WorldWideScience

Sample records for nonnatural bioactive derivatives

  1. Bioactive Terpenes from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elissawy

    2015-04-01

    Full Text Available Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  2. Bioactive terpenes from marine-derived fungi.

    Science.gov (United States)

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  3. Bioactive behaviour of sol-gel derived antibacterial bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Bellantone, M.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    A new four-component bioactive glass containing Ag{sub 2}O was produced via the sol-gel process. This system releases Ag{sup +} which is a powerful antibacterial agent. The work reported herein is a comparative study of the bioactivity levels of conventional bioactive glass and of the new antibacterial glass. On the basis of XRD patterns, FTIR spectra, and ICP data, the bioactive behaviour of the two biomaterials is nearly equivalent. (orig.)

  4. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  5. [Bio-active substances derived from marine microorganisms].

    Science.gov (United States)

    Liu, Quanyong; Hu, Jiangchun; Xue, Delin; Ma, Chengxin; Wang, Shujin

    2002-07-01

    Marine microorganisms, which are taxonomically diverse and genetically special, have powerful potential in producing novel bio-active substances. This article summarized research progress in this respect. The results showed that marine bacteria which are main marine microorganism flora can produce rich kinds of bio-active substances and that even though marine actinomycetes and marine fungi are not as many as marine bacteria in species and quantity, they should be paid no less attention about their bio-active substances. Besides, present research are limited to those marine microorganisms which are easily cultured. One of the future research trends will be focused on bio-active substances derived from non-culturable marine microorganisms.

  6. NOVEL BIOACTIVE COMPOUNDS FROM MANGROVE DERIVED ACTINOMYCETES

    Directory of Open Access Journals (Sweden)

    Kumari Amrita

    2012-09-01

    Full Text Available Mangrove is most productive and unexplored ecosystem that approximately covers one fourth of world coastline with high diversity of thriving organism. Recently the rate of isolation of novel bioactive compounds from microorganism living in mangrove forest has tremendously increased which is reflected in significant hasten for exploration of mangrove actinomycetes. Actinomycetes are group of bacteria which are extremely interesting as active producers of many primary and secondary metabolites. Many survey reports has depicted that the biologically active compounds which have been obtained so far from microbes, 45 percent are produced by actinomycetes, 38 percent by fungi and 17 percent by unicellular bacteria. Actinomycetes from mangrove environment provide diverse and are potential rich source of antibiotics, anticancer, antifungal and antiviral agent, enzyme and enzyme inhibitor. Mangrove actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

  7. Functional significance of bioactive peptides derived from soybean.

    Science.gov (United States)

    Singh, Brij Pal; Vij, Shilpa; Hati, Subrota

    2014-04-01

    Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes.

  8. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  9. Synthesis and bioactivity of novel phthalimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yi Hua Zhang; Hui Ji; Yan Ping Chen; Si Xun Peng

    2008-01-01

    Novel phthalimide derivatives (4a, 4b and 6a-6e) were designed as hybrids of thalidomide and NO-ASA, and their chemicalsynthesis and in vitro biological activities were presented. The preliminary results showed that compared to thalidomide 4a and 4bexhibited enhanced activities against ECV304 and HepG2 cells, whereas 6c was more potent against HepG2 cells.

  10. Bioactive dihydronaphthoquinone derivatives from Fusarium solani.

    Science.gov (United States)

    Takemoto, Kenji; Kamisuki, Shinji; Chia, Pei Thing; Kuriyama, Isoko; Mizushina, Yoshiyuki; Sugawara, Fumio

    2014-09-26

    New dihydronaphthoquinone derivatives, karuquinone A (1), karuquinone B (2), and karuquinone C (3), were isolated from a fungal culture broth of Fusarium solani. The structures were determined by interpretation of spectroscopic data (1D/2D NMR, MS, and IR). Three known compounds, javanicin (4), 2,3-dihydro-5-hydroxy-8-methoxy-2,4-dimethylnaphtho[1,2-b]furan-6,9-dione (5), and 5-hydroxydihydrofusarubin C (6), were also isolated. The six isolated compounds were tested for cytotoxicity against three human cancer cell lines and a human umbilical vein endothelial cell (HUVEC) line. Of these, karuquinone A exhibited the strongest cytotoxic activity. Karuquinone B did not affect the proliferation of the cancer cell lines but did inhibit the proliferation of HUVEC. Additionally, we demonstrated that karuquinone A induces apoptosis in cancer cells through the generation of reactive oxygen species (ROS).

  11. Bioactive Quinic Acid Derivatives from Ageratina adenophora

    Directory of Open Access Journals (Sweden)

    Jian-Wen Tan

    2013-11-01

    Full Text Available A novel quinic acid derivative, 5-O-trans-o-coumaroylquinic acid methyl ester (1, together with three known ones, chlorogenic acid methyl ester (2, macranthoin F (3 and macranthoin G (4, were isolated from the aerial parts of the invasive plant Ageratina adenophora (Spreng.. The structure of new compound 1 was elucidated on the basis of extensive spectroscopic analysis, including 1D- and 2D-NMR techniques. Compounds 2–4 were isolated from plant A. adenophora for the first time. All the compounds showed in vitro antibacterial activity toward five assayed bacterial strains, especially 3 and 4, which showed in vitro antibacterial activity against Salmonella enterica with MIC values of 7.4 and 14.7 μM, respectively. Compound 1 was further found to display in vitro anti-fungal activity against spore germination of Magnaporthe grisea with an IC50 value 542.3 µM. These four compounds were also tested for their antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl radical.

  12. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules

    KAUST Repository

    Chawla, Mohit

    2015-09-21

    Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenosine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenosine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanosine when paired to cytosine. To stress further the H-bonding pairing in the modified adenosine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.

  13. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties.

  14. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  15. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  16. Protein interactions with nanoporous sol-gel derived bioactive glasses.

    Science.gov (United States)

    Lin, Sen; Van den Bergh, Wouter; Baker, Simon; Jones, Julian R

    2011-10-01

    Sol-gel derived bioactive glasses are excellent candidates for bone regenerative implant materials as they bond with bone, stimulate bone growth and degrade in the body. Their interactions with proteins are critical to understanding their performance after implantation. This study focuses on the interactions between fibrinogen and sol-gel glass particles of the 70S30C (70 mol.% SiO(2), 30 mol.% CaO composition). Sol-gel silica and melt-derived Bioglass® were also used for comparison. Fibrinogen penetration into the nanoporous glasses was observed by live tracking the fluorescent-labelled fibrinogen with confocal microscopy. The effect of pore size on protein penetration was investigated. Nanoporous networks with modal pore diameters larger than 6 nm were accessible to fibrinogen. When the modal nanopore diameter was decreased to 2 nm or less, the penetration of fibrinogen was inhibited. The surface properties of the glasses, which can be modulated by media pH, glass composition and final stabilisation temperature in the sol-gel process, have effects on fibrinogen adsorption via long-range Coulombic forces before the adsorption and via short-range interactions such as hydrogen bonding after the adsorption.

  17. Application of a newly identified and characterized 18-o-acyltransferase in chemoenzymatic synthesis of selected natural and nonnatural bioactive derivatives of phoslactomycins.

    Science.gov (United States)

    Ghatge, Mohini S; Palaniappan, Nadaraj; Alhamadsheh, Ma'moun M; DiBari, Jessica; Reynolds, Kevin A

    2009-06-01

    Phoslactomycins (PLMs) and related leustroducsins (LSNs) have been isolated from a variety of bacteria based on antifungal, anticancer, and other biological assays. Streptomyces sp. strain HK 803 produces five PLM analogs (PLM A and PLMs C to F) in which the C-18 hydroxyl substituent is esterified with a range of branched, short-alkyl-chain carboxylic acids. The proposed pathway intermediate, PLM G, in which the hydroxyl residue is not esterified has not been observed at any significant level in fermentation, and the only route to this potentially useful intermediate has been an enzymatic deacylation of other PLMs and LSNs. We report that deletion of plmS(3) from the PLM biosynthetic cluster gives rise to a mutant which accumulates the PLM G intermediate. The 921-bp plmS(3) open reading frame was cloned and expressed as an N-terminally polyhistidine-tagged protein in Escherichia coli and shown to be an 18-O acyltransferase, catalyzing conversion of PLM G to PLM A, PLM C, and PLM E using isobutyryl coenzyme A (CoA), 3-methylbutyryl-CoA, and cyclohexylcarbonyl-CoA, respectively. The efficiency of this process (k(cat) of 28 +/- 3 min(-1) and K(m) of 88 +/- 16 microM) represents a one-step chemoenzymatic alternative to a multistep synthetic process for selective chemical esterification of the C-18 hydroxy residue of PLM G. PlmS(3) was shown to catalyze esterification of PLM G with CoA and N-acetylcysteamine thioesters of various saturated, unsaturated, and aromatic carboxylic acids and thus also to provide an efficient chemoenzymatic route to new PLM analogs.

  18. Marine algae-derived bioactive peptides for human nutrition and health.

    Science.gov (United States)

    Fan, Xiaodan; Bai, Lu; Zhu, Liang; Yang, Li; Zhang, Xuewu

    2014-09-24

    Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.

  19. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review.

    Science.gov (United States)

    Liu, Ming; Wang, Yunpu; Liu, Yuhuan; Ruan, Roger

    2016-11-01

    There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An index for characterization of natural and non-natural amino acids for peptidomimetics.

    Directory of Open Access Journals (Sweden)

    Guizhao Liang

    Full Text Available Bioactive peptides and peptidomimetics play a pivotal role in the regulation of many biological processes such as cellular apoptosis, host defense, and biomineralization. In this work, we develop a novel structural matrix, Index of Natural and Non-natural Amino Acids (NNAAIndex, to systematically characterize a total of 155 physiochemical properties of 22 natural and 593 non-natural amino acids, followed by clustering the structural matrix into 6 representative property patterns including geometric characteristics, H-bond, connectivity, accessible surface area, integy moments index, and volume and shape. As a proof-of-principle, the NNAAIndex, combined with partial least squares regression or linear discriminant analysis, is used to develop different QSAR models for the design of new peptidomimetics using three different peptide datasets, i.e., 48 bitter-tasting dipeptides, 58 angiotensin-converting enzyme inhibitors, and 20 inorganic-binding peptides. A comparative analysis with other QSAR techniques demonstrates that the NNAAIndex method offers a stable and predictive modeling technique for in silico large-scale design of natural and non-natural peptides with desirable bioactivities for a wide range of applications.

  1. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update.

    Science.gov (United States)

    Nagpal, Ravinder; Behare, Pradip; Rana, Rajiv; Kumar, Ashwani; Kumar, Manoj; Arora, Sanu; Morotta, Fransesco; Jain, Shalini; Yadav, Hariom

    2011-01-01

    It has been well recognized that dietary proteins provide a rich source of biologically active peptides. Today, milk proteins are considered the most important source of bioactive peptides and an increasing number of bioactive peptides have been identified in milk protein hydrolysates and fermented dairy products. Bioactive peptides derived from milk proteins offer a promising approach for the promotion of health by means of a tailored diet and provide interesting opportunities to the dairy industry for expansion of its field of operation. The potential health benefits of milk protein-derived peptides have been a subject of growing commercial interest in the context of health-promoting functional foods. Hence, these peptides are being incorporated in the form of ingredients in functional and novel foods, dietary supplements and even pharmaceuticals with the purpose of delivering specific health benefits.

  2. Susceptibility of helicobacter pylori to metronidazole and its bioactive derivatives

    Directory of Open Access Journals (Sweden)

    Bannatyne Robert

    1998-01-01

    Full Text Available The hydroxy derivative of metronidazole can exhibit equal or greater activity to the parent drug against several bacteria. The susceptibility status of 22 H. pylori strains to these breakdown compounds was determined in order to determine their possible role in the therapy of H. pylori associated peptic ulcer disease. The susceptibility was determined using the agar dilution method and substantial activity (MIC90 = 0.33 .tg/ml for the hydroxy metabolite of metronidazole versus H. pylori was observed. The findings define a role for the hydroxy derivative of metronidazole in peptic ulcer disease and support the limited data on the possibility of cooperative interactions between the parent compound, its main derivatives and related companion drugs in this condition.

  3. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    OpenAIRE

    Liming Jin; Chunshan Quan; Xiyan Hou; Shengdi Fan

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classific...

  4. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  5. Milk derived bioactive peptides and their impact on human health - A review.

    Science.gov (United States)

    Mohanty, D P; Mohapatra, S; Misra, S; Sahu, P S

    2016-09-01

    Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  6. Synthetic Studies of Bioactive Substances of 4-Hydroxybenzalhydantoin Derivatives

    Science.gov (United States)

    Hidayat, IW; Sumiarsa, D.; Permatasari, M.; AKania; Riska; Priani, L.

    2017-02-01

    4-hydroxybenzalhydantoin derivatives were synthesized by the condensation reaction between benzaldehydes 12-13 and substituted hydantoins 14-16 under standard conditions of reflux in glacial acetic acid, in the present of sodium acetate and a little amount of acetic anhydride as a catalyst. All compounds were identified by spectral analysis to give 4-hydroxybenzalhydantoins 17-21.

  7. A novel sol-gel derived bioactive glass featuring antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Bellantone, M.; Coleman, N.J.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    Antibacterial effects are highly desirable in biomaterials for dental, orthopaedic, and tissue engineering applications. The study herein reports on the bacteriostatic properties of a new composition of bioactive glass derived by the sol-gel process. Ag{sub 2}O was incorporated into the SiO{sub 2}-CaO-P{sub 2}O{sub 5} system. Leaching of the Ag{sup +} ion from the glass conferred strong bacteriostatic properties to the system. In vitro antibacterial tests on gram (+) and gram (-) bacteria showed that in the presence of bioactive glass no significant alteration of the cell concentration occurs. Conversely, the novel silver-doped bioactive glass causes a dramatic decrease of cell population for each of the bacteria under investigation. Unlike antibiotics the silver ion does not cause bacterial resistance. This property, together with its broad spectrum of action, makes silver an exceptionally versatile in situ antibacterial agent. (orig.)

  8. Bioactive benzofuran derivatives: moracins A-Z in medicinal chemistry.

    Science.gov (United States)

    Naik, Ravi; Harmalkar, Dipesh S; Xu, Xuezhen; Jang, Kyusic; Lee, Kyeong

    2015-01-27

    Benzofuran heterocycles are fundamental structural units in a variety of biologically active natural products as well as synthetic materials. Over the time, benzofuran derivatives have attracted many researchers due to the broad scope of their biological activity, which include anticancer, antimicrobial, immunomodulatory, antioxidant and anti-inflammatory properties. Egonol, homoegonol and moracin families are biologically active natural products containing benzofuran heterocycle as basic structural units. This paper focuses on the moracin family (moracin A to Z). Morus, a genus of flowering plants in the family Moraceae, comprises 10-16 species of deciduous trees commonly known as mulberries. The root bark, stem bark and leaves of Morus alba, M. lhou, Morus macroura are the main sources for arylbenzofuran derivatives including the moracins. A large volume of research has been carried out on moracins and their derivatives, which has shown the pharmacological importance of this benzofuran heterocyclic nucleus. In this mini-review, we attempt to highlight the importance of moracins, as they have been a major source for drug development. Herein, we also summarize the current state of the art concerning the synthesis and medicinal use of moracins A-Z.

  9. Design, Synthesis and Bioactivity of Novel Glycosylthiadiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Guanghui Zong

    2014-06-01

    Full Text Available A series of novel glycosylthiadiazole derivatives, namely 2-phenylamino-5-glycosyl-1,3,4-thiadiazoles, were designed and synthesized by condensation between sugar aldehydes A/B and substituted thiosemicarbazide C followed by oxidative cyclization by treating with manganese dioxide. The original fungicidal activities results showed that some title compounds exhibited excellent fungicidal activities against Sclerotinia sclerotiorum (Lib. de Bary and Pyricularia oryzae Cav, especially compounds F-5 and G-8 which displayed better fungicidal activities than the commercial fungicide chlorothalonil. At the same time, the preliminary studies based on the Elson-Morgan method indicated that many compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS. The structure-activity relationships (SAR are discussed in terms of the effects of the substituents on both the benzene and the sugar ring.

  10. Bioactive triterpene derivatives from latex of two Euphorbia species.

    Science.gov (United States)

    Mazoir, Noureddine; Benharref, Ahmed; Bailén, María; Reina, Matías; González-Coloma, Azucena

    2008-04-01

    We have investigated the antifeedant and toxic effects of 23 semisynthetic terpenoid derivatives obtained through chemical modifications of the major components of Euphorbia resinifera (alpha-euphol and alpha-euphorbol) and E. officinarum (obtusifoliol and 31-norlanostenol) latex on several insect species (Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi), their selective cytotoxicity on insect Sf9 and mammalian CHO cells and their phytotoxic effects on Lactuca sativa. The conversions focused mainly on positions 3,7,11, and 24 with several oxidizing agents. A total of 18 compounds affected S. littoralis growth (IGR). Our results support the importance of the C-3 substituent, suggest the involvement of the C-7 substituent and indicate that the C-3 hydroxyl is not essential for the IGR effect. Overall, Sf9 cells were more sensitive to the active compounds than CHO cells. All of these compounds had non selective moderate phytotoxic effects on radicle elongation of L. sativa.

  11. "Potential health benefits of lunasin: a multifaceted soy-derived bioactive peptide".

    Science.gov (United States)

    Lule, Vaibhao Kisanrao; Garg, Sheenam; Pophaly, Sarang Dilip; Hitesh; Tomar, Sudhir Kumar

    2015-03-01

    Bioactive peptides are small protein fragments derived from enzymatic hydrolysis of food proteins, fermentation with proteolytic starter cultures, and gastrointestinal digestion. These peptides have positive impacts on a number of physiological functions in living beings. Lunasin, a soy-derived bioactive peptide, is one of the most promising among them. Lunasin encoded within 2S albumin (GM2S-1) gene, identified as a novel peptide extracted from soybean seed. It is composed of 43 amino acid residues with a molecular weight of 5.5 kDa. Extensive scientific studies have shown that lunasin possesses inherent antioxidative, anti-inflammatory, anticancerous properties and could also play a vital role in regulating of cholesterol biosynthesis in the body. Its high bioavailability and heat stable nature allow its potential use as dietary supplement. The present review summarizes some of the potential health and therapeutic benefits of lunasin reported hitherto.

  12. Bioactive Cembrane Derivatives from the Indian Ocean Soft Coral, Sinularia kavarattiensis

    OpenAIRE

    Katja-Emilia Lillsunde; Carmen Festa; Harshada Adel; Simona De Marino; Valter Lombardi; Supriya Tilvi; Nawrot, Dorota A.; Angela Zampella; Souza, Lisette D.; Maria Valeria D'Auria; Päivi Tammela

    2014-01-01

    Marine organisms and their metabolites represent a unique source of potential pharmaceutical substances. In this study, we examined marine-derived substances for their bioactive properties in a cell-based Chikungunya virus (CHIKV) replicon model and for in vitro anti-inflammatory activity. In the screening of a marine sample library, crude extracts from the Indian soft coral, Sinularia kavarattiensis, showed promising activity against the CHIKV replicon. Bioassay-guided chemical fractionatio...

  13. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective.

    Science.gov (United States)

    Horner, Katy; Drummond, Elaine; Brennan, Lorraine

    2016-06-01

    Milk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future.

  14. Polyfluoroarylation of oxazolones: access to non-natural fluorinated amino acids.

    Science.gov (United States)

    Teegardin, Kip A; Weaver, Jimmie D

    2017-03-30

    Herein, conditions are provided for the formation and use of the oxazolone enolate for the nucleophilic substitution of highly fluorinated (hetero)arenes, which after unmasking yield highly fluorinated non-natural amino acids and derivatives. In addition, the properties and chemical behavior of this new class of amino acids are explored. The utility is demonstrated in the one pot synthesis of medicinally relevant 2-aminohydantoins.

  15. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi.

    Science.gov (United States)

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-04-22

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.

  16. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Liming Jin

    2016-04-01

    Full Text Available In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.

  17. Chemical characterization & bioactivity of diketopiperazine derivatives from the mangrove derived Pseudonocardia endophytica

    OpenAIRE

    Usha Kiranmayi Mangamuri; Vijayalakshmi Muvva; Sudhakar Poda; Bramanandam Manavathi; Chitturi Bhujangarao; Venkateswarlu Yenamandra

    2016-01-01

    Sediment samples from the mangrove ecosystem of Nizampatnam have been analyzed for actinomycetes as an elite source to screen for the formulation and production of antimicrobial and cytotoxic compounds. The actinomycetes strain VUK-10 has an interesting bioactivity profile and was isolated during our systematic study of mangrove actinomycetes. It was identified as Pseudonocardia endophytica with the aid of polyphasic taxonomy. The ethyl acetate extract of the actinobacterial culture filtrate ...

  18. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.

    Science.gov (United States)

    Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong

    2015-07-23

    Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

  19. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi

    Directory of Open Access Journals (Sweden)

    Yan-Ting Wang

    2015-07-01

    Full Text Available Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

  20. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  1. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  2. Chemical characterization & bioactivity of diketopiperazine derivatives from the mangrove derived Pseudonocardia endophytica

    Directory of Open Access Journals (Sweden)

    Usha Kiranmayi Mangamuri

    2016-06-01

    Full Text Available Sediment samples from the mangrove ecosystem of Nizampatnam have been analyzed for actinomycetes as an elite source to screen for the formulation and production of antimicrobial and cytotoxic compounds. The actinomycetes strain VUK-10 has an interesting bioactivity profile and was isolated during our systematic study of mangrove actinomycetes. It was identified as Pseudonocardia endophytica with the aid of polyphasic taxonomy. The ethyl acetate extract of the actinobacterial culture filtrate has been purified by gel-filtration and silica gel column chromatographic purifications led to the isolation of two diketopiperazine compounds, (3S,8aS-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (1 and (3R,8aS-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (2. The compounds listed, alluring cytotoxic activity against MDA-MB-231, HeLa, MCF-7 and OAW-42 cancer cell lines and also exhibited antimicrobial activities against gram-positive, gram-negative bacteria and fungi. Compound 1 recorded significant antibacterial activity against Xanthomonas campestris and Escherichia coli (8 μg/ml and compound 2 presented highest activity against Bacillus subtilis (4 μg/ml. Compounds 1 and 2 were active against pathogenic fungi to plants and human beings. The activity was compared with griseofulvin and amphotericin-B, which are standard fungicides. The activity of 16 μg/ml by compound 1 was recorded against Epidermophyton floccosum; an anthropophilic dermatophyte responsible for tinea pedis, tinea cruris and tinea corporis. To the best of our knowledge this is the first narration on the isolation of supra said compounds from the genus Pseudonocardia.

  3. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions.

  4. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  5. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Science.gov (United States)

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  6. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  7. New Metabolites and Bioactive Chlorinated Benzophenone Derivatives Produced by a Marine-Derived Fungus Pestalotiopsis heterocornis

    Science.gov (United States)

    Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Ma, Qingjuan; Zhong, Jialiang; Liu, Yonghong; Sun, Tiemin; Wang, Jinhui; Huang, Xueshi

    2017-01-01

    Four new compounds, including two isocoumarins, pestaloisocoumarins A and B (1, 2), one sesquiterpenoid degradation, isopolisin B (4), and one furan derivative, pestalotiol A (5), together with one known isocoumarin, gamahorin (3), and three chlorinated benzophenone derivatives, pestalachloride B (6), pestalachloride E (7) and a mixture of pestalalactone atropisomers (8a/8b), were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca. These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1–3, showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6–8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC50 values of 6.8–87.8 μM. PMID:28335391

  8. New Metabolites and Bioactive Chlorinated Benzophenone Derivatives Produced by a Marine-Derived Fungus Pestalotiopsis heterocornis

    Directory of Open Access Journals (Sweden)

    Hui Lei

    2017-03-01

    Full Text Available Four new compounds, including two isocoumarins, pestaloisocoumarins A and B (1, 2, one sesquiterpenoid degradation, isopolisin B (4, and one furan derivative, pestalotiol A (5, together with one known isocoumarin, gamahorin (3, and three chlorinated benzophenone derivatives, pestalachloride B (6, pestalachloride E (7 and a mixture of pestalalactone atropisomers (8a/8b, were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca. These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1–3, showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6–8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC50 values of 6.8–87.8 μM.

  9. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    Science.gov (United States)

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans

    Directory of Open Access Journals (Sweden)

    Xue-Ping Sun

    2013-06-01

    Full Text Available One new phenylalanine derivative 4′-OMe-asperphenamate (1, along with one known phenylalanine derivative (2 and two new cytochalasins, aspochalasin A1 (3 and cytochalasin Z24 (4, as well as eight known cytochalasin analogues (5–12 were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12 were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus.

  11. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  12. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    Science.gov (United States)

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  13. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.

