WorldWideScience

Sample records for nonobligate bacterial predators

  1. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  2. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    Full Text Available Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species, and reduced stability (increased beta-diversity. Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM to a maximum mean relative abundance of 48.75% (±0.14 SEM in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by

  3. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA).

    Science.gov (United States)

    Phillips, Kristen; Zaidan, Frederic; Elizondo, Omar R; Lowe, Kristine L

    2012-02-02

    La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity

  4. Predators

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.

  5. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  6. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  7. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  8. Predator Politics

    Directory of Open Access Journals (Sweden)

    Mary Louisa Cappelli

    2017-01-01

    Full Text Available Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer urges readers to see coyotes as crucial members of the natural community whose predation is essential for the maintenance of biodiversity and ecological stability. Their cultural production provides a human story of ecocritical engagement for understanding the cascading effects of removing top predators from their ecosystems. By envisioning biocentric possibilities within place-based and scientific contexts, Edward Abbey and Barbara Kingsolver share a common theme of political ecology: political processes shape ecological conditions. A close reading of Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer provides a literary entryway to connect research, arguments, and discourse across disciplines tasking readers to engage in political discussions of environmental sustainability and to consider viable solutions to preserve the ecological diversity of our predator populations and ecosystems.

  9. Pasta Predation.

    Science.gov (United States)

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  10. Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: The simulation model 'BACWAVE-WEB'

    NARCIS (Netherlands)

    Zelenev, V.V.; Bruggen, van A.H.C.; Leffelaar, P.A.; Bloem, J.; Semenov, A.M.

    2006-01-01

    Recently, regular oscillations in bacterial populations and growth rates of bacterial feeding nematodes (BFN) were shown to occur after addition of fresh organic matter to soil. This paper presents a model developed to investigate potential mechanisms of those oscillations, and whether they were

  11. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  12. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  13. Species diversity modulates predation

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Anholt, B.R.

    2007-01-01

    Predation occurs in a context defined by both prey and non-prey species. At present it is largely unknown how species diversity in general, and species that are not included in a predator's diet in particular, modify predator–prey interactions.Therefore we studied how both the density and diversity

  14. Predator avoidance in extremophile fish.

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-02-06

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

  15. Predator Avoidance in Extremophile Fish

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337

  16. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators.

    Science.gov (United States)

    Arnold, Jason W; Koudelka, Gerald B

    2014-02-01

    Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  19. Bat Predation by Spiders

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  20. Bat predation by spiders.

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  1. Killing the killer: predation between protists and predatory bacteria.

    Science.gov (United States)

    Johnke, Julia; Boenigk, Jens; Harms, Hauke; Chatzinotas, Antonis

    2017-05-01

    Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  3. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  4. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  5. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  6. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities

    DEFF Research Database (Denmark)

    Viitasalo, M; Kiørboe, T; Flinkman, J.

    1998-01-01

    We investigated the vulnerability of 2 copepod species (Eurytemora affinis and Temora longicornis) to predation by predators with different foraging modes, three-spined stickleback Gasterosteus aculeatus juveniles and mysid shrimps Neomysis integer. Copepods were videofilmed escaping from predators...

  7. Are lemmings prey or predators?

    Science.gov (United States)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  8. Gut microbiomes of mobile predators vary with landscape context and species identity

    OpenAIRE

    Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D.; Gratton, Claudio

    2017-01-01

    Abstract Landscape context affects predator–prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we stud...

  9. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history.

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2014-10-01

    The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.

  10. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  11. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  12. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  13. Predators and the public trust.

    Science.gov (United States)

    Treves, Adrian; Chapron, Guillaume; López-Bao, Jose V; Shoemaker, Chase; Goeckner, Apollonia R; Bruskotter, Jeremy T

    2017-02-01

    Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting

  14. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    Science.gov (United States)

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Smelling out predators is innate in birds

    NARCIS (Netherlands)

    Amo, L.; Visser, M.E.; Van Oers, K.

    2011-01-01

    The role of olfaction for predation risk assessment remains barely explored in birds, although predator chemical cues could be useful in predator detection under low visibility conditions for many bird species. We examine whether Great Tits Parus major are able to use the odour of mustelids to

  16. Role of intraguild predation in aphidophagous guilds

    Czech Academy of Sciences Publication Activity Database

    Hemptinne, J. L.; Magro, A.; Saladin, C.; Dixon, Anthony F. G.

    2012-01-01

    Roč. 136, č. 3 (2012), s. 161-170 ISSN 0931-2048 Institutional support: RVO:67179843 Keywords : aphidophagous guilds * cost of intraguild predation * interspecific predation * intraguild predation * ladybird beetles * omnivory Subject RIV: EH - Ecology, Behaviour Impact factor: 1.560, year: 2012

  17. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    Science.gov (United States)

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  18. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  19. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  20. Influence of predator density on nonindependent effects of multiple predator species.

    Science.gov (United States)

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  1. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  2. Patch choice under predation hazard

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Vrkoč, Ivo

    2000-01-01

    Roč. 58, č. 4 (2000), s. 329-340 ISSN 0040-5809 R&D Projects: GA ČR GA201/98/0227; GA MŠk VS96086 Institutional research plan: CEZ:AV0Z5007907; CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : adaptive behaviour * heterogeneous environment * predation Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2000

  3. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  4. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  5. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  6. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Lauri Mikonranta

    Full Text Available Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.

  7. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  8. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  9. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  10. Neuroendocrine changes upon exposure to predator odors.

    Science.gov (United States)

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  12. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff

    DEFF Research Database (Denmark)

    Steiner, Uli; Van Buskirk, Josh

    2009-01-01

    , consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous...... and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes....

  13. A test of the predator satiation hypothesis, acorn predator size, and acorn preference

    Science.gov (United States)

    C.H. Greenberg; S.J. Zarnoch

    2018-01-01

    Mast seeding is hypothesized to satiate seed predators with heavy production and reduce populations with crop failure, thereby increasing seed survival. Preference for red or white oak acorns could influence recruitment among oak species. We tested the predator satiation hypothesis, acorn preference, and predator size by concurrently...

  14. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  15. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  16. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  17. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  18. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  19. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  20. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  1. Two-prey one-predator model

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2009-01-01

    In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. In the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help.

  2. The functional response of a generalist predator.

    Directory of Open Access Journals (Sweden)

    Sophie Smout

    Full Text Available BACKGROUND: Predators can have profound impacts on the dynamics of their prey that depend on how predator consumption is affected by prey density (the predator's functional response. Consumption by a generalist predator is expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR, but most studies of generalists have focussed on their functional response to only one prey species. METHODOLOGY AND PRINCIPAL FINDINGS: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen harrier Circus cyaneus feeding on three different prey species. We use a simple graphical approach to show that ignoring the effects of alternative prey can give a misleading impression of the predator's effect on the prey of interest. For example, in our system, a "predator pit" for one prey species only occurs when the availability of other prey species is low. CONCLUSIONS AND SIGNIFICANCE: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates estimates of uncertainty in the model's predictions. These features of robustness and data efficiency make our approach ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

  3. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    erminea predation and stabilising predation from the generalist predators, in Zackenbergdalen mainly the arctic fox Alopex lagopus. In Zackenbergdalen, however, the coupling between the specialist stoat and the lemming population is relatively weak. During summer, the predation pressure is high......The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators...

  4. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  5. Are grazer-induced adaptations of bacterial abundance and morphology timedependent?

    Directory of Open Access Journals (Sweden)

    Gianluca CORNO

    2006-02-01

    Full Text Available Predation by protists is a well known force that shapes bacterial communities and can lead to filamentous forms and aggregations of large cell clusters. These classic resistance strategies were observed as a direct consequence of predation by heteroand mixotrophic flagellates (the main group of bacteria predators in water on natural assemblages of bacteria and on single plastic strains. Recently it was shown that a long time exposure (about 30 days of a bacterial strain, characterized by high degree of phenotypic plasticity, to flagellates, without direct predation, enhanced the formation of resistant forms (filaments in a continuous culture system. Target prey populations and predators were separated by a dialysis membrane. Moreover, the positive impact on bacterial growth, due to the chemical excretes released by flagellates was demonstrated for exudates of photosynthetic activity. The same positive impact may also be seen in response to exudates related to grazing. In this study, two short-term experiments (<100 hours were conducted to test for modifications in the morphology and productivity of three different bacterial strains that were induced by the presence of active predators, but without direct predation. The growth and morphological distribution of each of the selected strains was tested separately using batch cultures. Cultures were either enriched with carbon in the presence or absence of flagellate predators, or included pre-filtered exudates from flagellate activity. In a second experiment, bottles were provided with a central dialysis bag that contained active flagellates, and were inoculated with the selected bacterial strains. In this way, bacteria were exposed to the presence of predators without direct predation. The bacterial strains used in this experience were characterised by a high degree of phenotypic plasticity and exhibited different successful strategies of resistance against grazing. The flagellates selected as

  6. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  7. Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae).

    Science.gov (United States)

    Schütte, Conny; Gols, Rieta; Kleespies, Regina G; Poitevin, Olivier; Dicke, Marcel

    2008-06-01

    Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of a laboratory population show a set of characteristic symptoms, designated as non-responding (NR) syndrome. Mature predators shrink, cease oviposition and die. They show a lower degree of attraction to herbivore-induced plant volatiles and a greater tendency to leave prey patches carrying ample prey. Moreover, predators may carry excretory crystals in the legs, may cease prey consumption and have a low excretion rate. Here, we satisfy Koch's postulates for a strain of Acaricomes phytoseiuli (DSM 14247) that was isolated from symptomatic female P. persimilis of the NR-population. Adult female P. persimilis were either exposed to a bacterial inoculum suspension (treatment) or to sterile distilled water (control) for a period of 3 days. Control and treated predators were examined for the occurrence of six symptoms characteristic for the NR-syndrome and the presence of A. phytoseiuli after inoculation. The latter was done by re-isolation of A. phytoseiuli from individual predators and predator feces placed on nutrient agar, by PCR-based identification and by histopathological studies of individual predators. The NR-syndrome was clearly induced in those predators that had been exposed to the bacterial inoculum (incubation time=2-5 days, fraction shrunken females=80%), whereas predators exposed to water did not show the NR-syndrome. A. phytoseiuli was never isolated from control predators whereas it could be re-isolated from 60% of the treated predators (N=37) and from feces of 41% of treated predators (N=17). Only one day after exposure A. phytoseiuli could not be re-isolated from treated predators and their feces. Light and electron microscope studies of predators exposed to A. phytoseiuli revealed striking bacterial accumulations in the lumen of the alimentary tract together with extreme degeneration of its epithelium. In addition, bacterial foci also occurred in the fat body. These phenomena

  8. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  9. Predation on rose galls: parasitoids and predators determine gall size through directional selection.

    Directory of Open Access Journals (Sweden)

    Zoltán László

    Full Text Available Both predators and parasitoids can have significant effects on species' life history traits, such as longevity or clutch size. In the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate predation on galls of Diplolepis rosae on rose (Rosa canina shrubs. We measured predation frequency, predation incidence, and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the optimal size of D. rosae galls.

  10. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  11. The increased risk of predation enhances cooperation

    Science.gov (United States)

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  12. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  14. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  15. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  16. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  17. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  18. A predator-prey system with stage-structure for predator and nonlocal delay

    DEFF Research Database (Denmark)

    Lin, Z.G.; Pedersen, Michael; Zhang, Lai

    2010-01-01

    This paper deals with the behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition, which describes a prey-predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional...... and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results....

  19. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    OpenAIRE

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius ...

  20. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  1. Apex Predators Program Age and Growth Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected vertebral centra from sportfishing tournaments, cruises, commercial fishermen and strandings in the Northeast US since...

  2. Apex Predators Program Sportfishing Tournament Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected shark sportfishing tournamant data from the Northeast US since the 1960's. These tournaments offer a unique opportunity...

  3. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  4. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  5. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  6. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation...... University and in two of the fields used for estimating seed predation. Recording of predators had therefore limited overlap with seed predation assays but was expected to give important information on key seed predators in the region. The mean seed removal rate was 17% in organic fields compared with 10...... edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...

  7. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  9. Conservation implications when the nest predators are known

    Science.gov (United States)

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  10. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  11. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    Science.gov (United States)

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  12. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff.

    Directory of Open Access Journals (Sweden)

    Ulrich K Steiner

    2009-07-01

    Full Text Available Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption, consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes.

  13. Interactions of bullfrog tadpole predators and an insecticide: Predation release and facilitation

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.

    2003-01-01

    The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.

  14. Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?

    Science.gov (United States)

    David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier

    1999-01-01

    Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...

  15. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  16. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  17. Phage or foe: an insight into the impact of viral predation on microbial communities.

    Science.gov (United States)

    Fernández, Lucía; Rodríguez, Ana; García, Pilar

    2018-05-01

    Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.

  18. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  19. Optimal diving under the risk of predation.

    Science.gov (United States)

    Heithaus, Michael R; Frid, Alejandro

    2003-07-07

    Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.

  20. Invasion and predation in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS

    2011-10-01

    Full Text Available This article reviews biological invasions in which predation (or its absence plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish would preclude the development of a fishery for them [Current Zoology 57 (5: 613–624, 2011].

  1. Evidence of leopard predation on bonobos (Pan paniscus).

    Science.gov (United States)

    D'Amour, Danielle E; Hohmann, Gottfried; Fruth, Barbara

    2006-01-01

    Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus). Copyright 2006 S. Karger AG, Basel.

  2. Predator control promotes invasive dominated ecological states.

    Science.gov (United States)

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  3. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  4. Predator diversity effects in an exotic freshwater food web.

    Science.gov (United States)

    Naddafi, Rahmat; Rudstam, Lars G

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  5. Predator diversity effects in an exotic freshwater food web.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs. Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  6. Predation rates, timing, and predator composition for Scoters (Melanitta spp.) in marine habitats

    Science.gov (United States)

    Anderson, Eric J.; Esler, Daniel N.; Sean, Boyd W.; Evenson, Joseph; Nysewander, David R.; Ward, David H.; Dickson, Rian D.; Uher-Koch, Brian D.; Vanstratt, C.S.; Hupp, Jerry

    2012-01-01

    Studies of declining populations of sea ducks have focused mainly on bottom-up processes with little emphasis on the role of predation. We identified 11 potential predators of White-winged Scoters (Melanitta fusca (L., 1758)) and Surf Scoters (Melanitta perspicillata (L., 1758)) in North American marine habitats. However, of 596 Scoters marked with VHF transmitters along the Pacific coast, mortalities were recovered in association with just two identifiable categories of predators: in southeast Alaska recoveries occurred mainly near mustelid feeding areas, while those in southern British Columbia and Washington occurred mainly near feeding areas of Bald Eagles (Haliaeetus leucocephalus (L., 1766)). Determining whether marked Scoters had been depredated versus scavenged was often not possible, but mortalities occurred more frequently during winter than during wing molt (13.1% versus 0.7% of both species combined, excluding Scoters that died within a postrelease adjustment period). In two sites heavily used by Scoters, diurnal observations revealed no predation attempts and low rates of predator disturbances that altered Scoter behavior (≤ 0.22/h). These and other results suggest that predation by Bald Eagles occurs mainly at sites and times where densities of Scoters are low, while most predation by mustelids probably occurs when Scoters are energetically compromised.

  7. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  8. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  9. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  10. Predator-prey encounters in turbulent waters

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2002-01-01

    With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...

  11. Predation and Mergers: Is Merger Law Counterproductive?

    OpenAIRE

    Persson, Lars

    1999-01-01

    This Paper shows that predation might help firms overcome the free riding problem of mergers by changing the acquisition situation in the buyer's favour relative to the firms outside the merger. It is also shown that the bidding competition for the prey's assets is most harmful to predators when the use of the prey's assets exerts strong negative externalities on rivals, i.e. when their use severely reduces competitors' profits. The reason is that potential buyers are then willing to pay a hi...

  12. Coexistence with predators (Coexistencia con depredadores)

    Science.gov (United States)

    Bill MacDonald; Mac Donaldson; Caren Cowan

    2006-01-01

    We have asked Caren to join us, too, so we get at least three perspectives, because I don’t think there is one particular philosophy with predators that anybody can say works in every case. If you were to ask me what my predator program is, I would say I don’t really have one. That wasn’t always the case. When I was young, I took great delight in sitting for hours with...

  13. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  14. Effects of seed and seedling predation by small mammals on ...

    African Journals Online (AJOL)

    Seed predation reduced seedling recruitment from seeds planted in March 1986 in mature fynbos, but ... Seed predation did not significantly reduce seedling recruitment from seed planted in July, August and ... AJOL African Journals Online.

  15. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    Science.gov (United States)

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  16. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Science.gov (United States)

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  17. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Maren Stella Müller

    Full Text Available Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG, pyrrolnitrin (PRN and hydrogen cyanide (HCN in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks, as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  18. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  19. Species invasion shifts the importance of predator dependence.

    Science.gov (United States)

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  20. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  1. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  2. Selective predation and prey class behaviour as possible ...

    African Journals Online (AJOL)

    To test these mechanisms, a study was conducted on Samara Private Game Reserve to investigate the potential impact cheetah (Acinonyx jubatus) predation has had on the kudu (Tragelaphus strepciseros) population. Kudu age and sex data were collected across both predator-present and predator-absent sections using ...

  3. Bird's nesting success and eggs predation within Arusa National ...

    African Journals Online (AJOL)

    Identification of predators was obtained indirectly through punched signs left by predators on artificial and true eggs. Observation was done daily and data were analyzed both qualitatively and quantitatively. The study showed no significant difference in predation effect on eggs in glade versus glade edge X2 = 3.08, Df = 1, ...

  4. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  5. Avian nestling predation by endangered Mount Graham red squirrel

    Science.gov (United States)

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  6. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  7. Sexually Violent Predators and Civil Commitment Laws

    Science.gov (United States)

    Beyer Kendall, Wanda D.; Cheung, Monit

    2004-01-01

    This article analyzes the civil commitment models for treating sexually violent predators (SVPs) and analyzes recent civil commitment laws. SVPs are commonly defined as sex offenders who are particularly predatory and repetitive in their sexually violent behavior. Data from policy literature, a survey to all states, and a review of law review…

  8. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  9. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  10. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  11. Bald eagle predation on common loon egg

    Science.gov (United States)

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  12. What regulates crab predation on mangrove propagules?

    Science.gov (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  13. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  14. Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2013-01-01

    Full Text Available The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.

  15. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats.

    Science.gov (United States)

    Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian

    2015-08-01

    Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.

  16. The effects of recruitment to direct predator cues on predator responses in meerkats

    OpenAIRE

    Zottl, M.; Lienert, R.; Clutton-Brock, T.; Millesi, E.; Manser, M B.

