth and essential oil content of M. leucocephalus grown and harvested during different months of the year in the edaphoclimatic conditions of Feira de Santana, Bahia State, Brazil. The experimental design was entirely randomized, with twelve harvesting periods and five replicates. The study acquired monthly data of mean temperatures, relative humidity, rainfall, irradiance, and photoperiod from the National Institute of Meteorology (INMET and quantified the fresh and dry weights of leaves, flowers and branches, as well as leaf area, and essential oil content. The data were submitted to Spearman correlation analysis and the means were compared using the Scott-Knott test. Total leaf masses and oil contents were higher during periods with longer photoperiods and higher solar irradiance. Rainfall and relative humidity reduced plant growth and essential oil content. Higher total mean dry masses were recorded from September to January (except October, while oil content was higher in March.

  18. Dietary probiotic supplementation (Shewanella putrefaciens Pdp11) modulates gut microbiota and promotes growth and condition in Senegalese sole larviculture.

    Science.gov (United States)

    Lobo, Carmen; Moreno-Ventas, Xabier; Tapia-Paniagua, Silvana; Rodríguez, Covadonga; Moriñigo, Miguel A; de La Banda, Inés García

    2014-02-01

    Probiotic supplementation in fish aquaculture has significantly increased in the last decade due to its beneficial effect on fish performance. Probiotic use at early stages of fish development may contribute to better face metamorphosis and weaning stress. In the present work, we studied the influence of Shewanella putrefaciens Pdp11 supplementation on growth, body composition and gut microbiota in Senegalese sole (Solea senegalensis) during larval and weaning development. S. putrefaciens Pdp11 was incorporated using Artemia as live vector (2.5 × 10⁷ cfu mL⁻¹) and supplied to sole specimens in a co-feeding regime (10-86 DAH) by triplicate. Probiotic addition promoted early metamorphosis and a significantly higher growth in length at 24 DAH larvae. S. putrefaciens Pdp11 also modulated gut microbiota and significantly increased protein content and DHA/EPA ratios in sole fry (90 DAH). This nutritional enhancement is considered especially important after weaning, where significantly higher growth in length and weight was observed in probiotic fish. Moreover, a less heterogeneous fish size in length was detected since metamorphosis till the end of weaning, being of interest for sole aquaculture production. After weaning, fish showed significantly higher growth (length and weight) and less variable lengths in fish when supplemented with probiotics. Both the enhancement of nutritional condition and the decrease in size variability associated with probiotic addition are highly interesting for sole aquaculture production.

  19. Effects of Culture Conditions, Carbon Source and Regulators on Saffron Callus Growth and Crocin Accumulation in the Callus

    Institute of Scientific and Technical Information of China (English)

    刘雪; 郭志刚; 刘瑞芝

    2002-01-01

    There are many factors influencing the growth and secondary metabolites of callus and saffron callus. In this paper, the effects of culture conditions, including culture temperatures, light levels, the carbon source and its concentration, and the preserve of regulators (mainly hormones), are studied for callus cultures. All the experiments used Murashige and Skoog (MS) solid medium as the basic medium with 10 g/L agar, pH 5.75.8. Saffron callus was cultured at 20℃ in the dark, with a sucrose concentration of 45 g/L (or starchy hydrolysate concentration of 40 g/L), but 30 g/L sucrose was best for the synthesis of crocin (for starchy hydrolysate the concentration can range from 20 to 40 g/L). To promote callus growth, the best auxin was α-naphthaleneacetic acid (NAA) and the optimum ratio of NAA (mg/L) to benzylaminopurine (BA) (mg/L) was and uniconazole (S-07) (1.25 mg/L) increased the crocin content remarkably as analyzed by high performance liquid chromatography (HPLC). NAA (2 mg/L) promoted the growth of saffron callus but had no benefit and may inhibit crocin synthesis while S-07 (1.25 mg/L) had the opposite effect. GA3 promoted both growth and synthesis.

  20. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  1. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    Science.gov (United States)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  2. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.

    Science.gov (United States)

    Roy, Jared N; Luckarift, Heather R; Sizemore, Susan R; Farrington, Karen E; Lau, Carolin; Johnson, Glenn R; Atanassov, Plamen

    2013-07-10

    In this work we present a biological fuel cell fabricated by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. This concept is devised as an extension to traditional biochemical methods by incorporating diverse biological catalysts with the aim of powering small devices. In preparing the biological fuel cell anode, novel hierarchical-structured architectures and biofilm configurations were investigated. A method for creating an artificial biofilm based on encapsulating microorganisms in a porous, thin film of silica was compared with S. oneidensis biofilms that were allowed to colonize naturally. Results indicate comparable current and power densities for artificial and natural biofilm formations, based on growth characteristics. As a result, this work describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells.

  3. Corn Growth as Affected by Plastic Cover Under Drip Irrigation Condition in the Desert

    Institute of Scientific and Technical Information of China (English)

    WANGXUE-FENG; U.SHANI

    1994-01-01

    Plastic cover,as a method to minimize soil water evaporation and improve water use efficiency,was used for corn during the whole growing period in a desert area.Field Studies were conducted to determine the effect of plastic covering nmanagement on corn growth and rooting pattern and its relationship with changes in climate.Four treatments.0) bared soil without cover,1) covering one side of the crop,2) covering both sides of the crop,and 3) covering the surface totally,were established on a sandy loam soil.Results showed that treatment 0 was significantly different from others and revealed that plastic covering was not always good to corn growht.Improper usage of plastic cover might weaken root development and thereafter lower the total yield of the crop.Suitable practices cvombining different methods discussed could not only improve water use efficiency but also increase the crop yield.

  4. Growth conditions affect carotenoid-based plumage coloration of great tit nestlings

    Science.gov (United States)

    Hõrak, P.; Vellau, Helen; Ots, Indrek; Møller, Anders Pape

    Carotenoid-based integument colour in animals has been hypothesised to signal individual phenotypic quality because it reliably reflects either foraging efficiency or health status. We investigated whether carotenoid-derived yellow plumage coloration of fledgling great tits (Parus major) reflects their nestling history. Great tit fledglings reared in a poor year (1998) or in the urban habitat were less yellow than these reared in a good year (1999) or in the forest. The origin of nestlings also affected their coloration since nestlings from a city population did not improve their coloration when transferred to the forest. Brood size manipulation affected fledgling colour, but only in the rural population, where nestlings from reduced broods developed more yellow coloration than nestlings from increased and control broods. Effect of brood size manipulation on fledgling plumage colour was independent of the body mass, indicating that growth environment affects fledgling body mass and plumage colour by different pathways.

  5. SCC crack growth rate of cold-worked austenitic stainless steels in PWR primary water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guerre, C.; Raquet, O.; Herms, E. [Commissariat a l' Energie Atomique (CEA), DEN/DPC/SCCME/LECA, Gif-sur-Yvette Cedex (France); Marie, S. [Commissariat a l' Energie Atomique (CEA), DEN/DM2S/SEMT/LISN, Gif-sur-Yvette Cedex (France); Le Calvar, M. [Inst. for Radiological Protection and Nuclear Safety (IRSN), DSR/SAMS, Fontenay-aux-Roses Cedex (France)

    2007-07-01

    Stress corrosion cracking (SCC) of stainless steels (SS) is a significant cause of failure in the pressurized water reactors (PWR). Most of the reported case history failures of SS in PWR can be attributed to pollutants (chloride, sulphate) and / or locally oxygenated environments, even to sensitisation of the SS. However, some failures have been attributed to heavy cold work (CW) of SS. In laboratory tests, SCC initiation of cold-worked SS has been obtained using slow strain rate tests (SSRT) in nominal PWR environment. This paper describes constant load and cyclic crack growth rate (CGR) tests on cold-worked SS, on CT specimens. 304L and 316L have been tested with a CW up to 60 %. CW 316L is more prone to cracking than 304L. Over 30 % of CW, 316L is susceptible to crack propagation under constant load. CW is the main controlling parameter for cracking. (author))

  6. Poverty and inequality in Latin America: From growth to conditional transfers of income

    Directory of Open Access Journals (Sweden)

    José Ignacio Antón Pérez

    2009-05-01

    Full Text Available This article focuses on the scale, interpretation and policies of the fight against inequality and poverty in Latin America. To this end, the article presents, firstly, the continent’s situation with respect to inequality and poverty, as well as its evolution over the past decades. Secondly, the authors examine the changing interpretation that has been made – through the economy and economic policy – of the importance of inequality and poverty in development processes. The article then offers a review of this debate, providing information on the link between economic growth and poverty in Latin America, given the fact that independently of this link, many policies exist aimed at combating poverty, whether to reduce its intensity or its effects. Finally, and prior to the conclusions, the authors present an overview of this kind of policies in Latin America, focusing particularly on the ones that have proven most effective.