    Science.gov (United States)

    Taki, Masumi; Tokuda, Yasunori; Ohtsuki, Takashi; Sisido, Masahiko

    2006-12-01

    Spodoptera frugiperda 21 (Sf21) insect cell-free protein synthesizing system was expanded to include nonnatural amino acids. Orthogonal tRNAs that work as carriers of nonnatural amino acids in the insect system were explored. Four-base codons for assigning the positions of nonnatural amino acids were also selected. Mutated streptavidin mRNAs that contained different four-base codons were prepared and added to the insect cell-free system in the presence of various tRNAs possessing the corresponding four-base anticodons. The tRNAs were chemically aminoacylated with various types of nonnatural amino acids to examine their incorporation efficiencies. Using p-nitrophenylalanine as the nonnatural amino acid and streptavidin as the target protein, tRNA sequences and the types of four-base codons were optimized to maximize the yield of the nonnatural mutant and to minimize production of full-length proteins that do not contain the nonnatural amino acid. Among the tRNA sequences taken from a variety of tRNAs of nonstandard structures, the tRNA derived from Methanosarcina acetivorans tRNA(Pyl) was the most efficient and orthogonal tRNA. Of the CGGN-type four-base codons, CGGA and CGGG were the most efficient ones for assigning the positions of nonnatural amino acids. p-Nitrophenylalanine and 2-naphthylalanine were efficiently incorporated as in the case of Escherichia coli and rabbit reticulocyte cell-free systems. Much less efficient incorporation was observed, however, for other nonnatural amino acids, indicating that the insect system is less tolerant to the structural diversity of amino acids than the E. coli cell-free system.

  14. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    Science.gov (United States)

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2016-09-07

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO2 ) coating, zirconia with sol-gel derived zirconia (ZrO2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO2 coated and ZrO2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO2 showed significantly lower fibroblast proliferation compared to other groups (p sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO2 coated specimens showed significantly lower cell proliferation after 12 days than TiO2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  15. Four-base codon-mediated incorporation of non-natural amino acids into proteins in a eukaryotic cell-free translation system.

    Science.gov (United States)

    Taira, Hikaru; Fukushima, Masaharu; Hohsaka, Takahiro; Sisido, Masahiko

    2005-05-01

    Various four-base codons have been shown to work for the introduction of non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Here, a four-base codon-mediated non-natural mutagenesis was applied to a eukaryotic rabbit reticulocyte cell-free translation system. Mutated streptavidin mRNAs containing four-base codons were prepared and added to a rabbit reticulocyte lysate in the presence of tRNAs that were aminoacylated with a non-natural amino acid and had the corresponding four-base anticodons. A Western blot analysis of translation products indicated that the four-base codons CGGU, CGCU, CCCU, CUCU, CUAU, and GGGU were efficiently decoded by the aminoacyl-tRNAs having the corresponding four-base anticodons. In contrast, the four-base codons AGGU, AGAU, CGAU, UUGU, UCGU, and ACGU were not decoded. The stop codon-derived four-base codons UAGU, UAAU, and UGAU were found to be inefficient, whereas the amber codon UAG and opal codon UGA were efficient for the incorporation of non-natural amino acids. The application of the expanded genetic code in a eukaryotic cell-free system opens the possibility of a four-base codon-mediated incorporation of non-natural amino acids into proteins in living eukaryotic cells.

  16. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.

    Science.gov (United States)

    Hesaraki, Saeed; Safari, Mojgan; Shokrgozar, Mohammad Ali

    2009-10-01

    In this study, composites of beta-tricalcium phosphate (beta-TCP) and sol gel derived bioactive glass (10, 25, and 40 wt %) based on the SiO(2)-CaO-MgO-P(2)O(5) system were prepared and sintered at 1000-1200 degrees C. The mechanical properties were investigated by measuring bending strength, Vickers hardness and fracture toughness. Structural properties were evaluated by XRD and SEM analysis, and the biological properties were studied by soaking the samples in simulated body fluid (SBF) and in contact with osteoblastic cell for viability assay. When the samples were sintered at 1200 degrees C, the mechanical strength increased, up to 34%, by increasing the amount of bioactive glass phase. In contrast, it decreased when the samples were sintered at 1000 and 1100 degrees C. The results showed that the strength could be improved up to 56% when more firing period was used. Incorporation of the bioactive glass phase into beta-TCP increased the microhardness but did not significantly change the fracture toughness. Phase analysis revealed that beta-TCP or magnesium-substituted beta-TCP was the main crystalline phase of the composites beside some calcium silicate crystallized in the bioactive glass phase. Plenty precipitation of calcium phosphate layer onto the surfaces of the beta-TCP/bioactive glass composites soaked in SBF indicated superior bioactivity of these materials compared to pure beta-TCP without any precipitation. The ability of beta-TCP/bioactive glass composites to support the growth of human osteoblastic cells was considerably better than that of pure beta-TCP. These results may be used to indicate which compositions and processing conditions can provide appropriate materials for hard tissue regeneration.

  17. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases

    Directory of Open Access Journals (Sweden)

    Kenneth G. Collins

    2016-03-01

    Full Text Available Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a “westernised lifestyle” characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus.

  18. Bioactive Cembrane Derivatives from the Indian Ocean Soft Coral, Sinularia kavarattiensis

    Directory of Open Access Journals (Sweden)

    Katja-Emilia Lillsunde

    2014-07-01

    Full Text Available Marine organisms and their metabolites represent a unique source of potential pharmaceutical substances. In this study, we examined marine-derived substances for their bioactive properties in a cell-based Chikungunya virus (CHIKV replicon model and for in vitro anti-inflammatory activity. In the screening of a marine sample library, crude extracts from the Indian soft coral, Sinularia kavarattiensis, showed promising activity against the CHIKV replicon. Bioassay-guided chemical fractionation of S. kavarattiensis resulted in the isolation of six known norcembranoids (1–6 and one new compound, named kavaranolide (7. The structures were elucidated on the basis of NMR and MS spectroscopic data. Compounds 1–3 and 5–7 were evaluated for their replicon-inhibiting potential in the CHIKV model by using a luminescence-based detection technique and live cell imaging. Compounds 1 and 2 showed moderate inhibition of the CHIKV replicon, but imaging studies also revealed cytotoxic properties. Moreover, the effects of the isolated compounds on primary microglial cells, an experimental model for neuroinflammation, were evaluated. Compound 2 was shown to modulate the immune response in microglial cells and to possess potential anti-inflammatory properties by dose-dependently reducing the release of pro- and anti-inflammatory cytokines.

  19. Bioactive cembrane derivatives from the Indian Ocean soft coral, Sinularia kavarattiensis.

    Science.gov (United States)

    Lillsunde, Katja-Emilia; Festa, Carmen; Adel, Harshada; De Marino, Simona; Lombardi, Valter; Tilvi, Supriya; Nawrot, Dorota A; Zampella, Angela; D'Souza, Lisette; D'Auria, Maria Valeria; Tammela, Päivi

    2014-07-03

    Marine organisms and their metabolites represent a unique source of potential pharmaceutical substances. In this study, we examined marine-derived substances for their bioactive properties in a cell-based Chikungunya virus (CHIKV) replicon model and for in vitro anti-inflammatory activity. In the screening of a marine sample library, crude extracts from the Indian soft coral, Sinularia kavarattiensis, showed promising activity against the CHIKV replicon. Bioassay-guided chemical fractionation of S. kavarattiensis resulted in the isolation of six known norcembranoids (1-6) and one new compound, named kavaranolide (7). The structures were elucidated on the basis of NMR and MS spectroscopic data. Compounds 1-3 and 5-7 were evaluated for their replicon-inhibiting potential in the CHIKV model by using a luminescence-based detection technique and live cell imaging. Compounds 1 and 2 showed moderate inhibition of the CHIKV replicon, but imaging studies also revealed cytotoxic properties. Moreover, the effects of the isolated compounds on primary microglial cells, an experimental model for neuroinflammation, were evaluated. Compound 2 was shown to modulate the immune response in microglial cells and to possess potential anti-inflammatory properties by dose-dependently reducing the release of pro- and anti-inflammatory cytokines.

  20. Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus.

    Science.gov (United States)

    Adpressa, Donovon A; Loesgen, Sandra

    2016-02-01

    A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7-desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally-induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules.

  1. Pimenta pseudocaryophyllus Derivatives: Extraction Methods and Bioactivity Against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae).

    Science.gov (United States)

    Ribeiro, L P; Ansante, T F; Niculau, E S; Pavarini, R; Silva, M F G F; Seffrin, R C; Vendramim, J D

    2015-12-01

    Plant-based insecticides can play an important role in integrated insect pest management (IPM), especially in protecting stored grains. The aim of this study was to evaluate the bioactivity of derivatives (powder, ethanolic extract, and essential oil (EO)) from the leaves of Pimenta pseudocaryophyllus (Myrtaceae), a Brazilian native species, against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), the main insect pest of stored corn. The powder and essential oil prepared from leaves showed a repellent effect. Moreover, the EO exhibited promising insecticidal activity through residual contact (LC50 = 1522 mg kg(-1)) and significantly decreased the F 1 progeny and the percentage of damaged grains. However, the essential oil obtained from P. pseudocaryophyllus leaves did not result in significant mortality of S. zeamais adults after 72 h of exposure by fumigation in concentrations up to 400 μL L(-1) of air. Based on GC-MS analysis, 20 compounds were identified in the essential oil of P. pseudocaryophyllus leaves, being chavibetol (38.14%), methyl eugenol (11.35%), and terpinolene (9.17%) as the major constituents. Essential oil from P. pseudocaryophyllus leaves is an interesting source of compounds with grain-protectant properties and should be analyzed in future studies aiming to develop new bioinsecticides to use in the IPM of stored grains.

  2. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  3. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  4. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Zhao, Shichang [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Xiao, Wei [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Xue, Jingzhe [Department of Chemistry, Tongji University, Shanghai 200092 (China); Shen, Youqu [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhou, Jie; Huang, Wenhai [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhang, Changqing, E-mail: shzhangchangqing@163.com [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Deping, E-mail: wdpshk@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China)

    2016-01-01

    Copper doped borosilicate glasses (BG–Cu) were studied by means of FT-IR, Raman, UV–vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B–O bond of BO{sub 4} groups at 980 cm{sup −1}, while they decrease that of BO{sub 2}O{sup −} groups at 1440–1470 cm{sup −1} as shown by Raman spectra. A negative shift was observed from {sup 11}B and {sup 29}Si NMR spectra. The {sup 11}B NMR spectra exhibited a clear transformation from BO{sub 3} into BO{sub 4} groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG–Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering. - Highlights: • Agglutination effect of Cu{sup 2+} and charge balance of agglomerate lead to more stable glass. • Lower degradability and lower ions release were found in BG-Cu scaffolds. • Excellent angiogenesis and sustain Cu{sup 2+} release were endowed by doping Cu.

  5. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    Science.gov (United States)

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption.

  6. Effects of milling media on the fabrication of melt-derived bioactive glass powder for biomaterial application

    Science.gov (United States)

    Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd

    2016-12-01

    The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.

  7. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  8. Food-Derived Bioactives Can Protect the Anti-Inflammatory Activity of Cortisol with Antioxidant-Dependent and -Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Erik J. B. Ruijters

    2016-02-01

    Full Text Available In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS, leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress–induced GC resistance in human macrophage-like cells. Cells were pre-treated with H2O2 (800 µM with and without bioactives and then exposed to lipopolysaccharides (LPS (10 ng/mL and cortisol (100 nM. The level of inflammation was deducted from the concentration of interleukin-8 (IL-8 in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2′,7′-dichlorofluorescein (DCFH. We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect.

  9. Feasibility Study of a Standardized Novel Animal Model for Cervical Vertebral Augmentation in Sheep Using a PTH Derivate Bioactive Material

    Directory of Open Access Journals (Sweden)

    Karina Klein

    2014-08-01

    Full Text Available Prophylactic local treatment involving percutaneous vertebral augmentation using bioactive materials is a new treatment strategy in spine surgery in humans for vertebral bodies at risk. Standardized animal models for this procedure are almost non-existent. The purpose of this study was to: (i prove the efficacy of PTH derivate bioactive materials for new bone formation; and (ii create a new, highly standardized cervical vertebral augmentation model in sheep. Three different concentrations of a modified form of parathyroid hormone (PTH covalently bound to a fibrin matrix containing strontium carbonate were used. The same matrix without PTH and shams were used as controls. The bioactive materials were locally injected. Using a ventral surgical approach, a pre-set amount of material was injected under fluoroscopic guidance into the intertrabecular space of three vertebral bodies. Intravital fluorescent dyes were used to demonstrate new bone formation. After an observation period of four months, the animals were sacrificed, and vertebral bodies were processed for µCT, histomorphometry, histology and sequential fluorescence evaluation. Enhanced localized bone activity and new bone formation in the injected area could be determined for all experimental groups in comparison to the matrix alone and sham with the highest values detected for the group with a medium concentration of PTH.

  10. Spirodiclofen Derivatives as Highly Potential Acaricides:Synthesis, Structure and Bioactivity

    Institute of Scientific and Technical Information of China (English)

    FENG Xian-guo; XU Liang-zhong; KONG Fan-rui; LI Hong-xin; YIN Rui-feng

    2011-01-01

    A series of new compounds as highly potential acaricides was synthesized based on the structure of spirodiclofen.Their structures were identified by 1H NMR spectroscopy and element analysis.The bioassay indicated that most of the compounds exhibited excellent acaricidal activities,what's more,the bioactivities of some new compounds were better than that of the commercial spirodiclofen at a concentration of 20 μg/mL.The relationship between structure and biological activity was also discussed.

  11. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria.

    Science.gov (United States)

    Mortazavi, V; Nahrkhalaji, M Mehdikhani; Fathi, M H; Mousavi, S B; Esfahani, B Nasr

    2010-07-01

    The aim of this work was to evaluate the antibacterial effect of bioactive glass nanopowders. The 58S, 63S, and 72S compositions were prepared via the sol-gel technique. Characterization techniques such as X-ray diffraction, transmission electron microscopy (TEM), Zetasizer, and X-ray fluorescent were used. The antibacterial activity was studied using Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. Cytotoxicity of the samples was evaluated using mouse fibroblast L929 cell line. The chemical compositions of the prepared samples were as predicted, and the particle size of the samples with an amorphous structure mainly ranged over 20-90 nm. At broth concentrations below 50 mg/mL, they showed no antibacterial activity. The 58S showed the highest antibacterial activity with the minimum bactericidal concentrations of 50 and 100 mg/mL for E. coli plus S. aureus and for P. aeruginosa, respectively. The 63S exhibited bactericidal and bacteriostatic effects on E. coli and S. aureus at concentrations of 100 and 50 mg/mL, respectively, at an minimum bactericidal concentrations of 100 mg/mL. However, 72S bioactive glass nanopowder showed no antibacterial effect. They showed no cytotoxicity. It was concluded that bioactive glass nanopowders could be considered as good candidates for the treatment of oral bone defects and root canal disinfection. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  12. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-03-01

    Full Text Available Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specifi c biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may infl uence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  13. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects.

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  14. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  15. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  16. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  17. Aminoacylase 1-catalysed deacetylation of bioactives epoxides mycotoxin-derived mercapturates; 3,4-epoxyprecocenes as models of cytotoxic epoxides.

    Science.gov (United States)

    Stocker, Pierre; Brunel, Jean Michel; de Rezende, Leandro; do Amaral, Antonia Tavares; Morelli, Xavier; Roche, Phillipe; Vidal, Nicolas; Giardina, Thierry; Perrier, Josette

    2012-08-01

    The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-l-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-l-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin-mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure-function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human.

  18. Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An in Vitro Study of Their Gut Modulatory Potential

    Science.gov (United States)

    Dave, Lakshmi A.; Hayes, Maria; Mora, Leticia; Montoya, Carlos A.; Moughan, Paul J.; Rutherfurd, Shane M.

    2016-01-01

    A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3–10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function. PMID:27043546

  19. Bioactive 2(1H-Pyrazinones and Diketopiperazine Alkaloids from a Tunicate-Derived Actinomycete Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Lamiaa A. Shaala

    2016-08-01

    Full Text Available As a part of our ongoing effort to allocate marine microbial bioactive leads, a tunicate-derived actinomycete, Streptomyces sp. Did-27, was investigated. Three new 2(1H-pyrazinones derivatives, (S-6-(sec-butyl-3-isopropylpyrazin-2(1H-one (1, (S-3-(sec-butyl-6-isopropylpyrazin-2(1H-one (2 and (S-6-(sec-butyl-3-isobutylpyrazin-2(1H-one (3, together with the known (1H-pyrazinones analogues deoxymutaaspergillic acid (4, 3,6-diisobutyl-2(1H-pyrazinone (5 and 3,6-di-sec-butyl-2(1H-pyrazinone (6, and the diketopiperazine alkaloids cyclo(6-OH-d-Pro-l-Phe (7, bacillusamide B (8, cyclo(l-Pro-l-Leu and cyclo(l-Pro-l-Ile (10 were isolated from this strain. The structures of the compounds were determined by study of their one- and two-dimensional NMR spectra as well as high-resolution mass spectral determinations. Compound 4 was reported previously as a synthetic product, while compound 6 was reported as 2-hydroxy-3,6-di-sec-butylpyrazine. Herein, we report the complete NMR data for compounds 4 and 6. The compounds were evaluated for their cytotoxic activities against three cell lines. Compound 5 showed potent and selective activity against HCT-116 cell line with IC50 of 1.5 μg/mL, while 1–10 showed variable cytotoxic activities against these cancer cell lines. These results provide further understanding about the chemistry and bioactivities of the alkylated 2(1H-pyrazinone derivatives.

  20. Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug.

    Science.gov (United States)

    García-Vilas, Javier A; Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Ángel

    2015-12-22

    Organisms lacking external defense mechanisms have developed chemical defense strategies, particularly through the production of secondary metabolites with antibiotic or repellent effects. Secondary metabolites from marine organisms have proven to be an exceptionally rich source of small molecules with pharmacological activities potentially beneficial to human health. (+)-Aeroplysinin-1 is a secondary metabolite isolated from marine sponges with a wide spectrum of bio-activities. (+)-Aeroplysinin-1 has potent antibiotic effects on Gram-positive bacteria and several dinoflagellate microalgae causing toxic blooms. In preclinical studies, (+)-aeroplysinin-1 has been shown to have promising anti-inflammatory, anti-angiogenic and anti-tumor effects. Due to its versatility, (+)-aeroplysinin-1 might have a pharmaceutical interest for the treatment of different pathologies.

  1. Yes to Realism! No to Non-naturalism!

    Directory of Open Access Journals (Sweden)

    Ulysses T. Araña

    2009-06-01

    Full Text Available According to contemporary moral realism a moral property, like goodness or badness, is either a natural (descriptive property or a non-natural (nondescriptive property of actions or situations. Contemporary moral naturalists like Richard Boyd, Nicholas Sturgeon, and David Brink are a group of philosophers who are often referred to as Cornell realists because of their connection with Cornell University. Frank Jackson is another contemporary moral naturalist who is one of the leaders of The Canberra Planners at the Australian National University with which he is connected. Jackson defends “the most extreme form of naturalism.” Jackson’s view is considered extremeby those who disagree with him because he believes that moral properties are reducible or identical to natural properties. This view of Jackson is opposed by contemporary non-naturalists like Jonathan Dancy, Derek Parfit, and Russ Shafer-Landau for reasons which in my view are not successful. Despite Jackson’s reductionism about the ethical, the Cornell realists, nevertheless, agree with him that moral properties are natural properties.

  2. Sol-gel derived bioactive hydroxyapatite/titania composite films on Ti6Al4V

    Institute of Scientific and Technical Information of China (English)

    Bing Su; Guoqing Zhang; Xudong Yu; Chengtao Wang

    2006-01-01

    The composite films consisting of the titania gel impregnated with hydroxyapatite (HAP) submicron particles were prepared on commercial Ti6Al4V plates processed by a sol-gel route. HAP powders were synthesized based on wet chemical precipitation method with Ca(NO3)2.4H2O and (NH4)2HPO4 as starting reagents. After being calcined at 900℃, HAP powders were ultrasonically scattered in ethanol to produce HAP sol. The titania sol was prepared using titanium (Ⅳ) isopropoxide {Ti[OCH(CH3)2]4} as precursor. Both the titania sol and the HAP/titania mixture were sequentially spin-coated on the substrates and calcined at various temperatures.The characteristics and mechanical adhesion of the composite films were investigated. The results show that the as-prepared films are dense, homogeneous, well-crystallized, and there is a good interfacial adhesion between the film and the substrate. The in vitro bioactivities of these films were discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid and their surface morphologies against immersion time.

  3. Clinical and histologic evaluation of an enamel matrix protein derivative combined with a bioactive glass for the treatment of intrabony periodontal defects in humans.

    NARCIS (Netherlands)

    Sculean, A.; Windisch, P.; Keglevich, T.; Gera, I.

    2005-01-01

    The present study clinically and histologically evaluated healing of human intrabony defects following treatment with a combination of enamel matrix derivative (EMD) and bioactive glass (BG) or BG alone. Six patients displaying either combined one- and two-walled (five patients) or three-walled (one

  4. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    Science.gov (United States)

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  5. Ethenoguanines undergo glycosylation by nucleoside 2'-deoxyribosyltransferases at non-natural sites.

    Directory of Open Access Journals (Sweden)

    Wenjie Ye

    Full Text Available Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted

  6. Thermal, photosynthesis and antibacterial studies of bioactive safrole derivative as precursor for natural flavor and fragrance

    Directory of Open Access Journals (Sweden)

    Suzan A. Khayyat

    2014-11-01

    Full Text Available Safrole [5-allylbenzo[d][1,3]dioxole] was subjected to photochemical oxidation reaction with hydrogen peroxide in the presence of sodium lamp to give the corresponding epoxy derivative [5-oxiranylmethylbenzo[1,3]dioxole. The thermal oxidation of safrole with 3-chloroperoxybenzoic acid at room temperature gave the same epoxide derivative in quantitative yield. Antibacterial studies were carried out on safrole and its photoproducts (safrole epoxide and safrole hydroperoxide. The results revealed that safrole hydroperoxide was the most effective than safrole epoxide than safrole against Gram-positive bacteria Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC25923, and Gram negative bacteria Escherichia coli ATCC25422. This result proved that safrole derivatives are beneficial to human health, having the potential to be used for medical purposes.

  7. Bioactive Phenanthrene and Bibenzyl Derivatives from the Stems of Dendrobium nobile.

    Science.gov (United States)

    Zhou, Xue-Ming; Zheng, Cai-Juan; Gan, Li-She; Chen, Guang-Ying; Zhang, Xiao-Peng; Song, Xiao-Ping; Li, Gao-Nan; Sun, Chong-Ge

    2016-07-22

    A new enantiomeric pair of spirodiketones, (+)- and (-)-denobilone A (1 and 2), three new phenanthrene derivatives (3-5), and three new biphenanthrenes (22-24), along with 11 known phenanthrene derivatives (6-16), five known bibenzyl derivatives (17-21), and four known biphenanthrenes (25-28), were isolated from Dendrobium nobile. The structures of 1-5 and 22-24 were elucidated using comprehensive spectroscopic methods. (+)-Denobilone and (-)-denobilone A (1 and 2) were isolated as a pair of enantiomers by chiral HPLC. The absolute configurations of (+)- and (-)-denobilone A (1 and 2) were determined by comparing their experimental and calculated electronic circular dichroism spectra. The absolute configuration of denobilone B (3) was determined by X-ray crystallographic analysis. The inhibitory activities of all compounds against nine phytopathogenic fungi and three cancer cell lines were evaluated.

  8. Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance

    Directory of Open Access Journals (Sweden)

    Syed Lal Badshah

    2016-08-01

    Full Text Available Thiazines are a group of heterocyclic organic compounds that are still largely unexplored for their pharmacological activities. There are different available methods for the synthesis of thiazine derivatives in the literature. In this review, we discuss available methods of thiazine preparation through green synthesis methods. Beside their synthesis, many thiazine derivatives are biologically active and play an important role in the treatment of various diseases and show promising results of varying degrees, where they act as antibacterial, antifungal, antitumor, antimalarial, antineoplastic, antiviral, anti-inflammatory, analgesic and anticancer agents and thus they represent an interesting class of heterocyclic medicinal compounds worthy of further exploration.

  9. Synthesis and Bioactivity of (R)-Ricinoleic Acid Derivatives: A Review.

    Science.gov (United States)

    Pabiś, Sylwia; Kula, Józef

    2016-01-01

    (R)-Ricinoleic acid (RA) [(12R,9Z)-hydroxyoctadecenoic acid], the main compound of castor seed oil, because of its unusual structure readily undergoes multi-directional chemical and biochemical transformations to produce derivatives with the retained carbon skeleton or with its degradation. Many of these are of high biological activity, as documented by an in vitro study, and possess therapeutic potential. This review article provides an overview of the recent developments in the area of synthesis of RA based compounds with anticancer and antimicrobial activities. Moreover, the antiinflammatory and analgesic properties of some ricinoleic acid derivatives are also highlighted.