    2017-01-01

    Behavioral responses of animals to direct predator cues (DPCs; e.g., urine) are common and may improve their survival. We investigated wild meerkat (Suricata suricatta) responses to DPCs by taking an experimental approach. When meerkats encounter a DPC they often recruit group members by emitting a call type, which causes the group members to interrupt foraging and approach the caller. The aim of this study was to identify the qualities of olfactory predator cues, which affect the strength of...

  17. A tropical horde of counterfeit predator eyes.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie; Burns, John M

    2010-06-29

    We propose that the many different, but essentially similar, eye-like and face-like color patterns displayed by hundreds of species of tropical caterpillars and pupae-26 examples of which are displayed here from the dry, cloud, and rain forests of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica-constitute a huge and pervasive mimicry complex that is evolutionarily generated and sustained by the survival behavior of a large and multispecific array of potential predators: the insect-eating birds. We propose that these predators are variously and innately programmed to flee when abruptly confronted, at close range, with what appears to be an eye of one of their predators. Such a mimetic complex differs from various classical Batesian and Müllerian mimicry complexes of adult butterflies in that (i) the predators sustain it for the most part by innate traits rather than by avoidance behavior learned through disagreeable experiences, (ii) the more or less harmless, sessile, and largely edible mimics vastly outnumber the models, and (iii) there is no particular selection for the eye-like color pattern to closely mimic the eye or face of any particular predator of the insect-eating birds or that of any other member of this mimicry complex. Indeed, selection may not favor exact resemblance among these mimics at all. Such convergence through selection could create a superabundance of one particular false eyespot or face pattern, thereby increasing the likelihood of a bird species or guild learning to associate that pattern with harmless prey.

  18. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  19. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  20. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  1. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  2. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the......50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured...... predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator....

  3. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  4. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  5. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  6. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae

    DEFF Research Database (Denmark)

    Matz, Carsten; McDougald, D.; Moreno, A.M.

    2005-01-01

    Persistence of the opportunistic bacterial pathogen Vibrio cholerae in aquatic environments is the principal cause for seasonal occurrence of cholera epidemics. This causality has been explained by postulating that V. cholerae forms biofilms in association with animate and inanimate surfaces....... Alternatively, it has been proposed that bacterial pathogens are an integral part of the natural microbial food web and thus their survival is constrained by protozoan predation. Here, we report that both explanations are interrelated. our data show that biofilms are the protective agent enabling V. cholerae...... to survive protozoan grazing while their planktonic counterparts are eliminated. Grazing on planktonic V. cholerae was found to select for the biofilm-enhancing rugose phase variant, which is adapted to the surf ace-associated niche by the production of exopolymers. Interestingly, grazing resistance in V...

  7. Local adaptation in transgenerational responses to predators

    Science.gov (United States)

    Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M.

    2016-01-01

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. ‘within-generation’ plasticity), such ‘transgenerational plasticity’ (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775

  8. Local adaptation in transgenerational responses to predators.

    Science.gov (United States)

    Walsh, Matthew R; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B; Post, David M

    2016-01-27

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. © 2016 The Author(s).

  9. The Great White Guppy: Top Predator

    Science.gov (United States)

    Michalski, G. M.

    2011-12-01

    Nitrogen isotopes are often used to trace the trophic level of members of an ecosystem. As part of a stable isotope biogeochemistry and forensics course at Purdue University, students are introduced to this concept by analyzing nitrogen isotopes in sea food purchased from local grocery stores. There is a systematic increase in 15N/14N ratios going from kelp to clams/shrimp, to sardines, to tuna and finally to shark. These enrichments demonstrate how nitrogen is enriched in biomass as predators consume prey. Some of the highest nitrogen isotope enrichments observed, however, are in the common guppy. We investigated a number of aquarium fish foods and find they typically have high nitrogen isotope ratios because they are made form fish meal that is produced primarily from the remains of predator fish such as tuna. From, a isotope perspective, the guppy is the top of the food chain, more ferocious than even the Great White shark.

  10. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  11. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  12. Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator.

    Science.gov (United States)

    Griffen, Blaine D; Guy, Travis; Buck, Julia C

    2008-01-01

    1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.

  13. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  14. Humans as predators: an overview of predation strategies of hunters with contrasting motivational drivers

    Directory of Open Access Journals (Sweden)

    Fredrik Dalerum

    2018-01-01

    Full Text Available Predator-prey theory suggests that generalist predators are linked to demographic stability of prey whereas specialists are destabilizing. We overview the demographic consequences of different predation strategies and hypothesize that subsistence hunting occurs opportunistically, persecution hunters behave like specialist predators, and recreational hunters behave like generalist predators. Under this hypothesis, persecution hunting would have destabilizing effects, whereas the effects of subsistence and recreational hunting would be neutral or stabilizing. We found poor empirical support for this hypothesis, but there was scarce empirical data. Recreational hunters mainly hunted opportunistically and hunting as managed persecution followed a type III functional response, i.e. with low hunting intensity at low game abundances and a switch to an increased intensity at some level of abundance. We suggest that recreational hunters have limited destabilizing effects on game populations and that hunting may be an ineffective way of complete the removal of invasive species. We urge for further studies quantifying the responses of hunters to game abundances, in particular studies evaluating the responses of subsistence hunters and illegal persecution.

  15. Fatal attraction? Intraguild facilitation and suppression among predators

    Science.gov (United States)

    Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.

    2017-01-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  16. Fatal Attraction? Intraguild Facilitation and Suppression among Predators.

    Science.gov (United States)

    Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R

    2017-11-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  17. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  18. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  19. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  20. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  1. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    Science.gov (United States)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  2. On multi-team predator-prey models

    International Nuclear Information System (INIS)

    Elettreby, M.F.; Saker, S.H.; Ahmed, E.

    2005-05-01

    Many creatures form teams. This has, at least, two main advantages: the first is the improvement in foraging, since looking for food in a team is more efficient than doing it alone. The second is that living in a team reduces predation risk due to early spotting of predators and that existing in a team gives a higher probability that the predator will attack another member of the team. In this paper models are given where two teams of predators interact with two teams of preys. The teams of each group (predators or preys) help each other. In this paper we propose three different versions of the multi-team predator prey model. We study the equilibrium solutions, the conditions of their local asymptotic stability, persistence and the global stability of the solution of one of the models. Some numerical simulations are done. (author)

  3. Nest predation research: Recent findings and future perspectives

    Science.gov (United States)

    Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.

    2016-01-01

    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.

  4. The risk of predation favors cooperation among breeding prey

    Science.gov (United States)

    Krama, Tatjana; Berzins, Arnis; Rantala, Markus J

    2010-01-01

    Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which reduces the likelihood that they will cooperate with others. However, some theoretical studies predict that animals in adverse conditions should not avoid cooperation with their neighbors since it may decrease individual risks and increase long-term benefits of reciprocal help. We experimentally tested these two alternatives to find out whether increased predation risk enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behavior, among breeding pied flycatchers, Ficedula hypoleuca. Our results show that birds attended mobs initiated by their neighbors more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. This study demonstrates a positive impact of predation risk on cooperation in breeding songbirds, which might help to explain the emergence and evolution of cooperation. PMID:20714404

  5. The narrow range of perceived predation: a 19 group study

    Directory of Open Access Journals (Sweden)

    Olivier Mesly

    2013-05-01

    Full Text Available This paper rests largely on the works of Mesly (1999 to 2012. It argues that the phenomenon of perceived predation as a functional behavioural phenomenon is subjected to certain limits, a finding based on studies performed on 19 different groups spread over a four-year span. It also finds a constant of k = 1.3 which reflects the invariant nature of perceived predation. These findings add to the theory of financial predation which stipulates that financial predators operate below the limits of detection pertaining to their customers (and market regulators. They are experts at minimizing the perception that clients could have that they are after their money, causing them financial harm, by surprise (perceived predation. Understanding the narrow range in which financial predators operate is setting the grounds to offer better protection to investors and to implementing better control and punitive measures.

  6. Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments

    International Nuclear Information System (INIS)

    Wikner, J.; Andersson, A.; Normark, S.; Hagstroem, A.

    1986-01-01

    Minicells produced by Escherichia coli M2141 were used as probes to measure predation on pelagic bacteria in situ. The minicells, labeled with [ 35 S]methionine in one specific protein, were shown to disappear in the presence of a microflagellate (Ochromonas sp.), as seen by a decrease in the amount of labeled marker protein with time. Incubation in filtered (pore size, 0.2 μm) and autoclaved seawater did not affect the amount of labeled marker protein in the minicell. The generation time of flagellates feeding on minicells was determined to be similar to that found for flagellates grown on seawater bacteria or living E. coli NC3. Data indicate that minicells are seen as true food particles by the flagellates. The minicell probe was used in recapture experiments, in which predation in situ on pelagic bacteria was demonstrated. The rate of bacterial production showed a clear covariation with the rate of predation, both in different sea areas and in depth profiles. The obtained results (11 field experiments) showed that the rate of predation, on average, accounts for the consumption of 62% of the bacteria produced

  7. Local and landscape drivers of predation services in urban gardens.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  8. Predation on hatchery-reared lobsters released in the wild

    OpenAIRE

    van der Meeren, Gro

    2000-01-01

    Predation on hatchery-reared lobsters (Homarus gammarus) in the wild was studied in order to identify predators in southwestern Norway on rocky and sandy substrates in winter and summer. Lobsters of 12–15 mm carapace length were tagged with magnetic microtags. About 51 000 juvenile lobsters were released on 10 occasions at three locations. Predator samplings were by trammel nets, eel traps, and videorecordings during the 24 h immediately following the releases. In summer, loss to ...

  9. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  10. Predators induce interspecific herbivore competition for food in refuge space

    OpenAIRE

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  11. Predation rate by wolves on the Porcupine caribou herd

    OpenAIRE

    Hayes, Robert D.; Russell, Donald E.

    2000-01-01

    Large migratory catibou {Rangifer tarandus) herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus) predation rate (P annual) on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2)*Dp...

  12. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    Science.gov (United States)

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  13. Cooperation under Predation Risk: Experiments on Costs and Benefits

    Science.gov (United States)

    Milinski, Manfred; Luthi, Jean H.; Eggler, Rolf; Parker, Geoffrey A.

    1997-06-01

    Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks to the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.

  14. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  15. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  16. Assessing predation risk: optimal behaviour and rules of thumb.

    Science.gov (United States)

    Welton, Nicky J; McNamara, John M; Houston, Alasdair I

    2003-12-01

    We look at a simple model in which an animal makes behavioural decisions over time in an environment in which all parameters are known to the animal except predation risk. In the model there is a trade-off between gaining information about predation risk and anti-predator behaviour. All predator attacks lead to death for the prey, so that the prey learns about predation risk by virtue of the fact that it is still alive. We show that it is not usually optimal to behave as if the current unbiased estimate of the predation risk is its true value. We consider two different ways to model reproduction; in the first scenario the animal reproduces throughout its life until it dies, and in the second scenario expected reproductive success depends on the level of energy reserves the animal has gained by some point in time. For both of these scenarios we find results on the form of the optimal strategy and give numerical examples which compare optimal behaviour with behaviour under simple rules of thumb. The numerical examples suggest that the value of the optimal strategy over the rules of thumb is greatest when there is little current information about predation risk, learning is not too costly in terms of predation, and it is energetically advantageous to learn about predation. We find that for the model and parameters investigated, a very simple rule of thumb such as 'use the best constant control' performs well.

  17. Assessment of predation risk through referential communication in incubating birds

    Science.gov (United States)

    Suzuki, Toshitaka N.

    2015-05-01

    Parents of many bird species produce alarm calls when they approach and deter a nest predator in order to defend their offspring. Alarm calls have been shown to warn nestlings about predatory threats, but parents also face a similar risk of predation when incubating eggs in their nests. Here, I show that incubating female Japanese great tits, Parus minor, assess predation risk by conspecific alarm calls given outside the nest cavity. Tits produce acoustically discrete alarm calls for different nest predators: “jar” calls for snakes and “chicka” calls for other predators such as crows and martens. Playback experiments revealed that incubating females responded to “jar” calls by leaving their nest, whereas they responded to “chicka” calls by looking out of the nest entrance. Since snakes invade the nest cavity, escaping from the nest helps females avoid snake predation. In contrast, “chicka” calls are used for a variety of predator types, and therefore, looking out of the nest entrance helps females gather information about the type and location of approaching predators. These results show that incubating females derive information about predator type from different types of alarm calls, providing a novel example of functionally referential communication.

  18. Chaotic population dynamics and biology of the top-predator

    International Nuclear Information System (INIS)

    Rai, Vikas; Upadhyay, Ranjit Kumar

    2004-01-01

    We study how the dynamics of a food chain depends on the biology of the top-predator. We consider two model food chains with specialist and generalist top-predators. Both types of food chains display same type of chaotic behavior, short-term recurrent chaos; but the generating mechanisms are drastically different. Food chains with specialist top-predators are dictated by exogenous stochastic factors. On the contrary, the dynamics of those with the generalist top-predator is governed by deterministic changes in system parameters. The study also suggests that robust chaos would be a rarity

  19. Limit Cycles in Predator-Prey Models

    OpenAIRE

    Puchuri Medina, Liliana

    2017-01-01

    The classic Lotka-Volterra model belongs to a family of differential equations known as “Generalized Lotka-Volterra”, which is part of a classification of four models of quadratic fields with center. These models have been studied to address the Hilbert infinitesimal problem, which consists in determine the number of limit cycles of a perturbed hamiltonian system with center. In this work, we first present an alternative proof of the existence of centers in Lotka-Volterra predator-prey models...

  20. Ontogenetic specialism in predators with multiple niche shifts prevents predator population recovery and establishment

    NARCIS (Netherlands)

    van Leeuwen, A.; Huss, M.; Gårdmark, A.; de Roos, A.M.

    2014-01-01

    The effects of ontogenetic niche shifts on community structure and dynamics are underexplored, despite the occurrence of such shifts in the majority of animal species. We studied the form of niche shifts in a predator that exhibits multiple ontogenetic niche shifts, and analyzed how this life

  1. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  2. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    Science.gov (United States)

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  3. Responses of urban crows to con- and hetero-specic alarm calls in predator and non-predator zoo enclosures.

    OpenAIRE

    BÍLÁ, Kateřina

    2017-01-01

    I investigated if urban crows respond to con- and heterospecific alarm signals in predator and non-predator contexts in enclosures in the ZOO of Vienna. Crows responded strongly to the crow and also jackdaw alarms in both types of contexts, but also responded to the singing of great tit (control) in the predator context. This suggests that crows are aware of the danger the wolf and bear represent but are generally very cautious at the exotic Zoo animals.

  4. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  5. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  6. Predators and predation rates of skylark Alauda arvensis and woodlark Lullula arborea nests in a semi-natural area in the Netherlands

    NARCIS (Netherlands)

    Praus, Libor; Hegemann, Arne; Tieleman, B. Irene; Weidinger, Karel

    2014-01-01

    Predation is a major cause of breeding failure in bird species with open nests. Although many studies have investigated nest predation rates, direct identification of nest predators is sporadic, especially in (semi-)natural habitats. We quantified nest success and identified nest predators in a

  7. Anti-predator behaviour of Sahamalaza sportive lemurs, Lepilemur sahamalazensis, at diurnal sleeping sites

    NARCIS (Netherlands)

    Seiler, M.; Schwitzer, C.; Holderied, M.

    2013-01-01

    In response to predation pressure by raptors, snakes, and carnivores, primates employ anti-predator behaviours such as avoiding areas of high predation risk, cryptic behaviour and camouflage, vigilance and group formation (including mixedspecies associations), and eavesdropping on other species’

  8. A predation cost to bold fish in the wild

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben; Nilsson, Anders P.

    2017-01-01

    in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions...

  9. Deep-ocean predation by a high Arctic cetacean

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Jørgensen, Ole A

    2004-01-01

    were correlated with predicted whale predation levels based on diving behavior. The difference in Greenland halibut biomass between an area with high predation and a comparable area without whales, approximately 19000 tonnes, corresponded well with the predicted biomass removed by the narwhal sub...

  10. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  11. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  12. Determining sensitive stages for learning to detect predators in ...

    Indian Academy of Sciences (India)

    2014-07-10

    Jul 10, 2014 ... Successful survival and reproduction of prey organisms depend on their ability to detect their potential predators accurately and respond ... Numerous aquatic prey including insects, ... window (pre-gastrulation, neurulation, post-hatching or ..... their increased encounter rates with predators provide them the.

  13. Food acquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, Lennart; Emsens, Willem-Jan; Hirsch, Ben T.; Kays, Roland; Rowcliffe, J. Marcus; Zamora-Gutierrez, Veronica; Jansen, Patrick A.

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The risk allocation hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  14. Saving the Predators: Teaching About the Role of Predatory Animals.

    Science.gov (United States)

    Soltow, Willow

    1985-01-01

    Discusses the role of predators in regulating prey populations, noting that this is an excellent example of the "interconnectedness" of life. Suggestions for films, books, articles, and student questions are given, and a special section dealing with human attitudes about predators is provided. (DH)

  15. Food aquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, L.; Emsens, W.J.; Hirsch, B.T.; Kays, R.; Rowcliffe, J.M.; Zamore-Gutierrez, V.; Jansen, P.A.

    2014-01-01

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The Risk Allocation Hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  16. Sleeping birds do not respond to predator odour

    NARCIS (Netherlands)

    Amo, L.; Caro, S.P.; Visser, M.E.

    2011-01-01

    Background: During sleep animals are relatively unresponsive and unaware of their environment, and therefore, more exposed to predation risk than alert and awake animals. This vulnerability might influence when, where and how animals sleep depending on the risk of predation perceived before going to

  17. Behavior is a major determinant of predation risk in zooplankton

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; van Someren Gréve, Hans; Kiørboe, Thomas

    2017-01-01

    as prey for different predatory copepods. Copepods with “active” feeding behaviors (feeding-current and cruising feeders) showed significantly higher mortality from predation (~2–8 times) than similarly sized copepods with low motility feeding behavior (ambush feeders). Copepod males, which have a more...... active motile behavior than females (mate-seeking behavior), suffered a higher predation mortality than females in most of the experiments. However, the predation risk for mate-searching behavior in copepods varied depending on feeding behavior with ambush feeders consistently having the greatest......Zooplankton exhibit different small-scale motile behaviors related to feeding and mating activities. These different motile behaviors may result in different levels of predation risk, which may partially determine the structure of planktonic communities. Here, we experimentally determined predation...

  18. Mink predation on brown trout in a Black Hills stream

    Science.gov (United States)

    Davis, Jacob L.; Wilhite, Jerry W.; Chipps, Steven R.