  7. Glycine betaine enhances growth of nitrogen-fixing bacteria Gluconacetobacter diazotrophicus PAL5 under saline stress conditions.

    Science.gov (United States)

    Boniolo, Fabrízio Siqueira; Rodrigues, Raphael Cardoso; Delatorre, Edson Oliveira; da Silveira, Mauricio Moura; Flores, Victor Martín Quintana; Berbert-Molina, Marília Amorim

    2009-12-01

    In this study, the effect of glycine betaine as osmoprotectant compound for Gluconacetobacter diazotrophicus PAL5 was evaluated by kinetic growth parameters. Batch fermentation assays were performed employing media supplemented with different sodium chloride concentrations to simulate saline stress conditions. Salt concentrations of 50-300 mM led to decreased cell concentrations, while the maximum specific growth rates and cell productivities were reduced at concentrations above 100-mM NaCl. Salt inhibition was mainly observed in media with 200- and 300-mM NaCl, in which drastic changes in cell morphology were also noted. The addition of glycine betaine to the media showed to be efficient to counteract the salt inhibitory effect by increasing some fermentation parameters. However, the osmoprotectant was not able to revert the polymorphism promoted by higher salt concentrations.

  8. Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions.

    Science.gov (United States)

    Soga, K; Harada, K; Wakabayashi, K; Hoson, T; Kamisaka, S

    1999-09-01

    Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.

  9. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    Science.gov (United States)

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands)

    Science.gov (United States)

    Klöser, Heinz; Ferreyra, Gustavo; Schloss, Irene; Mercuri, Guillermo; Laturnus, Frank; Curtosi, Antonio

    1993-10-01

    Wind, air temperature, surface irradiance, light penetration into the water, salinity and water temperature have been recorded from mid November to mid February in Potter Cove, King George Island. Results are compared with published data on requirements for growth of Antarctic microalgae. The investigated season showed two distinct periods: Early summer lasted until end of December with comparatively cold temperatures, unstable water column and deep penetration of light; late summer started in early January and was characterized by reduced salinity due to meltwater discharge and high turbidity due to suspended sediments. Meltwater influence did not sufficiently change salinity to be responsible for the frequently noted paucity of macroalgal communities in sheltered bays. Shading by suspended sediments was equally considered to be of minor importance, as macroalgae have their optimal growth phase from September to December. During this period, light penetration and depth distribution of macroalgae coincide perfectly. From these results, a general review on depth limitation of macroalgae by light conditions is derived.

  11. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application.

  12. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    Science.gov (United States)

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  13. Conditional genetic elimination of hepatocyte growth factor in mice compromises liver regeneration after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Kari Nejak-Bowen

    Full Text Available Hepatocyte growth factor (HGF has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ER(T transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70-80% of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH, which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth.

  14. Adaptive growth of tree root systems in response to wind action and site conditions.

    Science.gov (United States)

    Nicoll, Bruce C.; Ray, Duncan

    1996-01-01

    Soil-root plate dimensions and structural root architecture were examined on 46-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) trees that had been mechanically uprooted. Rooting depth was restricted by a water table, and root system morphology had adapted to resist the wind movement associated with shallow rooting. The spread of the root system and the ratio of root mass to shoot mass (root/shoot ratio) were both negatively related to soil-root plate depth. Root systems had more structural root mass on the leeward side than the windward side of the tree relative to the prevailing wind direction. Cross sections of structural roots were obtained at distances of 0.5, 0.75, 1.0, and 1.25 m from the tree center. Buttressed parts of roots had greater lateral and vertical secondary thickening above rather than below the biological center. This uneven growth, which produced a shape similar in cross section to a T-beam, was greater on the leeward side of the tree, and was greatest at 0.5 m from the tree center of shallow rooted trees. Further from the tree, particularly on the windward side, many roots developed eccentric cross-sectional shapes comparable to I-beams, which would efficiently resist vertical flexing. Roots became more ovoid in shape with increasing distance from the tree, especially on deep rooted trees where lateral roots tapered rapidly to a small diameter. We conclude that these forms of adaptive growth in response to wind movement improve the rigidity of the soil-root plate and counteract the increasing vulnerability to windthrow as the tree grows.

  15. Stability of Interfacial Phase Growth in a Slab with Convective Boundary Conditions

    Science.gov (United States)

    Basu, Rahul

    2016-06-01

    The mass transport and energy equations for a semi-infinite porous slab are solved using similarity variables and closed form functions to describe freezing with remelt at the interface. Heat and mass balance analyses give a transcendental equation for the unknown interfacial freezing velocity for solving on the computer. The solutions for the temperature and mass concentration are decoupled and solved analytically. The solution for convective boundary conditions is compared with that for Dirichlet boundary conditions. The progressive development of the solution with material thickness and change of functional time dependence and effect on the stability of nucleation is outlined. A discussion with biological adaptation to extreme cold and possible evolution of molecules in heat transfer regimes is included in light of the above.

  16. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  17. A New Fungal Endophyte, Scolecobasidium humicola, Promotes Tomato Growth under Organic Nitrogen Conditions

    OpenAIRE

    Mahmoud, Rola S.; Kazuhiko Narisawa

    2013-01-01

    A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-...

  18. Effect of heating conditions on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth

    Science.gov (United States)

    Timofeev, Vladimir V.; Kalaev, Vladimir V.; Ivanov, Vadim G.

    2016-07-01

    We apply numerical simulation to understand the effect of heating conditions on melt convection in an industrial Ky furnace. The direct numerical simulation (DNS) approach was used to investigate the features of melt flow during the seeding stage. Two different cases of Kyropoulos furnace hot zone design were studied numerically, and results were compared with experimental data to understand the effect of modifications on melt convection.

  19. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  20. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  1. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26{degree}C and downshifted 30-26-30{degree}C) and females (constant 30{degree}C and upshifted 26-30-26{degree}C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26{degree}C group and 93% males from the downshifted group. 100% females resulted from both the constant 30{degree}C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26{degree}C were significantly larger than hatchlings from eggs incubated at a constant 30{degree}C or downshifted. Hatchlings were raised in individual aquaria at 25{degree}C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30{degree}C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  2. Towards lag phase of microbial populations at growth-limiting conditions: The role of the variability in the growth limits of individual cells.

    Science.gov (United States)

    Aguirre, Juan S; Koutsoumanis, Konstantinos P

    2016-05-02

    The water activity (aw) growth limits of unheated and heat stressed Listeria monocytogenes individual cells were studied. The aw limits varied from 0.940 to 0.997 and 0.951 to 0.997 for unheated and heat stressed cells, respectively. Due to the above variability a decrease in aw results in the presence of a non-growing fraction in the population leading to an additional pseudo-lag in population growth. In this case the total apparent lag of the population is the sum of the physiological lag of the growing cells (time required to adjust to the new environment) and the pseudo-lag. To investigate the effect of aw on the above lag components, the growth kinetics of L. monocytogenes on tryptone soy agar with aw adjusted to values ranging from 0.997 to 0.940 was monitored. The model of B&R was fitted to the data for the estimation of the apparent lag. In order to estimate the physiological lag of the growing fraction of the inoculum, the model was refitted to the growth data using as initial population level the number of cells that were able to grow (estimated from the number of colonies formed on the agar at the end of storage) and excluding the rest data during the lag. The results showed that for the unheated cells the apparent lag was almost identical to the physiological lag for aw values ranging from 0.997 to 0.970, as the majority of the cells in the initial population was able to grow in these conditions. As the aw decreased from 0.970 to 0.940 however, the number of cells in the population which were able to grow, decreased resulting to an increase in the pseudo-lag. The maximum value of pseudo-lag was 13.1h and it was observed at aw=0.940 where 10% of the total inoculated cells were able to grow. For heat stressed populations a pseudo-lag started to increase at higher aw conditions (0.982) compared to unheated cells. In contrast to the apparent lag, a linear relation between physiological lag and aw was observed for both unheated and heat stressed cells.

  3. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions.

    Directory of Open Access Journals (Sweden)

    Jian Wei eHe

    2016-04-01

    Full Text Available Deoxynivalenol (DON is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30 oC, and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 µg DON/h/108 cells. The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.

  4. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  5. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  6. Influence of prior growth conditions, pressure treatment parameters, and recovery conditions on the inactivation and recovery of Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium in turkey meat.