  10. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Bioactive hydrogels made from step-growth derived PEG-peptide macromers.

    Science.gov (United States)

    Miller, Jordan S; Shen, Colette J; Legant, Wesley R; Baranski, Jan D; Blakely, Brandon L; Chen, Christopher S

    2010-05-01

    Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)(m)-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by

  12. Synthesis and bioactivity of novel nitric oxide-releasing ursolic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Wen Qiu; Jia Tang; Zhi Feng Wang; Shu Ying He

    2011-01-01

    A series of furoxan-based novel nitric oxide-donating ursolic acid (UA) derivatives (7a-f) were synthesized, and their cytotoxic activities against HepG2 cells in vitro were evaluated by MTT method. It was found that 7a-d and 7f showed more potent cytotoxic activities than control 5-fluorouracil and UA.

  13. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    Science.gov (United States)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  14. Non-Natural Sugar Analogues: Chemical Probes for Metabolic Oligosaccharide Engineering

    Science.gov (United States)

    Aich, Udayanath; Yarema, Kevin J.

    Metabolic oligosaccharide engineering (MOE) is a rapidly growing technology emerging from the field of chemical biology that allows novel chemical functionalities to be biosynthetically installed into the carbohydrates of living cells and animals. Since pioneering efforts to modulate sialic acid display through the use of non-natural N-acetyl-D-mannosamine (ManNAc) analogues were reported 15 years ago, monosaccharide probes have been developed to manipulate N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc), and fucose-containing glycans. The 'first generation' of analogues, comprised of a series of ManNAc derivatives with elongated N-acyl chains, demonstrated pathway permissivity and the ability of this methodology to impinge on biological processes ranging from pathogen binding to gene expression and cell adhesion. Later analogues have incorporated chemical function groups including ketones, azides, thiols, and alkyne not normally found in carbohydrates. These groups serve as 'tags' for the subsequent use of chemoselective ligation reactions to further elaborate the chemical properties of the cell surface and thereby greatly expand the potential of MOE technology to offer control over biological processes.

  15. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing.

  16. Synthesis and bioactivity of novel coumarin derivatives containing (E)-methyl 2-(methoxyimino)-2-phenylacetates

    Institute of Scientific and Technical Information of China (English)

    Ai Ying Guan; Chang Ling Liu; Zhi Nian Li; Ming Xing Zhang

    2011-01-01

    Ten coumarin derivatives containing (E)-methyl 2-(methoxyimino)-2-phenylacetate were synthesized and bioassayed. The compounds were identified by IR, 1H NMR and elemental analyses. The test results indicated that compound 5j (R1 is methyl and R2 is n-C6H13) was the optimal structure in this paper with good fungicidal activity against CDM (85%) at 6.25 mg/L concentration.

  17. Synthesis and bioactivity of diketopiperazine PJ147 and its derivatives from Gliocladium sp. YUP08.

    Science.gov (United States)

    Li, Xue-Zheng; Chen, Gang; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2014-01-01

    Concise total synthesis of diketopiperazine PJ147, obtained from mycelium of Gliocladium sp. YUP08, has been achieved in seven steps with 43.5% overall yield. Biological evaluation of PJ147 exhibited strong inhibiting activity against A375-S2, Hela, P388, A-549, HL-60, and BEL-7420 cell lines. Thus, eight derivatives of PJ147 with high water solubility were also synthesized to facilitate the in vivo bioassay of this kind of diketopiperazines.

  18. Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactives.

    Science.gov (United States)

    Kirana, Chandra; Rogers, Paul F; Bennett, Louise E; Abeywardena, Mahinda Y; Patten, Glen S

    2005-06-01

    A high plasma cholesterol level, especially low-density lipoprotein cholesterol, indicates increased risk of cardiovascular diseases. Plasma cholesterol levels are influenced by diet and cholesterol biosynthesis, uptake, and secretion. Cholesterol uptake involves solubilization into complex phospholipid spherical bodies termed micelles that facilitate the transport of lipids through the gut brush border membrane into enterocytes. In vitro assays reported to date to determine potential cholesterol-lowering effects of various compounds require artificial micelle preparations that are elaborate and time-consuming to prepare. The aims of this study were to compare the efficacy of artificially prepared micelles with naturally derived micelles from pig's bile and to test their ability to assess potential inhibitors of cholesterol uptake. The suitability of pig's bile-derived micelles was tested both at the level of the micelle and at cellular uptake using cultured Caco-2 cells. Known cholesterol uptake inhibitors at the micelle (green tea catechins) and at the Caco-2 cell (beta-lactoglobulin-derived peptide, IIAEK) were used as reference inhibitory compounds. It was concluded that pig's bile was a rapid, reproducible, convenient, and cost-effective source of micelles for cholesterol micelle solubility and cellular uptake assay systems and is suitable for screening purposes focused on identifying potential cholesterol-lowering agents.

  19. Synthesis, QSAR and anticandidal evaluation of 1,2,3-triazoles derived from naturally bioactive scaffolds.

    Science.gov (United States)

    Irfan, Mohammad; Aneja, Babita; Yadava, Umesh; Khan, Shabana I; Manzoor, Nikhat; Daniliuc, Constantin G; Abid, Mohammad

    2015-03-26

    In the present study, we used eight natural precursors (1a-h) with most of them having promising antimicrobial activities and synthesised their novel 1,2,3-triazole derivatives (3a-h). In the reaction sequences, the precursor compounds (1a-h) were converted to their respective alkyne (2a-h) followed by addition of benzyl azide freshly prepared by the reaction of benzyl bromide with sodium azide using [3 + 2] azide-alkyne cycloaddition strategy. Structural elucidation of all the triazole derivatives was done using FT-IR, (1)H, (13)C NMR, mass and elemental analysis techniques. The single crystal X-ray diffraction for 3d was also recorded. The result of in vitro anticandidal activity performed against three different strains of Candida showed that compound 3e was found superior/comparable to fluconazole (FLC) with IC50 values of 0.044 μg/mL against Candida albicans (ATCC 90028), 12.022 μg/mL against Candida glabrata (ATCC 90030), and 3.60 μg/mL against Candida tropicalis (ATCC 750). Moreover, at their IC50 values, compounds 3e and 3h showed <5% hemolysis which indicates the non-toxic behaviour of these inhibitors. Cytotoxicity assay was also performed on VERO cell line and all the derivatives were found non-toxic up to the concentration of 10.0 μg/mL. The in silico technique of 3D-QSAR was applied to establish structure activity relationship of the synthesized compounds. The results reveal the molecular fragments that play an essential role in improving the anticandidal activity.

  20. Synthesis and Bioactivity of Novel M,N'-Diacylhydrazine Derivatives Containing Furan(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    CUI Zi-Ning; HUANG Juan; LI Ying; LING Yun; YANG Xin-Ling; CHEN Fu-Heng

    2008-01-01

    The furan ring system possesses electron-rich properties and exhibits various biological activities,which was introduced into diacylhydrazine to create novel leading compounds that may serve as improved pesticides and pharmaceuticals.A series of novel diacylhydrazine derivatives containing a furan ring were synthesized by the reaction of 5-fluorophenyl-2-furoyl chloride with substituted benzoylhydrazide in anhydrous dichloromethane under reflux.The structures of the resultant compounds were confirmed by IR,1H NMR,MS and elemental analysis.Insecticidal and anti-tumor activities of these new compounds were evaluated.

  1. Bioactive 4-Oxoheptanedioic Monoamide Derivatives of Proteins and Ethanolaminephospholipids: Products of Docosahexaenoate Oxidation.

    Science.gov (United States)

    Guo, Junhong; Hong, Li; West, Xiaoxia Z; Wang, Hua; Salomon, Robert G

    2016-10-17

    Oxidative stress causes lipid-derived oxidative modification of biomolecules that has been implicated in many pathological states. Phospholipids containing polyunsaturated fatty acids are major targets of free radical-initiated oxidation. Phospholipids that incorporate docosahexaenoate (DHA) are highly enriched in important neural structures including the brain and retina, where DHA comprises 40% and 60% of total fatty acids, respectively. Oxidative fragmentation of 2-docosahexaenoyl-1-palmityl-sn-glycerophosphocholine generates esters of 4-hydroxy-7-oxohept-5-enoic acid (HOHA) and 4-keto-7-oxohept-5-enoic acid (KOHA) with 2-lysophosphatidylcholine, HOHA-PC, and KOHA-PC. Covalent HOHA adducts that incorporate the primary amino groups of proteins and ethanolamine phospholipids in carboxyethylpyrrole (CEP) derivatives were detected immunologically with anti-CEP antibodies in human tumors, retina, and blood. Now, we generated an anti-OHdiA antibody to test the hypothesis that KOHA adducts, which incorporate the primary amino groups of proteins or ethanolamine phospholipids in 4-oxo-heptanedioic (OHdiA) monoamide derivatives, are present in vivo. However, whereas the anti-CEP antibody is highly specific and does not cross-react with the OHdiA monoamide epitope, the anti-OHdiA monoamide antibody cross-reacted with CEP epitopes making it of little value as an analytical tool for OHdiA monoamides but suggesting the possibility that OHdiA monoamides would exhibit receptor-mediated biological activity similar to that of CEP. An LC-MS/MS method was developed that allows quantification of OHdiA derivatives in biological samples. We now find that KOHA-PC forms OHdiA monoamide adducts of proteins and ethanolamine phospholipids and that OHdiA-protein levels are significantly higher than OHdiA-ethanloamine phospholipid levels in blood from healthy human subjects, 0.45 μM and 0.18 μM, respectively (n = 3, and p = 0.027). OHdiA monoamide epitopes are angiogenic, causing TLR2

  2. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds.

    Science.gov (United States)

    Van Cleemput, Marjan; Cattoor, Ko; De Bosscher, Karolien; Haegeman, Guy; De Keukeleire, Denis; Heyerick, Arne

    2009-06-01

    Hop acids, a family of bitter compounds derived from the hop plant (Humulus lupulus), have been reported to exert a wide range of effects, both in vitro and in vivo. They exhibit potential anticancer activity by inhibiting cell proliferation and angiogenesis, by inducing apoptosis, and by increasing the expression of cytochrome P450 detoxification enzymes. Furthermore, hop bitter acids are effective against inflammatory and metabolic disorders, which makes them challenging candidates for the treatment of diabetes mellitus, cardiovascular diseases, and metabolic syndrome. This review summarizes the current knowledge on hop bitter acids, including both phytochemical aspects, as well as the biological and pharmacological properties of these compounds.

  3. Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici.

    Science.gov (United States)

    Liu, Ling; Liu, Shuchun; Chen, Xulin; Guo, Liangdong; Che, Yongsheng

    2009-01-15

    Pestalofones A-E (1-5), five new cyclohexanone derivatives, have been isolated from cultures of the plant endophytic fungus Pestalotiopsis fici, along with the known compounds, isosulochrin (6), isosulochrin dehydrate (7), and iso-A82775C (8). The structures of 1-5 were determined by NMR spectroscopy, and the absolute configuration of 1 was assigned using the modified Mosher method. Compounds 1, 2, and 5 displayed inhibitory effects on HIV-1 replication in C8166 cells, whereas 3 and 5 showed significant antifungal activity against Aspergillus fumigatus.

  4. Synthesis and bioactivities of 6,7,8-trimethoxy-N-aryl-4-aminoquinazoline derivatives.

    Science.gov (United States)

    Liu, Gang; Hu, De-Yu; Jin, Lin-Hong; Song, Bao-An; Yang, Song; Liu, Ping-Shen; Bhadury, Pinaki S; Ma, Yao; Luo, Hui; Zhou, Xian

    2007-10-15

    A series of 4-aminoquinazoline derivatives is prepared by the nucleophilic substitution reaction of 6,7,8-trimethoxy-4-chloroquinazoline and aryl amine. The structures of the compounds are confirmed by elemental analysis, IR, and (1)H NMR spectral data. The compounds are also evaluated for their ability to inhibit tumor cells PC3, A431, Bcap-37, and BGC823 by MTT assays. Among them, 6b and 6e are found as potent inhibitors, with IC(50) values ranging from 5.8 to 9.8microM, in vitro assay.

  5. Synthesis, Antiviral Bioactivity of Novel 4-Thioquinazoline Derivatives Containing Chalcone Moiety

    Directory of Open Access Journals (Sweden)

    Zhihua Wan

    2015-06-01

    Full Text Available A series of novel 4-thioquinazoline derivatives containing chalcone moiety were designed, synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited moderate to good anti-TMV activity. In particular, compounds M2 and M6 possessed appreciable protection activities against TMV in vivo, with 50% effective concentration (EC50 values of 138.1 and 154.8 μg/mL, respectively, which were superior to that of Ribavirin (436.0 μg/mL. The results indicated that chalcone derivatives containing 4-thioquinazoline moiety could effectively control TMV. Meanwhile, the structure-activity relationship (SAR of the target compounds, studied using the three-dimensional quantitative structure-activity relationship (3D-QSAR method of comparative molecular field analysis (CoMFA based on the protection activities against TMV, demonstrated that the CoMFA model exhibited good predictive ability with the cross-validated q2 and non-cross-validated r2 values of 0.674 and 0.993, respectively. Meanwhile, the microscale thermophoresis (MST experimental showed that the compound M6 may interaction with the tobacco mosaic virus coat protein (TMV CP.

  6. Synthesis and bioactivity of pyrazole and triazole derivatives as potential PDE4 inhibitors.

    Science.gov (United States)

    Li, Ya-Sheng; Tian, Hao; Zhao, Dong-Sheng; Hu, De-Kun; Liu, Xing-Yu; Jin, Hong-Wei; Song, Gao-Peng; Cui, Zi-Ning

    2016-08-01

    A series of pyrazole and triazole derivatives containing 5-phenyl-2-furan functionality were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds exhibited considerable inhibitory activity against PDE4B and blockade of LPS-induced TNFα release. Meanwhile, the activity of compounds containing 1,2,4-triazole (series II) was higher than that of pyrazole-attached derivatives (series I). The primary structure-activity relationship study and docking results showed that the 1,2,4-triazole moiety of compound IIk played a key role to form integral hydrogen bonds and π-π stacking interaction with PDE4B protein while the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4. Compound IIk would be great promise as a hit compound for further study based on the preliminary structure-activity relationship and molecular modeling studies.

  7. Synthesis of sol-gel derived glass powder and in vitro bioactivity property tested in simulated body fluid

    Science.gov (United States)

    Fadzli, S. A. Syed Nuzul; Roslinda, S.; Zainuddin, Firuz; Ismail, Hamisah

    2016-11-01

    The objective of this study is to determine the apatite forming ability of sol-gel derived glass based on chemical composition 50%(SiO2)-40%(CaO)-10%(PO4) by examine the reacted sample surface after soaking in simulated body fluid (SBF). The glass was synthesized via an acid catalyzed low temperature sol-gel route, dried, crushed and uniaxial pressed into pellets before finally heated at 600°C to maintain the amorphous nature and to obtain stabilized glass pellets. The bioactivity test of the glass was carried out in vitro by soaking the pellets into simulated body fluid (SBF) for various times up to 14 days. It was revealed that apatite-like structures were rapidly formed on the surface of the glass showed by the glass surface was totally covered with these crystallized apatite within the first 24 hours of immersion. The formation of crystallized carbonated apatite (HCA) was proved within the first 24 hours of immersion via XRD, FTIR and FE-SEM analysis method. Increased in immersion time period to 14 days was significantly effects in enlargement of the apatite particle sizes and transformation these apatite into a typical coral-like apatite structures.

  8. Synthesis and Bioactivity of N-Benzoyl-N'-[5-(2'-substituted phenyl-2-furoyl] Semicarbazide Derivatives

    Directory of Open Access Journals (Sweden)

    Zining Cui

    2010-06-01

    Full Text Available In order to find novel chitin synthesis inhibitors (CSIs with good activity, benzoylphenylurea, a typical kind of CSIs, was chosen as the lead compound and 15 novel derivatives containing furan moieties were designed by converting the urea linkage of benzoylphenylureas into a semicarbazide and changing the aniline part into furoyl groups. The title compounds were synthesized by the reaction of substituted benzoyl isocyanates with 5-(substituted phenyl-2-furoyl hydrazine, and the structures were confirmed by IR, 1H-NMR, elemental analysis and single crystal X-ray diffraction analyses (compound E2. The bioassay results indicated that the title compounds exhibit good insecticidal activity, especially towards Plutella xylostella L., but had lower fungicidal activity. Inspiringly, the title compounds possessed obvious anticancer activity against human promyelocytic leukemic cell line (HL-60, and some of the title compounds also had activity against human hepatocellular carcinoma cell line (Bel-7402, human gastric carcinoma cell line (BGC-823, and human nasopharyngeal carcinoma cell line (KB. The results indicated that the linkage in the lead compounds was important to the bioactivity and spectra. The modification on the urea linkage is an effective strategy to discover new pesticide and drug candidates.

  9. Analgesic potential of marrubiin derivatives, a bioactive diterpene present in Marrubium vulgare (Lamiaceae).

    Science.gov (United States)

    Meyre-Silva, C; Yunes, R A; Schlemper, V; Campos-Buzzi, F; Cechinel-Filho, V

    2005-04-01

    Marrubiin, a furane labdane diterpene, is the main analgesic compound present in Marrubium vulgare, a medicinal plant used in Brazil and other countries to treat several ailments. Considering its important pharmacological action, as well as its high yield, some structural modifications were performed in order to obtain more active compounds. Success was obtained in reducing the lactonic function, in the formation of marrubiinic acid and two esterified derivatives, which exhibited significant analgesic effect against the writhing test in mice. Marrubiinic acid showed better activity and excellent yield, and its analgesic effect was confirmed in other experimental models of pain in mice, suggesting its possible use as a model to obtain new and potent analgesic agents.

  10. A New Acetylenic Compound and Other Bioactive Metabolites from a Shark Gill-derived Penicillium Strain

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-01-01

    Full Text Available Nine chiral compounds (1−9 were isolated from the static fermentation culture of a shark gill-derived fungus Penicillium polonicum AP2T1. These compounds include a new acetylenic aromatic ether (1 , (--WA , four alkaloids ( a urantiomide C ( 2 , fructigenine A (3, cyclopenin (4 and cyclopenol (5 and four oxygenated compounds ((R-penipratynolene (6, (3S,4S-3,4-dihydro-3,4,8-trihydroxyl-naphthalenone (7, verrucosidin (8 and norverrucosidin (9. Their structures were elucidated by MS, NMR , optical rotation and circular dichroism (CD . In antimicrobial tests , compounds 1–4, 6 and 8–9 showed weak antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and/or Escherichia coli.Compounds 3, 8 and 9 also exhibited moderate toxicity against Artemia salina larva , and showed cytotoxicity against human colon cancer cell line HCT116.

  11. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.

  12. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  13. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety

    Directory of Open Access Journals (Sweden)

    Hong Dai

    2016-02-01

    Full Text Available In this study, in order to find novel biologically active pyrazole oxime compounds, a series of pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety were synthesized. Preliminary bioassays indicated that most title compounds were found to display good to excellent acaricidal activity against Tetranychus cinnabarinus at a concentration of 200 μg/mL, and some designed compounds still showed excellent acaricidal activity against Tetranychus cinnabarinus at the concentration of 10 μg/mL, especially since the inhibition rates of compounds 8e, 8f, 8l, 8m, 8n, 8p, and 8q were all 100.00%. Interestingly, some target compounds exhibited moderate to good insecticidal activities against Plutella xylostella and Aphis craccivora at a concentration of 200 μg/mL; furthermore, compounds 8e and 8l possessed outstanding insecticidal activities against Plutella xylostella under the concentration of 50 μg/mL.

  14. Regulation of cellular behaviors of fibroblasts related to wound healing by sol-gel derived bioactive glass particles.

    Science.gov (United States)

    Xie, Weihan; Chen, Xiaofeng; Miao, Guohou; Tang, Jieying; Fu, Xiaoling

    2016-10-01

    Sol-gel derived bioactive glass (BG) holds great potential in the application of skin repair. However, the specific regulation of BG on skin cells is still unclear and demands more investigation. Herein, we synthesized sol-gel derived BGs with different compositions (60S, 70S, 80S, and 90S) and found 90S BGs (90 mol % SiO2 , 6 mol % CaO, 4 mol % P2 O5 ) exhibited the best supportiveness for the proliferation of normal human foreskin fibroblasts. Thus, 90S BG particles were used as a model to systematically study the wound healing related cellular response of fibroblasts to BGs. Time-lapse imaging revealed a promoted fibroblast motility stimulated by 90S BG particles. Results on the expression of extracellular matrix (ECM) related genes illustrated that 90S BG particles modulated the synthesis capacity for critical ECM molecules including type I collagen, type III collagen, fibronectin, and tenascin-C. Moreover, the myofibroblastic differentiation of fibroblasts was greatly inhibited by 90S BG particles. Further analysis on the intracellular signaling pathways demonstrated that 90S BG particles down-regulated the collagen synthesis and fibroblast-to-myofibroblast differentiation via TGF-β1-Smad2 signaling, evidenced by the decreased expression levels of TGF-β receptor I and its downstream effector Smad2. Our study provided a further understanding of the specific regulation of 90S BG particles on fibroblasts, which may guide the future design of BG based wound dressing and benefit the clinical application of BG particles in skin repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2420-2429, 2016.

  15. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent.

    Science.gov (United States)

    Shaikh, Mubarak H; Subhedar, Dnyaneshwar D; Arkile, Manisha; Khedkar, Vijay M; Jadhav, Nandadeep; Sarkar, Dhiman; Shingate, Bapurao B

    2016-01-15

    In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and M. bovis BCG, a small focused library of benzothiazinone based 1,2,3-triazoles has been efficiently prepared via click chemistry approach. Several derivatives were found to be promising inhibitors of MTB and M. bovis BCG characterized by lower MIC values (27.34-29.37μg/mL). Among all the synthesized compounds, 6c and 6e is the most active compound against MTB and M. bovis BCG. The compounds were further tested for anti-proliferative activity against HeLa, A549 and A431 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Further, the synthesized compounds were found to have potential antioxidant activity with IC50 range=14.14-47.11μg/mL. Furthermore, to rationalize the observed biological activity data, the molecular docking study also been carried out against a potential target MTB DprE1, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of the in vitro and in silico study suggest that the triazole incorporated benzothiazinone may possess the ideal structural requirements for further development of novel therapeutic agents.

  16. Topology and parameter data of thirteen non-natural amino acids for molecular simulations with CHARMM22.

    Science.gov (United States)

    Olubiyi, Olujide O; Strodel, Birgit

    2016-12-01

    In this article we provide a data package containing the topology files and parameters compatible with the CHARMM22 force field for thirteen non-natural amino acids. The force field parameters were derived based on quantum mechanical (QM) calculations involving geometry optimization and potential energy surface scanning at the HF 6-31G(d) and HF 6-311G(d,p) levels of theory. The resulting energy data points were fitted to mathematical functions representing each component of the CHARMM22 force field. Further fine-tuning of the parameters utilized molecular mechanics energies, which were iteratively calculated and compared to the corresponding QM values until the latter were satisfactorily reproduced. The final force field data were validated with molecular dynamics simulations in explicit solvent conditions.

  17. Topology and parameter data of thirteen non-natural amino acids for molecular simulations with CHARMM22

    Directory of Open Access Journals (Sweden)

    Olujide O. Olubiyi

    2016-12-01

    Full Text Available In this article we provide a data package containing the topology files and parameters compatible with the CHARMM22 force field for thirteen non-natural amino acids. The force field parameters were derived based on quantum mechanical (QM calculations involving geometry optimization and potential energy surface scanning at the HF 6-31G(d and HF 6-311G(d,p levels of theory. The resulting energy data points were fitted to mathematical functions representing each component of the CHARMM22 force field. Further fine-tuning of the parameters utilized molecular mechanics energies, which were iteratively calculated and compared to the corresponding QM values until the latter were satisfactorily reproduced. The final force field data were validated with molecular dynamics simulations in explicit solvent conditions.

  18. Bioactive recombinant human lactoferrin, derived from rice, stimulates mammalian cell growth.

    Science.gov (United States)

    Huang, N; Bethell, D; Card, C; Cornish, J; Marchbank, T; Wyatt, D; Mabery, K; Playford, R

    2008-01-01

    Today there is a concern about the use of animal source proteins and peptides in cell culture applications due to potential contamination by adventitious infectious pathogens. Recombinant production of these proteins using a plant host provides a safe and cost effective alternative. In this paper, we tested the effect of rice-derived recombinant human lactoferrin (rhLF) on mammalian cell growth. The purified rhLF was partially (about 50%) iron-saturated (pis-rhLF). Chemical modification of pis-rhLF generated apo-rhLF (90% iron saturation). All three forms of rhLF (pis, apo, holo) promoted growth of intestinal cells (HT-29) measured as [(3)H]-thymidine incorporation or viable cell count, but holo-rhLF was most effective. Holo-rhLF was further tested on hybridoma, osteoblast, and human embryonic kidney cells. Results showed that holo-rhLF promoted cell growth and reduced cell doubling time. The concentration of holo-rhLF in media was critical in promoting cell growth and each cell line had different concentration dependence with the most effective range from 5 to 200 mg/L. The effect of rhLF on antibody production was determined using a hybridoma cell line. Significantly, more antibodies were produced by cells grown with holo-rhLF than cells grown without holo-rhLF. We also compared the effect of holo-rhLF to that of human transferrin, a component commonly used in cell culture media as an iron source. Holo-rhLF was as effective as human transferrin in promoting cell growth and antibody production. Considering all the data obtained, we conclude that rhLF from rice is effective in promoting mammalian cell growth and increasing cell productivity.