    2016-01-01

    In the early 2000’s, declines in the brown trout (Salmo trutta) fishery in Rapid Creek, South Dakota, caused concern for anglers and fisheries managers. We conducted a radio telemetry study in 2010 and 2011 to identify predation mortality associated with mink, using hatchery-reared (2010) or wild (2011) brown trout. Estimated predation rates by mink (Mustela vison) on radio-tagged brown trout were 30% for hatchery fish and 32% for wild fish. Size frequency analysis revealed that the size distribution of brown trout lost to predation was similar to that of other, radio-tagged brown trout. In both years, a higher proportion of predation mortality (83–92%) occurred during spring, consistent with seasonal fish consumption by mink. Predation by mink appeared to be a significant source of brown trout mortality in our study.

  19. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    Science.gov (United States)

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  20. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  1. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  2. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  3. Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem

    Science.gov (United States)

    John L. Maron; Dean E. Pearson

    2011-01-01

    The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...

  4. Size-selective predation and predator-induced life-history shifts alter the outcome of competition between planktonic grazers

    NARCIS (Netherlands)

    Hülsmann, S.; Rinke, K.; Mooij, W.M.

    2011-01-01

    1.We studied the effect of size-selective predation on the outcome of competition between two differently sized prey species in a homogenous environment. 2. Using a physiologically structured population model, we calculated equilibrium food concentrations for a range of predation scenarios defined

  5. Active predation by Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Nielsen, Julius; hedeholm, Rasmus; Simon, Malene

    2013-01-01

    and show that the sharks catch epi-benthic species with Atlantic cod being the most important (% IRI = 56 ), followed by squid (% IRI= 13 ) and wolf fish (IRI=4). Furthermore seal was found in 50 % of all stomachs (% IRI= 13). In addition to providing new knowledge of feeding habits of this species......Dansk Havforskermøde 2013 Julius Nielsen, Rasmus Hedeholm, Malene Simon og John Fleng Steffensen The Greenland shark is ubiquitous in the northern part of the North Atlantic ranging from eastern Canada to northwest Russia . Although knowledge is scarce it is believed to be abundant and potentially...... important part of the ecosystem. Whether Greenland sharks in general should be considered opportunistic scavengers or active predators is therefore important in understanding ecosystem dynamics. Due to its sluggish appearance and a maximum reported swimming speed of 74 cm per second scavenging seems...

  6. [Informative predation: Towards a new species concept].

    Science.gov (United States)

    Lherminier, Philippe

    2018-04-01

    We distinguish two types of predations: the predation of matter-energy equals the food chain, and the informative predation is the capture of the information brought by the sexual partners. The cell or parent consumes energy and matter to grow, multiply and produce offspring. A fixed amount of resources is divided by the number of organisms, so individual growth and numerical multiplication are limited by depletion resources of the environment. Inversely, fertilization does not destroy information, but instead produces news. The information is multiplied by the number of partners and children, since each fertilization gives rise to a new genome following a combinatorial process that continues without exhaustion. The egg does not swallow the sperm to feed, but exchange good food for quality information. With the discovery of sex, that is, 1.5 Ga ago, life added soft predation to hard predation, i.e. information production within each species to matter-energy flow between species. Replicative and informative structures are subject to two competing biological constraints: replicative fidelity promotes proliferation, but limits adaptive evolution. On the contrary, the offspring of a couple obviously cannot be a copy of both partners, they are a new production, a re-production. Sexual recombination allows the exponential enrichment of the genetic diversity, thus promoting indefinite adaptive and evolutionary capacities. Evolutionary history illustrates this: the bacteria proliferate but have remained at the first purely nutritive stage in which most of the sensory functions, mobility, defense, and feeding have experienced almost no significant novelty in three billion years. Another world appeared with the sexual management of information. Sexual reproduction actually combines two functions: multiplicative by "vertical transfer" and informative by "horizontal transfer". This distinction is very common: polypus - medusa alternations, parasite multiplication cycles, the

  7. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  8. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    Science.gov (United States)

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  9. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  10. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  11. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  12. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  13. Skate Bathyraja spp. egg predation in the eastern Bering Sea.

    Science.gov (United States)

    Hoff, G R

    2009-01-01

    Predation on skate eggs by snails was examined for three skate species at seven nursery sites in three regions (north, middle and south) of the eastern Bering Sea. Mean predation levels were 6.46% for the Alaska skate Bathyraja parmifera, 2.65% for the Aleutian skate Bathyraja aleutica and 22.25% for the Bering skate Bathyraja interrupta. Predation levels were significantly higher at the middle and north sites than the south sites for all species combined. Predation levels decreased with increasing egg-case densities at all nursery sites, and the highest predation levels occurred where egg-case densities were very low. Predated egg-case density increased with increasing snail densities across all nursery sites examined. The Oregon triton Fusitriton oregonensis was the most abundant snail species at all nursery sites and displayed ability to drill holes in the egg case of B. parmifera. Holes left by predatory snails in egg cases of B. parmifera were significantly larger, and of different shape at the middle site compared to the south site. Holes in B. parmifera were also significantly larger than those in egg cases of B. interrupta across all sites examined. Egg cases of B. aleutica possess surface spines that cover the egg case and may inhibit predation by snails at a greater rate than that of the B. parmifera and B. interrupta, which have a smoother egg-case surface.

  14. Informed renesting decisions: the effect of nest predation risk.

    Science.gov (United States)

    Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari

    2014-04-01

    Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.

  15. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  16. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  17. Predation as a landscape effect: the trading off by prey species between predation risks and protection benefits.

    Science.gov (United States)

    Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L

    2007-05-01

    1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure

  18. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  19. Does a Simple Cope's Rule Mechanism Overlook Predators?

    International Nuclear Information System (INIS)

    Penteriani, V.; Kenward, R.

    2007-01-01

    The Copes rule predicts a tendency for species to evolve towards an increase in size. Recently, it has been suggested that such a tendency is due to the fact that large body sizes provide a general increase in individual fitness. Here we highlight evidence that predator species do not always fit the large-size = high-fitness mechanism for Copes rule. Given the specific requirements of predators and the complexity of prey-predator relationships, any analysis that does not take into account all animal groups may overlook a significant portion of evolutive trends. Generalisations may not be possible regardless of taxa.

  20. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions.

    Czech Academy of Sciences Publication Activity Database

    Baltar, F.; Palovaara, J.; Unrein, F.; Catala, P.; Horňák, Karel; Šimek, Karel; Vaque, D.; Massana, R.; Gasol, J.M.; Pinhassi, J.

    2016-01-01

    Roč. 10, č. 3 (2016), s. 568-581 ISSN 1751-7362 Institutional support: RVO:60077344 Keywords : nucleic-acid content * mediterranean coastal waters * natural planktonic bacteria * flow-cytometry * fresh-water * eutrophic reservoir Subject RIV: EE - Microbiology, Virology Impact factor: 9.664, year: 2016

  1. A predator-prey model with a holling type I functional response including a predator mutual interference

    Science.gov (United States)

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  2. Development of a System wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Section II: Evaluation; 1996 Annual Report

    International Nuclear Information System (INIS)

    Young, Franklin R.

    1997-01-01

    Predator control fisheries aimed at reducing predation on juvenile salmonids by northern squawfish (Ptychocheilus oregonensis) were implemented for the seventh consecutive year in the mainstream Columbia and Snake rivers

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  4. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  5. How do brent geese (Branta b. bernicla) cope with evil?; complex relationships between predators and prey

    NARCIS (Netherlands)

    Ebbinge, B.S.; Spaans, B.

    2002-01-01

    Actual predation is rarely observed in the field, and therefore the role of predators is often severely underestimated. Species are limited in their distribution, which is caused not only by predation but also by the anti-predator behaviour that prey-species have developed under the continuous

  6. Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus)

    NARCIS (Netherlands)

    Frommen, Joachim G.; Herder, Fabian; Engqvist, Leif; Mehlis, Marion; Bakker, Theo C. M.; Schwarzer, Julia; Thuenken, Timo

    Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily,

  7. Nest predators of open and cavity nesting birds in oak woodlands

    Science.gov (United States)

    Kathryn L. Purcell; Jared Verner

    1999-01-01

    Camera setups revealed at least three species of rodents and seven species of birds as potential predators at artificial open nests. Surprisingly, among avian predators identified at open nests, one third were Bullock's Orioles (Icterus bullockii). Two rodent species and three bird species were potential predators at artificial cavity nests. This high predator...

  8. The nest predator assemblage for songbirds in Mono Lake basin riparian habitats

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; Grant Ballard

    2012-01-01

    Because nest predation strongly limits avian fitness, ornithologists identify nest predators to inform ecological research and conservation. During 2002–2008, we used both video-monitoring of natural nests and direct observations of predation to identify nest predators of open-cup nesting riparian songbirds along tributaries of Mono Lake, California. Video cameras at...

  9. Pemangsaan Propagul Mangrove Rhizophora sp. Sebagai Bukti Teori Dominance-Predation (Predation of Mangrove Propagule, Rhizophora sp. as Evidence of Dominance-Predation Theory

    Directory of Open Access Journals (Sweden)

    Rudhi Pribadi

    2014-06-01

    Propagule predation on mangrove in some extent reduced its viability to grow into seedling. The predation could happened before (pre-dispersal or after (post-dispersal the propagule drop from the tree.The reasearch was conducted in Pasar Banggi, Rembang District, Central Java. The aim was to investigate the predation rate of Rhizophora mucronata Lamk., R. stylosa Griff. and R. apiculata Blume propagules pre-dispersal and post-dispersal. Firstly, preface experiment for find domination spesies in the location, Second, with applied descriptive-based survey sampling and field experiment methods. Than all propagules of five replication trees were harvested and checked for its condition on pre-dispersal step. The third, with post-dispersal study there were twenty propagules from each spesies and tied them with used nylon string and placed on the forest floor for 2 until 18 days and checked its condition every 2 days after placement. This study is also set for tested the Smith’s theory on propagule predation related to tree domination. Rhizophora stylosa propagule was  most predated before they fall (mean 61,06%, range 45,40-76,05%, followed by R. apiculata (mean 58,18%, range 47,41-68% and the lowest isR. mucronata with mean 11,88% (range 7,06-15,71%. After 18 days of experiment in the field R. stylosa propagule in R. stylosa–dominated area was the lowest predated (mean 46,67% compared to propagule in the area dominated by R. apiculata (63,33% and also in R. mucronata area (83,33 Predated R. mucronata propagule is the highest in the R. mucronata dominated area (mean 95% compared with R. apiculata dominated area (mean 55% and also in R. stylosa dominated area (45%. Pradated of R. apiculata propagule is the lowest in the domination area of R. apiculata (50% compared with R. stylosa area domination with (mean 70% also R. mucronata (73,33%. The result showed that the theory of dominance-predation can be proved only for R. stylosa and R. apiculata spesies, but not for R

  10. Invasion of Hydrous Fluids Predates Kimberlite Formation

    Science.gov (United States)

    Kopylova, M. G.; Wang, Q.; Smith, E. M.

    2017-12-01

    Petrological observations on diamonds and peridotite xenoliths in kimberlites point towards an influx of hydrous metasomatic fluids shortly predating kimberlite formation. Diamonds may grow at different times within the same segment of the cratonic mantle, and diamonds that form shortly before (diamonds typically contain 10-25 wt.% water in fluid inclusions, while older octahedrally-grown diamonds host "dry" N2-CO2 fluids. Our recent studies of fluids in diamond now show that many different kinds of diamonds can contain fluid inclusions. Specifically, we found a new way to observe and analyze fluids in octahedrally-grown, non-fibrous diamonds by examining healed fractures. This is a new textural context for fluid inclusions that reveals a valuable physical record of infiltrating mantle fluids, that postdate diamond growth, but equilibrate within the diamond stability field at depths beyond 150 km. Another sign of the aqueous fluids influx is the formation of distinct peridotite textures shortly predating the kimberlite. Kimberlites entrain peridotite xenoliths with several types of textures: older coarse metamorphic textures and younger, sheared textures. The preserved contrast in grain sizes between porphyroclasts and neoblasts in sheared peridotites constrain the maximum duration of annealing. Experimental estimates of the annealing time vary from 7x107 sec (2 years) to 106 years (1 My) depending on olivine hydration, strain rate, pressure, temperature and, ultimately, the annealing mechanism. Kimberlite sampling of sheared peridotites from the lithosphere- asthenosphere boundary (LAB) implies their formation no earlier than 1 My prior to the kimberlite ascent. Water contents of olivine measured by FTIR spectrometry using polarized light demonstrated contrasting hydration of coarse and sheared samples. Olivine from sheared peridotite samples has the average water content of 78±3 ppm, in contrast to the less hydrated coarse peridotites (33±6 ppm). LAB hydration

  11. Competition, predation and species responses to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Kulczychi, A. [Rutgers Univ., Cook College, Dept. of Ecology, Evolution and Natural Resources, New Brunswick, NJ (United States)

    2004-08-01

    Despite much effort over the past decade on the ecological consequences of global warming, ecologists still have little understanding of the importance of interspecific interactions in species responses to environmental change. Models predict that predation should mitigate species responses to environmental change, and that interspecific competition should aggravate species responses to environmental change. To test this prediction, we studied how predation and competition affected the responses of two ciliates, Colpidiumstriatum and Parameciumtetraurelia, to temperature change in laboratory microcosms. We found that neither predation nor competition altered the responses of Colpidiumstratum to temperature change, and that competition but not predation altered the responses of Paramecium tetraurelia to temperature change. Asymmetric interactions and temperature-dependent interactions may have contributed to the disparity between model predictions and experimental results. Our results suggest that models ignoring inherent complexities in ecological communities may be inadequate in forecasting species responses to environmental change. (au)

  12. Predation on large mammals in the Kafue National Park, Zambia

    African Journals Online (AJOL)

    Benson, Dr. A. S. Mossman, Dr. J. S. Weir and particularly to Graham Child all of ..... themselves with easily killed species, warthog Phacachaerus aethiopicus, ...... tion made by Wright (1960) that the degree of predation can be manipulated by ...

  13. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  14. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  15. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  16. Shark predation on Indian Ocean bottlenose dolphins TUTSiops ...

    African Journals Online (AJOL)

    1988-10-24

    Oct 24, 1988 ... Four species of shark, the Zambesi (Carcharhinus leucas), the tiger (Galeocerdo ... level of shark predation on bottlenose dolphins was unknown it appeared to ..... possible examples of these adaptations. Acknowledgments.

  17. Predator persistence through variability of resource productivity in Tritrophic systems

    DEFF Research Database (Denmark)

    Soudijn, Floor Helena; de Roos, Andre M.

    2017-01-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two...... trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual......-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population...

  18. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  19. Signaling by decorating webs: luring prey or deterring predators?

    OpenAIRE

    Ren-Chung Cheng; I-Min Tso

    2007-01-01

    Many organisms convey false signals to mislead their prey or predators. Some orb-weaving spiders build conspicuous structures on webs called decorations. Web decorations and spider colorations are both suggested to be important signals involved in interactions between spiders and other organisms. There are several hypotheses about the functions of signaling by decorations, among which prey attraction had received much support, but empirical evidence regarding predator defense is controversial...

  20. Disentangling mite predator-prey relationships by multiplex PCR.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.

  1. Evaluation of predator-proof fenced biodiversity projects

    OpenAIRE

    Doelle, Sebastian

    2012-01-01

    There has been recent debate over the role of predator-proof fences in the management of New Zealand’s biodiversity. The debate has arisen due to concern that investments in fenced sanctuaries are less productive than are alternative ways to manage biodiversity. Predator-proof fences are costly and budget constraints limit the area of habitat that can be fenced. The area of habitat enclosed within fences, and number of individuals of species supported, determines project’s ability to contribu...

  2. Can cat predation help competitors coexist in seabird communities?

    Science.gov (United States)

    Pontier, Dominique; Fouchet, David; Bried, Joël

    2010-01-07

    On oceanic islands, nest site availability can be an important factor regulating seabird population dynamics. The potential for birds to secure a nest to reproduce can be an important component of their life histories. The dates at which different seabird species arrive at colonies to breed will have important consequences for their relative chances of success. Early arrival on the island allows birds to obtain nests more easily and have higher reproductive success. However, the presence of an introduced predator may reverse this situation. For instance, in the sub-Antarctic Kerguelen archipelago, early arriving birds suffer heavy predation from introduced cats. Cats progressively switch from seabirds to rabbits, since the local rabbit population starts to peak after early arriving seabird species have already returned to the colony. When late-arriving birds arrive, cat predation pressure on seabirds is thus weaker. In this paper, we investigate the assumption that the advantage of early nest mnopolization conferred to early arriving birds may be counterbalanced by the cost resulting from predation. We develop a mathematical model representing a simplified situation in which two insular seabird species differ only in their arrival date at the colony site and compete for nesting sites. We conclude that predation may ensure the coexistence of the two bird species or favor the late-arriving species, but only when seasonal variations in predation pressure are large. Interestingly, we conclude that arriving early is only favorable until a given level where high reproductive success no longer compensates for the long exposure to strong predation pressure. Our work suggests that predation can help to maintain the balance between species of different phenologies.

  3. Effects of viruses and predators on prokaryotic community composition.

    Science.gov (United States)

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.

  4. Balancing food and predator pressure induces chronic stress in songbirds.

    OpenAIRE

    Clinchy, Michael; Zanette, Liana; Boonstra, Rudy; Wingfield, John C.; Smith, James N. M.

    2004-01-01

    The never-ending tension between finding food and avoiding predators may be the most universal natural stressor wild animals experience. The 'chronic stress' hypothesis predicts: (i) an animal's stress profile will be a simultaneous function of food and predator pressures given the aforesaid tension; and (ii) these inseparable effects on physiology will produce inseparable effects on demography because of the resulting adverse health effects. This hypothesis was originally proposed to explain...

  5. Predator confusion is sufficient to evolve swarming behavior

    OpenAIRE

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2012-01-01

    Swarming behaviors in animals have been extensively studied due to their implications for the evolution of cooperation, social cognition, and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favor the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model...

  6. Escape Behavior and Predation Risk of Mainland and Island Spiny-tailed Iguanas (Ctenosaura hemilopha)

    OpenAIRE

    Blázquez, M.C.; Rodríguez-Estrella, Ricardo; Delibes, M.

    1997-01-01

    We investigated the relationships between predator avoidance behavior and predation risk by comparing the wariness of iguanas (Ctenosaura hemilopha) belonging to an island population with few predators with that of iguanas belonging to a mainland population under high predation pressure. We predicted that island iguanas would be less wary than mainland ones. Island iguanas allowed the closer approach of potential predators before their first reaction and fleeing. The responses of both sexes d...

  7. Wary invaders and clever natives: sympatric house geckos show disparate responses to predator scent

    OpenAIRE

    Adam Cisterne; Eric P. Vanderduys; David A. Pike; Lin Schwarzkopf

    2014-01-01

    The ability to detect and avoid potential predators can enhance fitness, but also has costs, and thus many animals respond to potential predators either in a general (avoid all potential predators) or threat-sensitive (selectively avoid dangerous predators) manner. We used 2-choice trials to investigate strategies used by globally invasive house geckos (Hemidactylus frenatus) and native Australian house geckos (Gehyra dubia) to avoid chemical cues from potential snake predators (Acanthophis a...