    Science.gov (United States)

    Juck, Greg; Neetoo, Hudaa; Beswick, Ethan; Chen, Haiqiang

    2012-02-01

    The relatively high prevalence of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium in various food products is of great concern to the food industry. The objective of this study was to determine the pressure-inactivation of the pathogens in a representative food model as affected by prior growth temperature, physiological age of the culture, pressure level and treatment temperature. The effect of post-treatment conditions (incubation temperature and gas atmosphere) on the bacterial recovery was also determined. The pathogens being studied were inoculated into sterile turkey breast meat to a final level of ca. 3 logCFU/g and then grown to two stages, the early stage (representative of exponential phase) and late stage (representative of stationary phase), at 15, 25, 35, and 40 °C. Turkey meat samples were pressure-treated at 400 and 600 MPa for 2 min at initial sample temperatures of 4, 20 and 40 °C. Following treatment, bacterial counts in the samples were determined aerobically or anaerobically at incubation temperatures of 15, 25, 35, and 40 °C. Pressure inactivation of the bacterial pathogens increased as a function of the pressure levels and treatment temperatures. Generally speaking, early stage cells were more resistant than late stage cells (Ppressure treatment and recovery conditions of the bacteria after pressure treatment when considering the adequacy of pressure treatments to enhance the microbiological safety of foods. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    Science.gov (United States)

    Davidson, J.; Bebak, J.; Mazik, P.

    2009-01-01

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are within the range of fish hearing, but species-specific effects of aquaculture production noise are not well defined. Field and laboratory studies have shown that fish behavior and physiology can be negatively impacted by intense sound. Therefore, chronic exposure to aquaculture production noise could cause increased stress, reduced growth rates and feed conversion efficiency, and decreased survival. The objective of this study was to provide an in-depth evaluation of the long term effects of aquaculture production noise on the growth, condition factor, feed conversion efficiency, and survival of cultured rainbow trout, Oncorhynchus mykiss. Rainbow trout were cultured in replicated tanks using two sound treatments: 117??dB re 1????Pa RMS which represented sound levels lower than those recorded in an intensive recycle system and 149??dB re 1????Pa RMS, representing sound levels near the upper limits known to occur in recycle systems. To begin the study mean fish weights in the 117 and 149??dB tanks were 40 and 39??g, respectively. After five months of exposure no significant differences were identified between treatments for mean weight, length, specific growth rates, condition factor, feed conversion, or survival (n = 4). Mean final weights for the 117 and 149??dB treatments were 641 ?? 3 and 631 ?? 10??g, respectively. Overall specific growth rates were equal, i.e. 1.84 ?? 0.00 and 1.84 ?? 0.01%/day. Analysis of growth rates of individually tagged rainbow trout indicated that fish from the 149??dB tanks grew slower during the first month of noise exposure (p noise thereafter. This study further suggests that rainbow trout growth and survival are unlikely to be affected

  8. Influence of Different Filling, Cooling, and Storage Conditions on the Growth of Alicyclobacillus acidoterrestris CRA7152 in Orange Juice▿

    Science.gov (United States)

    Spinelli, Ana Cláudia N. F.; Sant'Ana, Anderson S.; Rodrigues-Junior, Salatir; Massaguer, Pilar R.

    2009-01-01

    The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium's acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier. PMID:19801469

  9. Assisted curation of regulatory interactions and growth conditions of OxyR in E. coli K-12.

    Science.gov (United States)

    Gama-Castro, Socorro; Rinaldi, Fabio; López-Fuentes, Alejandra; Balderas-Martínez, Yalbi Itzel; Clematide, Simon; Ellendorff, Tilia Renate; Santos-Zavaleta, Alberto; Marques-Madeira, Hernani; Collado-Vides, Julio

    2014-01-01

    Given the current explosion of data within original publications generated in the field of genomics, a recognized bottleneck is the transfer of such knowledge into comprehensive databases. We have for years organized knowledge on transcriptional regulation reported in the original literature of Escherichia coli K-12 into RegulonDB (http://regulondb.ccg.unam.mx), our database that is currently supported by >5000 papers. Here, we report a first step towards the automatic biocuration of growth conditions in this corpus. Using the OntoGene text-mining system (http://www.ontogene.org), we extracted and manually validated regulatory interactions and growth conditions in a new approach based on filters that enable the curator to select informative sentences from preprocessed full papers. Based on a set of 48 papers dealing with oxidative stress by OxyR, we were able to retrieve 100% of the OxyR regulatory interactions present in RegulonDB, including the transcription factors and their effect on target genes. Our strategy was designed to extract, as we did, their growth conditions. This result provides a proof of concept for a more direct and efficient curation process, and enables us to define the strategy of the subsequent steps to be implemented for a semi-automatic curation of original literature dealing with regulation of gene expression in bacteria. This project will enhance the efficiency and quality of the curation of knowledge present in the literature of gene regulation, and contribute to a significant increase in the encoding of the regulatory network of E. coli. RegulonDB Database URL: http://regulondb.ccg.unam.mx OntoGene URL: http://www.ontogene.org.

  10. Effect of “Biosept 33 SL” on the growth of Phomopsis sojae Lehman in in vitro conditions

    Directory of Open Access Journals (Sweden)

    Elżbieta Patkowska

    2013-04-01

    Full Text Available The present studies determined the effect of preparation “Biosept 33 SL” in inhibiting the linear growth of five isolates of Phomopsis sojae in in vitro conditions. The experiment was conducted on PDA medium using the method of “the medium poisoning”. The examined preparation was used at the concentrations of 165, 330 and 660 μg grapefruit extract ∙cm -3 . The pathogen’s mycelium growing under the grapefruit extract was pale white, and the mycelium hyphae formed a fairly loose structure as distinct from the more compact mycelium of control colonies. Strong degeneration of mycelium hyphae was visible in microscopic preparations.

  11. The effect of type and ratio of vermicompost on selected growth indices and nutrients content of tomato at greenhouse conditions

    OpenAIRE

    M.H. Rasouli-Sadaghiani; Moradi, N.; R. Hamzenejhad

    2016-01-01

    This study was conducted to investigate the effect of type and ratio of vermicompost on tomato growth, with five different types of vermicompost (platanus leaves, maple leaves, pruning apple trees and grape, waste of herbal extracts and azolla residues) and four ratios of vermicompost to peat and perlite (2:1 v/v) as 0, 1:3, 2:3 and 3:3, at greenhouse conditions. Results showed that type of vermicompost had a significant effect (P≤ 0.05) on plant height, shoot dry weight, root dry weight, ...

  12. The Importance of Cash in Conditional Cash Transfer Programs for Child Health, Growth and Development:

    Science.gov (United States)

    Fernald, Lia C. H.; Gertler, Paul J.; Neufeld, Lynnette M.

    2009-01-01

    Background Many governments around the world have implemented conditional cash transfer (CCT) programs with the goal of improving options for poor families through interventions in health, nutrition and education. Families enrolled in CCT programs receive cash in exchange for complying with “conditionalities” – preventive health requirements and nutrition supplementation, education and monitoring designed to improve health outcomes and promote positive behavior change. A great challenge in evaluating the effectiveness of CCT programs has been disaggregating the effects of the cash transfer component from that of the conditionalities. Methods In an intervention that began in 1998 in Mexico, low-income communities (n=506) were randomly assigned to be enrolled in a CCT program (Oportunidades, formerly Progresa) immediately or 18 months later. In 2003, children (n=3793), aged 24–72 months who had been enrolled in the program their entire lives, were assessed for a wide variety of outcomes. The analyses reported here separated out the association of the cash transfer component of Oportunidades with several outcomes in children from the program conditionalities, while controlling for a wide range of covariates including many measures of household socio-economic status. Findings An increase in the cash transfer to the household was associated with higher height-for-age z-score and hemoglobin concentration, lower prevalence of stunting, and lower prevalence of overweight. Children in families whose households received a greater quantity of cash also performed better on a scale of motor development (McCarthy Test of Children’s Abilities), three scales of cognitive development (sub-scales of the Woodcock-Muñoz, including working memory), and receptive language (Test de Vocabulario en Imágenes Peabody). Interpretation The results suggest that the cash transfer component of Oportunidades is associated with better outcomes in child health and development. PMID

  13. Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2013-01-15

    The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.