  19. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Institute of Scientific and Technical Information of China (English)

    Satyendra Singh; Pritesh Prasad; Ramesh Subramani; William Aalbersberg

    2014-01-01

    Objective: To isolate, purify, characterize, elucidate structure and evaluate bioactive compounds from the sponge-derived Salinispora sp. FS-0034. Methods: The symbiotic actinomycete strain FS-0034 with an interesting bioactivity profile was isolated from the Fijian marine sponge Theonella sp. Based on colony morphology and obligatory requirement of seawater for growth, and mycelia morphological characteristics the isolate FS-0034 was identified as a Salinispora sp. The bioactive compound was identified by using various spectral analysis of ultraviolet, high resolution electrospray ionization mass spectroscopy, 1H nuclear magnetic resonance, correlated spectroscopy and heteronuclear multiple bond coherence spectral data. A minimum inhibitory concentration assay were performed to evaluate the biological properties of the pure compound against multi-drug resistant pathogens. Results: Bioassay guided fractionation of the ethyl acetate extract of the culture of Salinispora sp. FS-0034 by different chromatographic methods yielded the isolation of an antibacterial compound, which was identified as rifamycin W (compound 1). Rifamycin W was reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus, wild typeStaphylococcus aureus and vancomycin-resistant Enterococcus faecium and displayed minimum inhibitory concentrations of 15.62, 7.80 and 250.00 µg/mL, respectively. Conclusions:The present study reported the rifamycin W from sponge-associated Salinispora sp. and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  20. Preliminary in vitro and in vivo characterizations of a sol–gel derived bioactive glass–ceramic system

    Indian Academy of Sciences (India)

    S Abiraman; H K Varma; T V Kumari; P R Umashankar; Annie John

    2002-10-01

    This study investigates quantitatively and qualitatively the sol–gel derived bioactive glass–ceramic system (BGS)-apatite–wollastonite (AW) type granules in the size range of 0.5–1 mm, as an effective graft material for bone augmentation and restoration. Scanning electron micrographs (SEM) of the sintered granules revealed the rough material surface with micropores in the range 10–30 m. X-ray diffraction (XRD) pattern of the granules revealed the presence of crystalline phases of the hydroxyapatite and wollastonite, and the functional groups of the silicate and phosphates were identified by Fourier transform infrared spectroscopy (FT-IR). The in vitro cell culture studies with L929 mouse fibroblast cell line showed very few cells adhered on the BGS disc after 24 h. This could be due to the highly reactive surface of the disc concomitant with the crystallization but not due to the cytotoxicity of the material, since the cellular viability (MTT assay) with the material was 80%. Cytotoxicity and cytocompatibility studies proved that the material was non-toxic and biocompatible. After 12 weeks of implantation of the BGS granules in the tibia bone of New Zealand white rabbits, the granules were found to be well osteointegrated, as observed in the radiographs. Angiogram with barium sulphate and Indian ink after 12 weeks showed the presence of microcapillaries in the vicinity of the implant site implicating high vascularity. Gross observation of the implant site did not show any inflammation or necrosis. SEM of the implanted site after 24 weeks revealed good osteointegration of the material with the newly formed bone and host bone. New bone was also observed within the material, which was degrading. Histological evaluation of the bone healing with the BGS granules in the tibial defect at all time intervals was without inflammation or fibrous tissue encapsulation. After 2 weeks the new bone was observed as a trabeculae network around the granules, and by 6 weeks

  1. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties

    Energy Technology Data Exchange (ETDEWEB)

    Dziadek, Michal, E-mail: dziadek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Menaszek, Elzbieta, E-mail: elzbieta.menaszek@uj.edu.pl [Jagiellonian University, Collegium Medicum, Department of Cytobiology, 9 Medyczna St., 30-688 Krakow (Poland); Zagrajczuk, Barbara, E-mail: b.zagrajczuk@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Pawlik, Justyna, E-mail: pawlikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Cholewa-Kowalska, Katarzyna, E-mail: cholewa@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland)

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21 vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO{sub 2}–CaO–P{sub 2}O{sub 5} system differing in SiO{sub 2} and CaO contents were applied (mol%): S2: 80SiO{sub 2}, 16CaO, 4P{sub 2}O{sub 5} and A2: 40SiO{sub 2}, 54CaO, 6P{sub 2}O{sub 5}. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37 °C for 56 weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~ 67° for 21A2-PCL compared to ~ 78° for pure PCL) and also makes AS surface more hydrophobic (~ 94° for 21S2-PCL compared to ~ 86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38 GPa for pure PCL, 0.90 GPa for 12A2-PCL to 1.31 GPa for 21A2-PCL), which also depends on

  2. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro

    Science.gov (United States)

    Calabrese, Giovanna; Forte, Stefano; Gulino, Rosario; Cefalì, Francesco; Figallo, Elisa; Salvatorelli, Lucia; Maniscalchi, Eugenia T.; Angelico, Giuseppe; Parenti, Rosalba; Gulisano, Massimo; Memeo, Lorenzo; Giuffrida, Raffaella

    2017-01-01

    Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could

  3. Large-Sample Theory for Generalized Linear Models with Non-natural Link and Random Variates

    Institute of Scientific and Technical Information of China (English)

    Jie-li Ding; Xi-ru Chen

    2006-01-01

    For generalized linear models (GLM), in the case that the regressors are stochastic and have different distributions and the observations of the responses may have different dimensionality, the asymptotic theory of the maximum likelihood estimate (MLE) of the parameters are studied under the assumption of a non-natural link function.

  4. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  5. Prestorage leukocyte filtration may reduce leukocyte-derived bioactive substance accumulation in patients operated for burn trauma

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Hammer, J H; Krarup, Annabel Lee

    1999-01-01

    Adverse effects of perioperative blood transfusion appear to be storage-time-dependent and may be related to extracellular accumulation of bioactive substances in blood products. In this study the clinical effects of leukofiltered and non-filtered blood products in patients undergoing surgery for...

  6. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Institute of Scientific and Technical Information of China (English)

    Satyendra; Singh; Pritesh; Prasad; Ramesh; Subramani; William; Aalbersberg

    2014-01-01

    Objective:To isolate,purify,characterize,elucidate structure and evaluate bioactive compounds from the sponge-derived Salinispora sp.FS-0034.Methods:The symbiotic actinomycete strain FS-0034 with an interesting bioactivity profile was isolated from the Fijian marine sponge Theonella sp.Based on colony morphology and obligatory requirement of seawater for growth,and mycelia morphological characteristics the isolate FS-0034 was identified as a Salinispora sp.The bioactive compound was identified by using various spectral analysis of ultraviolet,high resolution electrospray ionization mass spectroscopy,H nuclear magnetic resonance,correlated spectroscopy and heteronuclear multiple bond coherence spectral data.A minimum inhibitory concentration assay were performed to evaluate the biological properties of the pure compound against multi-drug resistant pathogens.Results:Bioassay guided fractionation of the ethyl acetate extract of the culture of Salinispora sp.FS-0034 by different chromatographic methods yielded the isolation of an antibacterial compound,which was identified as rifamycin W(compound 1).Rifamycin W was reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus,wild type Staphylococcus aureus and vancomycin-resistant Enterococcus faecium and displayed minimum inhibitory concentrations of 15.62,7.80 and 250.00 μg/mL,respectively.Conclusions:The present study reported the rifamycin W from sponge-associated Salinispora sp.and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  7. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Science.gov (United States)

    Juraski, Amanda De Castro; Dorion Rodas, Andrea Cecilia; Elsayed, Hamada; Bernardo, Enrico; Oliveira Soares, Viviane; Daguano, Juliana

    2017-01-01

    Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. PMID:28772783

  8. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Amanda De Castro Juraski

    2017-04-01

    Full Text Available Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3 and diopside (CaMgSi2O6, but combeite (Na2Ca2Si3O9 crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies.

  9. Evaluation of snake venom phospholipase A{sub 2}: hydrolysis of non-natural esters

    Energy Technology Data Exchange (ETDEWEB)

    Pirolla, Renan A.S.; Baldasso, Paulo A.; Marangoni, Sergio; Moran, Paulo J.S.; Rodrigues, Jose Augusto R., E-mail: jaugusto@iqm.unicamp.b [University of Campinas (UNICAMP), SP (Brazil). Inst. of Chemistry. Dept. of Organic Chemistry

    2011-07-01

    Phospholipase A2 from the rattlesnake Crotalus durissus terrificus was employed for the first time to test its enantioselectivity on the hydrolysis of different non-natural esters. It was observed that the structure of this small enzyme is restrictive in the choice of its lipase action with non-natural substrates. Two forms of the enzyme were used; free and as its cross-linked enzyme aggregate (CLEA). With all substrates, the free enzyme showed activity similar to the CLEA preparation. The advantage of the CLEA phospholipase is the possibility to reuse it in several consecutive reactions without a decrease of activity and selectivity with good but higher yields and ee than with the free enzyme. (author)

  10. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    Science.gov (United States)

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  11. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  12. Colour agnosia impairs the recognition of natural but not of non-natural scenes.

    Science.gov (United States)

    Nijboer, Tanja C W; Van Der Smagt, Maarten J; Van Zandvoort, Martine J E; De Haan, Edward H F

    2007-03-01

    Scene recognition can be enhanced by appropriate colour information, yet the level of visual processing at which colour exerts its effects is still unclear. It has been suggested that colour supports low-level sensory processing, while others have claimed that colour information aids semantic categorization and recognition of objects and scenes. We investigated the effect of colour on scene recognition in a case of colour agnosia, M.A.H. In a scene identification task, participants had to name images of natural or non-natural scenes in six different formats. Irrespective of scene format, M.A.H. was much slower on the natural than on the non-natural scenes. As expected, neither M.A.H. nor control participants showed any difference in performance for the non-natural scenes. However, for the natural scenes, appropriate colour facilitated scene recognition in control participants (i.e., shorter reaction times), whereas M.A.H.'s performance did not differ across formats. Our data thus support the hypothesis that the effect of colour occurs at the level of learned associations.

  13. Viscoelastic Properties and Bioactivity of Sol-Gel Derived Gelatin-Silicate Composites: Effects of the Incorporated Ca2+ Ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several gelatin-silicate composites, with or without incorporation of Ca2+ ions, were synthesized through sol-gel processing starting from gelatin and 3-(glycidoxypropyl) trimethoxysilane. The structure around the Si atoms was similar for all the samples. The measurement of viscoelastic properties indicated that the glass transition temperature and activation energy decreased with the incorporation of Ca2+ ions. The Ca2+ ion-containing composites were bioactive as they spontaneously deposited apatite when soaked in a simulated body fluid of the Kokubo recipe.

  14. Ectopic bone formation by gel-derived bioactive glass-poly-L-lactide-co-glycolide composites in a rabbit muscle model.

    Science.gov (United States)

    Filipowska, Joanna; Cholewa-Kowalska, Katarzyna; Wieczorek, Jarosław; Semik, Danuta; Dąbrowski, Zbigniew; Łączka, Maria; Osyczka, Anna M

    2017-01-17

    In this study we aimed to assess the in vivo osteoinductive properties of two composite scaffolds made of PLGA (poly-L-lactide-co-glycolide) and two types of gel-derived bioactive glasses, namely a high silica S2 bioactive glass (S2-PLGA composites) or high lime A2 bioactive glass (A2-PLGA composites). To achieve that, the potential of the composites to induce ectopic bone formation in a rabbit muscle has been examined along with the control PLGA scaffold. Cylinder-like scaffolds of 7  ×  3 mm (width  ×  height) were implanted into pouches created in the latissimus dorsi muscle of 18 New Zealand rabbits. The tissue sections were obtained at 6, 12 or 24 weeks post-surgery (six rabbits per each time point) and stained with hematoxylin-eosin. The process of wound healing, the formation of collagen-rich connective tissue and its transition to cartilage were examined by Sirius red and Alcian blue histological stainings. We also performed immunohistochemical verification of the presence of osteoblast- and osteoclast- like cells in the vicinity of the scaffolds. A typical foreign body reaction and wound healing process was observed for all implanted scaffolds. Osteoblast- and osteoclast-like cells were observed in the vicinity of the scaffolds as determined by the immunohistochemical staining for Osteocalcin, BMP-2 and Cathepsin K. Compared to plain PLGA scaffolds, numerous osteoblast-like cells were observed 12 weeks post implantation near the composites and the scaffolds gradually degraded as bone formation proceeded. S2-PLGA and A2-PLGA composites display osteoinductive properties in vivo. Furthermore, they are more effective at inducing ectopic bone formation in a rabbit muscle compared to plain PLGA. Thus these SBG-PLGA composite scaffolds have potential for clinical applications in dental and/or orthopedic-bone tissue engineering.

  15. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2013-01-01

    Objective: To investigate the abilities of two flavonoids - Garcinia biflavanol-1 (GB-1) and Garcinia biflavanol-2 (GB-2) from Garcinia kola (G. kola) in reducing cadmium-induced effects on raw U937 cells and U937-derived macrophages. Methods: Macrophage U937 cells were incubated with cadmium followed by treatment with the flavonoids and cell viability assessed via trypan blue staining. In the other experiment, the U937 cells were transformed to the macrophage form and treated with cadmium in order to activate them. The cells were later incubated with the flavonoids and finally the supernatant of each cell culture was analysed for the secretion of nitric oxide, catalyse activity, and the release of tumour necrosis factor-alpha, interleukin-1 and interleukin-2 as indices of macrophage activation. Quercetin (a flavonol) was used as the reference flavonoid in all experiments. Results: It revealed that the flavonoids significantly increased the viability of the cells and also reduced the cadmium-induced activation of the macrophage cells in a concentration-dependent manner. The flavanols GB-1 and GB-2 possessed higher activities than quercetin in all cases (P<0.05). Garcinia biflavanol-2 possessed a higher bioactivity than GB-1 significantly (P<0.05). Conclusions: In addition to corroborating the several reported importance of G. kola as a potential neutraceutical and pharmacological condiment, the study also clearly indicates the role hydroxylation especially at the 3´- position of polyphenols could play in enhancing bioactivities of flavonoids.

  16. Comparing Environmental Dose Rate Meters: A Method to Determine Natural and Non-natural Variations in External Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Reinen, A.J.M.; Slaper, H.; Overwater, R.M.W.; Stoop, P

    2000-07-01

    A method is described to determine low excess dose rates from a radiation source in the environment, which are small compared to the natural fluctuations of the background radiation. First a 'virtual reference dose rate meter' is constructed from data of the national monitoring network, to know the natural variations of the background radiation. Results from this virtual monitor are then compared to data of dose rate meters at sites of interest, to determine non-natural or very local natural variations and excess dose rates. Daily averaged excess dose rates down to 2 to 3 nSv.h{sup -1} can be identified. The method is applied successfully near nuclear installations in the Netherlands and can be used for all types of dose rate meters and sample frequencies. Finally, the calculations to derive the 'virtual reference dose rate meter' can also be used as a quality assessment tool for environmental radiation monitoring networks. (author)

  17. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.

    Science.gov (United States)

    Taira, Hikaru; Hohsaka, Takahiro; Sisido, Masahiko

    2006-01-01

    Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin-tRNA conjugate, in which the 3'-terminal A unit was replaced by puromycin, was used. The puromycin-tRNA conjugate was fused to a C-terminus of streptavidin through the puromycin moiety in the ribosome. The streptavidin-puromycin-tRNA fusion molecule was collected and brought to the next round after amplification of the tRNA sequence. We applied this system to select efficient frameshift suppressor tRNAs from a tRNA library with a randomly mutated anticodon loop derived from yeast tRNA CCCG Phe. After three rounds of the selection, we obtained novel frameshift suppressor tRNAs which had high decoding activity and good orthogonality against endogenous aminoacyl-tRNA synthetases. These results demonstrate that the in vitro selection system developed here is useful to obtain highly active tRNAs for the incorporation of non-natural amino acid from a tRNA library.

  18. Accurate Dereplication of Bioactive Secondary Metabolites from Marine-Derived Fungi by UHPLC-DAD-QTOFMS and a MS/HRMS Library

    DEFF Research Database (Denmark)

    Kildgaard, Sara; Mansson, Maria; Dosen, Ina

    2014-01-01

    -DAD-QTOFMS) providing both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS (MS/HRMS) data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes......, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS data for faster exclusion...... of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload...

  19. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents.

    Science.gov (United States)

    De Monte, Celeste; Bizzarri, Bruna; Gidaro, Maria Concetta; Carradori, Simone; Mollica, Adriano; Luisi, Grazia; Granese, Arianna; Alcaro, Stefano; Costa, Giosuè; Basilico, Nicoletta; Parapini, Silvia; Scaltrito, Maria Maddalena; Masia, Carla; Sisto, Francesca

    2015-12-01

    Crocus sativus L. is known in herbal medicine for the various pharmacological effects of its components, but no data are found in literature about its biological properties toward Helicobacter pylori, Plasmodium spp. and Leishmania spp. In this work, the potential anti-bacterial and anti-parasitic effects of crocin and safranal, two important bioactive components in C. sativus, were explored, and also some semi-synthetic derivatives of safranal were tested in order to establish which modifications in the chemical structure could improve the biological activity. According to our promising results, we virtually screened our compounds by means of molecular modeling studies against the main H. pylori enzymes in order to unravel their putative mechanism of action.

  20. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    Science.gov (United States)

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  1. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOL–GEL DERIVED NANOMATERIAL IN THE TERNARY SYSTEM 64 % SiO2 - 31 % CaO - 5 % P2O5 AS A BIOACTIVE GLASS: IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Bizari D.

    2013-09-01

    Full Text Available In this study, we performed a new bioactive glass formulation with the molar composition 64 % SiO2 - 31 % CaO - 5 % P2O5 by the sol-gel method. Sol-gel derived bioglass material was produced in nanopowder using planetary milling machine, followed by sintering at 700°C, for applications as bioactive material in bioactive scaffolds or in orthopaedic. The obtained material was evaluated by X-ray powder diffraction (XRD, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC analyses, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and nitrogen adsorption pore size. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture by evaluation of alkaline phosphatase activity of osteoblasts and immersion studies in simulated body fluid (SBF for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and silicon in the SBF medium as key factors in the rapid bonding of this bioactive glass to bone tissue as a high bioactive glass. The present investigation revealed that the sol-gel derived ternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19. Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo.

  2. Characteristics of muscle dysmorphia in male football, weight training, and competitive natural and non-natural bodybuilding samples.

    Science.gov (United States)

    Baghurst, Timothy; Lirgg, Cathy

    2009-06-01

    The purpose of this study was to identify differences in traits associated with muscle dysmorphia between collegiate football players (n=66), weight trainers for physique (n=115), competitive non-natural bodybuilders (n=47), and competitive natural bodybuilders (n=65). All participants completed demographic questionnaires in addition to the Muscle Dysmorphia Inventory (Rhea, Lantz, & Cornelius, 2004). Results revealed a significant main effect for group, and post hoc tests found that the non-natural bodybuilding group did not score significantly higher than the natural bodybuilding group on any subscale except for Pharmacological Use. Both the non-natural and natural bodybuilding groups scored significantly higher than those that weight trained for physique on the Dietary Behavior and Supplement Use subscales. The collegiate football players scored lowest on all subscales of the Muscle Dysmorphia Inventory except for Physique Protection where they scored highest. Findings are discussed with future research expounded.

  3. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins.

    Science.gov (United States)

    Heel, Thomas; McIntosh, John A; Dodani, Sheel C; Meyerowitz, Joseph T; Arnold, Frances H

    2014-11-24

    Recent work has shown that engineered variants of cytochrome P450BM3 (CYP102A1) efficiently catalyze non-natural reactions, including carbene and nitrene transfer reactions. Given the broad substrate range of natural P450 enzymes, we set out to explore if this diversity could be leveraged to generate a broad panel of new catalysts for olefin cyclopropanation (i.e., carbene transfer). Here, we took a step towards this goal by characterizing the carbene transfer activities of four new wild-type P450s that have different native substrates. All four were active and exhibited a range of product selectivities in the model reaction: cyclopropanation of styrene by using ethyl diazoacetate (EDA). Previous work on P450BM3 demonstrated that mutation of the axial coordinating cysteine, universally conserved among P450 enzymes, to a serine residue, increased activity for this non-natural reaction. The equivalent mutation in the selected P450s was found to activate carbene transfer chemistry both in vitro and in vivo. Furthermore, serum albumins complexed with hemin were also found to be efficient in vitro cyclopropanation catalysts.

  4. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells.

    Science.gov (United States)

    Nair, Manitha B; Varma, H K; John, Annie

    2009-07-01

    New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP-coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications.

  5. Accurate Dereplication of Bioactive Secondary Metabolites from Marine-Derived Fungi by UHPLC-DAD-QTOFMS and a MS/HRMS Library

    Directory of Open Access Journals (Sweden)

    Sara Kildgaard

    2014-06-01

    Full Text Available In drug discovery, reliable and fast dereplication of known compounds is essential for identification of novel bioactive compounds. Here, we show an integrated approach using ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS providing both accurate mass full-scan mass spectrometry (MS and tandem high resolution MS (MS/HRMS data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis and MS/HRMS data for faster exclusion of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload or loss of lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis spectra necessary for unambiguous identification. For the ophiobolin family with many structurally similar analogues partly co-eluting, the peaks could be assigned correctly by combining MS/HRMS data and m/z of the [M + Na]+ ions.

  6. Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library.

    Science.gov (United States)

    Kildgaard, Sara; Mansson, Maria; Dosen, Ina; Klitgaard, Andreas; Frisvad, Jens C; Larsen, Thomas O; Nielsen, Kristian F

    2014-06-20

    In drug discovery, reliable and fast dereplication of known compounds is essential for identification of novel bioactive compounds. Here, we show an integrated approach using ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) providing both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS (MS/HRMS) data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS data for faster exclusion of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload or loss of lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis spectra necessary for unambiguous identification. For the ophiobolin family with many structurally similar analogues partly co-eluting, the peaks could be assigned correctly by combining MS/HRMS data and m/z of the [M + Na]+ ions.

  7. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-08-10

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  8. SYNTHESIS AND CHARACTERIZATION OF SOME NOVEL β LACTAM CONDENSED BIOACTIVE 2-AZETIDINONE DERIVATIVES AS PROSPECTIVE ANTIMICROBIAL AGENT

    Directory of Open Access Journals (Sweden)

    Maity S.

    2012-04-01

    Full Text Available It is worthwhile to synthesize some novel series of β- lactam, 2-azetidinone derivatives carrying quinoline moiety. Structures of these 2-azetidinone derivatives have been characterized by spectral data like IR, 1HNMR & Mass spectroscopy. Compounds 4a,4b,4f,4g and 4h has been found extremely significant anti bacterial activity against four different strains like Staphylococcus aureus (NCIM 2079, Bacillus subtilius (NCIM 2708, Pseudomonas aeruginosa (NCIM 2242 and Escherichia coli (NCIM 2685 as compared to ampicillin antibiotic, while compound 4f was found extremely significant antifungal activity against Candida albicans(NCIM 22491 as compared to griseofulvin.

  9. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Banks, Jessica M; Mozdzen, Laura C; Harley, Brendan A C; Bailey, Ryan C

    2014-10-01

    Biomaterial designs are increasingly incorporating multiple instructive signals to induce a desired cell response. However, many approaches do not allow orthogonal manipulation of immobilized growth factor signals and matrix stiffness. Further, few methods support patterning of biomolecular signals across a biomaterial in a spatially-selective manner. Here, we report a sequential approach employing carbodiimide crosslinking and benzophenone photoimmobilization chemistries to orthogonally modify the stiffness and immobilized growth factor content of a model collagen-GAG (CG) biomaterial. We subsequently examined the singular and combined effects of bone morphogenetic protein (BMP-2), platelet derived growth factor (PDGF-BB), and CG membrane stiffness on the bioactivity and osteogenic/adipogenic lineage-specific gene expression of adipose derived stem cells, an increasingly popular cell source for regenerative medicine studies. We found that the stiffest substrates direct osteogenic lineage commitment of ASCs regardless of the presence or absence of growth factors, while softer substrates require biochemical cues to direct cell fate. We subsequently describe the use of this approach to create overlapping patterns of growth factors across a single substrate. These results highlight the need for versatile approaches to selectively manipulate the biomaterial microenvironment to identify synergies between biochemical and mechanical cues for a range of regenerative medicine applications.