  8. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    Science.gov (United States)

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  9. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  10. Response of predators to Western Sandpiper nest exclosures

    Science.gov (United States)

    Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.

    2004-01-01

    In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.

  11. Escaping peril: perceived predation risk affects migratory propensity

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders

    2015-01-01

    Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic ta......) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.......Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags...... in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density...

  12. Bagworm bags as portable armour against invertebrate predators.

    Science.gov (United States)

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  13. Spizaetus hawk-eagles as predators of arboreal colobines.

    Science.gov (United States)

    Fam, S D; Nijman, V

    2011-04-01

    The predation pressure put on primates by diurnal birds of prey differs greatly between continents. Africa and South America have specialist raptors (e.g. crowned hawk-eagle Stephanoaetus coronatus and harpy eagle Harpia harpyja) whereas in Asia the only such specialist's (Philippine eagle Pithecophaga jefferyi) distribution is largely allopatric with primates. The almost universal absence of polyspecific groups in Asia (common in Africa and South America) may indicate reduced predation pressure. As such there is almost no information on predation pressures on primates in Asia by raptors. Here we report successful predation of a juvenile banded langur Presbytis femoralis (~2 kg) by a changeable hawk-eagle Spizaetus cirrhatus. The troop that was attacked displayed no signs of being alarmed, and no calls were made before the event. We argue that in insular Southeast Asia, especially, large Spizaetus hawk-eagles (~2 kg) are significant predators of arboreal colobines. Using data on the relative size of sympatric Spizaetus hawk-eagles and colobines we make predictions on where geographically we can expect the highest predation pressure (Thai-Malay Peninsula) and which colobines are least (Nasalis larvatus, Trachypithecus auratus, P. thomasi) and most (P. femoralis, T. cristatus) affected.

  14. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  15. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  16. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  17. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period.

    Science.gov (United States)

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael; Del Campo, Rosa

    2017-09-26

    Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild ( n = 5), moderate ( n = 9), and severe ( n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients' clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. IMPORTANCE The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were

  18. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  19. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Directory of Open Access Journals (Sweden)

    Julie M O'Connor

    Full Text Available The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta and occasional green turtle (Chelonia mydas over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52% of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%. Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  20. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Science.gov (United States)

    O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  1. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird.

    Directory of Open Access Journals (Sweden)

    Melanie Massaro

    Full Text Available The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura. We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1 a mainland site with exotic predators present (high predation risk, 2 a mainland site with exotic predators experimentally removed (low risk recently and, 3 an off-shore island where exotic predators were never introduced (low risk always. We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp. that evolved with native nest predators (high risk always. Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  2. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird

    Science.gov (United States)

    Massaro, M.; Starling-Windhof, A.; Briskie, J.V.; Martin, T.E.

    2008-01-01

    The introduction of predatory mammals to oceanic islands has led to the extension of many birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthomis melanura). We examined parental behaviour of billbnirds at three woodlands sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behavior of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrates that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  3. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  4. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  5. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  6. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  7. Fish predation by semi-aquatic spiders: a global pattern.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil. Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae, in two species of the superfamily Ctenoidea (family Ctenidae, and in one species of the superfamily Corinnoidea (family Liocranidae. The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences. There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae] predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders. Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  8. Fish predation by semi-aquatic spiders: a global pattern.

    Science.gov (United States)

    Nyffeler, Martin; Pusey, Bradley J

    2014-01-01

    More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  9. Habitat selection responses of parents to offspring predation risk: An experimental test

    Science.gov (United States)

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  10. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Directory of Open Access Journals (Sweden)

    Kathi L Borgmann

    Full Text Available Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  11. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  12. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Science.gov (United States)

    Borgmann, Kathi L; Conway, Courtney J; Morrison, Michael L

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  13. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  14. Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation

    NARCIS (Netherlands)

    Messelink, G.J.; Janssen, A.

    2014-01-01

    The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus

  15. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A. [Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative

  16. Predation by Red Foxes (Vulpes vulpes at an Outdoor Piggery

    Directory of Open Access Journals (Sweden)

    Patricia A. Fleming

    2016-10-01

    Full Text Available Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets. We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”, it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows, and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001 effect of individual sow identification on the weaning rate, but no effect of sow age (parity, suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels

  17. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  18. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  19. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  20. Reconciling actual and perceived rates of predation by domestic cats

    Science.gov (United States)

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  1. Bagworm bags as portable armour against invertebrate predators

    Directory of Open Access Journals (Sweden)

    Shinji Sugiura

    2016-02-01

    Full Text Available Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae. Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  2. Predator facilitation or interference: a game of vipers and owls.

    Science.gov (United States)

    Embar, Keren; Raveh, Ashael; Hoffmann, Ishai; Kotler, Burt P

    2014-04-01

    In predator-prey foraging games, the prey's reaction to one type of predator may either facilitate or hinder the success of another predator. We ask, do different predator species affect each other's patch selection? If the predators facilitate each other, they should prefer to hunt in the same patch; if they interfere, they should prefer to hunt alone. We performed an experiment in a large outdoor vivarium where we presented barn owls (Tyto alba) with a choice of hunting greater Egyptian gerbils (Gerbillus pyramidum) in patches with or without Saharan horned vipers (Cerastes cerastes). Gerbils foraged on feeding trays set under bushes or in the open. We monitored owl location, activity, and hunting attempts, viper activity and ambush site location, and the foraging behavior of the gerbils in bush and open microhabitats. Owls directed more attacks towards patches with vipers, and vipers were more active in the presence of owls. Owls and vipers facilitated each other's hunting through their combined effect on gerbil behavior, especially on full moon nights when vipers are more active. Owls forced gerbils into the bushes where vipers preferred to ambush, while viper presence chased gerbils into the open where they were exposed to owls. Owls and vipers took advantage of their indirect positive effect on each other. In the foraging game context, they improve each other's patch quality and hunting success.

  3. Predation rate by wolves on the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Robert D. Hayes

    2000-04-01

    Full Text Available Large migratory catibou {Rangifer tarandus herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus predation rate (P annual on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2*Dp. In our model we assumed that wolves killed adult caribou at a constant rate (Kdaily, 0.08 caribou wolf1 day1 based on our studies and elsewhere; that wolf density (W doubled to 6 wolves 1000 km2-1 on all seasonal ranges; and that the average area occupied by the Porcupine caribou herd (PCH in eight seasonal life cycle periods (Dp was two times gteater than the area described by the outer boundaries of telemetry data (Ap /1000 km2. Results from our model projected that wolves kill about 7600 adult caribou each year, regardless of herd size. The model estimated that wolves removed 5.8 to 7.4% of adult caribou as the herd declined in the 1990s. Our predation rate model supports the hypothesis of Bergerud that spacing away by caribou is an effective anti-predatory strategy that greatly reduces wolf predation on adult caribou in the spring and summer.

  4. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    Science.gov (United States)

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  5. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  6. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  7. Predator and prey perception in copepods due to hydromechanical signals

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Visser, Andre

    1999-01-01

    of the different components of the fluid disturbance. We use this model to argue that prey perception depends on the absolute magnitude of the fluid velocity generated by the moving prey, while predator perception depends on the magnitude of one or several of the components of the fluid velocity gradients...... (deformation rate, vorticity, acceleration) generated by the predator. On the assumption that hydrodynamic disturbances are perceived through the mechanical bending of sensory setae, we estimate the magnitude of the signal strength due to each of the fluid disturbance components. We then derive equations...... for reaction distances as a function of threshold signal strength and the size and velocity of the prey or predator. We provide a conceptual framework for quantifying threshold signal strengths and, hence, perception distances. The model is illustrated by several examples, and we demonstrate, for example, (1...

  8. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  9. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  10. Animal behaviour and algal camouflage jointly structure predation and selection.

    Science.gov (United States)

    Start, Denon

    2018-05-01

    Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  11. Susceptibility of Select Agents to Predation by Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Riccardo Russo

    2015-12-01

    Full Text Available Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.

  12. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    Science.gov (United States)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  13. Plastic responses of a sessile prey to multiple predators: a field and experimental study.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish and a gape-size-limited (roach predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density.Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild.

  14. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  15. Does predation risk affect mating behavior? An experimental test in dumpling squid (Euprymna tasmanica.

    Directory of Open Access Journals (Sweden)

    Amanda M Franklin

    Full Text Available One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness. The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica.Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis. However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time.Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high.

  16. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  17. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  18. Perceptual advertisement by the prey of stalking or ambushing predators.

    Science.gov (United States)

    Broom, Mark; Ruxton, Graeme D

    2012-12-21

    There has been previous theoretical explorations of the stability of signals by prey that they have detected a stalking or ambush predator, where such perceptual advertisement dissuades the predator from attacking. Here we use a game theoretical model to extend the theory to consider some empirically-motivated complexities: (i) many perceptual advertisement signals appear to have the potential to vary in intensity, (ii) higher intensity signals are likely to be most costly to produce, and (iii) some high-cost signals (such as staring directly at the predator) can only be utilised if the prey is very confident of the existence of a nearby predator (that is, there are reserved or unfakable signals). We demonstrate that these complexities still allow for stable signalling. However, we do not find solutions where prey use a range of signal intensities to signal different degrees of confidence in the proximity of a predator; with prey simply adopting a binary response of not signalling or always signalling at the same fixed level. However this fixed level will not always be the cheapest possible signal, and we predict that prey that require more certainty about proximity of a predator will use higher-cost signals. The availability of reserved signals does not prohibit the stability of signalling based on lower-cost signals, but we also find circumstances where only the reserved signal is used. We discuss the potential to empirically test our model predictions, and to develop theory further to allow perceptual advertisement to be combined with other signalling functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Role of type IV pili in predation by Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Ryan M Chanyi

    Full Text Available Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm.

  20. Behavioral responses associated with a human-mediated predator shelter.

    Directory of Open Access Journals (Sweden)

    Graeme Shannon

    Full Text Available Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana and elk (Cervus elephus in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk, lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.

  1. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  2. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  3. The Truth About the Internet and Online Predators

    CERN Document Server

    Dingwell, Heath; Peterson, Fred L

    2011-01-01

    To help readers avoid and recognize risky behaviors, The Truth About the Internet and Online Predators explains many of the dangers associated with the Internet. The A-to-Z entries detail the social, legal, and personal risks of Internet use, while personal testimonies and question-and-answer sections provide readers with an inside look at common issues online. Entries include:. Bullies and cyberbullying. Characteristics of online predators. Chat rooms and instant messaging. Internet safety. Parental control. Peers and peer pressure. Phishing and pharming. Privacy issues. Social networking Web

  4. Predator localization by sensory hairs in free-swimming arthropods

    Science.gov (United States)

    Takagi, Daisuke; Hartline, Daniel K.

    2016-11-01

    Free-swimming arthropods such as copepods rely on minute deflections of cuticular hairs (or "setae") for local flow sensing that is needed to detect food and escape from predators. We present a simple hydrodynamic model to analyze how the location, speed, and size of an approaching distant predator can be inferred from local flow deformation alone. The model informs suitable strategies of escape from an imminent predatory attack. The sensory capabilities of aquatic arthropods could inspire the design of flow sensors in technological applications.

  5. Gregarious nesting - An anti-predator response in laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch

    2012-01-01

    Gregarious nesting can be defined as a behaviour that occurs when a laying hen (Gallus gallus domesticus) given the choice between an occupied and an unoccupied nest site chooses the occupied nest site. It occurs frequently in flocks of laying hens kept under commercial conditions, contrasting...... the behaviour displayed by feral hens that isolate themselves from the flock during nesting activities. What motivates laying hens to perform gregarious nesting is unknown. One possibility is that gregarious nesting is an anti-predator response to the risk of nest predation emerging from behavioural flexibility...

  6. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  7. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch

    OpenAIRE

    Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.

    2015-01-01

    Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger...

  8. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  9. Natural and human-induced predation on Cape Cormorants at Dyer Island

    NARCIS (Netherlands)

    Voorbergen, A.; Boer, de W.F.; Underhill, L.G.

    2012-01-01

    To develop conservation strategies for vulnerable seabird species that need attention, it is important to know which factors influence their breeding productivity. Predation of eggs and chicks can have large influences on seabird reproduction, especially when human disturbance facilitates predation.

  10. Factors influencing the predation rates of Anisops breddini (Hemiptera: Notonectidae feeding on mosquito larvae

    Directory of Open Access Journals (Sweden)

    R. Weterings

    2014-12-01

    Full Text Available Notonectidae are a family of water bugs that are known to be important predators of mosquito larvae and have great potential in the biological control of vector mosquitoes. An experiment was conducted to assess mosquito larvae predation by Anisops breddini, a species common to Southeast Asia. The predation rates were recorded in context of prey density, predator density, predator size and prey type. Predation rates were strongly affected by prey type and less by prey density and predator density. They ranged between 1.2 prey items per day for pupae of Aedes aegeypti and Armigeres moultoni to 5.9 for Ae. aegypti larvae. Compared with studies on other Notonectidae species, the predation rates appear low, which is probably caused by the relative small size of the specimens used in this study. An. breddini is very common in the region and often found in urban areas; therefore, the species has potential as a biological control agent.

  11. To Learn Is To Grow, I: Aldo Leopold, Predator Eradication, and Games Refuges.

    Science.gov (United States)

    Dolph, Gary E.

    1998-01-01

    Follows the evolution in the thinking of Aldo Leopold, a game manager who was initially an advocate of predator eradication but who came to see predators as playing an important role in normally functioning ecosystems. (DDR)

  12. Red fox predation on breeding ducks in midcontinent North America

    Science.gov (United States)

    Sargeant, Alan B.; Allen, Stephen H.; Eberhardt, Robert T.

    1984-01-01

    Red fox (Vulpes vulpes) predation on nesting ducks was assessed by examining 1,857 adult duck remains found at 1,432 fox rearing dens from 1968 to 1973. Dabbling ducks were much more vulnerable to foxes than diving ducks. Dabbling ducks (1,798) found at dens consisted of 27% blue-winged teals (Anas discors), 23% mallards (A. platyrhynchos), 20% northern pintails (A. acuta), 9% northern shovelers (Spatula clypeata), 8% gadwalls (A. strepera), 3% green-winged teals (A. crecca), 2% American wigeons (A. americana), and 10% unidentified. Relative abundance of individual species and nesting chronology were the most important factors affecting composition of ducks taken by foxes. Seventy-six percent of 1,376 adult dabbling ducks and 40% of 30 adult diving ducks for which sex was determined were hens. In western North Dakota and western South Dakota, 65% of mallard and northern pintail remains found at dens were hens compared with 76% in eastern North Dakota and eastern South Dakota (P fox predation rates on ducks. Predation rate indices ranged from 0.01 duck/den in Iowa to 1.80 ducks/den in eastern North Dakota. Average annual predation rate indices for dabbling ducks in a 3-county intensive study area in eastern North Dakota were closely correlated with May pond numbers (r = 0.874, P foxes than hens of late nesting species. Predation rate indices were expanded to estimate total numbers of ducks taken by fox families during the denning season. Estimated numbers of dabbling ducks taken annually by individual fox families in 2 physiographic regions comprising the intensive study area ranged from 16.1 to 65.9. Predation was highest during wet years and lowest during dry years and averaged lower, but was more variable, in the region where tillage was greatest and wetland water levels were least stable. Predation in the intensive study area averaged 2.97 adult dabbling ducks/ km2/year and represented an estimated average annual loss of 13.5% of hen and 4.5% of drake

  13. Generalization of predator recognition: Velvet geckos display anti-predator behaviours in response to chemicals from non-dangerous elapid snakes

    Directory of Open Access Journals (Sweden)

    Jonathan K. WEBB, Weiguo DU, David PIKE, Richard SHINE

    2010-06-01

    Full Text Available Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays generalised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the behaviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in trials involving unscented cards (controls and cologne-scented cards (pungency controls. In trials involving Cacophis and Hemiaspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min freezing whilst pressed flat against the substrate, respectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running in response to Cacophis (67% or Hemiaspis (63% chemicals. These behaviours were not observed in control or pungency control trials. Our results support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with

  14. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  15. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  16. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  17. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  18. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  19. High trees increase sunflower seed predation by birds in an agricultural landscape of Israel

    Directory of Open Access Journals (Sweden)

    Jessica eSchäckermann

    2014-07-01

    Full Text Available Natural habitats in agricultural landscapes promote agro-ecosystem services but little is known about negative effects (dis-services derived by natural habitats such as crop seed predation. Birds are important seed predators and use high landscape structures to perch and hide. High trees in agricultural landscapes may therefore drive seed predation. We examined if the presence, the distance and the percentages of high trees (tree height >5 m and the percentages of natural habitat surrounding sunflower fields, increased seed predation by birds in Israel. At the field scale, we assessed seed predation across a sample grid of an entire field. At the landscape scale, we assessed seed predation at the field margins and interiors of 20 sunflower fields. Seed predation was estimated as the percentage of removed seeds from sunflower heads. Distances of sample points to the closest high tree and percentage of natural habitat and of high trees in a 1km radius surrounding the fields were measured.We found that seed predation increased with decreasing distance to the closest high tree at the field and landscape scale. At the landscape scale, the percentage of high trees and natural habitat did not increase seed predation. Seed predation in the fields increased by 37 %, with a maximum seed predation of 92 %, when a high tree was available within zero to 50 m to the sunflower fields. If the closest high tree was further away, seed predation was less than 5 %. Sunflower seed predation by birds can be reduced, when avoiding sowing sunflowers within a radius of 50 m to high trees. Farmers should plan to grow crops, not sensitive to bird seed predation, closer to trees to eventually benefit from ecosystem services provided by birds, such as predation of pest insects, while avoiding these locations for growing crops sensitive to bird seed predation. Such management recommendations are directing towards sustainable agricultural landscapes.

  20. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    Science.gov (United States)

    Torralvo, Kelly; Botero-Arias, Robinson; Magnusson, William E

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  1. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    Directory of Open Access Journals (Sweden)

    Kelly Torralvo

    Full Text Available On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger eggs are jaguars (Panthera onca, tegu lizards (Tupinambis teguixim, capuchin monkeys (Sapajus macrocephalus and humans (Homo sapiens. In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  2. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles

    OpenAIRE

    Ferrari, Maud C. O.; Brown, Grant E.; Bortolotti, Gary R.; Chivers, Douglas P.

    2010-01-01

    Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of ‘memory’ in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associ...

  3. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  4. What cues do ungulates use to assess predation risk in dense temperate forests?