  14. TNT transformation products are affected by the growth conditions of Raoultella terrigena.

    Science.gov (United States)

    Claus, Harald; Perret, Nina; Bausinger, Tobias; Fels, Gregor; Preuss, Johannes; König, Helmut

    2007-03-01

    High concentrations of 2,4,6-trinitrotoluene (TNT) and related nitroaromatic compounds are commonly found in soil and groundwater at former explosive plants. The bacterium, Raoultella terrigena strain HB, isolated from a contaminated site, converts TNT into the corresponding amino products. Radio-HPLC analysis with [(14)C]TNT identified aminodinitrotoluene, diaminonitrotoluene and azoxy-dimers as the main metabolites. Transformation rate and the type of metabolites that predominated in the culture medium and within the cells were significantly influenced by the culture conditions. The NAD(P)H-dependent enzymatic reduction of nitro-substituted compounds by cell-free extracts of R. terrigena was evaluated in vitro.

  15. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions.

    Science.gov (United States)

    Ladror, Daniel T; Frey, Brian L; Scalf, Mark; Levenstein, Mark E; Artymiuk, Jacklyn M; Smith, Lloyd M

    2014-03-14

    Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.

  16. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.

    Science.gov (United States)

    Kim, Yoon-Ha; Khan, Abdul Latif; Lee, In-Jung

    2016-12-01

    Abiotic stresses, such as salinity, heavy metals and drought, are some of the most devastating factors hindering sustainable crop production today. Plants use their own defensive strategies to cope with the adverse effects of these stresses, via the regulation of the expression of essential phytohormones, such as gibberellins (GA), salicylic acid (SA), jasmonates (JA), abscisic acid (ABA) and ethylene (ET). However, the efficacy of the endogenous defensive arsenals of plants often falls short if the stress persists over an extended period. Various strategies are developed to improve stress tolerance in plants. For example, silicon (Si) is widely considered to possess significant potential as a substance which ameliorate the negative effects of abiotic stresses, and improves plant growth and biomass accumulation. This review aims to explain how Si application influences the signaling of the endogenous hormones GA, SA, ABA, JA and ET during salinity, wounding, drought and metal stresses in crop plants. Phytohormonal cross talk plays an important role in the regulation of induced defences against stress. However, detailed molecular and proteomic research into these interactions is needed in order to identify the underlying mechanisms of stress tolerance that is imparted by Si application and uptake.

  17. Growth of the Ectomycorrhizal Fungus Pisolithus Microcarpus in different nutritional conditions

    Directory of Open Access Journals (Sweden)

    Márcio José Rossi

    2011-06-01

    Full Text Available The most important plant species employed in reforestation programs depend on ectomycorrhizal fungi for their establishment and growth. The exploitation of this symbiosis to improve forest productivity requires fungal inoculants in a large scale level. To develop such a technology it is necessary to define the optimal composition of the culture medium for each fungus. With these objectives in mind, the effect of the composition of the culture medium on biomass production of the ectomycorrhizal fungus Pisolithus microcarpus (isolate UFSC-Pt116 was studied. The original composition of two culture media, already employed for cultivation of ectomycorrhizal fungi, was submitted to several variations with the C/N ratio as the main variable. A variation of the Pridham-Gottlieb medium was the most efficient for the production of biomass. Therefore, it was submitted to a factorial assay where glucose, peptone and yeast extract components were the factors analyzed. Results showed that the glucose concentration may be increased up to 40 % in order to promote higher biomass production. Peptone had a positive effect on this variable, whereas yeast extract promoted a deleterious effect. These results indicate that it is advisable to eliminate yeast extract from the medium and replace it with peptone prior to use.

  18. Effects of postharvest handling conditions on internalization and growth of Salmonella enterica in tomatoes.

    Science.gov (United States)

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Yang, Yang; Wu, Yunpeng; Wang, Qin

    2014-03-01

    Salmonella internalization in tomatoes during postharvest handling is a major food safety concern. This study was conducted to determine the effect of immersion time, immersion depth, and temperature differential between bacterial suspension and tomato pulp on the internalization of Salmonella enterica in tomato fruits. The effect of storage temperature and duration on the survival and growth of internalized Salmonella cells was also evaluated. Overall, immersion time significantly affected the incidence and extent of S. enterica internalization (P internalization. The depth of Salmonella internalization in tomato tissues also increased with increasing immersion time. Immersion time also significantly influenced the degree to which the temperature differential affected Salmonella internalization. With an immersion time of 2 min, the temperature differential had no significant effect on Salmonella internalization (P = 0.2536). However, with an immersion time of 15 min, a significantly larger Salmonella population became internalized in tomatoes immersed in solutions with a -30°F (-16.7°C) temperature differential. Internalized S. enterica cells persisted in the core tissues during 14 days of storage. Strain type and storage duration significantly affected (P internalized Salmonella recovered, but storage temperatures of 55 to 70°F (12.8 to 21.1°C) did not (P > 0.05). These findings indicate the importance of preventing pathogen internalization during postharvest handling.

  19. Optimizing growth conditions for electroless deposition of Au films on Si(111) substrates

    Indian Academy of Sciences (India)

    Bhuvana; G U Kulkarni

    2006-10-01

    Electroless deposition of Au films on Si(111) substrates from fluorinated-aurate plating solutions has been carried out at varying concentrations, deposition durations as well as bath temperatures, and the resulting films were characterized by X-ray diffraction, optical profilometry, atomic force microscopy and scanning electron microscopy. Depositions carried out with dilute plating solutions (< 0.1 mM) at 28°C for 30 min produce epitaxial films exhibiting a prominent Au(111) peak in the diffraction patterns, while higher concentrations or temperatures, or longer durations yield polycrystalline films. In both epitaxial and polycrystalline growth regimes, the film thickness increases linearly with time, however, in the latter case, at a rate an order of magnitude higher. Interestingly, the surface roughness measured using atomic force microscopy shows a similar trend. On subjecting to annealing at 250°C, the roughness of the film decreases gradually. Addition of poly (vinylpyrrolidone) to the plating solution is shown to produce a X-ray amorphous film with nanoparticulates capped with the polymer as evidenced by the core-level photoelectron spectrum. Nanoindentation using AFM has shown the hardness of the films to be much higher (∼ 2.19 GPa) than the bulk value.

  20. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation.

    Science.gov (United States)

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3-6 different antioxidants at concentrations 5-60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects.

  1. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition.

    Science.gov (United States)

    Upadhyay, Sudhir K; Singh, Devendra P; Saikia, Ratul

    2009-11-01

    In this study, a total of 130 rhizobacteria was isolated from a saline infested zone of wheat rhizosphere, and screened for plant growth promoting (PGP) traits at higher salt (NaCl) concentrations (2, 4, 6, and 8%). The results revealed that 24 rhizobacterial isolates were tolerant at 8% NaCl. Although all the 24 salt tolerable isolates produced indole-3-acetic acid (IAA), while 10 isolates solubilized phosphorus, eight produced siderophore, and six produced gibberellin. However, only three isolates showed the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Diversity was analyzed through 16S rDNA-RFLP, and of these isolates with three tetra cutter restriction enzymes (HaeIII, AluI, and MspI), the representative cluster groups were identified by 16S rDNA sequencing. Bacillus and Bacillus-derived genera were dominant which showed PGP attributes at 8% NaCl concentration. Out of 24 isolates, nitrogen fixing ability (nif H gene) was detected in the two isolates, SU18 (Arthrobacter sp.) and SU48.

  2. Revisiting the angular momentum growth of protostructures evolved from non-Gaussian initial conditions

    CERN Document Server

    Fedeli, C

    2013-01-01

    I adopt a formalism previously developed by Catelan and Theuns (CT) in order to estimate the impact of primordial non-Gaussianity on the quasi-linear spin growth of cold dark matter protostructures. A variety of bispectrum shapes are considered, spanning the currently most popular early Universe models for the occurrence of non-Gaussian density fluctuations. In their original work, CT considered several other shapes, and suggested that only for one of those does the impact of non-Gaussianity seem to be perturbatively tractable. For that model, and on galactic scales, the next-to-linear non-Gaussian contribution to the angular momentum variance has an upper limit of $\\sim 10%$ with respect to the linear one. I find that all the new models considered in this work can also be seemingly described via perturbation theory. Considering current bounds on $f_\\mathrm{NL}$ for inflationary non-Gaussianity leads to the quasi-linear contribution being $\\sim 10-20%$ of the linear one. This result motivates the systematic s...