  10. Synthesis and Bioactivity of Substituted Benzoylguanidine Derivatives as Potent Na+/H+ Exchanger Inhibitors%Synthesis and Bioactivity of Substituted Benzoylguanidine Derivatives as Potent Na+/H+ Exchanger Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Jin, Ning; Yang, Yun; Xu, Wenting; Yang, Xiaozhi; Gong, Guoqing; Xu, Yungen

    2012-01-01

    A novel series of substituted benzoylguanidine derivatives were designed and synthesized in order to evaluate their NHE 1 inhibitory activity. Most of them were found to inhibit NHE 1-mediated platelet swelling in a concentration-dependent manner, and eight compounds showed more potent NHE 1 inhibitory activity than Cariporide. Compound 6f with an IC50 value of 1.08 × 10-10 mol·L-1, was 39 times more potent than lead compound CPU-X-050420 in vitro tests.

  11. Synthesis and bioactivity of novel 3-(1-hydroxyethylidene)-5-substituted-pyrrolidine-2,4-dione derivatives

    Institute of Scientific and Technical Information of China (English)

    Bao Feng Han; Qing Ming Shi; Xian Feng Wang; Jian Bo Liu; Sheng Qiang; Chun Long Yang

    2012-01-01

    Ten novel 5-substituted derivatives of 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione were synthesized.The compounds were confirmed by IR,1H NMR,MS and elemental analysis.The bioassay indicated that these compounds showed noticeable herbicidal activities,and compounds 6f and 6j exhibited excellent inhibitory activities against the stalk of Echinochloa crusgalli,with EC50 values of 94.4 and 72.7 mg/L,respectively.

  12. An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction.

    Science.gov (United States)

    Hossein nia, Roghayeh; Mamaghani, Manouchehr; Tabatabaeian, Khalil; Shirini, Farhad; Rassa, Mehdi

    2012-09-15

    Novel fused 1H-benzo[f]chromen-indole derivatives were synthesized regioselectivly in good to high yields by triethyl amine catalyzed condensation of 3-cyanoacetylindoles, β-naphthol and aryl aldehydes in methanol under ultrasounic irradiations and conventional conditions. The easy work-up of the products, rapidity, and mild reaction conditions are notable features of this protocol. The antibacterial activity of the selected products was examined. Some products showed promising activities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide as new antibacterial agents: synthesis and bioactivity

    Institute of Scientific and Technical Information of China (English)

    Wen-yuan YU; Li-xia YANG; Jian-shu XIE; Ling ZHOU; Xue-yuan JIANG; De-xu ZHU; Mutsumi MURAMATSU; Ming-wei WANG

    2008-01-01

    Aim: The aim of the present study was to design, synthesize, and evaluate novel antibacterial agents, derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide. Methods: A total of 44 derivatives of aryl-4-guanidin-omethylbenzoate (series A) and N-aryl-4-guanidinomethylbenzamide (series B) were synthesized and their antibacterial activities were assessed in vitro against a variety of Gram-positive and Gram-negative bacteria by an agar dilution method. Results: Twelve compounds showed potent bactericidal effects against a panel of Gram-positive germs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-intermediate Sta-phylococcus aureus (VISA), and methicillin-resistant coagulase-negative staphy-lococci (MRCNS), with minimum inhibitory concentrations (MIC) ranging be-tween 0.5 and 8 μg/mL, which were comparable to the MIC values of several marketed antibiotics. They exhibited weak or no activity on the Gram-negative bacteria tested. In addition, these compounds displayed high inhibitory activities towards oligopeptidase B of bacterial origin. Conclusion: In comparison with the previ-ously reported MIC values of several known antibiotics, the derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide showed com-parable in vitro bactericidal activities against VRE and VISA as linezolid. Their growth inhibitory effects on MRSA were similar to vancomycin, but were less potent than linezolid and vancomycin against MRCNS. This class of compounds may have the potential to be developed into narrow spectrum antibacterial agents against certain drug-resistant strains of bacteria.

  14. Biotransformation of the flavonoid tiliroside to 7-methylether tiliroside: bioactivity of this metabolite and of its acetylated derivative.

    Science.gov (United States)

    Demetzos, C; Magiatis, P; Typas, M A; Dimas, K; Sotiriadou, R; Perez, S; Kokkinopoulos, D

    1997-07-01

    Incubation of kaempferol-3-O-beta-D-(6"-E-p-coumaroyl)-glucopyranoside (tiliroside) (1) with Aspergillus nidulans gives the 7-methyl ether of tiliroside (2) which is a new compound. Its structure is determined by spectroscopic methods. Cytotoxic studies of 2 and of its acetylated derivative 2a were carried out in vitro against fourteen human leukemic cell lines. Results clearly show that compound 2 is ineffective against all leukemic cell lines tested. On the contrary, compound 2a exhibited cytotoxic activity against four of the cell lines (HL60, DAUDI, HUT78 and MOLT3) and additionally, a dose- and time-dependent effect on DNA synthesis.

  15. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    Science.gov (United States)

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  16. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution.

    Science.gov (United States)

    Renata, Hans; Wang, Z Jane; Arnold, Frances H

    2015-03-09

    High selectivity and exquisite control over the outcome of reactions entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature's known repertoire. In this Review, we outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progression has been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been exploited for chemical synthesis, with an emphasis on reactions that do not have natural counterparts. Non-natural activities can be improved by directed evolution, thus mimicking the process used by nature to create new catalysts. Finally, we describe the discovery of non-native catalytic functions that may provide future opportunities for the expansion of the enzyme universe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bioactive Phytochemicals: Efficient Synthesis of Optically Active Substituted Flav-3-enes and Flav-3-en-3-o-R Derivatives

    Directory of Open Access Journals (Sweden)

    Matthew Chilaka Achilonu

    2017-01-01

    Full Text Available The structural core of flavene (2-phenyl-2H-chromene is commonly found in plant flavonoids, which exhibit a wide range of biological activities and diverse pharmacological profiles (e.g., antioxidant and anticancer activities. Flavonoids have attracted significant interest in medicinal and synthetic chemistry. Substituted flav-3-ene 13 was exclusively synthesized by the stereoselective elimination of the O-mesyl moiety on C-3 of 5,7,3′,4′-tetramethoxyflavan-3-mesylate 12 with 1,8-diazabicyclo[5.4.0]undec-7-ene. The reaction of 5,7,3′,4′-tetramethoxyflavan-3-one 15 with ytterbium trifluoromethanesulfonate in methanol afforded a novel 3-O-substituted flav-3-ene derivative (3,5,7,3′,4′-pentamethoxyflav-3-ene 17. The reduction of 4-(1,3,5-trihydroxybenzene-5,7,3′,4′-tetra-O-benzylflavan-3-one 19b with hydrogen afforded a new compound: 3-hydroxy-4-(1,3,5-trihydroxybenzene-5,7,3′,4′-tetrahydroxyflavan-3-en-3-ol 21 in good yield (95%, while the acetylation of 19a and 21 afforded the expected novel flav-3-en-3-acetoxy derivatives 20 (92% and 22 (90%, respectively.

  18. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection.

    Science.gov (United States)

    Zhou, Kun; Chen, Dongdong; Li, Bin; Zhang, Bingyu; Miao, Fang; Zhou, Le

    2017-01-01

    A series of cinnamic acid esters and their derivatives were synthesized and evaluated for antifungal activities in vitro against four plant pathogenic fungi by using the mycelium growth rate method. Structure-activity relationship was derived also. Almost all of the compounds showed some inhibition activity on each of the fungi at 0.5 mM. Eight compounds showed the higher average activity with average EC50 values of 17.4-28.6 μg/mL for the fungi than kresoxim-methyl, a commercial fungicide standard, and ten compounds were much more active than commercial fungicide standards carbendazim against P. grisea or kresoxim-methyl against both P. grisea and Valsa mali. Compounds C1 and C2 showed the higher activity with average EC50 values of 17.4 and 18.5 μg/mL and great potential for development of new plant antifungal agents. The structure-activity relationship analysis showed that both the substitution pattern of the phenyl ring and the alkyl group in the alcohol moiety significantly influences the activity. There exists complexly comprehensive effect between the substituents on the phenyl ring and the alkyl group in the alcohol moiety on the activity. Thus, cinnamic acid esters showed great potential the development of new antifungal agents for plant protection due to high activity, natural compounds or natural compound framework, simple structure, easy preparation, low-cost and environmentally friendly.

  19. Bioactivity of natural O-prenylated phenylpropenes from Illicium anisatum leaves and their derivatives against spider mites and fungal pathogens.

    Science.gov (United States)

    Koeduka, T; Sugimoto, K; Watanabe, B; Someya, N; Kawanishi, D; Gotoh, T; Ozawa, R; Takabayashi, J; Matsui, K; Hiratake, J

    2014-03-01

    A variety of volatile phenylpropenes, C6-C3 compounds are widely distributed in the plant kingdom, whereas prenylated phenylpropenes are limited to a few plant species. In this study, we analysed the volatile profiles from Illicium anisatum leaves and identified two O-prenylated phenylpropenes, 4-allyl-2-methoxy-1-[(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyleugenol (9)] and 5-allyl-1,3-dimethoxy-2-(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyl-6-methoxyeugenol (11)] as major constituents. The structure-activity relationship of a series of eugenol derivatives showed that specific phenylpropenes, including eugenol (1), isoeugenol (2) and 6-methoxyeugenol (6), with a phenolic hydroxy group had antifungal activity for a fungal pathogen, whereas guaiacol, a simple phenolic compound, and allylbenzene had no such activity. The eugenol derivatives that exhibited antifungal activity, in turn, had no significant toxicant property for mite oviposition. Interestingly, O-dimethylallyleugenol (9) in which the phenolic oxygen was masked with a dimethylallyl group exhibited a specific, potent oviposition deterrent activity for mites. The sharp contrast in structural requirements of phenylpropenes suggested distinct mechanisms underlying the two biological activities and the importance of a phenolic hydroxy group and its dimethylallylation for the structure-based design of new functional properties of phenylpropenes.

  20. Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix.

    Science.gov (United States)

    Lavecchia, Teresa; Rea, Giuseppina; Antonacci, Amina; Giardi, Maria T

    2013-01-01

    In recent years, both food quality and its effect on human health have become a fundamental issue all over the world. As a consequence of this new and increased awareness, American, European, and Asian policymakers have strongly encouraged the research programs on food quality and safety thematic. Attempts to improve human health and to satisfy people's desire for healthcare without intake of pharmaceuticals, has led the food industry to focus attention on functional or nutraceutical food. For a long time, compounds with nutraceutical activity have been produced chemically, but the new demands for a sustainable life have gradually led the food industry to move towards natural compounds, mainly those derived from plants. Many phytochemicals are known to promote good health, but, sometimes, undesirable effects are also reported. Furthermore, several products present on the market show few benefits and sometimes even the reverse - unhealthy effects; the evidence of efficacy is often unconvincing and epidemiological studies are necessary to prove the truth of their claims. Therefore, there is a need for reliable analytical control systems to measure the bioactivity, content, and quality of these additives in the complex food matrix. This review describes the most widespread nutraceutics and an analytical control of the same using recently developed biosensors which are promising candidates for routine control of functional foods.

  1. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Han-Tsung Liao

    2013-10-01

    Full Text Available Three-dimensional porous polycaprolactone (PCL scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs. The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differentiation capability of PASCs in osteogenic medium toward the osteoblast lineage, judging from elevated alkaline phosphatase activity and up-regulated osteogenic genes expression. For in vivo study, a 3 cm × 3 cm mandible defect was created in pigs and reconstructed by implanting acellular PCL scaffolds or PCL/PRP/PASCs constructs. Both groups showed new bone formation, however, the new bone volume was 5.1 times higher for PCL/PRP/PASCs 6 months post-operation. The bone density was less and loose in the acellular PCL group and the Young’s modulus was only 29% of normal bone. In contrast, continued and compact bone formation was found in PCL/PRP/PASCs and the Young’s modulus was 81% that of normal bone. Masson’s trichrome stain, immunohistochemical analysis of osteocalcin and collagen type I also confirmed new bone formation.

  2. Bioactive 7-Oxabicyclic[6.3.0]lactam and 12-Membered Macrolides from a Gorgonian-Derived Cladosporium sp. Fungus

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2015-07-01

    Full Text Available One new bicyclic lactam, cladosporilactam A (1, and six known 12-membered macrolides (2–7 were isolated from a gorgonian-derived Cladosporium sp. fungus collected from the South China Sea. Their complete structural assignments were elucidated by comprehensive spectroscopic investigation. Quantum chemistry calculations were used in support of the structural determination of 1. The absolute configuration of 1 was determined by calculation of its optical rotation. Cladosporilactam A (1 was the first example of 7-oxabicyclic[6.3.0]lactam obtained from a natural source. Compound 1 exhibited promising cytotoxic activity against cervical cancer HeLa cell line with an IC50 value of 0.76 μM.

  3. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction

    Science.gov (United States)

    Sharma, M. G.; Rajani, D. P.; Patel, H. M.

    2017-06-01

    A novel green and efficient one-pot multicomponent reaction of dihydropyridine derivatives was reported as having good to excellent yield. In the presence of the catalyst ceric ammonium nitrate (CAN), different 1,3-diones and same starting materials as 5-bromothiophene-2-carboxaldehyde and ammonium acetate were used at room temperature under solvent-free condition for the Hantzsch pyridine synthesis within a short period of time. All compounds were evaluated for their in vitro antibacterial and antifungal activity and, interestingly, we found that 5(b-f) show excellent activity compared with Ampicillin, whereas only the 5e compound shows excellent antifungal activity against Candida albicans compared with griseofulvin. The cytotoxicity of all compounds has been assessed against breast tumour cell lines (BT-549), but no activity was found. The X-ray structure of one such compound, 5a, viewed as a colourless block crystal, corresponded accurately to a primitive monoclinic cell.

  4. Synthesis and Antiviral Bioactivities of 2-Aryl- or 2-Methyl-3-(substituted- Benzalamino-4(3H-quinazolinone Derivatives

    Directory of Open Access Journals (Sweden)

    Zhuo Chen

    2007-12-01

    Full Text Available A simple and general method has been developed for the synthesis of various4(3H-quinazolinone derivatives by the treatment of the appropriate 3-amino-2-aryl-4(3H-quinazolinone with a substituted benzaldehyde in ethanol. The structures of the compoundswere characterized by elemental analysis, IR, 1H-NMR and 13C-NMR spectra. The title 2-aryl- or 2-methyl-3-(substituted-benzalamino-4(3H-quinazolinone compounds III-1~III-31 were found to possess moderate to good antiviral activity. Semi-quantitative PCR andReal Time PCR assays were used to ascertain the target of action of compound III-31against TMV. The studies suggest that III-31 possesses antiviral activity due to inductionof up-regulation of PR-1a and PR-5, thereby inhibiting virus proliferation and movementby enhancement of the activity of some defensive enzyme.

  5. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents

    Science.gov (United States)

    Raman, N.; Sobha, S.; Thamaraichelvan, A.

    2011-02-01

    A novel tyramine derived Schiff base, 3-4-dimethoxybenzylidene-4-aminoantipyrinyl-4-aminoethylphenol(L) and a series of its transition metal complexes of the type, ML 2Cl 2 where, M = Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding properties of these complexes with calf thymus DNA (CT-DNA) were investigated using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and molecular docking analysis. The results reveal that the metal(II) complexes interact with DNA through minor groove binding. The interaction has also been investigated by gel electrophoresis. Interestingly, it was found that all the complexes could cleave the circular plasmid pUC19 super coiled (SC) DNA efficiently in the presence of AH 2 (ascorbic acid). The complexes showed enhanced antifungal and antibacterial activities compared to the free ligand.

  6. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    Science.gov (United States)

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.

  7. Recent progress in fungus-derived bioactive agents for targeting of signaling machinery in cancer cells

    Directory of Open Access Journals (Sweden)

    Lin X

    2015-03-01

    Full Text Available Xiukun Lin,1 Ammad Ahmad Farooqi,2 Muhammad Ismail2 1Department of Pharmacology, Capital Medical University, Beijing, People’s Republic of China; 2Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan Abstract: It is becoming increasingly understood that tumor cells may have different mutations and dependencies on diverse intracellular signaling cascades for survival or metastatic potential. Overexpression of oncogenes, inactivation of tumor suppressor genes, genetic/epigenetic mutations, genomic instability, and loss of apoptotic cell death are some of the mechanisms that have been widely investigated in molecular oncology. We partition this multicomponent review into the most recent evidence on the anticancer activity of fungal substances obtained from in vitro and xenografted models, and these fungal substances modulate expression of oncogenic and tumor suppressor miRNAs.  There are some outstanding questions regarding fungus-derived chemical-induced modulation of intracellular signaling networks in different cancer cell lines and preclinical models. Certain hints have emerged, emphasizing mechanisms via which apoptosis can be restored in TRAIL-resistant cancer cells. Reconceptualization of the knowledge obtained from these emerging areas of research will enable us to potentially identify natural agents with notable anticancer activity and minimal off-target effects. Integration of experimentally verified evidence obtained from cancer cell line gene expression with large-scale functional screening results and pharmacological sensitivity data will be helpful in identification of therapeutics with substantial efficacy. New tools and technologies will further deepen our understanding of the signaling networks that underlie the development of cancer, metastasis, and resistance to different therapeutics at both a personal and systems-wide level. Keywords: fungal products, cell signaling, cancer, apoptosis, miRNA, xenograft

  8. Bioactivity Studies of β-Lactam Derived Polycyclic Fused Pyrroli-Dine/Pyrrolizidine Derivatives in Dentistry: In Vitro, In Vivo and In Silico Studies.

    Directory of Open Access Journals (Sweden)

    Gowri Meiyazhagan

    Full Text Available The antibacterial activity of β-lactam derived polycyclic fused pyrrolidine/pyrrolizidine derivatives synthesized by 1, 3-dipolar cycloaddition reaction was evaluated against microbes involved in dental infection. Fifteen compounds were screened; among them compound 3 showed efficient antibacterial activity in an ex vivo dentinal tubule model and in vivo mice infectious model. In silico docking studies showed greater affinity to penicillin binding protein. Cell damage was observed under Scanning Electron Microscopy (SEM which was further proved by Confocal Laser Scanning Microscope (CLSM and quantified using Flow Cytometry by PI up-take. Compound 3 treated E. faecalis showed ROS generation and loss of membrane integrity was quantified by flow cytometry. Compound 3 was also found to be active against resistant E. faecalis strains isolated from failed root canal treatment cases. Further, compound 3 was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non mutagenic. It was concluded that β-lactam compound 3 exhibited promising antibacterial activity against E. faecalis involved in root canal infections and the mechanism of action was deciphered. The results of this research can be further implicated in the development of potent antibacterial medicaments with applications in dentistry.

  9. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors.

    Science.gov (United States)

    Ibrar, Aliya; Tehseen, Yildiz; Khan, Imtiaz; Hameed, Abdul; Saeed, Aamer; Furtmann, Norbert; Bajorath, Jürgen; Iqbal, Jamshed

    2016-10-01

    In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a-o) and coumarin-oxadiazole 11(a-h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16±0.06μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50=2.94±1.23μM for ARL1 and 0.12±0.05μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50=1.71±0.01μM for ARL1 and 0.11±0.001μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50=0.459±0.001μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.

  10. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Directory of Open Access Journals (Sweden)

    Satyendra Singh

    2014-10-01

    Conclusions: The present study reported the rifamycin W from sponge-associated Salinispora sp. and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  11. Bioactive thiazole and benzothiazole derivatives.

    Science.gov (United States)

    Rouf, Abdul; Tanyeli, Cihangir

    2015-06-05

    The heterocycles are the versatile compounds existing in almost all natural products and synthetic organic compounds, usually associated with one or the other biological activity. Among the heterocycles the thiazoles and benzothiazoles occupy a prominent position. They possess a broad range of biological activities and are found in many potent biologically active molecules and drugs such as vitamin thiamine, sulfathiazol (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug) and tiazofurin (antineoplastic drug). The thiazole moiety is abundantly found in natural products while benzothiazole moiety is rare. In this review we disclose the literature reports of thiazoles and benzothiazoles possessing different biological activities.

  12. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    Science.gov (United States)

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  13. Nonnatural deaths among users of illicit drugs: pathological findings and illicit drug abuse stigmata.

    Science.gov (United States)

    Delaveris, Gerd Jorunn Møller; Hoff-Olsen, Per; Rogde, Sidsel

    2015-03-01

    The aim of the study was to provide information on illicit drug abuse stigmata and general pathological findings among an adult narcotic drug-using population aged 20 to 59 years whose death was nonnatural. A total of 1603 medicolegal autopsy reports from 2000 to 2009 concerning cases positive for morphine, heroin, amphetamines, ecstasy, cannabis, LSD (lysergic acid diethylamide), PCP (phencyclidine), and high levels of GHB (γ-hydroxybutyric acid) in addition to methadone and buprenorphine were investigated. Reported findings of hepatitis, portal lymphadenopathy, recent injection marks, drug user's equipment, and numbers of significant pathological conditions were registered and analyzed according to cases positive for opiates, opioids (OPs), and central nervous system (CNS)-stimulating illicit drugs, respectively. Of the selected cases, 1305 were positive for one or more opiate or OP. Cases positive for OPs had significantly more findings of noninfectious pathological conditions. Hepatitis, portal lymphadenopathy, recent injections marks findings of drug user's equipment were all findings found more frequently among the opiate OP-positive individuals. Portal lymphadenopathy was significantly more often found in cases with hepatitis than in cases with other or no infection. In the population positive for CNS stimulants, hepatitis recent injection marks were more frequent findings than in the CNS stimulant-negative group, irrespective of whether they were opiate OP positive or negative.

  14. Rapid Optimization of Mcl-1 Inhibitors using Stapled Peptide Libraries Including Non-Natural Side Chains.

    Science.gov (United States)

    Rezaei Araghi, Raheleh; Ryan, Jeremy A; Letai, Anthony; Keating, Amy E

    2016-05-20

    Alpha helices form a critical part of the binding interface for many protein-protein interactions, and chemically stabilized synthetic helical peptides can be effective inhibitors of such helix-mediated complexes. In particular, hydrocarbon stapling of peptides to generate constrained helices can improve binding affinity and other peptide properties, but determining the best stapled peptide variant often requires laborious trial and error. Here, we describe the rapid discovery and optimization of a stapled-helix peptide that binds to Mcl-1, an antiapoptotic protein that is overexpressed in many chemoresistant cancers. To accelerate discovery, we developed a peptide library synthesis and screening scheme capable of identifying subtle affinity differences among Mcl-1-binding stapled peptides. We used our method to sample combinations of non-natural amino-acid substitutions that we introduced into Mcl-1 inhibitors in the context of a fixed helix-stabilizing hydrocarbon staple that increased peptide helical content and reduced proteolysis. Peptides discovered in our screen contained surprising substitutions at sites that are conserved in natural binding partners. Library-identified peptide M3d is the most potent molecule yet tested for selectively triggering mitochondrial permeabilization in Mcl-1 dependent cell lines. Our library approach for optimizing helical peptide inhibitors can be readily applied to the study of other biomedically important targets.

  15. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Stuart A.; Karanicolas, John; Chang, Howard W.; Zhao, Anni; Jiang, Lin; Zirafi, Onofrio; Stevens, Jason T.; Münch, Jan; Baker, David; Eisenberg, David (UCLA); (UWASH); (UL); (Kansas); (Ulm)

    2011-09-20

    Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-{beta}-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

  16. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Otte, Jeanette; De Gobba, Cristian

    2017-01-01

    Buffaloes' milk, which is consumed in many parts of the world, is a little-explored source of bioactive peptides. The angiotensin converting enzyme (ACE)-inhibitory activity and the antioxidant capacity of peptides from buffaloes' milk were examined. A retentate from buffaloes' skimmed milk was h......-inhibitory (FPGPIPK, IPPK, IVPN, and QPPQ) and antioxidant (YPSG, HPFA and KFQ) activities. The results obtained showed the potential of buffaloes' milk proteins to release ACE-inhibitory and antioxidant peptides...