    NARCIS (Netherlands)

    Kuijper, Dries P.J.; Verwijmeren, Mart; Churski, Marcin; Zbyryt, Adam; Schmidt, Krzysztof; Jędrzejewska, Bogumiła; Smit, Chris

    2014-01-01

    Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in

  5. Joint evolution of predator body size and prey-size preference.

    NARCIS (Netherlands)

    Troost, T.A.; Kooi, B.W.; Dieckmann, U.

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators' demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for

  6. How avian nest site selection responds to predation risk: Testing an 'adaptive peak hypothesis'

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    1. Nest predation limits avian fitness, so birds should favour nest sites that minimize predation risk. Nevertheless, preferred nest microhabitat features are often uncorrelated with apparent variation in predation rates. 2. This lack of congruence between theory-based expectation and empirical data may arise when birds already occupy ‘adaptive peaks’. If birds nest...

  7. Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river

    DEFF Research Database (Denmark)

    Jepsen, Niels; Pedersen, Susanne; Thorstad, E.

    2000-01-01

    pikeperch and few female pike have adjusted their behaviour to predation on smolts during the smolt run. The smolt predation in this man-made reservoir is higher than in natural lakes, probably due to the changed physical environment and introduced predators, such as pikeperch. The outlet sluice practice...

  8. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  9. Density-dependent interactions in an Arctic char - brown trout system: competition, predation, or both?

    NARCIS (Netherlands)

    Persson, L.; Amundsen, P.A.; de Roos, A.M.; Knudsen, R.; Primicerio, R.; Klemetsen, A.

    2013-01-01

    In the study of mechanisms structuring fish communities, mixed competition-predation interactions where large predators feed on prey fish versus those in which small predators compete with prey fish for a shared prey have been the focus of substantial research. We used a long-term data set from a

  10. Common, but Commonly Overlooked: Red-bellied Woodpeckers as Songbird Nest Predators

    Science.gov (United States)

    Kirsten R. Hazler; Dawn E.W. Drumtra; Matthew R. Marshall; Robert J. Cooper; Paul B. Hamel

    2004-01-01

    Woodpeckers in North America are not widely recognized as nest predators. In this paper, we describe several eyewitness accounts of songbird nest predation by Red-bellied Woodpeckers (Melanerpes carolinus), document evidence that songbirds recognize woodpeckers as nest predators, and show that our observations are consistent with previously published...

  11. Predator removal and nesting waterbird success at San Francisco Bay, California

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.

    2005-01-01

    The efficacy of long-term predator removal in urbanized areas is poorly understood. The impact of predation on ground-nesting waterbirds, as well as predator abundance and composition in predator removal versus non-removal or reference sites were examined at South San Francisco Bay. The success of natural nests and predator activity was monitored using track plates, trip cameras, wire haircatchers and simulated nests. Removal sites had higher nest densities, but lower hatching success than reference sites. Predator composition and abundance were not different at the removal and reference sites for any predator other than feral Cat (Felis domesticus). Striped Skunk (Mephitis mephitis) comprised the majority (84%) of predators removed, yet remained the most abundant predators in removal and reference sites. Urban environments provide supplemental food that may influence skunks and other nest predators to immigrate into vacancies created by predator removal. Based on the findings from this study, predator removal should be applied intensively over a larger geographic area in order to be a viable management strategy for some mammalian species in urbanized areas.

  12. Use of artificial nests to investigate predation on freshwater turtle nests

    Science.gov (United States)

    Michael N. Marchand; John A. Litvaitis; Thomas J. Maier; Richard M. DeGraaf

    2002-01-01

    Habitat fragmentation has raised concerns that populations of generalist predators have increased and are affecting a diverse group of prey. Previous research has included the use of artificial nests to investigate the role of predation on birds that nest on or near the ground. Because predation also is a major factor limiting populations of freshwater turtles, we...

  13. Differences in predators of artificial and real songbirds nests: Evidence of bias in artificial nest studies

    Science.gov (United States)

    Frank R. Thompson; Dirk E. Burhans

    2004-01-01

    In the past two decades, many researchers have used artificial nest to measure relative rates of nest predation. Recent comparisons show that real and artificial nests may not be depredated at the same rate, but no one has examined the mechanisms underlying these patterns. We determined differences in predator-specific predation rates of real and artificial nests. we...

  14. Avoiding the nest : responses of field sparrows to the threat of nest predation

    Science.gov (United States)

    Dirk E. Burhans

    2000-01-01

    Nest predation is a major source of reproductive failure in birds (Ricklefs 1969, Martin 1992). Birds confronted with an enemy near the nest may use behaviors to deter the prospect of nest predation. The benefits of nest defense have been shown for many agressive species (Martin 1992), but smaller birds that cannot deter predators may need to resort to other behaviors...

  15. Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics

    Science.gov (United States)

    Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant

    2011-01-01

    Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...

  16. Effect of downed woody debris on small mammal anti-predator behavior

    Science.gov (United States)

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  17. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Science.gov (United States)

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  18. Along Came a Spider: Using Live Arthropods in a Predator-Prey Activity

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2011-01-01

    We developed a predator-prey activity with eighth-grade students in which they used wolf spiders ("Lycosa carolinensis"), house crickets ("Acheta domestica"), and abiotic factors to address how (1) adaptations in predators and prey shape their interaction and (2) abiotic factors modify the interaction between predators and…

  19. Use of P-32 in Diatraea saccharallis (Fabricius, 1794) (Lepidoptera: Pyralidae) predator's studies

    International Nuclear Information System (INIS)

    Souza-Silva, C.R.; Pacheco, J.M.; Sgrillo, R.B.; Oliveira, A.R.

    1992-01-01

    Eggs and larvae of D. Saccharallis were labelled with P-32 and spread in the sugar cane fields in order to study its predators. Results showed a restricted number of predatory species. Ants were the main predators of larvae and earwigs were the unique eggs predator. (author)

  20. Seasonal and among-stream variation in predator encounter rates for fish prey

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    2013-01-01

    Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predator–prey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...

  1. Identity and relative importance of egg predators of rice leaffolders (Lepidoptera:Pyralidae.)

    NARCIS (Netherlands)

    Kraker, de J.; Huis, van A.; Lenteren, van J.C.; Heong, K.L.; Rabbinge, R.

    2000-01-01

    Field andlaboratory studies on predation of rice leaffolder eggs (i.e., Cnaphalocrocis medinalis (Guenée) and Marasmia patnalis Bradley) were conducted to identify major predator species. Direct observations of predation on field-exposed eggs showed that in two seasons Metioche vittaticollis (Stål)

  2. Predator response to releases of American shad larvae in the Susquehanna River basin

    Science.gov (United States)

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  3. Quantifying predation on Baltic cod early life stages

    DEFF Research Database (Denmark)

    Neumann, Viola; Schaber, Matthias; Eero, Margit

    2017-01-01

    Predation on cod (Gadus morhua) eggs by sprat (Sprattus sprattus) and herring (Clupea harengus) is known to be one of the processes influencing reproductive success of the eastern Baltic cod and has been reported to have contributed to lack of recovery of the stock in the 1990s. This study quanti...

  4. Abundance and distribution of avian and marine mammal predators ...

    African Journals Online (AJOL)

    The principal predators associated with this activity were common dolphins Delphinus capensis and Cape gannets Morus capensis, and their nearshore distribution was associated with sardine and East Coast round herring E. teres. Few clupeoids were encountered along the KwaZulu-Natal continental shelf, although ...

  5. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals

    NARCIS (Netherlands)

    Weber, A.; Van Noordwijk, A.J.

    2002-01-01

    We studied variation in small-scale swimming behavior (SSB) in four clones of Daphnia galeata (water flea) in response to predator infochemicals. The aim of this study was 3-fold. First, we tested for differences in SSB in Daphnia; second, we examined the potential of differences in SSB to explain

  6. Lévy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  7. Aspidoscelis deppii (Black-bellied Racerunner). Predation by Great Egrets

    Science.gov (United States)

    Reynolds, Robert P.; Whatton, James F.; Gebhard, Christina A.

    2014-01-01

    Aspidoscelis deppii) is widely distributed from Veracruz and Michoacan, Mexico to Costa Rica (Köhler et al. 2006. The Amphibians and Reptiles of El Salvador. Krieger Publishing Co., Malabar, Florida. 238 pp.). Neotropical lizards are abundant and common prey to all classes of terrestrial vertebrates, and bird predation of lizards is well known.

  8. The effect of cat Felis catus predation on three breeding ...

    African Journals Online (AJOL)

    Breeding success of Pterodroma macroptera, Procellaria aequinoctialis and Pachyptila vittata salvini in three cat-free and three control areas were used to evaluate the effects of cat Felis catus predation on the avifauna of Marion Island. Breeding success of all three species was significantly higher in the combined cat-free ...

  9. Compensatory growth following transient intraguild predation risk in predatory mites.

    Science.gov (United States)

    Walzer, Andreas; Lepp, Natalia; Schausberger, Peter

    2015-05-01

    Compensatory or catch-up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti-predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch-up growth in the plant-inhabiting predatory mite Phytoseiulus persimilis . Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti-predator behaviour by compensatory growth.

  10. Optimal foraging and predator-prey dynamics III

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Eisner, Jan

    2003-01-01

    Roč. 63, - (2003), s. 269-279 ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Optimal foraging theory * adaptive behavior * predator-prec population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  11. Temporal dynamics of top predators interactions in the Barents Sea.

    Science.gov (United States)

    Durant, Joël M; Skern-Mauritzen, Mette; Krasnov, Yuri V; Nikolaeva, Natalia G; Lindstrøm, Ulf; Dolgov, Andrey

    2014-01-01

    The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.

  12. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  13. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  14. Delayed Post Mortem Predation in Lightning Strike Carcasses ...

    African Journals Online (AJOL)

    Campbell Murn

    An adult giraffe was struck dead by lightning on a game farm outside. Phalaborwa, South Africa in March 2014. Interestingly, delayed post-mortem predation occurred on the carcass, which according to the farm owners was an atypical phenomenon for the region. Delayed post-mortem scavenging on lightning strike ...

  15. How to Protect Children from Internet Predators: A Phenomenological Study

    Science.gov (United States)

    Alexander, Rodney T.

    2012-01-01

    Teenage Internet users are the fastest growing segment in the Internet user population. These teenagers are at risk of sexual assault from Internet predators. This phenomenological study explored teacher and counselors' perceptions of how to prevent this sexual assault. Twenty-five teacher and counselor participants were interviewed. A…

  16. Antelope Predation by Nigerian Forest Baboons: Ecological and Behavioural Correlates.

    Science.gov (United States)

    Sommer, Volker; Lowe, Adriana; Jesus, Gonçalo; Alberts, Nienke; Bouquet, Yaëlle; Inglis, David M; Petersdorf, Megan; van Riel, Eelco; Thompson, James; Ross, Caroline

    2016-01-01

    Baboons are well studied in savannah but less so in more closed habitats. We investigated predation on mammals by olive baboons (Papio anubis) at a geographical and climatic outlier, Gashaka Gumti National Park (Nigeria), the wettest and most forested site so far studied. Despite abundant wildlife, meat eating was rare and selective. Over 16 years, baboons killed 7 bushbuck (Tragelaphus scriptus) and 3 red-flanked duiker (Cephalophus rufilatus), mostly still-lying 'parked' infants. Taking observation time into account, this is 1 predation per group every 3.3 months - far lower than at other sites. Some features of meat eating resemble those elsewhere; predation is opportunistic, adult males monopolize most prey, a targeted killing bite is lacking and begging or active sharing is absent. Carcass owners employ evasive tactics, as meat is often competed over, but satiated owners may tolerate others taking meat. Other features are unusual; this is only the second study site with predation records for bushbuck and the only one for red-flanked duiker. The atypical prey and rarity of eating mammals probably reflects the difficulty of acquiring prey animals when vegetation cover is dense. Our data support the general prediction of the socioecological model that environments shape behavioural patterns, while acknowledging their intraspecific or intrageneric plasticity. © 2016 S. Karger AG, Basel.

  17. Parasitology: Parasite survives predation on its host

    DEFF Research Database (Denmark)

    Ponton, Fleur; Lebarbenchon, Camille; Lefèvre, Thierry

    2006-01-01

    As prisoners in their living habitat, parasites should be vulnerable to destruction by the predators of their hosts. But we show here that the parasitic gordian worm Paragordius tricuspidatus is able to escape not only from its insect host after ingestion by a fish or frog but also from...

  18. Conservation implications when the next predators are known. Chapter 2

    Science.gov (United States)

    Frank R., III Thompson; Christine A. Ribic

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using...

  19. Death and danger at migratory stopovers: Problems with "predation risk"

    NARCIS (Netherlands)

    Lank, D.B.; Ydenberg, R.C.

    2003-01-01

    Dierschke (2003) recently published a paper entitled, ``Predation hazard during migratory stopover: are light or heavy birds under risk?¿¿ He measured the body condition of 11 species of passerine migrants depredated by feral cats and raptors at an offshore stopover site, and used these data to

  20. Using Artificial Nests to Study Nest Predation in Birds

    Science.gov (United States)

    Belthoff, James R.

    2005-01-01

    A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.

  1. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  2. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey modelis discussed. We show thatthere is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  3. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey model is discussed. We show that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  4. Physical and biochemical changes in sludge upon Tubifex tubifex predation

    NARCIS (Netherlands)

    de Valk, S.L.; Khadem, A.F.; Foreman, Christine M.; van Lier, J.B.; de Kreuk, M.K.

    2016-01-01

    Worm predation (WP) on activated sludge leads to increased sludge degradation rates, irrespective of the type of worm used or reactor conditions employed. However, the cause of the increased sludge degradation rates remains unknown. This paper presents a comparative analysis of the physical and

  5. Can Bt maize change the spatial distribution of predator Cycloneda ...

    African Journals Online (AJOL)

    Cultivation of Bt crops is an important tactic in integrated pest management. The effect of Bt maize on arthropod predators needs to be investigated because of the important role of these natural enemies in the absence of target pests. The objective of the present study was to generate information on the distribution model of ...

  6. Predation risk drives social complexity in cooperative breeders

    NARCIS (Netherlands)

    Groenewoud, Frank; Frommen, Joachim Gerhard; Josi, Dario; Tanaka, Hirokazu; Jungwirth, Arne; Taborsky, Michael

    2016-01-01

    Predation risk is a major ecological factor selecting for group living. It is largely ignored, however, as an evolutionary driver of social complexity and cooperative breeding, which is attributed mainly to a combination of habitat saturation and enhanced relatedness levels. Social cichlids neither

  7. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  8. Killing for Girls: Predation Play and Female Empowerment

    Science.gov (United States)

    Bertozzi, Elena

    2012-01-01

    Predation games--games in which the player is actively encouraged and often required to hunt and kill in order to survive--have historically been the purview of male players. Females, though now much more involved in digital games than before, generally play games that stress traditionally feminine values such as socializing with others, shopping,…

  9. Testing for Camouflage Using Virtual Prey and Human "Predators"

    Science.gov (United States)

    Todd, Peter A.

    2009-01-01

    Camouflage is a prevalent feature of the natural world and as such has a ready appeal to students; however, it is a difficult subject to study using real predators and prey. This paper focuses how one fundamental type of camouflage, disruptive colouration (bold markings that break up the outline of the organism), can be tested using paper…

  10. Escape of protists in predator-generated feeding currents

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2002-01-01

    The ciliate Strobilidium sp. and 2 flagellates, Chrysochromulina simplex and Gymnodinium sp., were exposed to predator-generated feeding currents, and their escape responses were quantified using 2- and 3-dimensional video techniques. All 3 studied organisms responded by escaping at a defined dis...

  11. Short Communications Predation on tent tortoise and leopard ...

    African Journals Online (AJOL)

    1991-06-26

    Jun 26, 1991 ... Predation by the pale chanting goshawk Melierax canorus on. Psammobates tentorius and Geoche/one pardalis hatchlings oorrelates with the habitat preference of these tortoise spe- ... into the region covered by the VI scute length of prey items ... pairs of birds occupying territories incorporating KBV and.

  12. First record of predation by the alien invasive freshwater fish ...

    African Journals Online (AJOL)

    First record of predation by the alien invasive freshwater fish Micropterus salmoides L. (Centrarchidae) on migrating estuarine fishes in South Africa. ... Estuarine fish species, Monodactylus falciformis, and two species of the family Mugilidae, Mugil cephalus and Myxus capensis, were the most common fish prey in both size ...

  13. Small nonnative fishes as predators of larval razorback suckers

    Science.gov (United States)

    Carpenter, J.; Mueller, G.A.

    2008-01-01

    The razorback sucker (Xyrauchen texanus), an endangered big-river fish of the Colorado River basin, has demonstrated no sustainable recruitment in 4 decades, despite presence of spawning adults and larvae. Lack of adequate recruitment has been attributed to several factors, including predation by nonnative fishes. Substantial funding and effort has been expended on mechanically removing nonnative game fishes, typically targeting large predators. As a result, abundance of larger predators has declined, but the abundance of small nonnative fishes has increased in some areas. We conducted laboratory experiments to determine if small nonnative fishes would consume larval razorback suckers. We tested adults of three small species (threadfin shad, Dorosoma petenense; red shiner, Cyprinella lutrensis; fathead minnow, Pimephales promelas) and juveniles of six larger species (common carp, Cyprinus carpio; yellow bullhead, Ameiurus natalis; channel catfish, Ictalurus punctatus; rainbow trout, Oncorhynchus mykiss; green sunfish, Lepomis cyanellus; bluegill, L. macrochirus). These nonnative fishes span a broad ecological range and are abundant within the historical range of the razorback sucker. All nine species fed on larval razorback suckers (total length, 9-16 mm). Our results suggest that predation by small nonnative fishes could be responsible for limiting recovery of this endangered species.

  14. Bioeconomic modelling of a prey predator system using differential ...

    African Journals Online (AJOL)

    Continuous type gestational delay of predators is incorporated and its effect on the dynamical behavior of the model system is analyzed. Through considering delay as a bifurcation parameter, the occurrence of Hopf bifurcation of the proposed model system with positive economic profit is shown in the neighborhood of the ...

  15. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  16. Diel predator activity drives a dynamic landscape of fear

    Science.gov (United States)

    Kohl, Michel T.; Stahler, Daniel R.; Metz, Matthew C.; Forester, James D.; Kauffman, Matthew J.; Varley, Nathan; White, P.J.; Smith, Douglas W.; MacNulty, Daniel R.