  3. Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Chung [Institute of Clinical Nutrition, Hungkuang University, 34, Chung-Chie Road, Sha Lu, Taichung 433 (China); Fan, Shin-Huei; Chiang, Char-Lin; Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402 (China)

    2008-03-15

    Cyanobacteria could use sugars as carbon source and reductant to produce hydrogen by nitrogenase. However, oxygen is also produced during photosynthesis and it is an inhibitor of the enzyme nitrogenase. Filamentous cyanobacterium Anabaena sp. CH{sub 3} could use sugars as substrate to produce molecular hydrogen anaerobically. The production activity was dependent on growth phases. It was found that the cells at sub-stage of late-log phase had better ability to produce hydrogen than at log phase. In such case, oxygen content was too low to be detected to inhibit hydrogen production. Among different kinds of sugar, fructose and glucose had the best performance for producing hydrogen. Hydrogen could be accumulated to 0.6 mmol (in 40 ml head space) in 100 h from 1000 ppm fructose. Increasing light intensities from 65 to 130{mu}molm{sup -2}s{sup -1} would enhance hydrogen production to 0.8 mmol. Under illumination of 130{mu}molm{sup -2}s{sup -1} and 2000 ppm fructose, 1.7 mmol of hydrogen could be accumulated. When fructose content was higher than 2000 ppm, cells could not produce more hydrogen at all. (author)

  4. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    Science.gov (United States)

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  5. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation

    Science.gov (United States)

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3–6 different antioxidants at concentrations 5–60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects. PMID:26236423

  6. [Optimization of expression conditions of an induction strategy for improving liver targeted interferon (IFN-CSP) production in E. coli].

    Science.gov (United States)

    Huang, Yanting; Lu, Xuemei; Wang, Jie; Jin, Xiaobao; Zhu, Jiayong

    2014-04-01

    Expression conditions of induction strategies for the cytoplasmic inclusion bodies (IBs) production of liver targeted interferon IFN-CSP by recombinant Escherichia coli (E. coli) BL21 (DE3) were optimized in shake-flask cultures in this study. The factors of the optimized protocol included in the present study were pH, inducer IPTG (isopropyl beta-D-thiogalactoside) concentration, culture growth temperature, incubation time and induction point. The effects of those factors were investigated by 'single variable at a time' method, aimed to analyze characterization of the recombinant strain. Orthogonal experimental design was further used to optimize the above critical factors for IFN-CSP production. According to the expression optimization result, it was confirmed that the main influence factors were cell density and induction temperature. The IFN-CSP gene expression optimized conditions were: pH value of the culture medium was 6.0, culture temperature 37 degrees C, adding IPTG to final concentration 0.4 mmol/L when the recombinant strain growth density OD600 achieved 0.8 and induction time 4 h. At this point, the IBs represented 74.3% of the total cellular protein. Compared with the non-optimized condition, IFN-CSP production obtained in optimized induction strategies were increased by approx. 1.2-fold. The optimized induction strategy yielded 688.8 mg/L of IFN-CSP, providing experimental data to study the biology activity and productive technology of IFN-CSP.

  7. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.

  8. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties.

    Science.gov (United States)

    Gonçalves, Rui F; Silva, Artur M S; Silva, Ana Margarida; Valentão, Patrícia; Ferreres, Federico; Gil-Izquierdo, Angel; Silva, João B; Santos, Delfim; Andrade, Paula B

    2013-12-15

    Colocasia esculenta (L.) Shott, commonly known as taro, is an essential food for millions of people. The leaves are consumed in sauces, purees, stews, and soups, being also used in wound healing treatment. Nowadays, the consumers' demand for bioactive compounds from the diet led to the development of new agricultural strategies for the production of health-promoting constituents in vegetables. In this work, two strategies (variety choice and irrigation conditions) were considered in the cultivation of C. esculenta. The effect on the phenolic composition of the leaves was evaluated. Furthermore, a correlation between the biological activity of the different varieties and their chemical composition was established. Qualitative and quantitative differences in the phenolic composition were observed between varieties; furthermore, the irrigation conditions also influenced the composition. C. esculenta varieties were able to scavenge several oxidant species and to inhibit hyaluronidase, but data suggest that metabolites other than phenolics are involved. The results show that cultivation strategies can effectively modulate the accumulation of these types of bioactive compounds. Furthermore C. esculenta wound healing potential can be attributed, at least in part, to the protection of the wound site against oxidative/nitrosative damage and prevention of hyaluronic acid degradation.

  9. Systemic Regulation of Soybean Nodulation by Acidic Growth Conditions1[OA

    Science.gov (United States)

    Lin, Meng-Han; Gresshoff, Peter M.; Ferguson, Brett J.

    2012-01-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils. PMID:23054568

  10. Effect of different growth conditions on biomass increase in kefir grains.

    Science.gov (United States)

    Guzel-Seydim, Z; Kok-Tas, T; Ertekin-Filiz, B; Seydim, A C

    2011-03-01

    Kefir is a functional dairy product and the effects of kefir consumption on health have been well documented. Kefir grains have naturally high numbers of lactic acid bacteria and yeasts and are used in manufacturing kefir. The biomass of kefir grains slowly increases after successive fermentations. The effects of adding whey protein isolate, modified whey protein (MWP, fat replacer; Carbery Inc., Cork, Ireland), or inulin to milk and different atmospheric conditions (ambient or 6% CO(2)) during fermentation on the increase in biomass of kefir grains were investigated. Reconstituted milks (10% milk powder) enriched with whey protein isolate (2%), MWP (2%), and inulin (2%) were inoculated with kefir grains and fermented in ambient and 6% CO(2) incubators at 25°C until a final pH of 4.6 was reached. Biomass increments of kefir grains were determined weekly over 30 d. Lactic acid bacteria and yeast contents of kefir grains were also determined. The highest biomass increase (392%) was found in kefir grains grown in milk supplemented with whey protein isolate under ambient atmospheric conditions. Application of CO(2) did not provide a significant supporting effect on the biomass of kefir grains. Addition of MWP significantly accelerated the formation of kefir grain biomass (223%). The use of whey protein isolate, MWP, or inulin in milk did not cause any adverse effects on the microbial flora of kefir grains. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. The effects of food and maternal conditions in fetal growth and size in wild reindeer

    Directory of Open Access Journals (Sweden)

    Terje Skogland

    1984-05-01

    Full Text Available Fetal growth rates and birth weights were studied in four wild reindeer areas in Southern Norway (Hardangervidda, Hallingskarvet, Knutshø, Forelhogna, representing high and low density populations, with a 5-fold difference in mean lichen winter-food availability. Fetal growth was depressed by 42% in the high-densitv Hardangervidda population, and mean birth weights were 3.7 vs. 6.2 kg, with a 10 days difference in mean birth dates. Fetal size was better correlated with maternal weight, than age. Maternal weights increased until 5 yrs. of age and then decreased in the high-density Hardangervidda population (but not so in the low density Knutshø-Forclhogna populations. 55% of the offspring died before weaning in the Hardangervidda herd, but no significant calf losses were found amont the large-sized does in the food-abundant areas.Effekter av ernæring og simlas kondisjon på vekst og størrelse av foster hos villrein.Abstract in Norwegian / Sammendrag: Fostervekst og fødselsvekter ble undersøkt i fire villreinområder i Sør-Norge (Hardangervidda, Hallingskarvet, Knutshø og Forelhogna som representerer høg- og lågtetthetsstammer, med en 5-foldig forskjell i gjennomsnittlig lavbeite-tilgang om vinteren. Fosterveksten ble nedsatt med 42% i høgtetthetsstammen på Hardangervidda og fødselsvektene var i gjennomsnitt 3,7 kg, mot 6,2 kg i det beste området, og med en 10 dagers forsinkelse i midlere fødselsdato. Fosterets størrelse var korrelert med morens vekt, som igjen var avhengig av hennes alder. Hos de minste simlene i det dårligste området økte vektene til 5-års alder, for deretter å avta for hvert gjenlevende år. Hos simlene i det beste området økte vektene til 10-års alder, og var da dobbelt så tunge som fra det dårligste området. 55% av avkommet døde før de var avvent med diing hos Hardangervidda-simlene, mens det ikke var noen statistisk målbar dødelighet hos kalvene i Knutshø-Forelhogna.Ravinnon vaikutus ja

  12. Survivability of Salmonella typhimurium L1388 and Salmonella enteritidis L1225 under stressful growth conditions

    Directory of Open Access Journals (Sweden)