  17. Structure and stability of short beta-peptide nanotubes: a non-natural representative of collagen?

    Science.gov (United States)

    Czajlik, András; Beke, Tamás; Bottoni, Andrea; Perczel, András

    2008-07-03

    Since secondary structure elements are known to play a key role in stabilizing the 3D-fold of proteins for the design of non-natural proteins composed of beta-amino acid residues, the construction of suitable secondary structural elements is mandatory. Folding analogues of alpha-helices and beta-strands of beta-polypeptides were already described (Chem. Biodiversity 2004, 1, 1111 (1)). Here, we present several collagen-like folds composed exclusively of beta-Ala(s). Unlike their natural counterpart, these tubular nanostructures can be composed of more than three polypeptide chains aligned parallel and/or antiparallel. By using ab initio and DFT calculations we have optimized a large number of versatile collagen-like antiparallel nanostructures. In these tubular systems, oligopeptide strands are interconnected by i --> (i) type H-bonds, except for the "closing" set. This latter is called "the H-bond zipper" and is either (i) --> i, ( i + 1) --> i, or ( i + 2) --> i type. Antiparallel, tubular foldamers composed of l number of strands, each of k number of beta-amino acid residues (e.g., apbeta-T(l) i+l ) k , ap(beta-T(l) i+1 ) k , or ap(beta-T(l) i+2 ) k ), are unexpectedly stable supramolecular complexes. Independent of k and l, the local backbone fold of the amino acid residues is usually spiral, abbreviated as "S(P)" or "S*(P)". Nevertheless, in contrast to parallel, in antiparallel nanotubes the backbone fold can occasionally twist out from S(P) or S*(P) type into an alternative local structure. However, the more the local geometry of the strands resembles to S(P) or S*(P), the higher the stability is. Besides the backbone twisting, the overall stability is determined by the type and the geometrical properties of the constituent H-bonds. Interestingly, higher number of total H-bonds can provide a lower overall stability, when H-bond parameters are inferior. In general, the increase of both the number of strands and their length stabilize the supramolecular

  18. Studies on the structure-activity relationship of 2',6'-dimethyl-l-tyrosine (Dmt) derivatives: bioactivity profile of H-Dmt-NH-CH(3).

    Science.gov (United States)

    Fujita, Yoshio; Tsuda, Yuko; Motoyama, Takashi; Li, Tingyou; Miyazaki, Anna; Yokoi, Toshio; Sasaki, Yusuke; Ambo, Akihiro; Niizuma, Hideko; Jinsmaa, Yunden; Bryant, Sharon D; Lazarus, Lawrence H; Okada, Yoshio

    2005-02-01

    The 2',6'-dimethyl-l-tyrosine (Dmt) enhances receptor affinity, functional bioactivity and in vivo analgesia of opioid peptides. To further investigate its direct influence on these opioid parameters, we developed a series of compounds (H-Dmt-NH-X). Among them, H-Dmt-NH-CH(3) showed the highest affinity (K(i)mu=7.45 nM) equal to that of morphine, partial mu-opioid agonism (E(max)=66.6%) in vitro and a moderate antinociception in mice.

  19. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  20. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids.

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon

    2013-06-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  1. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  2. In vitro response of human osteoblasts to multi-step sol–gel derived bioactive glass nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jian Ping, E-mail: jian.fan@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Kalia, Priya; Di Silvio, Lucy [Biomaterials, Tissue Engineering and Imaging, The Dental Institute, King' s College London, Guy' s Hospital, London SE1 9BT (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-03-01

    A multi-step sol–gel process was employed to synthesize bioactive glass (BG) nanoparticles. Transmission electron microscopy (TEM) revealed that the BG nanoparticles were spherical and ranged from 30 to 60 nm in diameter. In vitro reactivity of the BG nanoparticles was tested in phosphate buffer saline (PBS), Tris-buffer (TRIS), simulated body fluid (SBF), and Dulbecco's modified Eagle's medium (DMEM), in comparison with similar sized hydroxyapatite (HA) and silicon substituted HA (SiHA) nanoparticles. Bioactivity of the BG nanoparticles was confirmed through Fourier transform infrared spectroscopy (FTIR) analysis. It was found that bone-like apatite was formed after immersion in SBF at 7 days. Solutions containing BG nanoparticles were slightly more alkaline than HA and SiHA, suggesting that a more rapid apatite formation on BG was related to solution-mediated dissolution. Primary human osteoblast (HOB) cell model was used to evaluate biological responses to BG nanoparticles. Lactate dehydrogenase (LDH) cytotoxicity assay showed that HOB cells were not adversely affected by the BG nanoparticles throughout the 7 day test period. Interestingly, MTS assay results showed an enhancement in cell proliferation in the presence of BG when compared to HA and SiHA nanoparticles. Particularly, statistically significant (p < 0.05) alkaline phosphatase (ALP) activity of HOB cells was found on the culture containing BG nanoparticles, suggesting that the cell differentiation might be promoted by BG. Real-time quantitative PCR analysis (qPCR) further confirmed this finding, as a significantly higher level of RUNX2 gene expression was recorded on the cells cultured in the presence of BG nanoparticles when compared to those with HA and SiHA. - Highlights: • Spherical bioactive glass nanoparticles (BG) under 60 nm were synthesized. • An alkali morphological catalyst was used in the synthesis. • Cytotoxicity assays demonstrated that BG was not cytotoxic towards HOB

  3. Isolation, Cultivation of a Sponge-Derived Fungus and Studes on Its Bioactive Metabolites%海绵微生物的分离培养及一种活性代谢产物的初步研究

    Institute of Scientific and Technical Information of China (English)

    方玉春; 李凌绪; 朱天骄; 蔡生新; 顾谦群; 朱伟明; 王长云; 郝双红

    2009-01-01

    研究海绵来源真菌Aspergillus repens发酵产物中的活性代谢产物.分离培养微生物进行活性筛选,采用活性追踪的方法、利用色谱手段分离获得单体化合物,根据波谱分析及其理化性质确定其结构,利用SRB评价单体化合物的抗肿瘤活性,利用纸片法测定单体化合物的抗植物病菌活性.获得1个萘并吡喃酮化合物,其结构鉴定为3,4-二氢-9,10-二羟基-7-甲氧基-3-甲基-1H-萘并[2,3c]吡喃-1-酮 (Semivioxanthin).该化合物对肿瘤细胞A-549、HL-60和BEL-7402有一定抑制作用,对植物致病菌作用较强.海绵微生物代谢产物是发现活性物质重要资源,值得深入研究.%To investigate the bioactive metabolites of sponge-derived fungus Aspergillus repens. Sponge-derived fungi were isolated and cultivated. The bioactive compounds were isolated by bioassay-guided separation procedure and their structures were identified by means of spectral analysis and physicochemical properties. Their bioactivities were preliminarily evaluated in vitro by the SRB and paper method. An anthraquinone was isolated and its structure was identified as 3,4-Dihydro-9,10-dihydroxy-7-methoxy-3-methyl-1H-naptho [2,3c] pyran-1-one. The anthraquinone showed moderate cytotoxicity against A-549, HL-60, BEL-7402 and strong fungicidal activity against plant pathogen. Sponge-derived fungi are important resources for drug discovery.

  4. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    Science.gov (United States)

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  5. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.

    Science.gov (United States)

    Iijima, Issei; Hohsaka, Takahiro

    2009-04-17

    Position-specific incorporation of fluorescent groups is a useful method for analysis of the functions and structures of proteins. We have developed a method for the incorporation of visible-wavelength-fluorescent non-natural amino acids into proteins in a cell-free translation system. Using this technique, we introduced one or two BODIPY-linked amino acids into maltose-binding protein (MBP) to obtain MBP derivatives showing ligand-dependent changes in fluorescence intensity or intensity ratio. BODIPY-FL-aminophenylalanine was incorporated in place of 15 tyrosines, as well as the N-terminal Lys1, and the C-terminal Lys370 of MBP. Fluorescence measurements revealed that MBP containing a BODIPY-FL moiety in place of Tyr210 showed a 13-fold increase in fluorescence upon binding of maltose. Tryptophan-to-phenylalanine substitutions suggest that the increase in fluorescence was the result of a decrease in the quenching of BODIPY-FL by tryptophan located around the binding site. MBP containing a BODIPY-558 moiety also showed a maltose-dependent increase in fluorescence. BODIPY-FL was then additionally incorporated in place of Lys1 of the BODIPY-558-containing MBP as a response to the amber codon. Fluorescence measurements with excitation of BODIPY-FL showed a large change in fluorescence intensity ratio (0.13 to 1.25) upon binding of maltose; this change can be attributed to fluorescence resonance energy transfer (FRET) and maltose-dependent quenching of BODIPY-558. These results demonstrate the usefulness of the position-specific incorporation of fluorescent amino acids in the fluorescence-based detection of protein functions.

  6. Redefining an epitope of a malaria vaccine candidate, with antibodies against the N-terminal MSA-2 antigen of Plasmodium harboring non-natural peptide bonds.

    Science.gov (United States)

    Lozano, José Manuel; Guerrero, Yuly Andrea; Alba, Martha Patricia; Lesmes, Liliana Patricia; Escobar, José Oswaldo; Patarroyo, Manuel Elkin

    2013-10-01

    The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-2(21-40) peptide primary structure's genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the (30)FIN(32)-binding motif of MSA-2 were replaced with ψ-[CH2-NH] methylene amide isostere bonds, one between the F-I and the second between I-N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-2(25-32) antigen and two polypeptides of rodent malaria species. Also, these antibodies' functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium's biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.

  7. A nonnatural head-neck position (Rollkur) during training results in less acute stress in elite, trained, dressage horses.

    Science.gov (United States)

    van Breda, Eric

    2006-01-01

    This study measured parameters of stress in recreational, trained horses (REC; n = 7) and elite (International Grand Prix level) trained, dressage horses (DRES; n = 5). The training of the DRES horses uses an unnatural head-neck position (Rollkur), whereas in the REC horses such training techniques are not common. The study measured stress by using heart rate variability analysis for 30 min postfeeding in the morning and 30 min postexercise after a morning training session. The study found no significant difference at rest between the REC and DRES horses. During the posttraining measurements, however, the DRES horses showed, among others, a less sympathetic and increased parasympathetic dominance. These results suggest that DRES horses tend to have less acute stress than do REC horses postexercise. The findings of this study suggest maintaining the health and well-being of DRES horses despite nonnatural, biomechanical positions.

  8. Easy design of colorimetric logic gates based on nonnatural base pairing and controlled assembly of gold nanoparticles.

    Science.gov (United States)

    Zhang, Li; Wang, Zhong-Xia; Liang, Ru-Ping; Qiu, Jian-Ding

    2013-07-16

    Utilizing the principles of metal-ion-mediated base pairs (C-Ag-C and T-Hg-T), the pH-sensitive conformational transition of C-rich DNA strand, and the ligand-exchange process triggered by DL-dithiothreitol (DTT), a system of colorimetric logic gates (YES, AND, INHIBIT, and XOR) can be rationally constructed based on the aggregation of the DNA-modified Au NPs. The proposed logic operation system is simple, which consists of only T-/C-rich DNA-modified Au NPs, and it is unnecessary to exquisitely design and alter the DNA sequence for different multiple molecular logic operations. The nonnatural base pairing combined with unique optical properties of Au NPs promises great potential in multiplexed ion sensing, molecular-scale computers, and other computational logic devices.

  9. Bioactivity of sol-gel derived apatite/wollastonite porous bioactive glass-ceramic%溶胶-凝胶法制备磷灰石-硅灰石多孔生物活性玻璃陶瓷的生物活性

    Institute of Scientific and Technical Information of China (English)

    杨为中; 周成昕; 肖斌; 尹光福; 周大利

    2006-01-01

    .MATERIALS: AWGC.METHODS: This experiment was conducted at the laboratory of College of Materials Science and Engineering of Sichuan University between August 2002 and May 2003. AWGC was prepared from sol-gel and followed by heattreating process. Bioactivity was investigated in vitro by immersing in the simulate body fluid (SBF) at 37 ℃ for 7 days . JL-1155 laser particle analyzer, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope were used for micro-morphological structure analysis.MAIN OUTCOME MEASURES: ①The crystalline structure and microstructure of sol-gel derived glass-ceramic② The apatite forming process in simulate body fluid③ The diameter of the pore of the sol-gel derived apatite/wollastonite glass-ceramicRESULTS: ①Main crystalline phases of the sol-gel derived glass-ceramic materials were hydroxyapatite/fluoroapatite [Ca10(PO4)6(OH, F)] and β-wollastonite[β-CaSiO3]; Microstructure contained many micro-pores of 2-3μ m;② Sol-gel derived AW glass ceramic had excellent bioactivity: plenty of apatite granules were generated on the surface of the material after soaking for 7 days. ③Porous scaffolds possessed good macro-porous structure with the interconnected macro pores of 300-400 μm in diameter;CONCLUSION: Apatite-wollastonite containing glass-ceramic (AWGC)with excellent bioactivity was developed by sol-gel process. The material is expected to be a good candidate for bone-repairing and bone tissue engineering scaffold materials.

  10. A comprehensive approach to the photochemical synthesis of bioactive compounds by the reaction of oxazolidine, thiazolidine and pyrazolidine derivatives with indol-2,3-diones

    Indian Academy of Sciences (India)

    I Sharma; A Saxena; C K Ojha; P Pardasani; R T Pardasani; T Mukherjee

    2002-12-01

    The reactions of indol-2,3-dione derivatives with 3-phenyl-5-isoxazolone, 2-thiazoline-2-thiol, 1-phenyl-3-methyl-5-pyrazolone under photochemical conditions have been described. The UV light-induced irradiation mainly produced benzazepine and quinoline carboxylic acid derivatives. The products have been characterized on the basis of spectral data and elemental analyses.

  11. Bioactivation of particles

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  12. Short-term hypoxic vasodilation in vivo is mediated by bioactive nitric oxide metabolites, rather than free nitric oxide derived from haemoglobin-mediated nitrite reduction.

    Science.gov (United States)

    Umbrello, Michele; Dyson, Alex; Pinto, Bernardo Bollen; Fernandez, Bernadette O; Simon, Verena; Feelisch, Martin; Singer, Mervyn

    2014-03-01

    Local increases in blood flow--'hypoxic vasodilation'--confer cellular protection in the face of reduced oxygen delivery. The physiological relevance of this response is well established, yet ongoing controversy surrounds its underlying mechanisms. We sought to confirm that early hypoxic vasodilation is a nitric oxide (NO)-mediated phenomenon and to study putative pathways for increased levels of NO, namely production from NO synthases, intravascular nitrite reduction, release from preformed stores and reduced deactivation by cytochrome c oxidase. Experiments were performed on spontaneously breathing, anaesthetized, male Wistar rats undergoing short-term systemic hypoxaemia, who received pharmacological inhibitors and activators of the various NO pathways. Arterial blood pressure, cardiac output, tissue oxygen tension and the circulating pool of NO metabolites (oxidation, nitrosation and nitrosylation products) were measured in plasma and erythrocytes. Hypoxaemia caused a rapid and sustained vasodilation, which was only partially reversed by non-selective NO synthase inhibition. This was associated with significantly lower plasma nitrite, and marginally elevated nitrate levels, suggestive of nitrite bioinactivation. Administration of sodium nitrite had little effect in normoxia, but produced significant vasodilation and increased nitrosylation during hypoxaemia that could not be reversed by NO scavenging. Methodological issues prevented assessment of the contribution, if any, of reduced deactivation of NO by cytochrome c oxidase. In conclusion, acute hypoxic vasodilation is an adaptive NO-mediated response conferred through bioactive metabolites rather than free NO from haemoglobin-mediated reduction of nitrite.

  13. Sol-gel-derived bioactive glass containing SiO2-MgO-CaO-P2O5 as an antibacterial scaffold.

    Science.gov (United States)

    Fooladi, Abbas Ali Imani; Hosseini, Hamideh Mahmoodzadeh; Hafezi, Forough; Hosseinnejad, Fatemeh; Nourani, Mohammad Reza

    2013-06-01

    Bioactive glass (BG) composites with a base of SiO2-Na2O-CaO-P2O5 are biocompatible biomaterials. The assessment of their abilities for medical applications has interested researchers. We produced a BG-containing SiO2-MgO-CaO-P2O5 by the sol-gel method. To determine the antibacterial effects, we analyzed the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) properties of this product on three microorganisms, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, known causative agents for biofilm formation on implant surfaces. In addition, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to study the cytotoxic effects of our composite on animal cells. Our results demonstrated that our BG product inhibited the growth of bacteria in a concentration-dependent manner without any cytotoxic effects. Therefore, our BG product can be utilized as an appropriate implant for treating bone and tooth defects.

  14. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Wang, Mian; Cheng, Xiaoqian; Zhu, Wei; Holmes, Benjamin; Keidar, Michael; Zhang, Lijie Grace

    2014-03-01

    The objective of this study was to design a biomimetic and bioactive tissue-engineered bone construct via a cold atmospheric plasma (CAP) treatment for directed osteogenic differentiation of human bone morrow mesenchymal stem cells (MSCs). Porous nanocrystalline hydroxyapatite/chitosan scaffolds were fabricated via a lyophilization procedure. The nanostructured bone scaffolds were then treated with CAP to create a more favorable surface for cell attachment, proliferation, and differentiation. The CAP-modified scaffolds were characterized via scanning electron microscope, Raman spectrometer, contact angle analyzer, and white light interferometer. In addition, optimal CAP treatment conditions were determined. Our in vitro study shows that MSC adhesion and infiltration were significantly enhanced on CAP modified scaffolds. More importantly, it was demonstrated that CAP-modified nanostructured bone constructs can greatly promote total protein, collagen synthesis, and calcium deposition after 3 weeks of culture, thus making them a promising implantable scaffold for bone regeneration. Moreover, the fibronectin and vitronection adsorption experiments by enzyme-linked immunosorbent assay demonstrated that more adhesion-mediated protein adsorption on the CAP-treated scaffolds. Since the initial specific protein absorption on scaffold surfaces can lead to further recruitment as well as activation of favorable cell functions, it is suggested that our enhanced stem cell growth and osteogenic function may be related to more protein adsorption resulting from surface roughness and wettability modification. The CAP modification method used in this study provides a quick one-step process for cell-favorable tissue-engineered scaffold architecture remodeling and surface property alteration.

  15. Bioactivity and cell proliferation in radiopaque gel-derived CaO–P{sub 2}O{sub 5}–SiO{sub 2}–ZrO{sub 2} glass and glass–ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Montazerian, Maziar, E-mail: maziar_montaz@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114 (Iran, Islamic Republic of); Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114 (Iran, Islamic Republic of); Bellani, Caroline Faria [Department of Bioengineering, School of Engineering of São Carlos, University of São Paulo, São Carlos, SP, 13.566-590 (Brazil); Siqueira, Renato Luiz; Zanotto, Edgar Dutra [Department of Materials Engineering, Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, SP, 13.565-905 (Brazil)

    2015-10-01

    In this study, 10 mol% ZrO{sub 2} was added to a 27CaO–5P{sub 2}O{sub 5}–68SiO{sub 2} (mol%) base composition synthesized via a simple sol–gel method. This composition is similar to that of a frequently investigated bioactive gel–glass. The effects of ZrO{sub 2} on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass–ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite–wollastonite–zirconia glass–ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass–ceramic particles containing ZrO{sub 2} was confirmed by FTIR and SEM. Addition of ZrO{sub 2} to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO{sub 2} could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass–ceramic powder containing ZrO{sub 2} crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass–ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline

  16. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    Science.gov (United States)

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  17. Advances in the Study of the Structures and Bioactivities of Metabolites Isolated from Mangrove-Derived Fungi in the South China Sea

    Directory of Open Access Journals (Sweden)

    Yong-Hong Zhu

    2013-09-01

    Full Text Available Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013.

  18. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea.

    Science.gov (United States)

    Wang, Xin; Mao, Zhi-Gang; Song, Bing-Bing; Chen, Chun-Hua; Xiao, Wei-Wei; Hu, Bin; Wang, Ji-Wen; Jiang, Xiao-Bing; Zhu, Yong-Hong; Wang, Hai-Jun

    2013-09-30

    Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013.

  19. Hydrostatin-SN1, a Sea Snake-Derived Bioactive Peptide, Reduces Inflammation in a Mouse Model of Acute Lung Injury.

    Science.gov (United States)

    Wu, Guosheng; Wang, Junjie; Luo, Pengfei; Li, An; Tian, Song; Jiang, Hailong; Zheng, Yongjun; Zhu, Feng; Lu, Yiming; Xia, Zhaofan

    2017-01-01

    Snake venom has been used for centuries as a traditional Chinese medicine. Hydrostatin-SN1 (H-SN1), a bioactive peptide extracted from the Hydrophis cyanocinctus venom gland T7 phage display library, was reported to have the ability to reduce inflammation in a dextran sulfate sodium-induced murine colitis model. In this study, we sought to investigate the inhibitory potential of H-SN1 on inflammation in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), and elucidate the anti-inflammatory mechanism in LPS-stimulated RAW 264.7 cells. In vivo, C57BL/6 male mice were intratracheally instilled with LPS or physiological saline with concurrent intraperitoneal injection of H-SN1 or saline alone. Lung histopathologic changes, lung wet-to-dry weight ratio, and myeloperoxidase activity in lung tissues were assessed. Total cell number, the protein concentration, and cytokine levels were determined in the bronchial alveolar lavage fluid. In vitro, RAW 264.7 cells were treated with various concentrations of H-SN1 for 2 h followed by incubation with or without 1 μg/ml LPS for 0.5 or 24 h. The mRNA expression of inflammatory cytokines was determined via RT-PCR and protein levels in the supernatants were measured via ELISA. Extracellular-signal related kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) pathways were analyzed via western blot. H-SN1 improved pulmonary edema status, decreased vascular permeability, suppressed pro-inflammatory cytokine production, and lessened lung morphological injury. H-SN1 also dose-dependently inhibited the mRNA expression and release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Moreover, H-SN1 inhibited the LPS-induced phosphorylation of ERK1/2 and the nuclear translocation of NF-κB. Our results suggest that H-SN1 could attenuate LPS-induced ALI in mice, which is associated with the anti-inflammatory effect of H-SN1. The mechanism might involve inhibiting the production of inflammatory cytokines by

  20. Hydrostatin-SN1, a Sea Snake-Derived Bioactive Peptide, Reduces Inflammation in a Mouse Model of Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Guosheng Wu

    2017-05-01

    Full Text Available Snake venom has been used for centuries as a traditional Chinese medicine. Hydrostatin-SN1 (H-SN1, a bioactive peptide extracted from the Hydrophis cyanocinctus venom gland T7 phage display library, was reported to have the ability to reduce inflammation in a dextran sulfate sodium-induced murine colitis model. In this study, we sought to investigate the inhibitory potential of H-SN1 on inflammation in a murine model of lipopolysaccharide (LPS-induced acute lung injury (ALI, and elucidate the anti-inflammatory mechanism in LPS-stimulated RAW 264.7 cells. In vivo, C57BL/6 male mice were intratracheally instilled with LPS or physiological saline with concurrent intraperitoneal injection of H-SN1 or saline alone. Lung histopathologic changes, lung wet-to-dry weight ratio, and myeloperoxidase activity in lung tissues were assessed. Total cell number, the protein concentration, and cytokine levels were determined in the bronchial alveolar lavage fluid. In vitro, RAW 264.7 cells were treated with various concentrations of H-SN1 for 2 h followed by incubation with or without 1 μg/ml LPS for 0.5 or 24 h. The mRNA expression of inflammatory cytokines was determined via RT-PCR and protein levels in the supernatants were measured via ELISA. Extracellular-signal related kinase 1/2 (ERK1/2 and nuclear factor-κB (NF-κB pathways were analyzed via western blot. H-SN1 improved pulmonary edema status, decreased vascular permeability, suppressed pro-inflammatory cytokine production, and lessened lung morphological injury. H-SN1 also dose-dependently inhibited the mRNA expression and release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Moreover, H-SN1 inhibited the LPS-induced phosphorylation of ERK1/2 and the nuclear translocation of NF-κB. Our results suggest that H-SN1 could attenuate LPS-induced ALI in mice, which is associated with the anti-inflammatory effect of H-SN1. The mechanism might involve inhibiting the production of inflammatory

  1. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  2. Bioactives from microalgal dinoflagellates.

    Science.gov (United States)

    Gallardo-Rodríguez, J; Sánchez-Mirón, A; García-Camacho, F; López-Rosales, L; Chisti, Y; Molina-Grima, E

    2012-01-01

    Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.

  3. Identification and Characterization of Novel Matrix-Derived Bioactive Peptides: A Role for Collagenase from Santyl® Ointment in Post-Debridement Wound Healing?