    2017-01-01

    A "landscape of fear" (LOF) is a map that describes continuous spatial variation in an animal's perception of predation risk. The relief on this map reflects, for example, places that an animal avoids to minimize risk. Although the LOF concept is a potential unifying theme in ecology that is often invoked to explain the ecological and conservation significance of fear, quantified examples of a LOF over large spatial scales are lacking as is knowledge about the daily dynamics of a LOF. Despite theory and data to the contrary, investigators often assume, implicitly or explicitly, that a LOF is a static consequence of a predator's mere presence. We tested the prediction that a LOF in a large-scale, free-living system is a highly-dynamic map with "peaks" and "valleys" that alternate across the diel (24-hour) cycle in response to daily lulls in predator activity. We did so with extensive data from the case study of Yellowstone elk (Cervus elaphus) and wolves (Canis lupus) that was the original basis for the LOF concept. We quantified the elk LOF, defined here as spatial allocation of time away from risky places and times, across nearly 1000-km2 of northern Yellowstone National Park and found that it fluctuated with the crepuscular activity pattern of wolves, enabling elk to use risky places during wolf downtimes. This may help explain evidence that wolf predation risk has no effect on elk stress levels, body condition, pregnancy, or herbivory. The ability of free-living animals to adaptively allocate habitat use across periods of high and low predator activity within the diel cycle is an underappreciated aspect of animal behavior that helps explain why strong antipredator responses may trigger weak ecological effects, and why a LOF may have less conceptual and practical importance than direct killing.

  17. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  18. Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.; van Donk, E.; Huisman, J.

    2014-01-01

    Theory predicts that intraguild predation leads to different community dynamics than the trophic cascades of a linear food chain. However, experimental comparisons of these two food-web modules are rare. Mixotrophic plankton species combine photoautotrophic and heterotrophic nutrition by grazing

  19. Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology?

    Science.gov (United States)

    Teplitsky, Céline; Plénet, Sandrine; Joly, Pierre

    2005-09-01

    Inducible defences have long been considered as a polyphenism opposing defended and undefended morphs. However, in nature, preys are exposed to various levels of predation risk and scale their investment in defence to actual predation risk. Still, among the traits that are involved in the defence, some are specific to one predator type while others act as a more generalised defence. The existence of defence costs could prevent an individual investing in all these traits simultaneously. In this study, we investigate the impact of an increasing level of predator density (stickleback, Gasterosteus aculeatus) on the expression of morphological inducible defences in tadpoles of Rana dalmatina. In this species, investment in tail length and tail muscle is a stickleback-specific response while increased tail fin depth is a more general defence. As expected, we found a relationship between investment in defence and level of risk through the responses of tail fin depth and tail length. We also found an exponential increase of defence cost, notably expressed by convex decrease of growth and developmental rates. We found a relative independence of investment in the different traits that compose the defence, revealing a high potential for fine tuning the expression of defended phenotypes with respect to local ecological conditions.

  20. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    Science.gov (United States)

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

  1. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  2. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  3. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  4. Bacterial control of cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-08-01

    Full Text Available of biological control appears to be direct contact. • Ndlela, L. L. et al. (2016) ‘An overview of cyanobacterial bloom occurrences and research in Africa over the last decade’, Harmful Algae, 60 • Gumbo, J.R. et al. (2010) The Isolation and identification... of Predatory Bacteria from a Microcystis algal Bloom.. African Journal of Biotechnology, 9. *Special acknowledgement goes to the National Research foundation for funding this presentation Bacterial control of cyanobacteria Luyanda...

  5. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation.

    Science.gov (United States)

    Kuru, Erkin; Lambert, Carey; Rittichier, Jonathan; Till, Rob; Ducret, Adrien; Derouaux, Adeline; Gray, Joe; Biboy, Jacob; Vollmer, Waldemar; VanNieuwenhze, Michael; Brun, Yves V; Sockett, R Elizabeth

    2017-12-01

    Modification of essential bacterial peptidoglycan (PG)-containing cell walls can lead to antibiotic resistance; for example, β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG-labelling approach utilizing timed pulses of multiple fluorescent D-amino acids, we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall, L,D-transpeptidase Bd -mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion, and a zonal mode of predator elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division.

  6. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  7. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  8. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    Science.gov (United States)

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  9. A meta-analysis of predation risk effects on pollinator behaviour.

    Directory of Open Access Journals (Sweden)

    Gustavo Q Romero

    Full Text Available Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36% and time spent on flowers (by 51% by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters nor on pollinator lifestyle (social vs. solitary. However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres, suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  10. A meta-analysis of predation risk effects on pollinator behaviour.

    Science.gov (United States)

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  11. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    Science.gov (United States)

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  12. Lake Pend Oreille Predation Research, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Bassista, Thomas

    2004-02-01

    During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time

  13. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    Directory of Open Access Journals (Sweden)

    Yoel E Stuart

    Full Text Available Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  14. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  15. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates.

    Science.gov (United States)

    Kittle, Andrew M; Fryxell, John M; Desy, Glenn E; Hamr, Joe

    2008-08-01

    Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale

  16. Predator-induced changes of female mating preferences: innate and experiential effects

    Directory of Open Access Journals (Sweden)

    Indy Jeane

    2011-07-01

    Full Text Available Abstract Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana. Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus. In contrast, predator experienced (wild-caught females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection, and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.

  17. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.

    Science.gov (United States)

    Aukema, Brian H; Raffa, Kenneth F

    2002-12-01

    We used a laboratory assay to partition the effects of predation and intraspecific competition on the establishment, mating success, and brood development of an endophytic herbivore. We selected a system in which the same predator feeds both exophytically and endophytically on the same prey, to evaluate the role of herbivore feeding guild on predator numerical and functional responses. The bark beetle, Ips pini (Coleoptera: Scolytidae) reproduces within the stems of conifers. Males establish mating chambers under the bark, produce aggregation pheromones, and are subsequently joined by females that construct ovipositional galleries. Thanasimus dubius (Coleoptera: Cleridae) adults prey on adults alighting on the bark surface. T. dubius females then oviposit at the bark beetles' entrance sites, and their larvae prey on developing bark beetle larvae within the tree. We imposed a controlled 3×3 factorial design of prey and predator adult densities on red pine logs. Both predation and competition decreased I. pini reproduction. However, the per capita effect of predation was greater than competition, with one adult T. dubius reducing herbivore reproduction by an equivalent amount as four to five competing males and their harems. Increased densities of adult T. dubius on the plant surface reduced the number of prey captured per predator. Total predation on adults and larvae was similar. However, adult T. dubius on the plant surface ate approximately 18-35 times more I. pini per day than did their endophytic larvae. Within the plant, cannibalism among T. dubius, low herbivore densities, limited feeding times, and presumably the complex gallery architecture of I. pini reduced the number of predator progeny. The progeny of I. pini showed even sex ratios in the absence of predators, but were female biased when predators were present. We quantified a relatively narrow set of predator and prey densities that can generate replacement rates greater than one for this predator

  18. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    Science.gov (United States)

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  19. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    Science.gov (United States)

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  20. Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor

    Directory of Open Access Journals (Sweden)

    Vladimir V. Aleoshin

    2016-08-01

    Full Text Available Heterotrophic lineages of Heterokonta (or stramenopiles, in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heteretrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms, and has likely occured in the ochrophyte ancestor.

  1. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  2. Patients With Dementia Are Easy Victims to Predators

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2017-10-01

    Full Text Available Patients with dementia, especially Alzheimer’s disease and particularly those in early stages, are susceptible to become victims of predators: Their agnosia (see Case 1 prevents them from detecting and accurately interpreting subtle signals that otherwise would have alerted them that they are about to fall for a scam. Furthermore, their judgment is impaired very early in the disease process, often before other symptoms manifest themselves and usually before a diagnosis is made. Patients with early stages of dementia are therefore prime targets for unscrupulous predators, and it behooves caregivers and health care professionals to ensure the integrity of these patients. In this case study, we discuss how a man with mild Alzheimer’s disease was about to fall for a scam were it not for his vigilant wife. We discuss what went wrong in the patient/caregiver interaction and how the catastrophic ending could have been avoided or averted.

  3. Egg mortality: predation and hydrography in the central Baltic

    DEFF Research Database (Denmark)

    Voss, R.; Hinrichsen, H.-H.; Stepputtis, D.

    2011-01-01

    during the egg phase to be of critical importance. Two years of extensive field investigations in the Bornholm Basin, central Baltic Sea, were undertaken. In 2002, a typical stagnation situation characterized by low salinity and poor oxygen conditions was investigated, and in early 2003, a major inflow...... of North Sea water completely changed the hydrographic conditions by increasing salinity and oxygen content, thereby altering ecological conditions. The goal was to quantify egg mortality caused by predation and hydrography, and to compare these estimates with independent estimates based on cohort analysis....... Results indicated high intra-annual variability in egg mortality. Cod and sprat egg mortality responded differently to the major Baltic inflow: mortality related to hydrographic conditions increased for sprat and decreased for cod. On the other hand, predation mortality during peak spawning decreased...

  4. Female in-nest chatter song increases predation.

    Science.gov (United States)

    Kleindorfer, Sonia; Evans, Christine; Mahr, Katharina

    2016-01-01

    Female song is an ancestral trait in songbirds, yet extant females generally sing less than males. Here, we examine sex differences in the predation cost of singing behaviour. The superb fairy-wren (Malurus cyaneus) is a Southern Hemisphere songbird; males and females provision the brood and produce solo song year-round. Both sexes had higher song rate during the fertile period and lower song rate during incubation and chick feeding. Females were more likely than males to sing close to or inside the nest. For this reason, female but not male song rate predicted egg and nestling predation. This study identifies a high fitness cost of song when a parent bird attends offspring inside a nest and explains gender differences in singing when there are gender differences in parental care. © 2016 The Author(s).

  5. Multiple-predators-based capture process on complex networks

    International Nuclear Information System (INIS)

    Sharafat, Rajput Ramiz; Pu Cunlai; Li Jie; Chen Rongbin; Xu Zhongqi

    2017-01-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter α . We derive the distribution of the lamb’s lifetime and the expected lifetime 〈 T 〉. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. Moreover, we study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than on large-degree nodes to prolong the lifetime of the lamb. The dense or homogeneous network structures are against the survival of the lamb. We also discuss how to improve the capture efficiency in our model. (paper)

  6. Wolf predation risk associated with white-tailed deer movements

    Science.gov (United States)

    Nelson, M.E.; Mech, L.D.

    1991-01-01

    The survival of 159 yearling and adult deer (Odocoileus virginianus) was monitored by telemetry during 282 spring and 219 fall individual migrations to winter deeryards in northeastern Minnesota. A disproportionate number of deer were killed by wolves (Canis lupus) during fall migration relative to the short time they spent migrating, but not during spring migration. Predation was also significantly greater for male and female yearlings and adult females outside deeryards during winter. Survival of 79 yearlings dispersing from natal ranges was high (1.00). It appears that changing climatic conditions combined with unfamiliar terrain and undetermined factors predispose migratory deer to wolf predation during fall. These findings support an earlier hypothesis that winter yarding is an antipredator strategy.

  7. Sea urchins, their predators and prey in SW Portugal

    Directory of Open Access Journals (Sweden)

    Nuno Mamede

    2014-06-01

    Full Text Available Sea urchins play a key role structuring benthic communities of rocky shores through an intense herbivory. The most abundant sea urchin species on shallow rocky subtidal habitats of the SW coast of Portugal is Paracentrotus lividus (Echinodermata: Echinoidea. It is considered a key species in various locations throughout its geographical distribution by affecting the structure of macroalgae communities and may cause the abrupt transformation of habitats dominated by foliose algae to habitats dominated by encrusting algae - the urchin barrens. The removal of P. lividus predators by recreational and commercial fishing is considered a major cause of this phenomenon by affecting the trophic relationships between predators, sea urchins and algae communities. Marine protected areas (MPAs usually lead to the recovery of important predator species that control sea urchin populations and restore habitats dominated by foliose macroalgae. Therefore, MPAs provide a good opportunity to test cascading effects and indirect impacts of fishing at the ecosystem level. The ecological role of P. lividus was studied on rocky subtidal habitats of the SW coast of Portugal (Alentejo considering three trophic levels: population of P. lividus, their predators (fish and shellfish and their prey (macroalgae communities. Several studies were conducted: (1 a non-destructive observational study on the abundance and distribution patterns of P. lividus, their predators and preys, comparing areas with different protection; (2 a manipulative in situ study with cages to assess the role of P. lividus as an herbivore and the influence of predation; (3 a descriptive study of P. lividus predators based on underwater filming; (4 and a study of human perception on these trophic relationships and other issues on sea urchin ecology and fishery, based on surveys made to fishermen and divers. Subtidal studies were performed with SCUBA diving at 3-12 m deep. Results indicate that in the

  8. Grey seal predation on forage fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Eero, Aro; Neuenfeldt, Stefan; Aho, Teija

    The mean annual growth rate of grey seal stock in the Baltic has been on average 7.5% annually during the last decade. In 2010, a total of approximately 23 100 grey seals were counted. The increase in stock size was highest in the northern areas and the predation pressure of grey seals on clupeoids...... has increased accordingly. The diet of grey seal in the Baltic consists of ca. 20 fish species. The most abundant prey items in the Baltic proper are Baltic herring, sprat, and cod, and in the Bothnian Sea and Bothnian Bay Baltic herring, Coregonus sp., Baltic salmon, and sea trout. An adult seal...... consumes on average round 4.5 kg fish per day, of which 55% are clupeoids in the Baltic Main basin and 70% in the Bothnian Sea and Bothnian Bay. According to acoustic estimates, predator– prey distribution patterns, migration patterns, and multispecies analysis (SMS), the predation effect of grey seals...

  9. Nutrient regulation in a predator, the wolf spider Pardosa prativaga

    DEFF Research Database (Denmark)

    Jensen, Kim; Mayntz, David; Toft, Søren

    2011-01-01

    Nutrient balancing is well known in herbivores and omnivores, but has only recently been demonstrated in predators. To test how a predator might regulate nutrients when the prey varies in nutrient composition, we restricted juvenile Pardosa prativaga wolf spiders to diets of one of six fruit fly......, Drosophila melanogaster, prey types varying in lipid:protein composition during their second instar. We collected all fly remnants to estimate food and nutrient intake over each meal. The spiders adjusted their capture rate and nutrient extraction in response to prey mass and nutrient composition...... irrespective of energy intake. Intake was initially regulated to a constant lipid plus protein mass, but later spiders fed on prey with high proportions of protein increased consumption relative to spiders fed on other prey types. This pattern indicates that the spiders were prepared to overconsume vast...

  10. Bifurcation Behavior Analysis in a Predator-Prey Model

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2016-01-01

    Full Text Available A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors (transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation, which can deduce a standard parameter controlled relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study of the dynamic complexity of ecosystems.

  11. Reduced foraging in the presence of predator cues by the Black Spiny-tailed Iguana, Ctenosaura similis (Sauria: Iguanidae

    Directory of Open Access Journals (Sweden)

    Vincent R. Farallo

    2010-12-01

    Full Text Available The presence of a predator may have direct and indirect effects on the behavior of the prey. Although altered behavior may help prey avoid predators, it also can have a potential impact on critical activities such as foraging. Predator-prey interactions are routinely studied in laboratory-based experiments owing to theperceived difficulties of conducting such experiments in natural settings. We conducted an experimental study under field conditions in Palo Verde National Park in northwestern Costa Rica to assess behavioral responses of Black Spiny-tailed Iguanas (Ctenosaurasimilis to the presence of predators and predator cues. Free-roaming iguanas were offered mango in designated areas in the presence of a predator (Boa constrictor, a predator cue (B. constrictor feces, and a control (no predator or predator cue. Results indicate that iguanas reduced their foraging efforts in the presence of both a predator and its cue.

  12. Ultraviolet reflection enhances the risk of predation in a vertebrate

    Directory of Open Access Journals (Sweden)

    Ricarda MODARRESSIE, Ingolf P. RICK, Theo C. M. BAKKER

    2013-04-01

    Full Text Available Many animals are sensitive to ultraviolet light and also possess UV-reflective regions on their body surface. Individuals reflecting UV have been shown to be preferred during social interactions such as mate choice or shoaling decisions. However, whether those body UV-reflections enhance also the conspicuousness to UV-sensitive predators and therefore entail costs for its bearer is less well documented. Two size-matched three-spined sticklebacks Gasterosteus aculeatus, one enclosed in a UV-transmitting (UV+ and another in a UV-blocking (UV- chamber, were simultaneously presented to individual brown trout Salmo trutta. “yearlings”. Brown trout of this age are sensitive to the UV part of the electromagnetic spectrum and are natural predators of three-spined sticklebacks. The stickleback that was attacked first as well as the subsequent number of attacks was recorded. Sticklebacks enclosed in the UV-transmitting chamber were attacked first significantly more often compared to sticklebacks enclosed in the UV-blocking chamber. Control experiments using neutral density filters revealed that this was more likely due to UV having an influence on hue perception rather than brightness discrimination. The difference in attack probability corresponded to the difference in chromatic contrasts between sticklebacks and the experimental background calculated for both the UV+ and UV- conditions in a physiological model of trout colour vision. UV reflections seem to be costly by enhancing the risk of predation due to an increased conspicuousness of prey. This is the first study in a vertebrate, to our knowledge, demonstrating direct predation risk due to UV wavelengths [Current Zoology 59 (2: 151-159, 2013].

  13. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    OpenAIRE

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor...

  14. Freshwater copepods and rotifers: predators and their prey

    Czech Academy of Sciences Publication Activity Database

    Brandl, Zdeněk

    2005-01-01

    Roč. 546, č. 1 (2005), s. 475-489 ISSN 0018-8158. [Rotifera /10./. Illmitz, 07.06.2003-13.06.2003] R&D Projects: GA AV ČR(CZ) KSK6005114 Institutional research plan: CEZ:AV0Z60170517 Keywords : rotifers * cyclopoid copepod s * calanoid copepod s * feeding * predation Subject RIV: EG - Zoology Impact factor: 0.978, year: 2005

  15. Testing mechanistic explanations for mammalian predator responses to habitat edges

    Czech Academy of Sciences Publication Activity Database

    Svobodová, J.; Kreisinger, J.; Šálek, Martin; Koubová, M.; Albrecht, Tomáš

    2011-01-01

    Roč. 57, č. 3 (2011), s. 467-474 ISSN 1612-4642 R&D Projects: GA MŠk 1P05OC078; GA ČR GA524/06/0687; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z60870520 Keywords : Edge effect * Habitat fragmentation * Mesopredators * Nest predation * Prey distribution Subject RIV: EH - Ecology, Behaviour Impact factor: 1.306, year: 2011

  16. Habitat stability, predation risk and ‘memory syndromes’

    OpenAIRE

    S. Dalesman; A. Rendle; S.R.X. Dall

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonst...

  17. Autumn predation of northern red oak seed crops

    Science.gov (United States)

    Kim C. Steiner

    1995-01-01

    Production and autumn predation of northern red oak acorns was measured over four years in five Pennsylvania stands dominated by this species. Mean annual production was 41,779/acre, of which an average of 7.9% was destroyed by insects or decay following insect attack, and an average of 38.6% was destroyed or removed by vertebrates. White-tailed deer appeared to be the...