    Ngwai YB

    2007-11-01

    Full Text Available In an earlier study with Salmonella typhimurium L1388 (ST and Salmonella enteritidis L1225 (SE isolated from diseased chickens, we found that SE formed more biofilm than ST on abiotic surfaces in a time-dependent manner. Since the ability of salmonellae to survive extreme environment is related to their virulence, the present study examined the survival of Salmonella typhimurium L1388 and Salmonella nteritidis L1225 under the usual stresses that salmonellae encounter during their life cycle. This is with a view to understanding the strains’ stress tolerance that could be used to explain their virulence. Incubation at 37oC for various time periods was done for: i stationary phase (SP cells at pH 2.6; ii log-phase (LP cells at pH 4.0; log-phase or stationary phase cells in broth containing iii hydrogen peroxide, iv sodium chloride and v ethanol; vi stationary phase cells in Hank’s balanced salt solution (single strength containing 10% human serum; and vii prolong stationary phase cells. Stationary phase cells were also incubated at 52oC for 15 min. Surviving cells at the various incubation times were counted on trypticase soy agar (TSA after appropriate dilution in saline and overnight incubation at 37oC. Growth iron-poor medium was determined by growing a single bacterial colony in Medium A with shaking at 37oC or 40oC for 24 h. Statistics was done by one-way analysis-of-variance (ANOVA at P = 0.05. Differences in the survival of ST and SE were insignificant (p>0.05 in acid pH at both pH 4.0 (p = 0.3783 and pH 2.6 (p = 0.4711; at high salinity for log-phase (p = 0.1416 and stationary phase (p = 0.1816 cells; in ethanol (p = 0.5984, human serum (p = 0.8139, prolonged stationary phase (p = 0.3506; and under heat (p = 0.5766. SE was significantly (p<0.05; p = 0.0031 more tolerant to oxidative-killing by hydrogen peroxide. Culturable growth of the ST and SE in an iron-poor medium A revealed insignificant differences at 37oC (p = 0.8381 but

  13. Correlation between Strawberry (Fragaria ananassa Duch. Productivity and Photosynthesis-related Parameters under Various Growth Conditions

    Directory of Open Access Journals (Sweden)

    Hyo Gil Choi

    2016-10-01

    Full Text Available In the present study, we investigated changes in chlorophyll fluorescence, photosynthetic parameters and fruit yields, as well as fruit phytochemical accumulation of strawberry (Fragaria ananassa Duch. that had been cultivated in a greenhouse under different combinations of light intensity and temperature. In plants grown with low light (LL photosystem II chlorophyll fluorescence was found to increase as compared with those grown under high light (HL. When strawberry plants were grown with temperature higher than 5◦C in addition to LL, they showed decrease in non-photochemical quenching (NPQ, photochemical quenching (qP, as well as chlorophyll fluorescence decrease ratio (RFd when compared with other combinations of light and temperature. Moreover, fruit yield of strawberry was closely correlated with chlorophyll fluorescence-related parameters such as NPQ, qP, and RFd, but not with the maximum efficiency of PS II (Fv/Fm. Although plant groups grown under different combinations of light and temperature showed almost comparable levels of photosynthesis rates (Pr when irradiated with low-intensity light, they displayed clear differences when measured with higher irradiances. Plants grown under HL with temperature above 10◦C showed the highest Pr, in contrast to the plants grown under LL with temperature above 5◦C. When the stomatal conductance and the transpiration rate were measured, plants of each treatment showed clear differences even when analyzed with lower irradiances. We also found that fruit production during winter season was more strongly influenced by growth temperature than light intensity. We suggest that fruit productivity of strawberry is closely associated with chlorophyll fluorescence and photosynthesis-related parameters during cultivation under different regimes of temperature and light.

  14. Growth, Nitrogen Uptake and Carbon Isotope Discrimination in Barley Genotypes Grown under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Kurdali Fawaz

    2012-08-01

    Full Text Available The effect of different salinity levels of irrigation water (ECw range 1-12 dS/m on dry matter yield, nitrogen uptake, fertilizer nitrogen use efficiency (%NUE, stomatal conductance and carbon isotope discrimination (Δ13C‰ in three barley genotypes originating from different geographic areas (Arabi.Abiad, Syria; Pk-30-136, Pakistan and WI-2291, Australia was investigated in a pot experiment. An increase in salinity resulted in a decrease in Δ13C in all the genotypes. Increasing salinity reduced leaf stomatal conductance which was less pronounced in WI-2291 comparing to other genotypes. At high salinity level, the reduction in Δ13C corresponded to a considerable decrease in the ratio (Ci/Ca of intercellular (Ci and atmospheric (Ca partial pressures of CO2 in all the genotypes indicating that such a decrease was mainly due to the stomatal closure. Moreover, since the reduction in dry matter yield in all the genotypes grown at 12 dS/m did not exceed 50% in comparison with their controls, the photosynthetic apparatus of all studied genotypes seemed to be quit tolerant to salinity. At the moderate salinity level (8 dS/m, the enhancement of leaf dry matter yield in the WI2291 genotype might have been due to positive nutritional effects of the salt as indicated by a significant increase in nitrogen uptake and NUE. Thus, the lower Ci/Ca ratio could result mainly from higher rates of photosynthetic capacity rather than stomatal closure. On the other hand, relationships between dry matter yield or NUE and Δ13C seemed to be depending on plant genotype, plant organ and salinity level. Based on growth, nutritional and Δ13C data, selection of barley genotypes for saline environments was affected by salinity level. Therefore, such a selection must be achieved for each salinity level under which the plants have been grown.

  15. ARBUSCULAR MYCORRHIZAL FUNGI INCREASED EARLY GROWTH OF GAHARU WOOD OF Aquilaria malaccencsis and A. crasna UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-07-01

    Full Text Available Gaharu wood stand has an important source of profits to the forest community in South and Southeast Asia tropical forest countries, but Aquilaria species have reduced in number and turn out to be endangered due to overexploitation.   Today,   the planting stocks of   Aquilaria species are not sufficient to sustain the yield of gaharu wood and promote forest conservation.  The objective of this study was to determine   the effect of   five arbuscular mycorrhizal (AM fungi: Entrophospora sp., Gigaspora decipiens, Glomus clarum, Glomus sp. ZEA, and Glomus sp. ACA, on the early growth of  Aquilaria malaccensis and A. crasna under greenhouse conditions. The seedlings of  Aquilaria spp. were inoculated with Entrophospora sp., Gi. decipiens, Glomus clarum, Glomus sp. ZEA, Glomus sp. ACA and uninoculated (control under greenhouse conditions. Then, percentage AM colonization, plant growth, survival rate and nitrogen (N and phosphorus (P content and mycorrhizal dependence (MD were measured. The percentage AM colonization of A. malaccensis and A. crasna ranged from 83 to 97% and from 63 to 78%, respectively. Colonization by five AM fungi increased plant height, diameter, and shoot and root dry weights. N and P content of  the seedlings were also increased by AM colonization. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than those in the control seedlings. The MD of Aquilaria species was higher than 55 %. The results suggested that AM fungi can be inoculated`to Aquilaria species under nursery conditions to obtain vigorous seedlings, and the field experiment is underway to clarify the role of AM fungi under field conditions.

  16. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed E.

    2017-07-13

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.

  17. Isolation of cyanobacterial mutants exhibiting growth defects under microoxic conditions by transposon tagging mutagenesis of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Terauchi, Kazuki; Sobue, Riho; Furutani, Yuho; Aoki, Rina; Fujita, Yuichi

    2017-05-12

    Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis by extracting electrons from water, with the generation of oxygen as a byproduct. Cyanobacteria use oxygen not only for respiration to produce energy in the dark but also for biosynthesis of various metabolites, such as heme and chlorophyll. Oxygen levels dynamically fluctuate in the field environments, from hyperoxic at daytime to almost anaerobic at night. Thus, adaptation to anaerobiosis should be important for cyanobacteria to survive in low-oxygen and anaerobic environments. However, little is known about the molecular mechanisms of cyanobacterial anaerobiosis because cyanobacteria have been regarded as aerobic organisms. As a first step to elucidate cyanobacterial adaptation mechanisms to low-oxygen environments, we isolated five mutants, T-1-T-5, exhibiting growth defects under microoxic conditions. The mutants were obtained from a transposon-tagged mutant library of the cyanobacterium Synechocystis sp. PCC 6803, which was produced by in vitro transposon tagging of cyanobacterial genomic DNA. Southern blot analysis indicated that a kanamycin resistance gene was inserted in the genome as a single copy. We identified the chromosomal transposon-tagged locus in T-5. Two open reading frames (sll0577 and sll0578) were partially deleted by the insertion of the kanamycin resistance gene in T-5. A reverse transcription polymerase chain reaction suggested that these co-transcribed genes are constitutively expressed under both aerobic and microoxic conditions. Then, we isolated two mutants in which one of the two genes was individually disrupted. Only the mutants partially lacking an intact sll0578 gene showed growth defects under microoxic conditions, whereas it grew normally under aerobic conditions. sll0578 is annotated as purK encoding N(5)-carboxy-aminoimidazole ribonucleotide synthetase involved in purine metabolism. This result implies the unexpected physiological importance of Pur

  18. The Effect of Body Condition Score in Karacabey Merino at Lambing on the Lamb Growth

    Directory of Open Access Journals (Sweden)

    E. Koycu

    2008-01-01

    Full Text Available In this study the effect of the Body Condition Score (BCS at lambing on birth weight, weaning weightand average daily gain until weaning was investigated. At the study, 317 ewes and their 425 lambs wereused. BCS of ewes was taken just before lambing and made three BCS groups as ≤2, 3 and 4 ≥ respectively.The differences of the groups of lambs birth weight according to BCS at lambing were significant(p<0.05. Weaning weight and average daily gain from birth to weaning was similar for ≤2 and 3 BCSgroups. Although were differenced from BCS ≥4 group (p<0.05.As a result, in addition to BCS age and birth type were significantly effected the birth weight, weaningweight and average daily gain from birth to weaning (p<0.05.