    Science.gov (United States)

    Sheets, Anthony R; Demidova-Rice, Tatiana N; Shi, Lei; Ronfard, Vincent; Grover, Komel V; Herman, Ira M

    2016-01-01

    Debridement, the removal of diseased, nonviable tissue, is critical for clinicians to readily assess wound status and prepare the wound bed for advanced therapeutics or downstream active healing. Removing necrotic slough and eschar through surgical or mechanical methods is less specific and may be painful for patients. Enzymatic debridement agents, such as Clostridial collagenase, selectively and painlessly degrade devitalized tissue. In addition to its debriding activities, highly-purified Clostridial collagenase actively promotes healing, and our past studies reveal that extracellular matrices digested with this enzyme yield peptides that activate cellular migratory, proliferative and angiogenic responses to injury in vitro, and promote wound closure in vivo. Intriguingly, while collagenase Santyl® ointment, a sterile preparation containing Clostridial collagenases and other non-specific proteases, is a well-accepted enzymatic debridement agent, its role as an active healing entity has never been established. Based on our previous studies of pure Clostridial collagenase, we now ask whether the mixture of enzymes contained within Santyl® produces matrix-derived peptides that promote cellular injury responses in vitro and stimulate wound closure in vivo. Here, we identify novel collagen fragments, along with collagen-associated peptides derived from thrombospondin-1, multimerin-1, fibronectin, TGFβ-induced protein ig-h3 and tenascin-C, generated from Santyl® collagenase-digested human dermal capillary endothelial and fibroblastic matrices, which increase cell proliferation and angiogenic remodeling in vitro by 50-100% over controls. Using an established model of impaired healing, we further demonstrate a specific dose of collagenase from Santyl® ointment, as well as the newly-identified and chemically-synthesized ECM-derived peptides significantly increase wound re-epithelialization by 60-100% over saline-treated controls. These results not only confirm and

  4. Venom neutralization by purified bioactive molecules: Synthetic peptide derivatives of the endogenous PLA(2) inhibitory protein PIP (a mini-review).

    Science.gov (United States)

    Thwin, Maung-Maung; Samy, Ramar Perumal; Satyanarayanajois, Seetharama D; Gopalakrishnakone, Ponnampalam

    2010-12-15

    Envenomation due to snakebite constitutes a significant public health problem in tropical and subtropical countries. Antivenom therapy is still the mainstay of treatment for snake envenomation, and yet despite recent research focused on the prospects of using antivenom adjuncts to aid in serotherapy, no new products have emerged so far for therapeutic use. Various methodologies including molecular biology, crystallography, functional and morphological approaches, etc., are employed in the search for such inhibitors with a view to generate molecules that can stop partially or completely the activities of toxic phospholipase A(2) (PLA(2)) and snake venom metalloproteinase (SvMPs) enzymes at the molecular level. Herein, both natural and synthetic inhibitors derived from a variety of sources including medicinal plants, mammals, marine animals, fungi, bacteria, and from the venom and blood of snakes have been briefly reviewed. Attention has been focused on the snake serum-based phospholipase A(2) inhibitors (PLIs), particularly on the PLI derived from python snake serum (PIP), highlighting the potential of the natural product, PIP, or possible derivatives of it, as a complementary treatment to serotherapy against the inflammation and/or muscle-damaging activity of snake venoms. The data indicate a more efficient pathway for inhibition and blocking the activity of PLA(2)s and matrix metalloproteinases (MMPs), thus representing a feasible complementary treatment for snakebites. Such information may be helpful for interfering on the biological processes that these molecules are involved in human inflammatory-related diseases, and also for the development of new drugs for treatment of snake envenomation.

  5. Stabilization of Angiotensin-(1-7) by key substitution with a cyclic non-natural amino acid.

    Science.gov (United States)

    Wester, Anita; Devocelle, Marc; Tallant, E Ann; Chappell, Mark C; Gallagher, Patricia E; Paradisi, Francesca

    2017-07-25

    Angiotensin-(1-7) [Ang-(1-7)], a heptapeptide hormone of the renin-angiotensin-aldosterone system, is a promising candidate as a treatment for cancer that reflects its anti-proliferative and anti-angiogenic properties. However, the peptide's therapeutic potential is limited by the short half-life and low bioavailability resulting from rapid enzymatic metabolism by peptidases including angiotensin-converting enzyme (ACE) and dipeptidyl peptidase 3 (DPP 3). We report the facile assembly of three novel Ang-(1-7) analogues by solid-phase peptide synthesis which incorporates the cyclic non-natural δ-amino acid ACCA. The analogues containing the ACCA substitution at the site of ACE cleavage exhibit complete resistance to human ACE, while substitution at the DDP 3 cleavage site provided stability against DPP 3 hydrolysis. Furthermore, the analogues retain the anti-proliferative properties of Ang-(1-7) against the 4T1 and HT-1080 cancer cell lines. These results suggest that ACCA-substituted Ang-(1-7) analogues which show resistance against proteolytic degradation by peptidases known to hydrolyze the native heptapeptide may be novel therapeutics in the treatment of cancer.

  6. STRUCTURE, MOLECULAR WEIGHT AND BIOACTIVITIES OF (1→3)-β-D- GLUCANS AND ITS SULFATED DERIVATIVES FROM FOUR KINDS OF LENTINUS EDODES

    Institute of Scientific and Technical Information of China (English)

    Unursaikhan Surenjav; Li-na Zhang; Xiao-juan Xu; Mei Zhang; Peter Chi Keung Cheung; Fan-bo Zeng

    2005-01-01

    Lentinan samples, (1→3)-β-D-glucans containing 4.6-15.2 wt% proteins, coded as L-I1, L-I2, L-I3 and L-I4 (L-I)were isolated from four kinds of Lentinus edodes. These glucans were treated with acetone to remove the protein in order to obtain free protein glucans coded as LNP-I1, LNP-I2, LNP-I3 and LNP-I4 (LNP-I). The free-protein polysaccharides were sulfated to give derivatives (S-LNP-I) with degree of substitution (DS) from 0.4-0.8. The structural features and weight- average molecular weight (Mw) of the samples were investigated by using infrared spectroscopy, elemental analysis,13C-NMR, size exclusion chromatography combined with laser light scattering (SEC-LLS) and viscometry. The effects of structure and conformation of the polysaccharides on antitumor activities were assayed in vivo (Sarcoma 180 solid tumors)and in vitro (Sarcoma 180, HL-60, MCF-7 and Vero tumors). The results indicated that the predominant species of the samples L-I and LNP-I in 0.2 mol/L NaCl aqueous solution existed as triple-helical chains with high rigidity and in dimethyl sulfoxide (DMSO) as single-flexible chains. Interestingly, the antitumor activities of LNP-I are lower than those of the native glucans (L-I), whereas their sulfated derivatives have higher inhibition ratio against Sarcoma 180 than LNP-I. The results reveal that the binding of protein, sulfated modification and the triple helix conformation are important factors in the enhancement of the antitumor activities of polysaccharides on the whole.

  7. C ring may be dispensable for β-carboline: Design, synthesis, and bioactivities evaluation of tryptophan analog derivatives based on the biosynthesis of β-carboline alkaloids.

    Science.gov (United States)

    Huang, Yuanqiong; Liu, Yongxian; Liu, Yuxiu; Song, Hongjian; Wang, Qingmin

    2016-02-01

    According to our previous work and the latest research on the biosynthesis of β-carboline, and using the reverse thinking strategy, tryptophan, the biosynthesis precursor of β-carboline alkaloids, and their derivatives were synthesized, and their biological activities and structure-activity relationships were studied. This bioassay showed that these compounds exhibited good inhibitory activities against tobacco mosaic virus (TMV); especially (S)-2-amino-3-(1H-indol-3-yl)-N-octylpropanamide (4) (63.3±2.1%, 67.1±1.9%, 68.7±1.3%, and 64.5±3.1%, 500μg/mL) exhibited the best antiviral activity both in vitro and in vivo. Compound 4 was chosen for the field trials and the acute oral toxicity test, the results showed that the compound exhibited good anti-TMV activity in the field and low acute oral toxicity. We also found that these compounds showed antifungal activities and insecticidal activities.

  8. High level expression, efficient purification and bioactivity assay of recombinant human platelet-derived growth factor AA dimer (PDGF-AA) from methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Li, Hongbo; Hui, Xiaoyan; Yang, Song; Hu, Xing; Tang, Xiaofeng; Li, Peng; Li, Shiwu; Yang, Lijun; Jin, Shouguang; Wang, Yu; Xu, Aimin; Wu, Donghai

    2013-10-01

    Platelet-derived growth factors (PDGFs) are important biochemical mediators regulating many physiological and pathophysiological processes, including promotion of the chemotactic recruitment and proliferation of cells involved in wound repair. Previously, homodimers of rhPDGF-AA protein were purified from Escherichia coli. However, eukaryotic proteins often contain posttranslational modifications, such as glycosylation, that are required for biological functions. In this study, an efficient method was established to purify a glycosylated rhPDGF-AA dimer from P. pastoris culture media by one step CM Sepharose ion exchange chromatography yielding about 20mg/L of over 95% highly purified rhPDGF-AA. Mass spectrometry analysis of the purified rhPDGF-AA displayed a molecular weight (MW) of 27,825.513Da, composed of a subunit with MW of 15,042.945Da and a subunit with MW of 12,904.374Da. The size difference is accounted for by differential glycosylation of the monomers. Biological activity of the rhPDGF-AA was confirmed by its ability to induce NIH/3T3 cells proliferation. The experimental procedure we have developed facilitates production of an active glycosylated rhPDGF-AA in large amounts for further research and drug development.

  9. Synthesis and characterization of bioactive binuclear transition metal complexes of Schiff base ligand derived from 4-amino-pyrimidine-2-one, diacetyl and glycine

    Directory of Open Access Journals (Sweden)

    Srivastava Abhay Nanda

    2014-01-01

    Full Text Available A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino-propylideneamino-acetic acid (LaH derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II, Ni(II, Co(II and Zn(II metals in 1:1 (metal : ligand molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi and fungi (Candida albicans and Candida parapsilosis to assess their antibacterial and antifungal properties.

  10. eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering.

    Science.gov (United States)

    McIlhenny, Stephen; Zhang, Ping; Tulenko, Thomas; Comeau, Jason; Fernandez, Sarah; Policha, Aleksandra; Ferroni, Matthew; Faul, Elizabeth; Bagameri, Gabor; Shapiro, Irving; DiMuzio, Paul

    2015-11-01

    This study evaluates the durability of a novel tissue engineered blood vessel (TEBV) created by seeding a natural vascular tissue scaffold (decellularized human saphenous vein allograft) with autologous adipose-derived stem cells (ASC) differentiated into endothelial-like cells. Previous work with this model revealed the graft to be thrombogenic, likely due to inadequate endothelial differentiation as evidenced by minimal production of nitric oxide (NO). To evaluate the importance of NO expression by the seeded cells, we created TEBV using autologous ASC transfected with the endothelial nitric oxide synthase (eNOS) gene to produce NO. We found that transfected ASC produced NO at levels similar to endothelial cell (EC) controls in vitro which was capable of causing vasorelaxation of aortic specimens ex vivo. TEBV (n = 5) created with NO-producing ASC and implanted as interposition grafts within the aorta of rabbits remained patent for two months and demonstrated a non-thrombogenic surface compared to unseeded controls (n = 5). Despite the xenograft nature of the scaffold, the TEBV structure remained well preserved in seeded grafts. In sum, this study demonstrates that upregulation of NO expression within adult stem cells differentiated towards an endothelial-like lineage imparts a non-thrombogenic phenotype and highlights the importance of NO production by cells to be used as endothelial cell substitutes in vascular tissue engineering applications.

  11. Gestational Diabetes Mellitus Is Associated With Changes in the Concentration and Bioactivity of Placenta-Derived Exosomes in Maternal Circulation Across Gestation.

    Science.gov (United States)

    Salomon, Carlos; Scholz-Romero, Katherin; Sarker, Suchismita; Sweeney, Emma; Kobayashi, Miharu; Correa, Paula; Longo, Sherri; Duncombe, Gregory; Mitchell, Murray D; Rice, Gregory E; Illanes, Sebastian E

    2016-03-01

    Although there is significant interest in elucidating the role of placenta-derived exosomes (PdEs) during pregnancy, the exosomal profile in pregnancies complicated by gestational diabetes mellitus (GDM) remains to be established. The aim of this study was to compare the gestational-age profile of PdEs in maternal plasma of GDM with normal pregnancies and to determine the effect of exosomes on cytokine release from human umbilical vein endothelial cells. A prospective cohort of patients was sampled at three time points during pregnancy for each patient (i.e., 11-14, 22-24, and 32-36 weeks' gestation). A retrospective stratified study design was used to quantify exosomes present in maternal plasma of normal (n = 13) and GDM (n = 7) pregnancies. Gestational age and pregnancy status were identified as significant factors contributing to variation in plasma exosome concentration (ANOVA, P gestation in both normal and GDM pregnancies; however, the increase was significantly greater in GDM (∼2.2-fold, ∼1.5-fold, and ∼1.8-fold greater at each gestational age compared with normal pregnancies). Exosomes isolated from GDM pregnancies significantly increased the release of proinflammatory cytokines from endothelial cells. Although the role of exosomes during GDM remains to be fully elucidated, exosome profiles may be of diagnostic utility for screening asymptomatic populations.

  12. PREPARATION AND CATALYTIC ACTIVITY OF BIOACTIVE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Yu-yuan Yao; Wen-xing Chen; Bao-yan Zhao; Shen-shui Lü

    2006-01-01

    Two kinds of water-soluble metallophthalocyanines, binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were synthesized through phenylanhydride-urea route and characterized by elemental analysis and FT-IR spectra. Binuclear metallophthalocyanine derivatives (Mt2Pc2) were immobilized on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme. Mt2Pc2 was used as the active center ofbioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results indicated that the catalytic activity of such bioactive fibers was closely correlative to the types ofbioactive fibers and substrates.

  13. The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

    Directory of Open Access Journals (Sweden)

    Youngdan Jeong

    2014-08-01

    Full Text Available Objectives The effects of bone morphogenetic protein-2 (BMP-2 and enamel matrix derivative (EMD respectively with mineral trioxide aggregate (MTA on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply, BMP-2 (R&D Systems, EMD (Emdogain, Straumann separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich and Alizarin red (Sigma-Aldrich. The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP, osteocalcin (OCN, osteopontin (OPN and osteonectin (OSN, as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer. Results Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05. Conclusions These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

  14. A stereodivergent strategy for the preparation of corynantheine and ipecac alkaloids, their epimers, and analogues: efficient total synthesis of (-)-dihydrocorynantheol, (-)-corynantheol, (-)-protoemetinol, (-)-corynantheal, (-)-protoemetine, and related natural and nonnatural compounds.

    Science.gov (United States)

    Zhang, Wei; Bah, Juho; Wohlfarth, Andreas; Franzén, Johan

    2011-12-01

    Here we present a general and common catalytic asymmetric strategy for the total and formal synthesis of a broad number of optically active natural products from the corynantheine and ipecac alkaloid families, for example, indolo[2,3-a]- and benzo[a]quinolizidines. Construction of the core alkaloid skeletons with the correct absolute and relative stereochemistry relies on an enantioselective and diastereodivergent one-pot cascade sequence followed by an additional diastereodivergent reaction step. This allows for enantio- and diastereoselective synthesis of three out of four possible epimers of the quinolizidine alkaloids that begin from common and easily accessible starting materials by using a common synthetic route. Focus has been made on excluding protecting groups and limiting isolation and purification of synthetic intermediates. This methodology is applied in the total synthesis of the natural products (-)-dihydrocorynantheol, (-)-hirsutinol, (-)-corynantheol, (-)-protometinol, (-)-dihydrocorynantheal, (-)-corynantheal, (-)-protoemetine, (-)-(15S)-hydroxydihydrocorynantheol, and an array of their nonnatural epimers. The potential of this strategy is also demonstrated in the synthesis of biologically interesting natural product analogues not accessible through synthetic elaboration of alkaloid precursors available from nature, for example, thieno[3,2-a]quinolizidine derivatives. We also report the formal synthesis of (+)-dihydrocorynantheine, (-)-emetine, (-)-cephaeline, (-)-tubulosine, and (-)-deoxytubulosine.

  15. Airborne Plutonium and non-natural Uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions.

    Science.gov (United States)

    Shinonaga, Taeko; Steier, Peter; Lagos, Markus; Ohkura, Takehisa

    2014-04-01

    Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.

  16. Porous bioactive materials

    Science.gov (United States)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  17. A genetic system for Citrus Tristeza Virus using the non-natural host Nicotiana benthamiana: an update

    Directory of Open Access Journals (Sweden)

    Silvia eAmbrós

    2013-07-01

    Full Text Available In nature Citrus tristeza virus (CTV, genus Closterovirus, infects only the phloem cells of species of Citrus and related genera. Finding that the CTV T36 strain replicated in Nicotiana benthamiana (NB protoplasts and produced normal virions allowed development of the first genetic system based on protoplast transfection with RNA transcribed from a full-genome cDNA clone, a laborious and uncertain system requiring several months for each experiment. We developed a more efficient system based on agroinfiltration of NB leaves with CTV-T36-based binary plasmids, which caused systemic infection in this non-natural host within a few weeks yielding in the upper leaves enough CTV virions to readily infect citrus by slash inoculation. Stem agroinoculation of citrus and NB plants with oncogenic strains of Agrobacterium tumefaciens carrying a CTV-T36 binary vector with a GUS marker, induced GUS positive galls in both species. However, while most NB tumours were CTV positive and many plants became systemically infected, no coat protein or viral RNA was detected in citrus tumours, even though CTV cDNA was readily detected by PCR in the same galls. This finding suggests i strong silencing or CTV RNA processing in transformed cells impairing infection progress, and ii the need for using NB as an intermediate host in the genetic system. To maintain CTV-T36 in NB or assay other CTV genotypes in this host, we also tried to graft-transmit the virus from infected to healthy NB, or to mechanically inoculate NB leaves with virion extracts. While these trials were mostly unsuccessful on non-treated NB plants, agroinfiltration with silencing suppressors enabled for the first time infecting NB plants by side-grafting and by mechanical inoculation with virions, indicating that previous failure to infect NB was likely due to virus silencing in early infection steps. Using NB as a CTV host provides new possibilities to study virus-host interactions with a simple and

  18. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  19. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  20. Bioactivities of chicken essence.

    Science.gov (United States)

    Li, Y F; He, R R; Tsoi, B; Kurihara, H

    2012-04-01

    The special flavor and health effects of chicken essence are being widely accepted by people. Scientific researches are revealing its truth as a tonic food in traditional health preservation. Chicken essence has been found to possess many bioactivities including relief of stress and fatigue, amelioration of anxiety, promotion of metabolisms and post-partum lactation, improvement on hyperglycemia and hypertension, enhancement of immune, and so on. These activities of chicken essence are suggested to be related with its active components, including proteins, dipeptides (such as carnosine and anserine), polypeptides, minerals, trace elements, and multiple amino acids, and so on. Underlying mechanisms responsible for the bioactivities of chicken essence are mainly related with anti-stress, anti-oxidant, and neural regulation effects. However, the mechanisms are complicated and may be mediated via the combined actions of many active components, more than the action of 1 or 2 components alone. © 2012 Institute of Food Technologists®

  1. Bioactive phytochemicals in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2009-01-01

    Flaxseed (Linum usitatissimum L.) is rich in health-promoting bioactive compounds. Among plant foods, flaxseed has the highest content of lignans, mainly in the form of secoisolariciresinol diglucoside (SDG). Flaxseed oil also has a very high concentration of the essential omega-3 fatty acid alpha-linolenic acid (ALA). This thesis presents studies on both SDG and ALA. An HPLC method for quantification of SDG in hydrolysed flaxseed extracts was developed and used to compare the SDG content in ...

  2. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  3. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  4. Polyphenols from wolfberry and their bioactivities.

    Science.gov (United States)

    Zhou, Zheng-Qun; Xiao, Jia; Fan, Hong-Xia; Yu, Yang; He, Rong-Rong; Feng, Xiao-Lin; Kurihara, Hiroshi; So, Kwok-Fai; Yao, Xin-Sheng; Gao, Hao

    2017-01-01

    Nine new phenylpropanoids, one new coumarin, and 43 known polyphenols were isolated from wolfberry. Their structures were determined by spectroscopic analyses, chemical methods, and comparison of NMR data. Polyphenols, an important type of natural products, are notable constituents in wolfberry. 53 polyphenols, including 28 phenylpropanoids, four coumarins, eight lignans, five flavonoids, three isoflavonoids, two chlorogenic acid derivatives, and three other constituents, were identified from wolfberry. Lignans and isoflavonoids were firstly reported from wolfberry. 22 known polyphenols were the first isolates from the genus Lycium. This research presents a systematic study on wolfberry polyphenols, including their bioactivities. All these compounds exhibited oxygen radical absorbance capacity (ORAC), and some compounds displayed DPPH radical scavenging activity. One compound had acetylcholinesterase inhibitory activity. The discovery of new polyphenols and their bioactivities is beneficial for understanding the scientific basis of the effects of wolfberry.

  5. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  6. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    Science.gov (United States)

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  7. Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases

    Directory of Open Access Journals (Sweden)

    Ratih Pangestuti

    2017-03-01

    Full Text Available Non-communicable diseases (NCD are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer’s well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD.

  8. Anti-fouling bioactive surfaces.

    Science.gov (United States)

    Yu, Qian; Zhang, Yanxia; Wang, Hongwei; Brash, John; Chen, Hong

    2011-04-01

    Bioactive surfaces refer to surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions. Such surfaces are of great importance for various biomedical and biomaterials applications. In the past few years, considerable effort has been made to create bioactive surfaces by forming specific biomolecule-modified surfaces on a non-biofouling "base" or "background". Hydrophilic and bioinert polymers have been widely used as anti-fouling layers that resist non-specific protein interactions. They can also serve as "spacers" to effectively move the immobilized biomolecule away from the surface, thus enhancing its bioactivity. In this review we summarize several successful approaches for the design and preparation of bioactive surfaces based on different types of anti-fouling/spacer materials. Some perspectives on future research in this area are also presented.

  9. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  10. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  11. Bioactive natural products from Papua New Guinea marine sponges.

    Science.gov (United States)

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.

  12. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  13. Micro-PIXE-RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol-gel derived glass particles in the SiO 2-CaO-P 2O 5 system

    Science.gov (United States)

    Lao, J.; Nedelec, J. M.; Moretto, Ph.; Jallot, E.

    2008-05-01

    Ion beam analysis methods were used to characterize the interface of bioactive glasses with surrounding biological fluids. Glass particles in the SiO2-CaO and SiO2-CaO-P2O5 compositions were made by sol-gel processing and soaked in biological fluids for periods up to 4 days. The surface changes were characterized using PIXE-RBS, which are efficient methods for multielemental analysis and accurate trace elements quantification. Elemental maps of major and trace elements were obtained at a micrometer scale and revealed the bone bonding ability of the materials. Glass particles are quickly coated with a thin calcium phosphate-rich layer containing traces of magnesium. After a few days, SiO2-CaO-P2O5 glass particles are entirely changed into calcium phosphates, whereas SiO2-CaO particles exhibit a different behavior: the previously Ca-P enriched periphery has been dissolved and glass particles consist of a silicate network. Calculation of the Ca-P atomic ratios at the glass/biological fluids interface provides us with an explanation for this: an enduring apatitic phase seems to be formed at the periphery of SiO2-CaO-P2O5 glass particles. Presence of phosphorus in the glass matrix thus has an influence on the amplitude and the kinetics of reaction of the bioactivity process. It might result in an improved chemical bond with living tissues.

  14. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  15. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  16. Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures

    OpenAIRE

    Martínez‐Márquez, Ascensión; Morante‐Carriel, Jaime A.; Ramírez‐Estrada, Karla; Cusidó, Rosa M.; Palazon, Javier; Bru‐Martínez, Roque

    2016-01-01

    Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of eas...

  17. Bioactive molecules: current trends in discovery, synthesis, delivery and testing

    Directory of Open Access Journals (Sweden)

    Yew Beng Kang

    2013-04-01

    Full Text Available Important bioactive molecules are moleculesthat are pharmacologically active derived from naturalsources and through chemical synthesis. Over the yearsmany of such molecules have been discovered throughbioprospective endeavours. The discovery of taxol fromthe pacific yew tree bark that has the ability in stabilisingcellular microtubules represents one of the hallmarks ofsuccess of such endeavours. In recent years, the discoveryprocess has been aided by the rapid developmentof techniques and technologies in chemistry andbiotechnology. The progress in advanced genetics andcomputational biology has also transformed the wayhypotheses are formulated as well as the strategies for drugdiscovery. Of equal importance is the use of advanceddrug delivery vehicles in enhancing the efficacy andbioavailability of bioactive molecules. The availability ofsuitable animal models for testing and validation is yetanother major determinant in increasing the prospect forclinical trials of bioactive molecules.

  18. Absorbability of bulk sol-gel bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hamadouche, M.; Meunier, A.; Blanchat, C.; Sedel, L. [Paris-7 Univ. (France). Lab. de Recherches Orthopediques; Greenspan, D.C.; Zhong, J.P.; Torre, G.P. la [US Biomaterials Corp., Alachua, FL (United States)

    2001-07-01

    Melt-derived bioactive glasses have been used with success in various clinical applications for over 10 years. Recently, particles of sol-gel derived bioactive glasses with an initial high specific area have exhibited high osteoconductive properties, but also a significant degradability. In this work, we explored the in-vivo bioactivity and degradability of bulk sol-gel derived glasses. Two sol-gel compositions (58S and 77S Bioglass) were used. Bulk 45S5 were used as a control. Both sol-gel derived demonstrated similar osteoconductive properties to 45S% Bioglass. In addition, absorbability was observed for sol-gel derived glasses after 12 weeks of implantation. Total absorption reached 40% after 52 weeks. No degradation could be measured in the case of 45S5 melt derived Bioglass. The degradation process was highly time dependent as demonstrated by regression analysis. New bone formation was found to fill in areas that had been resorbed similar to bone remodeling. New bone was found to fill in areas that had been absorbed, similar to natural bone remodeling. This absorbability can be assumed to be at least partially related to an osteoclastic resorption, as viable osteoclasts-like cells were found directly in contact with the glass surfaces. (orig.)