  18. Predator confusion is sufficient to evolve swarming behaviour

    OpenAIRE

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary mo...

  19. Do top predators cue on sound production by mesopelagic prey?

    Science.gov (United States)

    Baumann-Pickering, S.; Checkley, D. M., Jr.; Demer, D. A.

    2016-02-01

    Deep-scattering layer (DSL) organisms, comprising a variety of mesopelagic fishes, and squids, siphonophores, crustaceans, and other invertebrates, are preferred prey for numerous large marine predators, e.g. cetaceans, seabirds, and fishes. Some of the DSL species migrate from depth during daylight to feed near the surface at night, transitioning during dusk and dawn. We investigated if any DSL organisms create sound, particularly during the crepuscular periods. Over several nights in summer 2015, underwater sound was recorded in the San Diego Trough using a high-frequency acoustic recording package (HARP, 10 Hz to 100 kHz), suspended from a drifting surface float. Acoustic backscatter from the DSL was monitored nearby using a calibrated multiple-frequency (38, 70, 120, and 200 kHz) split-beam echosounder (Simrad EK60) on a small boat. DSL organisms produced sound, between 300 and 1000 Hz, and the received levels were highest when the animals migrated past the recorder during ascent and descent. The DSL are globally present, so the observed acoustic phenomenon, if also ubiquitous, has wide-reaching implications. Sound travels farther than light or chemicals and thus can be sensed at greater distances by predators, prey, and mates. If sound is a characteristic feature of pelagic ecosystems, it likely plays a role in predator-prey relationships and overall ecosystem dynamics. Our new finding inspires numerous questions such as: Which, how, and why have DSL organisms evolved to create sound, for what do they use it and under what circumstances? Is sound production by DSL organisms truly ubiquitous, or does it depend on the local environment and species composition? How may sound production and perception be adapted to a changing environment? Do predators react to changes in sound? Can sound be used to quantify the composition of mixed-species assemblages, component densities and abundances, and hence be used in stock assessment or predictive modeling?

  20. Bagworm bags as portable armour against invertebrate predators

    OpenAIRE

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a po...

  1. Golden Eagle predation on experimental Sandhill and Whooping Cranes

    Science.gov (United States)

    Ellis, D.H.; Clegg, K.R.; Lewis, J.C.; Spaulding, E.

    1999-01-01

    There are very few published records of Golden Eagles preying upon cranes, especially in North America. During our experiments to lead cranes on migration behind motorized craft in the western United States, we experienced 15 attacks (four fatal) and believe many more attacks would have occurred (and more would have been fatal) without human intervention. We recognize eagle predation as an important risk to cranes especially during migration.

  2. Anti-piracy in a sea of predation

    DEFF Research Database (Denmark)

    Bruvik Westberg, Andreas

    2016-01-01

    a considerable impact on the decline in piracy. Moreover, naval–coastal engagement and cooperation run deeper than is commonly perceived. While grievances against illegal fishing are widespread, examination of the fishing sector reveals a significant amount of predation committed by local stakeholders....... Competition for fishing sector rents, particularly over distribution of licences, occurs on the local, regional and national levels. Bonds between some pirates, smugglers and officials threaten coastal community development and undermine their security. This study concludes that Somalia's maritime predatory...

  3. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  4. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  5. Lévy Walks Suboptimal under Predation Risk

    Science.gov (United States)

    Abe, Masato S.; Shimada, Masakazu

    2015-01-01

    A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687

  6. Predator evasion by white-tailed deer fawns

    Science.gov (United States)

    Grovenburg, Troy W.; Monteith, Kevin L.; Klaver, Robert W.; Jenks, Jonathan A.

    2012-01-01

    Despite their importance for understanding predator–prey interactions, factors that affect predator evasion behaviours of offspring of large ungulates are poorly understood. Our objective was to characterize the influence of selection and availability of escape cover and maternal presence on predator evasion by white-tailed deer, Odocoileus virginianus, fawns in the northern Great Plains, U.S.A. We observed 45 coyote, Canis latrans, chases of fawns, and we participated in 83 human chases of fawns during 2007–2009, of which, 19 and 42 chases, respectively, ended with capture of the fawn. Evasive techniques used by fawns were similar for human and coyote chases. Likelihood of a white-tailed deer fawn escaping capture, however, was influenced by deer group size and a number of antipredator behaviours, including aggressive defence by females, initial habitat and selection of escape cover, all of which were modified by the presence of parturient females. At the initiation of a chase, fawns in grasslands were more likely to escape, whereas fawns in forested cover, cultivated land or wheat were more likely to be captured by a coyote or human. Fawns fleeing to wetlands and grasslands also were less likely to be captured compared with those choosing forested cover, wheat and cultivated land. Increased probability of capture was associated with greater distance to wetland and grassland habitats and decreased distance to wheat. Use of wetland habitat as a successful antipredator strategy highlights the need for a greater understanding of the importance of habitat complexity in predator avoidance.

  7. Sport hunting, predator control and conservation of large carnivores.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.

  8. The adaptive value of primate color vision for predator detection.

    Science.gov (United States)

    Pessoa, Daniel Marques Almeida; Maia, Rafael; de Albuquerque Ajuz, Rafael Cavalcanti; De Moraes, Pedro Zurvaino Palmeira Melo Rosa; Spyrides, Maria Helena Constantino; Pessoa, Valdir Filgueiras

    2014-08-01

    The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively. © 2014 Wiley Periodicals, Inc.

  9. Diets of introduced predators using stable isotopes and stomach contents

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  10. Predator size and the suitability of a common prey.

    Science.gov (United States)

    Erickson, Kristin S; Morse, D H

    1997-02-01

     Although a predator's mass should influence the suitability of its prey, this subject has received little direct attention. We studied the capture and processing of an abundant syrphid fly Toxomerus marginatus (c. 4 mg) by 0.6- to 40-mg juvenile crab spiders Misumena vatia (Thomisidae) to determine how profitability, relative profitability (profitability/predator mass), overall gain in mass, and relative gain in mass differed with predator mass, and whether foraging changed concurrently. In multi-prey experiments, the smallest successful spiders (0.6-3.0 mg) extracted less mass from flies, and did so more slowly, than large spiders. This gain was proportionately similar to that of 10- to 40-mg spiders with access to many Toxomerus. However, many small spiders failed to capture flies. When we gave spiders only a single Toxomerus, the smallest ones again extracted mass more slowly than the large ones and increased in mass less than the large ones, but increased in mass proportionately more than large ones. Relative gain in mass from a single prey decreased with increasing spider mass. Spiders larger than 10 mg all extracted similar amounts of mass from a single Toxomerus at similar rates, but varied in time spent between captures. Thus, Toxomerus changes with spider mass from a large, hard-to-capture bonanza to a small, easy-to-capture item of low per capita value. However, Toxomerus is common enough that large spiders can capture it en masse, thereby compensating for its decline in per capita value.

  11. Wolf predation on caribou calves in Denali National Park, Alaska

    Science.gov (United States)

    Adams, Layne G.; Dale, B.; Mech, L. David; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.

    1995-01-01

    During 1987-1991, 29 to 45 radio-collared caribou cows were monitored daily during calving each year and their calves were radio-collared (n = 147 calves) to investigate calf production and survival. We determined characteristics of wolf predation on caribou calves and, utilizing information from a companion wolf study, evaluated the role of spacing by caribou cows in minimizing wolf predation on neonates (calves wolf abundance doubled. On average, 49% of the neonates died, ranging from 30% in 1987 to 71% in 1991. Overall, wolves killed 22% of the neonates produced and were the most important mortality agent. Wolves preyed on calves primarily during six days following the peak of calving and usually killed calves five to 15 days old. The mortality rate for neonates was strongly inversely correlated with average birthweight. Neonatal losses to wolves were also correlated with birthweight but not spring wolf density or mean calving elevation. Caribou concentrated on a calving ground when spring snow conditions allowed and adjusted their distribution on the calving ground depending on snow conditions and wolf distribution and abundance. Even though the wolf population doubled, the exposure of caribou calves to wolf predation did not increase, when spacing by caribou at the wolf pack territory scale was accounted for.

  12. Dynamics of a delayed intraguild predation model with harvesting

    Science.gov (United States)

    Collera, Juancho A.; Balilo, Aldrin T.

    2018-03-01

    In [1], a delayed three-species intraguild predation (IGP) model was considered. This particular tri-trophic community module includes a predator and its prey which share a common basal resource for their sustenance [3]. Here, it is assumed that in the absence of predation, the growth of the basal resource follows the delayed logistic equation. Without delay time, the IGP model in [1] reduces to the system considered in [7] where it was shown that IGP may induce chaos even if the functional responses are linear. Meanwhile, in [2] the delayed IGP model in [1] was generalized to include harvesting. Under the assumption that the basal resource has some economic value, a constant harvesting term on the basal resource was incorporated. However, both models in [1] and [2] use the delay time as the main parameter. In this research, we studied the delayed IGP model in [1] with the addition of linear harvesting term on each of the three species. The dynamical behavior of this system is examined using the harvesting rates as main parameter. In particular, we give conditions on the existence, stability, and bifurcations of equilibrium solutions of this system. This allows us to better understand the effects of harvesting in terms of the survival or extinction of one or more species in our system. Numerical simulations are carried out to illustrate our results. In fact, we show that the chaotic behavior in [7] unfolds when the harvesting rate parameter is varied.

  13. Microhabitat choice in island lizards enhances camouflage against avian predators.

    Science.gov (United States)

    Marshall, Kate L A; Philpot, Kate E; Stevens, Martin

    2016-01-25

    Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island. This suggests that P. erhardii make background choices that heighten individual-specific concealment. In achromatic camouflage, this effect was more evident in females and was less distinct in an island population with lower predation risk. This suggests that behavioural enhancement of camouflage may be more important in females than in sexually competing males and related to predation risk. However, in an arena experiment, lizards did not choose the background that improved camouflage, most likely due to the artificial conditions. Overall, our results provide evidence that behavioural preferences for substrates can enhance individual camouflage of lizards in natural microhabitats, and that such adaptations may be sexually dimorphic and dependent on local environments. This research emphasizes the importance of considering links between ecology, behaviour, and appearance in studies of intraspecific colour variation and local adaptation.

  14. Quasi-planktonic behavior of foraging top marine predators

    Science.gov (United States)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  15. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks

    NARCIS (Netherlands)

    Bell, A. M.; Dingemanse, N. J.; Hankison, S. J.; Langenhof, M. B. W.; Rollins, K.

    Predation has an important influence on life history traits in many organisms, especially when they are young. When cues of trout were present, juvenile sticklebacks grew faster. The increase in body size as a result of exposure to cues of predators was adaptive because larger individuals were more

  16. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    Science.gov (United States)

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  17. Prey life-history and bioenergetic responses across a predation gradient.

    Science.gov (United States)

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  18. Landscape features influence postrelease predation on endangered black-footed ferrets

    Science.gov (United States)

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  19. Generalist predator, cyclic voles and cavity nests: testing the alternative prey hypothesis.

    Science.gov (United States)

    Pöysä, Hannu; Jalava, Kaisa; Paasivaara, Antti

    2016-12-01

    The alternative prey hypothesis (APH) states that when the density of the main prey declines, generalist predators switch to alternative prey and vice versa, meaning that predation pressure on the alternative prey should be negatively correlated with the density of the main prey. We tested the APH in a system comprising one generalist predator (pine marten, Martes martes), cyclic main prey (microtine voles, Microtus agrestis and Myodes glareolus) and alternative prey (cavity nests of common goldeneye, Bucephala clangula); pine marten is an important predator of both voles and common goldeneye nests. Specifically, we studied whether annual predation rate of real common goldeneye nests and experimental nests is negatively associated with fluctuation in the density of voles in four study areas in southern Finland in 2000-2011. Both vole density and nest predation rate varied considerably between years in all study areas. However, we did not find support for the hypothesis that vole dynamics indirectly affects predation rate of cavity nests in the way predicted by the APH. On the contrary, the probability of predation increased with vole spring abundance for both real and experimental nests. Furthermore, a crash in vole abundance from previous autumn to spring did not increase the probability of predation of real nests, although it increased that of experimental nests. We suggest that learned predation by pine marten individuals, coupled with efficient search image for cavities, overrides possible indirect positive effects of high vole density on the alternative prey in our study system.

  20. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    Science.gov (United States)

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Interaction between two predator mites of Tetranychus urticae koch (Acariformes: Tetranychidae) in laboratory

    International Nuclear Information System (INIS)

    Arguelles R, Angelica; Plazas, Natali; Bustos R, Alexander; Cantor R, Fernando; Rodriguez, Daniel; Hilarion, Alejandra

    2013-01-01

    Tetranychus urticae (Acari: Tetranychidae) is an important pest of ornamental crops. A species of predatory mite used for its control is Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). This research proposes the use of joint releases of the two cited predators for the control of the pest. Several situations leading to interaction were evaluated: high density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the consumption of preys by the predator with higher density. On the other hand, when the consumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behavior when t. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  2. Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator

    International Nuclear Information System (INIS)

    Liu Xianning; Chen Lansun

    2003-01-01

    This paper develops the Holling type II Lotka-Volterra predator-prey system, which may inherently oscillate, by introducing periodic constant impulsive immigration of predator. Condition for the system to be extinct is given and permanence condition is established via the method of comparison involving multiple Liapunov functions. Further influences of the impulsive perturbations on the inherent oscillation are studied numerically, which shows that with the increasing of the amount of the immigration, the system experiences process of quasi-periodic oscillating→cycles→periodic doubling cascade→chaos→periodic halfing cascade→cycles, which is characterized by (1) quasi-periodic oscillating, (2) period doubling, (3) period halfing, (4) non-unique dynamics, meaning that several attractors coexist

  3. Turbidity interferes with foraging success of visual but not chemosensory predators.

    Science.gov (United States)

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  4. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    Science.gov (United States)

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Reduction in predator defense in the presence of neighbors in a colonial fish.

    Directory of Open Access Journals (Sweden)

    Franziska C Schädelin

    Full Text Available Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or

  6. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  7. Modelling exposure of mammalian predators to anticoagulant rodenticide

    Directory of Open Access Journals (Sweden)

    Christopher John Topping

    2016-12-01

    Full Text Available Anticoagulant rodenticides (AR are a widespread and effective method of rodent control but there is concern about the impact these may have on non-target organisms, in particular secondary poisoning of rodent predators. Incidence and concentration of AR in free-living predators in Denmark is very high. We postulate that this is caused by widespread exposure due to widespread use of AR in Denmark in and around buildings. To investigate this theory a spatio-temporal model of AR use and mammalian predator distribution was created. This model was supported by data from an experimental study of mice as vectors of AR, and was used to evaluate likely impacts of restrictions imposed on AR use in Denmark banning the use of rodenticides for plant protection in woodlands and tree-crops. The model uses input based on frequencies and timings of baiting for rodent control for urban, rural and woodland locations and creates an exposure map based on spatio-temporal modelling of movement of mice-vectored AR (based on Apodemus flavicollis. Simulated predator territories are super-imposed over this exposure map to create an exposure index. Predictions from the model concur with field studies of AR prevalence both before and after the change in AR use. In most cases incidence of exposure to AR is predicted to be greater than 90%, although cessation of use in woodlots and Christmas tree plantations should reduce mean exposure concentrations. Model results suggest that the driver of high AR incidence in non-target small mammal predators is likely to be the pattern of use and not the distance AR is vectored. Reducing baiting frequency by 75% had different effects depending on the landscape simulated, but having a maximum of 12% reduction in exposure incidence, and in one landscape a maximum reduction of <2%. We discuss sources of uncertainty in the model and directions for future development of predictive models for environmental impact assessment of rodenticides. The

  8. Does predation by grey seals (Halichoerus grypus) affect Bothnian Sea herring stock estimates?

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Östman, Örjan; Nielsen, Anders

    2012-01-01

    when accounting for seal predation, this did not change the conclusions about drivers of herring dynamics. Accounting for grey seal predation is important for abundance estimates of old herring, but currently not for SSB estimates, given the great uncertainties in the standard assessment. The grey seal...... fivefold since 1985. Its main prey, herring (Clupea harrengus), is a key species for fisheries in the region. Yet, current stock assessments assume constant natural mortality, leading to a risk of biased stock estimates with increasing predation and misleading analyses of herring population dynamics. We...... estimated grey seal predation from diet data and reanalysed herring spawning stock biomass (SSB) during 1973–2009. Accounting for predation increased the herring SSB 16% (maximum 19%), but this was within the confidence intervals when ignoring predation. Although mortality in older individuals was inflated...

  9. Nest predation and reproductive traits in small passerines: a comparative approach

    Science.gov (United States)

    Yanes, Miguel; Suárez, Francisco

    Nest predation can be a decisive factor in the evolution of bird reproduction strategies. This paper compares several reproductive traits in small passerines on the Iberian Peninsula (n=31) with the probability of daily nest survival from predation. We consider the phylogenetic relationships between species by means of an analysis according to three models of evolutionary change: Brownian, punctuational and GRAFEN'S arbitrary. In this comparative evolutionary scenario, clutch size, egg volume and incubation period appear not to change in relation to nest predation, while the nestling phase duration is a positively-related parameter to daily nest survival from predation. These results are consistent for all models of evolutionary change. Thus, from the perspective of nest predation, the nestling period is the most important evolutionary parameter in small passerines. A hypothetical influence of nest predation on passerine clutch and egg size should only be regarded as an indirect factor, linked to the relationship between these parameters and the duration of the nestling period.

  10. Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala

    Science.gov (United States)

    Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.

    2018-02-01

    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.

  11. Can variation in risk of nest predation explain altitudinal migration in tropical birds?

    Science.gov (United States)

    Boyle, W Alice

    2008-03-01

    Migration is among the best studied of animal behaviors, yet few empirical studies have tested hypotheses explaining the ultimate causes of these cyclical annual movements. Fretwell's (1980) hypothesis predicts that if nest predation explains why many tropical birds migrate uphill to breed, then predation risk must be negatively associated with elevation. Data from 385 artificial nests spanning 2,740 m of elevation on the Atlantic slope of Costa Rica show an overall decline in predation with increasing elevation. However, nest predation risk was highest at intermediate elevations (500-650 m), not at lowest elevations. The proportion of nests depredated by different types of predators differed among elevations. These results imply that over half of the altitudinal migrant bird species in this region migrate to safer breeding areas than their non-breeding areas, suggesting that variation in nest predation risk could be an important benefit of uphill migrations of many species.