  19. Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality

    DEFF Research Database (Denmark)

    Krüger, E.; Josuttis, M.; Nestby, R.

    2012-01-01

    The site effect of five locations from north (Stjørdal, Norway, 63°36'N) to south (Ancona, Italy, 43°31'N) was evaluated in strawberry regarding yield performance, fruit quality, length of fruit developing time from anthesis to harvest start and length of the harvest season. Cv. Elsanta was grown...... at all sites while cv. Korona was cultivated in north and central Europe and cv. Clery in central and south Europe. Yield was more affected by seasonal and growing conditions than by latitude. Anthesis was delayed as influenced by cultivar up to 58 days from south to north and was nearly maintained until...... harvest start. Duration of fruit development was negatively related to daily mean temperature and increased with higher latitude. 29–34 days were required from anthesis to harvest start for cv. Elsanta, 29–36 for cv. Korona and 27–38 for cv. Clery. Corresponding GDD values (growing degree days; 3°C base...

  20. Testicular growth and comb and wattles development in three Italian chicken genotypes reared under freerange conditions

    Directory of Open Access Journals (Sweden)

    Chiara Rizzi

    2015-06-01

    Full Text Available Male chickens belonging to three Italian purebreds – Ermellinata di Rovigo (ER, Robusta lionata (RL and Robusta maculata (RM – were studied. All the birds were reared under the same rearing conditions (from May until autumn. Chickens were reared under infra-red lamps from birth until 4 weeks of age with a 24L:0D photoperiod. Then they were kept outdoor: the photoperiod changed according to the season (from 16L:8D to 12L:12D. At 138 and 168 days of age 20 birds/breed were weighed and then slaughtered. Testicular samples were collected, after evisceration, processed and embedded in paraffine wax. Sections were stained for morphological observations, observed with light microscope, and then classified according to the testis maturation stage. Ermellinata di Rovigo chickens showed the lowest (P<0.01 body weight and the highest (P<0.01 testes weight; testes maturity was higher (P<0.01 in ER than in RL, whereas RM was intermediate. For each genotype testes weight and testes maturity did not significantly differ with aging. Correlations between testes weight and body, comb, and wattles weight, according to the breed, were calculated at 168 days of age. For ER no significant correlation was found, whereas RL showed a significant (P<0.01 positive relationship between testes weight and body weight, and sexual secondary characters. Robusta maculata showed a significant correlation between testes weight and comb (P<0.01 and wattles weight (P<0.10. Our results suggest that under the studied environmental conditions ER showed the highest testes development according to its more precocious achievement of adult body weight, whereas RL was the least precocious purebred.

  1. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould.

    Science.gov (United States)

    Nevarez, Laurent; Vasseur, Valérie; Debaets, Stella; Barbier, Georges

    2010-01-01

    Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.

  2. Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions.

    Science.gov (United States)

    Prohl, C; Wackwitz, B; Vlad, D; Unden, G

    1998-07-01

    The operation of the citric acid cycle of Escherichia coli during nitrate respiration (anoxic conditions) was studied by measuring end products and enzyme activities. Excretion of products other than CO2, such as acetate or ethanol, was taken as an indication for a non-functional cycle. From glycerol, approximately 0.3 mol acetate was produced; the residual portion was completely oxidized, indicating the presence of a partially active citric acid cycle. In an arcA mutant devoid of the transcriptional regulator ArcA, glycerol was completely oxidized with nitrate as an electron acceptor, demonstrating derepression and function of the complete pathway. Glucose, on the other hand, was excreted mostly as acetate by the wild-type and by the arcA mutant. During growth on glucose, but not on glycerol, activities of succinate dehydrogenase and of 2-oxoglutarate dehydrogenase were missing nearly completely. Thus, the previously described strong repression of the citric acid cycle during nitrate respiration occurs only during growth on glucose and is the effect of anaerobic and, more important, of glucose repression. In Pseudomonas fluorescens (but not Pseudomonas stutzeri), a similar decrease of citric acid cycle function during anaerobic growth with nitrate was found, indicating a broad distribution of this regulatory principle.

  3. Variation among poplar clones for growth and crown traits under field conditions at two sites of North-western India

    Institute of Scientific and Technical Information of China (English)

    G.P.S.Dhillon; Avtar Singh; D.S.Sidhu; H.S.Brar

    2013-01-01

    We evaluated the growth and crown traits of 36 poplar clones at two distinct agro-climatic regions of Punjab (Ludhiana and Bathinda)in northwestern India,following randomized block design with three replications and plot size of four trees.Significant differences among clones (p<0.001) were observed for diameter at breast height (DBH),tree height,volume,crown width and number of branches under both the site conditions.Clones ‘G-3',‘25-N' and ‘41-N' at Ludhiana and ‘G-3',‘RD-01' and ‘S7C8' at Bathinda were found to be superior for volume production.All growth and crown traits registered significantly higher values at Ludhiana in comparison to those at Bathinda.Clone × site interaction was also significant (p<0.001).For volume,clones ‘L-62/84',‘113520',‘25-N' and ‘S4C2' witnessed huge fluctuations in ranking between sites.The correlations between growth traits were positive and highly significant (p<0.001) at both sites.The clonal mean heritability was moderate for DBH and volume both at Ludhiana (0.61-0.66) and Bathinda (0.61-0.62).Across sites,the genetic advance was the highest for volume (49.76%) and the lowest (6.50%) in case of height.

  4. Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions

    Science.gov (United States)

    Safari, Nasrin; Iranbakhsh, Alireza; Ardebili, Zahra Oraghi

    2017-05-01

    With the aim of evaluating the possible impacts of cold plasma on the structure and growth pattern of Capsicum annuum, the current study was carried out. The seeds were exposed to an argon-derived plasma (0.84 W cm-2 surface power densities) for 0, 1 or 2 minutes. Plasma-treated seeds were grown in the Murashige and Skoog (MS) medium or MS medium supplemented with BA and IAA. The presence of purple stems was recorded in plasma-treated plants grown in the medium supplemented with hormones. The recorded morphological differences were dependent on the exposure time of plasma treatments and/or the presence of hormones in the culture media. Plasma treatment of 1 minute had an improving effect on the shoot and root lengths as well as total leaf area, whereas plasma treatment of 2 minutes had an adverse effect. In contrast to the 1 minute treatment, plasma treatment of 2 minutes significantly impaired growth and hence reduced the total biomass. Alterations in stem diameter and differences in tissue patterns (especially in the vascular system) occurred, and were mainly dependent on the plasma exposure time and/or the presence of hormones. This is a first report on the effects of cold plasma on plant growth in in vitro conditions.

  5. Effect of spent bleaching earth based bio organic fertilizer on growth, yield and quality of eggplants under field condition

    Science.gov (United States)

    Cheong, K. Y.; Loh, S. K.; Salimon, J.

    2013-11-01

    Spent bleaching earth (SBE) is a solid waste generated from the bleaching process in palm oil industry. This solid waste is currently disposed directly in landfills without treatment, causing severe water and air pollution. Recently, dumping of SBE in landfills or public disposal sites has been prohibited in most countries. Meanwhile, high costs associated with the large area of land needed for storage of the residue has lead to the interest in regenerate SBE. Thus, a recent novel approach has been carried out on the utilization of SBE in agriculture as an alternative method for disposal. In this study, a field experiment was conducted at an experimental plot in Plant House National University Malaysia to evaluate the effect of SBE on the growth and quality of eggplant. Growth and quality parameters of eggplant including total fruit yield, total biomass, macronutrients concentration of leaf were studied through close monitoring and assessment. Field trials conducted showed that SBE is effective in promoting eggplant growth and nutrient uptake compared to the control treatment under field conditions. Therefore, with the proper and effective ways in handling SBE through conversion of SBE into beneficial bio organic fertilizer, this material which is a waste in the past will become an advantage in agriculture as a substitute for commercial fertilizers.