  12. Effect of woodland patch size on rodent seed predation in a fragmented landscape

    Directory of Open Access Journals (Sweden)

    J. Loman

    2007-05-01

    Full Text Available Predation on large woody plant seeds; chestnuts, acorns and sloe kernels, was studied in deciduous forests of two size classes: small woodlots (<1 ha and large woods (at least 25 ha in southern Sweden. Seeds used for the study were artificially distributed on the forest ground and seed predation measured as seed removal. Predation rate was similar in both types of woods. However, rodent density was higher in small woodlots and a correction for differences in rodent density showed that predation rate per individual rodent was higher in the large woods. This suggests that the small woodlots (including the border zone and their adjacent fields have more rodent food per area unit. A small woodlot cannot be considered a representative sample of a large continuous forest, even if the habitats appear similar. There was a strong effect of rodent density on seed predation rate. This suggests that rodents are major seed predators in this habitat.

  13. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  15. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  17. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  19. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  20. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  1. Human disturbances and predation on artificial ground nests across an urban gradient

    OpenAIRE

    Bocz, R.; Szép, D.; Witz, D.; Ronczyk, L.; Kurucz, K.; Purger, J. J.

    2017-01-01

    In our study with artificial nests we observed that the absence of ground nesting bird species in the city centre and in residential districts was due to disturbance by humans and domestic animals (dogs and cats) rather than to predation. Furthermore, predation pressure was higher in the outskirts of the city due to the greater number of natural predators. Our results suggest that planning and creating undisturbed areas could increase the chances of ground nesting birds settling and breeding ...

  2. Matching allele dynamics and coevolution in a minimal predator-prey replicator model

    International Nuclear Information System (INIS)

    Sardanyes, Josep; Sole, Ricard V.

    2008-01-01

    A minimal Lotka-Volterra type predator-prey model describing coevolutionary traits among entities with a strength of interaction influenced by a pair of haploid diallelic loci is studied with a deterministic time continuous model. We show a Hopf bifurcation governing the transition from evolutionary stasis to periodic Red Queen dynamics. If predator genotypes differ in their predation efficiency the more efficient genotype asymptotically achieves lower stationary concentrations

  3. Fine-scale substrate use by a small sit-and-wait predator

    OpenAIRE

    Douglass H. Morse

    2006-01-01

    Substrate choice is one of the most important decisions that sit-and-wait predators must make. Not only may it dictate the prey available but also the cover for the predator which may conceal it from prey or its own predators. However, while on a particular substrate the behavior and use of that substrate may vary widely. When naïve, newly emerged crab spiderlings Misumena vatia (Thomisidae) occupied flowering goldenrod Solidago canadensis, their behavior differed markedly on inflorescences w...

  4. Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits

    OpenAIRE

    Jonathan K. Webb; David A. Pike; Richard Shine

    2009-01-01

    Many prey species are faced with multiple predators that differ in the degree of danger posed. The threat-sensitive predator avoidance hypothesis predicts that prey should assess the degree of threat posed by different predators and match their behavior according to current levels of risk. To test this prediction, we compared the behavioral responses of nocturnal velvet geckos, Oedura lesueurii, to chemicals from 2 snakes that pose different threats: the dangerous broad-headed snake Hoploceph...

  5. Predicting population level risk effects of predation from the responses of individuals

    OpenAIRE

    Macleod, Colin D.; Macleod, Ross; Learmonth, Jennifer A.; Cresswell, Will; Pierce, G.J.

    2014-01-01

    Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose ...

  6. Insect Seed Predators in Erythrina falcata (Fabaceae): Identification of Predatory Species and Ecological Consequences of Asynchronous Flowering.

    Science.gov (United States)

    Pereira, C M; Moura, M O; Da-Silva, P R

    2014-06-01

    Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.

  7. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  8. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  9. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  10. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  11. Predators of the destructive sea urchin Strongylocentrotus droebachiensis on the Norwegian coast

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Fagerli, Camilla With; Norderhaug, Kjell Magnus

    2014-01-01

    on recently settled S. droebachiensis in Laboratory experiments. Tethering experiments in kelp forest and on barren ground study sites in the area where sea urchin populations are collapsing confirmed predation by some of the predators tested in laboratory experiments. The edible crab Cancer pagurus...... was the most efficient sea urchin predator, and it was more abundant at kelp forest sites than on barren grounds. Stocks of C. pagurus have increased dramatically in central Norway since the 1990s, and predation by C. pagurus may contribute to the decline in sea urchin densities, allowing kelp recovery...... and conferring resilience of the new kelp forest state....

  12. Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity

    DEFF Research Database (Denmark)

    Caparroy, P.; Thygesen, Uffe Høgsbro; Visser, Andre

    2000-01-01

    of being captured. By combining the attack success model with previously published hydrodynamic models of predator and prey perception, we examine how predator foraging behaviour and prey perceptive ability affect the size spectra of encountered and captured copepod prey. We examine food size spectra of (i......) a rheotactic cruising predator, (ii) a suspension-feeding hovering copepod and (iii) a larval fish. For rheotactic predators such as carnivorous copepods, a central assumption of the model is that attack is triggered by prey escape reaction, which in turn depends on the deformation rate of the fluid created...

  13. Pesticide impacts on predator-prey interactions across two levels of organisation

    DEFF Research Database (Denmark)

    Rasmussen, Jes Jessen; Nørum, Ulrik; Rygaard Jerris, Morten

    2013-01-01

    In this study, we aimed to evaluate the effects of a short pulse exposure of the pyrethroid lambdacyhalothrin (LC) on the predator and anti-predator behaviour of the same species; Gammartts pulex. Predator behaviour, at the level of the individual, was studied in indoor microcosms using video...... through the subsequent 60 min of exposure. The anti-predator behaviour of G. pulex (drift suppression in response to the presence of brown trout) was studied in outdoor stream channels during a 90 min pulse exposure to LC (7.4 or 79.5 ng L-1) with, or without, brown trout. Based on survival curves for L...

  14. Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators

    Science.gov (United States)

    Stevens, Martin

    2014-01-01

    Visual signals are often under conflicting selection to be hidden from predators while being conspicuous to mates and rivals. Here, we investigated whether 3 different island populations of Aegean wall lizards (Podarcis erhardii) with variable coloration among diverse island habitats exhibit simultaneous camouflage and sexual signals. We examined whether signals appear better tuned to conspecific vision as opposed to that of avian predators, and whether background-matching camouflage and sexual signals are partitioned to specific body regions. This could facilitate both covert sexual signaling and camouflage according to the viewing perspectives of predators and conspecifics. We found that lizards typically appeared twice as conspicuous to conspecifics than to avian predators against the same visual background, largely due to lizards’ enhanced sensitivity to ultraviolet, suggesting that P. erhardii signals are tuned to conspecific vision to reduce detection by predators. Males were more conspicuous than females to both predators and conspecifics. In 2 populations, male backs were relatively more camouflaged to predators compared to signaling flanks, whereas in females, exposed and concealed surfaces were camouflaged to predators and generally did not differ in background matching. These findings indicate that lizard coloration evolves under the competing demands of natural and sexual selection to promote signals that are visible to conspecifics while being less perceptible to avian predators. They also elucidate how interactions between natural and sexual selection influence signal detectability and partitioning to different body regions, highlighting the importance of considering receiver vision, viewing perspectives, and signaling environments in studies of signal evolution. PMID:25419083

  15. Mobbing calls signal predator category in a kin group-living bird species

    Science.gov (United States)

    Griesser, Michael

    2009-01-01

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls. PMID:19474047

  16. Local habitat disturbance increases bird nest predation in the Brazilian Atlantic rainforest

    Directory of Open Access Journals (Sweden)

    Rodrigues, V. B.

    2018-01-01

    Full Text Available We evaluated the effect of anthropogenic disturbance on nest predation in Brazilian Atlantic forest. Artificial nests were distributed in fragments with distinct degrees of anthropogenic disturbance. We found a higher proportion of egg predation on the ground and in the fragments classified as ‘high’ and ‘medium’ disturbance than in the fragments classified as ‘low’ degree of disturbance. The higher egg predation is probably linked to low structural complexity of vegetation and high accessibility of these areas to opportunistic predators. We suggest that forest fragments with high vegetation complexity and low human activity should be preserved in order to maintain the biodiversity of bird species.

  17. Coping with shifting nest predation refuges by European reed Warblers Acrocephalus scirpaceus.

    Directory of Open Access Journals (Sweden)

    Lucyna Halupka

    Full Text Available Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable.

  18. Relationship between snow depth and gray wolf predation on white-tailed deer

    Science.gov (United States)

    Nelson, M.E.; Mech, L.D.

    1986-01-01

    Survival of 203 yearling and adult white-tailed deer (Odocoileus virginianus) was monitored for 23,441 deer days from January through April 1975-85 in northeastern Minnesota. Gray wolf (Canis lupus) predation was the primary mortality cause, and from year to year during this period, the mean predation rate ranged from 0.00 to 0.29. The sum of weekly snow depths/month explained 51% of the variation in annual wolf predation rate, with the highest predation during the deepest snow.

  19. Mobbing calls signal predator category in a kin group-living bird species.

    Science.gov (United States)

    Griesser, Michael

    2009-08-22

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls.

  20. Immune-related effects from predation risk in Neotropical blue-black grassquits (Volatinia jacarina).

    Science.gov (United States)

    Caetano, João V O; Maia, Maya R; Manica, Lilian T; Macedo, Regina H

    2014-11-01

    Predation is a major force shaping natural history traits of birds because of their vulnerability during nesting and higher visibility during diurnal activities. For most birds in the Neotropics, predation is the major cause of nest failure due to the region's high diversity and abundance of predators. The blue-black grassquit (Volatinia jacarina), similarly to other small passerines in the savanna region of central Brazil, suffers extremely high rates of nest predation. Additionally, males may be particularly vulnerable to predators since they are very conspicuous when executing courtship displays. We assessed some of the non-lethal costs of predation risk on this species by comparing physiological and morphological parameters of birds exposed to predator vocalizations with that of control subjects exposed to non-predator vocalizations. Birds exposed to the predator vocalizations exhibited an immune-related reaction (changes in their H/L ratio), but no changes were observed in other biological parameters measured. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sexual Selection and Predator Avoidance in the Acoustic Lepidoptera: Discriminating Females Take Fewer Risks

    National Research Council Canada - National Science Library

    Greenfield, Michael D; Greig, Emma

    2003-01-01

    .... Normally, these risks are considered from the perspective of male advertisement signaling, and studies in various animal species have documented increased predation associated with broadcasting...

  2. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  3. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  4. Development of a systemwide predator control program: Stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River basin (Northern Squawfish Management Program). Section 1: Implementation; Annual report 1995

    International Nuclear Information System (INIS)

    Young, F.R.

    1997-04-01

    The authors report their results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that if predator-sized northern squawfish were exploited at a 10--20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%

  5. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators

  6. A potential predator-prey interaction of an American badger and an Agassiz's desert tortoise with a review of badger predation on turtles

    Science.gov (United States)

    Smith, Amanda L.; Puffer, Shellie R.; Lovich, Jeffrey E.; Tennant, Laura A.; Arundel, Terry; Vamstad, Michael S.; Brundige, Kathleen D.

    2016-01-01

    The federally threatened Agassiz’s desert tortoise (Gopherus agassizii) was listed under the U.S. Endangered Species Act in 1990, but thus far, recovery efforts have been unsuccessful (U.S. Fish and Wildlife Service [USFWS] 2015). Predation has been identified as a contributing factor to declining G. agassizii populations range-wide (e.g., Esque et al. 2010, Lovich et al. 2014). Understanding and managing for predator-prey dynamics is thus an important part of the recovery and conservation of this threatened species (USFWS 2011). Desert tortoises have a host of predators at all stages of their life cycle. Over 20 species of birds, mammals, and reptiles have been recorded as known or suspected predators (Woodbury and Hardy 1948, Luckenbach 1982, Ernst and Lovich 2009). American badgers (Taxidea taxus, family: Mustelidae) are confirmed excavators of desert tortoise nests (Turner and Berry 1984). They are also suspected predators of adult desert tortoises, a possibility which has been presented in some studies but without empirical verification (Luckenbach 1982, Turner and Berry 1984). Active mostly at night, badgers are solitary, secretive predators (Lindzey 1978, 1982; Armitage 2004) that are extremely difficult to observe in predatory encounters. Recently, strong circumstantial evidence presented by Emblidge et al. (2015) suggests that badgers do prey on adult Agassiz’s desert tortoises based on observations of more than two dozen dead tortoises in the Western Mojave Desert of California. In this note, we present another case of potential badger predation on a large adult desert tortoise in the Sonoran Desert of California. Collectively, these recent two cases potentially indicate that badger predation may be more common and widespread than previously thought. In addition, we review the worldwide literature of badger predation on turtles in general and summarize reported badger observations in Joshua Tree National Park, where our observation occurred, over a

  7. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.

    Science.gov (United States)

    Baker, Christopher M; Gordon, Ascelin; Bode, Michael

    2017-04-01

    Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.

  8. Do herbivores eavesdrop on ant chemical communication to avoid predation?

    Directory of Open Access Journals (Sweden)

    David J Gonthier

    Full Text Available Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis, I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis, exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min. revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus, ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants.

  9. Early Triassic marine biotic recovery: the predators' perspective.

    Science.gov (United States)

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  10. Early Triassic marine biotic recovery: the predators' perspective.

    Directory of Open Access Journals (Sweden)

    Torsten M Scheyer

    Full Text Available Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became

  11. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  12. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  13. Grizzly bear predation rates on caribou calves in northeastern Alaska

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1997-01-01

    During June 1993 and 1994, 11 radiocollared and 7 unmarked grizzly bears (Ursus arctos) were monitored visually (observation) from fixed-wing aircraft to document predation on calves of the Porcupine Caribou (Rangifer tarandus) Herd (PCH) in northeastern Alaska. Twenty-six (72%) grizzly bear observations were completed (???60 min) successfully (median duration = 180 min; ??95% CI = 136-181 min; range = 67-189 min) and 10 were discontinued (duration ???24 min) due to disturbance to the bear, or unfavorable weather conditions. Of the 26 successfully completed observations, 15 (58%) included predatory activity (encounter) directed at caribou calves and 8 (31%) included kills. Of 32 encounters, 9 resulted in kills, for a success rate of 28%. The median duration of encounters was 1 minute (??95% CI = 1-2 min; range = 1-6 min; n = 32;), and the median time spent at a kill was 14 minutes (??95% CI = 9-23 min; range = 6-56 min; n = 9). Sows with young (n = 4) killed more frequently (75%; P = 0.0178) than barren sows, boars, and consorting pairs combined (17%; n = 18). Estimated kill rate was highest for sows with young (6.3 kills/bear/day; n = 4), followed by barren sows (4.6 kills/bear/day; n = 5), boars (1.9 kills/bear/day; n = 5), and, finally, consorting pairs (1.0 kills/bear/day; n = 8). Estimated kill rate obtained via conventional radiotracking point surveys (4.8 kills/bear/day) was higher than that obtained via concurrent bear observations (3.1 kills/bear/day). Our research provides baseline estimates of predation rates by grizzly bears on caribou calves that will enhance the capability of wildlife professionals in managing populations of both predators and their prey.

  14. Predation risk affects reproductive physiology and demography of elk.

    Science.gov (United States)

    Creel, Scott; Christianson, David; Liley, Stewart; Winnie, John A

    2007-02-16

    Elk (Cervus elaphus) in the Greater Yellowstone Ecosystem alter patterns of aggregation, habitat selection, vigilance, and foraging in the presence of wolves (Canis lupus). Antipredator behaviors like these can reduce predation risk but are also likely to carry costs. Data from five elk populations studied for 16 site years showed that progesterone concentrations (from 1489 fecal samples) declined with the ratio of elk to wolves. In turn, progesterone concentrations were a good predictor of calf recruitment in the subsequent year. Together, these data suggest that wolves indirectly affect the reproductive physiology and the demography of elk through the costs of antipredator behavior.

  15. Forage fish, their fisheries, and their predators: who drives whom?

    DEFF Research Database (Denmark)

    Engelhard, Georg H.; Peck, Myron A.; Rindorf, Anna

    2014-01-01

    exist, as in the North Sea. Sandeel appears to be the most important prey forage fish. Seabirds are most dependent on forage fish, due to specialized diet and distributional constraints (breeding colonies). Other than fisheries, key predators of forage fish are a few piscivorous fish species including...... saithe, whiting, mackerel, and horse-mackerel, exploited in turn by fisheries; seabirds and seals have a more modest impact. Size-based foodwebmodelling suggests that reducing fishing mortality may not necessarily lead to larger stocks of piscivorous fish, especially if their early life stages compete...

  16. Temperature and prey capture: opposite relationships in two predator taxa

    DEFF Research Database (Denmark)

    Kruse, Peter Dalgas; Toft, Søren; Sunderland, Keith

    2008-01-01

    to catch swiftly moving prey. 2. The first experiment examined the spontaneous locomotor activity of the predators and of fruit flies at different temperatures (5, 10, 15, 20, 25, and 30 °C) and light conditions (light, dark). A second experiment examined the effect of temperature and light...... different prey groups within the set of potential prey at different times of the day or at different seasons. The ability of many carabid beetles to forage at low temperatures may have nutritional benefits and increases the diversity of interactions in terrestrial food webs....

  17. Female in-nest chatter song increases predation

    OpenAIRE

    Kleindorfer, Sonia; Evans, Christine; Mahr, Katharina

    2016-01-01

    Female song is an ancestral trait in songbirds, yet extant females generally sing less than males. Here, we examine sex differences in the predation cost of singing behaviour. The superb fairy-wren (Malurus cyaneus) is a Southern Hemisphere songbird; males and females provision the brood and produce solo song year-round. Both sexes had higher song rate during the fertile period and lower song rate during incubation and chick feeding. Females were more likely than males to sing close to or ins...

  18. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  19. Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host.

    Science.gov (United States)

    Coors, Anja; De Meester, Luc

    2011-01-01

    Host-parasite interactions are shaped by the co-evolutionary arms race of parasite virulence, transmission success as well as host resistance and recovery. The virulence and fitness of parasites may depend on host condition, which is mediated, for instance, by host energy constraints. Here, we investigated to what extent stress imposed by predation threat and environmental pollutants influences host-parasite interactions. We challenged the crustacean host Daphnia magna with the sterilizing bacterial endoparasite Pasteuria ramosa and simultaneously exposed the host to fish kairomones, the pesticide carbaryl or both stressors. While parasite virulence, measured as impact on host mortality and sterilization, increased markedly after short-term pesticide exposure, it was not influenced by predation threat. Parasite fitness, measured in terms of produced transmission stages, decreased both in fish and pesticide treatments. This effect was much stronger under predation threat than carbaryl exposure, and was attributable to reduced somatic growth of the host, presumably resulting in fewer resources for parasite development. While the indirect impact of both stressors on spore loads provides evidence for host condition-dependent parasite fitness, the finding of increased virulence only under carbaryl exposure indicates a stronger physiological impact of the neurotoxic chemical compared with the effect of a non-toxic fish kairomone.

  20. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based