  6. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  7. Arbuscular Mycorrhizal Fungi and Biochar Improved Early Growth of Neem (Melia azedarach Linn. Seedling Under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2013-08-01

    Full Text Available The objective of this research was to determine the effect of biochar on the seedling quality index and growth of neem tree seedlings and arbuscular mycorrhizal fungi (AMF development  grown on ultisol  soil medium.  Two factors in completely randomised experimental design was conducted under green house conditions and Duncan Multiple Range Test was used to analyse the data. The results showed that neem seedling quality index was improved by interaction of AMF fungi and biochar amandment. The growth of neem seedling was significantly increased by interactions of arbuscular mycorrhizal fungi and biochar.  The combination  treatment of Glomus etunicatum and biochar 10% gave best results of height and diameter, and significantly increased by 712% and 303% respectively, as compared to control plant, while the combination treatment of Gigaspora margarita and biochar 10% gave the best result of shoot dry weight, and root dry weight and significantly increase by 4,547% and 6,957% as compared to control plant.  The mycorrhizal root colonization was increased with increasing biochar added, but decreases when 15% of biochar was applied.  N, P, and K uptake of 12 weeks neem seedling old was higher and significantly increased as compared to control plant.Keywords: AMF development, nutrient uptake , plant growth , seedling quality index, biochar  DOI: 10.7226/jtfm.19.2.103

  8. The human growth and the healthy environment as a condition of balanced development for the course of human.

    Directory of Open Access Journals (Sweden)

    I. Koukoumpliakos

    2008-01-01

    Full Text Available The rising standard of living has evoked an important burden in the natural environment leading to an immense deterioration of nature. The pollution of the atmosphere and seas, the industrial waste, the climatic changes, the chaotic built-up extension threaten the health of all of us. The responsibility for the pollution of the environment is allocated in everybody. The State is accountable not only for the political planning and the policy that practises, but also for the frame it shapes for the citizens to follow. The improvement of the quality of environment must be combined with the economic progress and growth. The intensity of environmental problems worries the International Community, while the saving and growth of new green forms of energy appear as imperative need. We find already ourselves in a progressive but continuous growth, which has the conditions to develop in the future with spectacular rhythm.The methodology of present work is recommended for: a bibliographic research, mainly Greek, b comparison of the facts that are exported from research, connecting them with the given facts. This comparison leads to the necessary coexistence of a healthy environment and a viable growth.In the results of the research the essential conditions of coexistence are presented between these two. Thus we realise that: a the configuration of an evener environmental conscience is required via the education which would guarantee the balanced and sustainable growth, b the change of perception of people as lords of nature is considered necessary and its replacement by the awareness that the nature does not constitute an inexhaustible resource.With that in mind we conclude that: a the research is required to lead to alternative sources of energy such as the creation of Aeolian parks. It is estimated that more investments in other types of renewable sources of energy such as geothermal and hydroelectric can constitute also advisable solutions. The use of

  9. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) (Spain); Ernestova, M.; Zamboch, M. [Nuclear Research Inst. (NRI) (Czech Republic); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (PSI) (Switzerland); Roth, A.; Devrient, B. [Framatome ANP GmbH (F ANP) (Germany); Ehrnsten, U. [Technical Research Centre of Finland (VTT) (Finland)

    2004-07-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  10. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions.

    Science.gov (United States)

    Li, Xuemei; Bu, Ning; Li, Yueying; Ma, Lianju; Xin, Shigang; Zhang, Lihong

    2012-04-30

    An endophytic fungus was tested in rice (Oryza sativa L.) exposed to four levels of lead (Pb) stress (0, 50, 100 and 200 μM) to assess effects on plant growth, photosynthesis and antioxidant enzyme activity. Under Pb stress conditions, endophyte-infected seedlings had greater shoot length but lower root length compared to non-infected controls, and endophyte-infected seedlings had greater dry weight in the 50 and 100 μM Pb treatments. Under Pb stress conditions, chlorophyll and carotenoid levels were significantly higher in the endophyte-infected seedlings. Net photosynthetic rate, transpiration rate and water use efficiency were significantly higher in endophyte-infected seedlings in the 50 and 100 μM Pb treatments. In addition, chlorophyll fluorescence parameters Fv/Fm and Fv/Fo were higher in the infected seedlings compared to the non-infected seedlings under Pb stress. Malondialdehyde accumulation was induced by Pb stress, and it was present in higher concentration in non-infected seedlings under higher concentrations of Pb (100 and 200 μM). Antioxidant activity was either higher or unchanged in the infected seedlings due to responses to the different Pb concentrations. These results suggest that the endophytic fungus improved rice growth under moderate Pb levels by enhancing photosynthesis and antioxidant activity relative to non-infected rice.

  11. Ecological understanding for fishery management: Condition and growth of anchovy late larvae during different seasons in the Northwestern Mediterranean

    Science.gov (United States)

    Costalago, D.; Tecchio, S.; Palomera, I.; Álvarez-Calleja, I.; Ospina-Álvarez, A.; Raicevich, S.

    2011-07-01

    The fishery of the European anchovy Engraulis encrasicolus in the Mediterranean needs several ecological approaches to be properly managed. As such, several surveys were carried out to study the ecology of larvae and juveniles of this species, which reproduces during the warmest period of the year (May through September) in the Gulf of Lions. In particular, we studied the late larvae (15 mm total length until metamorphosis), especially as other authors have focused on larvae below that size. Unexpectedly, we also collected anchovy late larvae during the December 2007 survey, whose range in size corresponded to a later spawning period than previously reported. Differences in the nutritional condition of these larvae were assessed by comparing indices of lipid composition and estimating growth rates from otolith measurements to provide information on the probability of survival between the two groups. The analysis of fatty acids, used as tracers of trophic relationships, indicates that these larvae fed mainly on zooplankton. Nutritional conditions of summer and late autumn larvae were very similar. In contrast, growth rates were higher for August larvae, probably due to the different temperatures in the two seasons. Our results are especially relevant in an ecological context where the increasing mean water temperatures in the Western Mediterranean could favor the extension of the anchovy spawning period up to late-Autumn months.

  12. Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae.

    Science.gov (United States)

    Geffard, A; Geffard, O; Amiard, J C; His, E; Amiard-Triquet, C

    2007-07-01

    The bioavailability of Cd, Cu, Zn, and Pb from two metal-contaminated sediments (Bidassoa and Dunkerque) was studied using Crassostrea gigas larvae exposed to sediment elutriates. The metal contents within the sediments, the larvae and larval growth, the condition index, and the induction of metallothionein in the larvae were measured. The larval growth and condition index were only affected after exposure to the highest elutriates concentration (5 to 25%) from the most contaminated sediment (Dunkerque). Bioaccumulation of all metals was observed in larvae exposed to Dunkerque elutriatre; only Cu bioaccumulation was observed in the Bidassoa elutriate. The results from larvae exposed to both sediment elutriates show a strong correlation between bioaccumulated metal considered individually or in combination and the metallothionein level in larvae presenting no detrimental effect. On the other hand, in the case of larvae exposed to the highest Dunkerque elutriate concentration and showing the highest metal body burden, we observed a drop in the metallothionein level. These results indicate that metallothionein is a more sensitive indicator of heavy metal pollution than physiological endpoints taken into account in bioassays and could be proposed as an early biomarker of metal exposure in larvae. However, care must be taken with "fault control" due to the toxicological effect on larvae metabolism in the case of substantial contaminant exposure.

  13. Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains.

    Science.gov (United States)

    Chiang, Ming-Lun; Chou, Cheng-Chun; Chen, Hsi-Chia; Tseng, Yu-Ting; Chen, Ming-Ju

    2012-08-01

    Vibrio parahaemolyticus strain 690 was isolated from gastroenteritis patients. Its thermal and ethanol stress responses have been reported in our previous studies. In this study, we further investigated the effects of various acid adaptation conditions including pH (5.0-6.0) and time (30-90 min) on the acid tolerance in different growth phases of V. parahaemolyticus 690. Additionally, the adaptive acid tolerance among different V. parahaemolyticus strains was compared. Results indicated that the acid tolerance of V. parahaemolyticus 690 was significantly increased after acid adaptation at pH 5.5 and 6.0 for 30-90 min. Among the various acid adaptation conditions examined, V. parahaemolyticus 690 acid-adapted at pH 5.5 for 90 min exhibited the highest acid tolerance. The acid adaptation also influenced the acid tolerance of V. parahaemolyticus 690 in different growth phases with late-exponential phase demonstrating the greatest acid tolerance response (ATR) than other phases. Additionally, the results also showed that the inductio