  19. Experimental studies on bioactive potential of rutin

    Directory of Open Access Journals (Sweden)

    Shagun Dubey

    2013-01-01

    Full Text Available Background: Plant-derived phytochemicals are gaining wide popularity owing to their diverse therapeutic potential and less side effects. Rutin is one of the plant-derived flavonoid. Rutin has demonstrated cardio protective, analgesic, and anticancer effects. Aim: The current work was focused to evaluate bioactive potential of rutin. Materials and Methods: Rutin was isolated from tobacco leaves. The structure was confirmed by H 1 NMR spectroscopy. The isolated rutin was studied for possible antibacterial, antifungal, anthelmintic, larvicidal, and cytotoxic effects. Results: Results of studies demonstrated that rutin effectively inhibited growth of bacteria and fungi, as well as demonstrated anthelmintic potential. There was a positive response for larvicidal and cytotoxic effects. Conclusion: These studies justify chemotherapeutic potential of rutin.

  20. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  1. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  2. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  3. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    Science.gov (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management.

  4. [Reliability of the diagnoses of external post-mortem examinations in non-natural deaths before and after the German reunification].

    Science.gov (United States)

    Doberentz, Elke; Madea, Burkhard; Böhm, Ulrike; Lessig, Rüdiger

    2010-01-01

    In Germany, the unsatisfactory quality of external post-mortem examinations and the low autopsy rate of only 5 % of all deaths are often criticized. Based on the autopsy protocols of 8,593 cases of non-natural death of the Leipzig Institute of Legal Medicine (1985 to 1989--practice in the former German Democratic Republic; 1990 to 1994 - time around the fall of the Berlin wall, and 2000 to 2004--practice in the Federal Republic of Germany) the diagnosis indicated in the death certificate was compared with that of the autopsy report. Beside a drastic decrease in the number of autopsies performed, it was found that in 72% of the cases the clinical and the autoptical cause of death corresponded completely, whereas in 9.2% there was only partial and in 15.4% no correspondence at all. The lack of correspondence increased from 13.8% (1985-1989) to 18.0% (2000-2004). The low rate of correspondence in the causes of domestic deaths was particularly alarming. There were obvious differences in quality among different groups of specialists in determining the cause of death.

  5. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B

    Directory of Open Access Journals (Sweden)

    Jacquie L. Harper

    2015-08-01

    Full Text Available In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds.

  6. The future of bioactive ceramics.

    Science.gov (United States)

    Hench, Larry L

    2015-02-01

    Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.

  7. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  8. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    Science.gov (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  9. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... several steps of thermal processing, which are known to decrease/abolish bioactivity of milk constituents. This may explain for high NEC incidence in formula-fed preterm infants. We therefore in this PhD project investigated whether gentle thermal processing conditions increase the bioavailability...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  10. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... several steps of thermal processing, which are known to decrease/abolish bioactivity of milk constituents. This may explain for high NEC incidence in formula-fed preterm infants. We therefore in this PhD project investigated whether gentle thermal processing conditions increase the bioavailability...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  11. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  12. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Exploring marine resources for bioactive compounds.

    Science.gov (United States)

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  14. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  15. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  16. TiO2-Bioactive Glass Nanostructure Composite Films Produced by a Sol-Gel Method: In Vitro Behavior and UV-Enhanced Bioactivity

    Science.gov (United States)

    Omid-Bakhtiari, Marzie; Nasr-Esfahani, Mojtaba; Nourmohamadi, Abolghasem

    2014-01-01

    The aim of this study is to develop TiO2, titania, -based composite films for 316 stainless steel substrate and to improve their apatite-forming activity. A series of sol-gel derived bioactive glass (49S) and bioactive glass (49S)-TiO2 films were deposited on the 316L stainless steel substrates by the spin-coating method. Amorphous bioactive glass (49S) film and polycrystalline titania-bioactive glass composite films were obtained after annealing the deposited layers at 600 °C. The microstructure and in vitro bioactivity of the composite films as well as the effect of titania nanopowder content and ultra violet (UV) irradiation on the in vitro bioactivity were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). While bioactivity tests are often carried out within 28-day periods, SEM and EDS data show that, after soaking in SBF for just 7 days, the prepared composite surfaces are covered with an apatite layer. The grown apatite layer consists of spherulites formed by nanosized needle-like aggregates. Fourier transform infrared spectroscopy investigations confirm apatite formation and suggest that the formed apatite is carbonated.

  17. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  18. Immunological Regulation by Bioactive Lipids.

    Science.gov (United States)

    Taketomi, Yoshitaka; Murakami, Makoto

    2017-01-01

     Mast cells originate from hematopoietic stem cells and undergo terminal maturation in the extravascular tissues, in which they are ultimately resident. Mast maturation, phenotype, and function are dictated by the local microenvironment, which has a significant influence on the ability of mast cells to recognize and respond to stimuli. Activation of mast cells can lead to the release of three distinct classes of mediators, including preformed mediators stored in secretory granules, newly transcribed cytokines and chemokines, and de novo-synthesized bioactive lipid mediators. It is currently recognized that bioactive lipids such as arachidonic acid metabolites (prostaglandins and leukotrienes) released from mast cells modulate innate and adaptive immune responses both directly and indirectly through communication with other microenvironmental immune cells or stroma cells. Moreover, mast cells express a variety of lipid receptors and, if activated by bioactive lipids such as arachidonic acid, ω3 fatty acids, lysophospholipids, and their metabolites, can alter the release and production of other mediators including histamine, cytokines, and chemokines, and thereby alter homeostatic or pathophysiological responses. This review focuses on newly identified functional aspects of bioactive lipids with regard to their immune regulation and functional outcomes in both homeostasis and allergic disease.

  19. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    Science.gov (United States)

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.

  20. The synthesis and evaluation of a solution phase indexed combinatorial library of non-natural polyenes for reversal of P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Andrus, M B; Turner, T M; Sauna, Z E; Ambudkar, S V

    2000-08-11

    A combinatorial library of polyenes, based on (-)-stipiamide, has been constructed and evaluated for the discovery of new multidrug resistance reversal agents. A palladium coupling was used to react each individual vinyl iodide with a mixture of the seven acetylenes at near 1:1 stoichiometry. The coupling was also used to react each individual acetylene with the mixture of six vinyl iodides to create 13 pools indexed in two dimensions for a total of 42 compounds. Individual compounds were detected at equimolar concentration. The vinyl iodides, made initially using a crotylborane addition to generate the anti1,2-hydroxylmethyl products, were now made using a more efficient norephedrine propionate boron enolate aldol reaction. The indexed approach, ideally suited for cellular assays that involve membrane-bound targets, allowed for the rapid identification of reversal agents using assays with drug-resistant human breast cancer MCF7-adrR cells. Intersections of potent pools identified new compounds with promising activity. Aryl dimension pools showed R = ph and naphthyl as the most potent. The acetylene dimension had R' = phenylalaninol and alaninol as the most potent. Isolated individual compounds, both active and nonpotent, were assayed to confirm the library results. The most potent new compound was 4ek (R = naphthyl, R' = phenylaninol) at 1.45 microM. Other nonnatural individual naphthyl-amide compounds showed potent MDR reversal including the morpholino-amide 4ej (1.69 microM). Synergistic activities attributed to the two ends of the molecule were also identified. Direct interaction with Pgp was established by ATPase and photoaffinity displacement assays. The results indicate that both ends of the polyene reversal agent are involved in Pgp interaction and can be further modified for increased potency.

  1. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies.

    Science.gov (United States)

    Woys, Ann Marie; Mukherjee, Sudipta S; Skoff, David R; Moran, Sean D; Zanni, Martin T

    2013-05-02

    A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label's frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm(-1), and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, and -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.

  2. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    Directory of Open Access Journals (Sweden)

    Zeyad Alresly

    2016-01-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1. In addition, ten known triterpenes, polyporenic acid A (5, polyporenic acid C (4, three derivatives of polyporenic acid A (8, 10, 11, betulinic acid (3, betulin (2, ergosterol peroxide (6, 9,11-dehydroergosterol peroxide (7, and fomefficinic acid (9, were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.

  3. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential

    Science.gov (United States)

    2014-01-01

    Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines. PMID:25067942

  4. Research Advances on Secondary Metabolites and Bioactivity for the Marine Sediment-Derived Streptomyces%海洋沉积物来源链霉菌属次生代谢产物及其生物活性研究进展

    Institute of Scientific and Technical Information of China (English)

    黄永中; 罗雄明; 王建华

    2011-01-01

    海洋沉积物是营养较为丰富的微生物栖息地,近年来从海洋沉积物中分离培养出了大量海洋链霉菌,从中还发现了一些新的属种.人们已从海洋沉积物来源链霉菌属中发现了许多具有药用价值的活性化合物,有力推动了海洋天然产物化学的发展,并为新药研发提供基础.本文就海洋沉积物来源链霉菌属次生代谢产物的结构类型及其生物活性进行简要综述.%Marine sediment is a abundant nutrition habitat for microbes. In recent years, a large number of marine strepto-myces were isolated from marine sediments,of which some new genera and species were also obtained. Many medicinal active compounds have been found from the marine sediment-derived strepWmyces, which promoted the development of marine natural product chemistry and provided the basis for research and development of new drugs. In this paper,types of structures and bioactivities of secondary metabolites produced by marine sediment-derived streptomyces have been briefly reviewed.

  5. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. S1 subsite specificity of a recombinant cysteine proteinase, CPB, of Leishmania mexicana compared with cruzain, human cathepsin L and papain using substrates containing non-natural basic amino acids.

    Science.gov (United States)

    Alves, L C; Melo, R L; Sanderson, S J; Mottram, J C; Coombs, G H; Caliendo, G; Santagada, V; Juliano, L; Juliano, M A

    2001-03-01

    We have explored the substrate specificity of a recombinant cysteine proteinase of Leishmania mexicana (CPB2.8 Delta CTE) in order to obtain data that will enable us to design specific inhibitors of the enzyme. Previously we have shown that the enzyme has high activity towards substrates with a basic group at the P1 position [Hilaire, P.M.S., Alves, L.C., Sanderson, S.J., Mottram, J.C., Juliano, M.A., Juliano, L., Coombs, G.H. & Meldal M. (2000) Chem. Biochem. 1, 115--122], but we have also observed high affinity for peptides with hydrophobic residues at this position. In order to have substrates containing both features, we synthesized one series of internally quenched fluorogenic peptides derived from the sequence ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine, and substituted the Arg at the P1 position with the following non-natural basic amino acids: 4-aminomethyl-phenylalanine (Amf), 4-guanidine-phenylalanine (Gnf), 4-aminomethyl-N-isopropyl-phenylalanine (Iaf), 3-pyridyl-alanine (Pya), 4-piperidinyl-alanine (Ppa), 4-aminomethyl-cyclohexyl-alanine (Ama), and 4-aminocyclohexyl-alanine (Aca). For comparison, the series derived from ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine was also assayed with cruzain (the major cysteine proteinase of Trypanosoma cruzi), human cathepsin L and papain. The peptides ortho-amino-benzoyl-FAmfSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 12,000 mM(-1) x s(-1)) and ortho-amino-benzoyl-FIafSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 27,000 mM(-1) x s(-1)) were the best substrates for CPB2.8 Delta CTE. In contrast, ortho-amino-benzoyl-FAmaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine and ortho-amino-benzoyl-FAcaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine were very resistant and inhibited this enzyme with K(i) values of 23 nM and 30 nM, respectively. Cruzain hydrolyzed quite well the substrates in this series with Amf, Ppa and Aca, whereas the peptide with Ama was resistant and

  7. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  8. Synthesis and Larvicidal Activity against Culex pipiens pallens of New Triazole Derivatives of Phrymarolin from Phryma leptostachya L.

    Directory of Open Access Journals (Sweden)

    Ji-Wen Zhang

    2013-12-01

    Full Text Available Twelve new triazole derivatives of Phrymarolin were prepared from Phrymarolin I and the structures of all the derivatives were fully characterized by 1H-NMR, 13C-NMR and MS spectral data analyses. Larvicidal activities against 4rd instar larvae of Culex pipiens pallens of these Phrymarolin analogues were assayed. Although the triazole derivatives of Phrymarolin showed certain larvicidal activity, they showed lower activity than Phrymarolin I. The typical non-natural groups triazole substituents reduced the larvicidal activity of Phrymarolin derivatives.

  9. Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach.

    Directory of Open Access Journals (Sweden)

    Kayode A Balogun

    Full Text Available BACKGROUND: Omega (n-3 polyunsaturated fatty acids (PUFA are converted to bioactive lipid components that are important mediators in metabolic and physiological pathways; however, which bioactive compounds are metabolically active, and their mechanisms of action are still not clear. We investigated using lipidomic techniques, the effects of diets high in n-3 PUFA on the fatty acid composition of various bioactive lipids in plasma and liver. METHODOLOGY AND PRINCIPAL FINDINGS: Female C57BL/6 mice were fed semi-purified diets (20% w/w fat containing varying amounts of n-3 PUFA before mating, during gestation and lactation, and until weaning. Male offspring were continued on their mothers' diets for 16 weeks. Hepatic and plasma lipids were extracted in the presence of non-naturally occurring internal standards, and tandem electrospray ionization mass spectrometry methods were used to measure the fatty acyl compositions. There was no significant difference in total concentrations of phospholipids in both groups. However, there was a significantly higher concentration of eicosapentaenoic acid containing phosphatidylcholine (PC, lysophosphatidylcholine (LPC, and cholesteryl esters (CE (p < 0.01 in the high n-3 PUFA group compared to the low n-3 PUFA group in both liver and plasma. Plasma and liver from the high n-3 PUFA group also had a higher concentration of free n-3 PUFA (p < 0.05. There were no significant differences in plasma concentrations of different fatty acyl species of phosphatidylethanolamine, triglycerides, sphingomyelin and ceramides. CONCLUSIONS/SIGNIFICANCE: Our findings reveal for the first time that a diet high in n-3 PUFA caused enrichment of n-3 PUFA in PC, LPC, CE and free fatty acids in the plasma and liver of C57BL/6 mice. PC, LPC, and unesterified free n-3 PUFA are important bioactive lipids, thus altering their fatty acyl composition will have important metabolic and physiological roles.

  10. Synthesis and Bioactivity of Some New 2-(Alkoxy carbonyl alkyl)-6-bromo-3,4-dihydro-3-(α-methyl benzyl)-2-oxobenzo[e][2H-1,3,2-oxazaphosphinine]Derivatives

    Institute of Scientific and Technical Information of China (English)

    SRINIVASULU,K; SURESH KUMAR,K; HARI BABU,B; STEPHEN BABU,M.F; NAGA RAJU,C; SURESH REDDY,C

    2009-01-01

    Synthesis of some new 2-(alkoxy carbonyl alkyl)-6-bromo-3,4-dihydro-3-(α-methyl benzyl)-2-oxo-3-benzo[e][2H-1,3,2-oxazaphosphinine]derivatives was accomplished through a two step process,which involves the condensation of 2-[(α-methylbenzyl amino)methyl]-4-bromophenol (1) with phosphorus oxychloride in equimolar quantities in the presence of triethylamine in dry toluene in 50-55 ℃ producing the corresponding intermediate (2),and subsequent reaction with the amino acid alkyl ester in dry tetrahydrofuran in the presence of triethylamine at different temperatures.They exhibited significant antibacterial and fungal activity.

  11. Systematic Environmental Impact Assessment for Non-natural Reserve Areas: A Case Study of the Chaishitan Water Conservancy Project on Land Use and Plant Diversity in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Zhu

    2017-06-01

    Full Text Available Environmental impact assessment (EIA before and after the establishment of a Water Conservancy Project (WCP is of great theoretical and practical importance for assessing the effectiveness of ecological restoration efforts. WCPs rehabilitate flood-damaged areas or other regions hit by disasters by controlling and redistributing surface water and groundwater. Using Geographic Information System (GIS and Composite Evaluation Index (CEI in predictive modeling, we studied the degree to which a WCP could change land use, plant communities, and species diversity in Yunnan, China. Via modeling, we quantified likely landscape pattern changes and linked them to naturality (i.e., the percentage of secondary vegetation types, diversity, and stability together with the human interferences (e.g., conservation or restoration project of an ecosystem. The value of each index was determined by the evaluation system, and the weight percentage was decided through Analytical Hierarchy Process (AHP. We found that minor land-use changes would occur after the Chaishitan WCP was theoretically established. The greatest decline was farmland (0.079%, followed by forest (0.066%, with the least decline in water bodies (0.020%. We found 1,076 vascular plant species (including subspecies, varieties and form belonging to 165 families and 647 genera in Chaishitan irrigation area before the water conservancy establishment. The naturality and diversity decreased 11.18 and 10.16% respectively. The CEI was 0.92, which indicated that Chaishitan WCP will enhance local landscape heterogeneity, and it will not deteriorate local ecological quality. Our study proposes a comprehensive ecological evaluation system for this WCP and further suggests the importance of including the ecological and environmental consequences of the WCP, along with the well-established socioeconomic evaluation systems for non-natural reserve areas. We conclude that the Chaishitan WCP will have minor

  12. 咖啡酰基类衍生物的合成及其生物活性研究%Research Progress on Synthesis and Bioactivity of Caffeoyl Derivatives

    Institute of Scientific and Technical Information of China (English)

    张娟; 夏春年

    2016-01-01

    咖啡酰基衍生物广泛存在于天然产物中,具有广谱的抗肿瘤活性,也具有抗炎、抗氧化、抗菌、抗HIV-1等生物活性,同时具有低毒、抗耐药、易制备等优点,近年来深受科研工作者关注,对咖啡酰基衍生物的合成方法和生物活性研究进展进行综述。%Caffeoyl derivatives are widely distributed in natural products,which show a broad spectrum of anti-tumor activities and anti-oxidation and antibacterical activities.These caffeoyl derivitives have the ad-vantages of low toxicity, anti-drug-resistant, easy preparation, which attracted more attention in recent years. In this paper, the synthesis and biological activity of advances in the coffee acyl derivatives were reviewed.

  13. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    Science.gov (United States)

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  14. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn(II) and Cu(II) complexes: synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures.

    Science.gov (United States)

    Tawfik, Abdelrazak M; El-Ghamry, Mosad A; Abu-El-Wafa, Samy M; Ahmed, Naglaa M

    2012-11-01

    New series of Schiff base ligand H(2)L and their Cu(II) and Mn(II) complexes derived from azosulfapyrimidine were synthesized and characterized by elemental and thermal studies conductance measurements IR, electronic and EPR spectra. 3D modeling of the ligand indicate that azo group does not participate in complex formation and surface potential on one of the ligand under study indicate that electron density around azomethine groups are much higher than the azo group therefore coordination takes place around azomethine groups. The variety in the geometrical structures depends on the nature of both the metal ions and the Schiff base ligands. The thermo kinetic parameters are calculated and discussed. The biological activities of the ligands and complexes have been screened in vitro against some bacteria and fungi to study their capacity to inhibit their growth and to study the toxicity of the compounds.

  15. Research Progress in Bioactivity and Synthesis of β-caryophyllene and Its Derivatives%β-石竹烯及其衍生物的生物活性与合成研究进展

    Institute of Scientific and Technical Information of China (English)

    刘晓宇; 陈旭冰; 陈光勇

    2012-01-01

    综述了β-石竹烯及其衍生物的活性及合成方法.在活性方面,β-石竹烯作为香料已经被应用于化妆品和食品添加剂中,药理研究表明β-石竹烯具有局麻作用、抗炎作用、驱蚊虫作用、抗焦虑、抗抑郁作用,β-石竹烯醇还应用于镇咳祛痰药物中,石竹烯氧化物具有镇痛和抗炎作用,抗真菌作用,还有细胞毒性等.同时还简单介绍了β-石竹烯及其部分衍生物的合成方法.%The activities and synthesis of β-caryophyllene and its derivatives are summarized by reviewing the related literatures. In activities, β-caryophyllene has been used in cosmetic and food as a fragrance material. The pharmacological studies show that β-caryophyllene has the local anesthetic effect, and the effects of anti-inflammatory, repelling insects and treating general anxiety neurosis and depression. The β-caryophyllene alcohol is also applied in preparing medicament for codein and eliminating phlegm. Caryophyllene oxide has the effects of analgesic and anti-inflammatory, antifungal activities, cytotoxicity,etc. This paper also gives a brief introduction of the synthesis methods of β-caryophyllene and some of its derivatives.

  16. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  17. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives.

    Science.gov (United States)

    Roberts, Joseph L; Moreau, Régis

    2016-08-10

    Overwhelming evidence indicates that diets rich in fruits and vegetables are protective against common chronic diseases, such as cancer, obesity and cardiovascular disease. Leafy green vegetables, in particular, are recognized as having substantial health-promoting activities that are attributed to the functional properties of their nutrients and non-essential chemical compounds. Spinach (Spinacia oleracea L.) is widely regarded as a functional food due to its diverse nutritional composition, which includes vitamins and minerals, and to its phytochemicals and bioactives that promote health beyond basic nutrition. Spinach-derived phytochemicals and bioactives are able to (i) scavenge reactive oxygen species and prevent macromolecular oxidative damage, (ii) modulate expression and activity of genes involved in metabolism, proliferation, inflammation, and antioxidant defence, and (iii) curb food intake by inducing secretion of satiety hormones. These biological activities contribute to the anti-cancer, anti-obesity, hypoglycemic, and hypolipidemic properties of spinach. Despite these valuable attributes, spinach consumption remains low in comparison to other leafy green vegetables. This review examines the functional properties of spinach in cell culture, animals and humans with a focus on the molecular mechanisms by which spinach-derived non-essential phytochemicals and bioactives, such as glycolipids and thylakoids, impart their health benefits.

  18. Bioactive Phenols in Small Fruits and Berries

    OpenAIRE

    Guiné, R. P. F.

    2016-01-01

    Bioactive compounds are extra nutritional constituents occurring naturally in plant foods in small amounts, however in quantities enough to produce bioactive effects. Among bioactive compounds the phenolic compounds are a very large set of molecules, which include several groups such as for example flavonoids, phenolic acids or tannins. Small fruits and berries include a wide diversity of fruits, like grapes, strawberries, blackberries, blueberries, raspberries, cherries, hardi kiwi, gooseber...

  19. 新型含嘧啶环吲唑衍生物的合成及初步生物活性研究%Synthesis and preliminary bioactivities evaluation of novel indazole derivatives containing pyrimidine

    Institute of Scientific and Technical Information of China (English)

    张晓凯; 刘登科; 刘冰妮; 刘默; 王平保

    2013-01-01

    目的 设计合成新型含嘧啶环的吲唑衍生物,并检测其对VEGFR-2酶的抑制活性.方法 以3-甲基-6-硝基吲唑为起始原料,经N-甲基化、氢化还原、亲核取代、烷基化及亲核取代反应合成目标化合物;采用均相时间分辨荧光(HTRF)法测定目标化合物对VEGFR-2磷酸化的抑制作用.结果与结论 合成了15个未见文献报道的新化合物,其结构经1H-NMR和MS谱确证.活性评价结果显示,该系列化合物对VEGFR-2酶均有抑制活性,其中化合物7a、7c、7i表现出较强的抑制活性,其抑制活性与阳性对照药帕唑帕尼接近,由此推测此类化合物可能具有潜在的抗肿瘤活性.%Based on the good antitumor activities of indazole derivatives, associated with mechanism of inhibition the vascular endothelial growth factor receptor( VEGFR) , fifteen novel compounds of indazole derivatives were designed and synthesized by a five-step procedure including iV-methylation,hydrogenation,nucle-ophilic-substitution, alkylation and SNAr reaction from 3 -methyl-6-nitro-1H-indazole. Moreover the structures of these compounds were confirmed by 1H-NMR and MS. Biological activities of the compounds were detected in vitro by observing their inhibition effects on phosphorylation of vascular endothelial growth factor receptor. The data showed that some compounds exhibited better biological activities, such as 7a,7c,and 7i with the inhibitory rates of 95. 1% , 86. 7% and 77. 2% , respectively. The inhibition percentages of some compounds were close to the value of the positive drug pazopanib. It suggests that the new structures have potential antitumor activities.

  20. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    National Research Council Canada - National Science Library

    Zeyad Alresly; Ulrike Lindequist; Michael Lalk; Andrea Porzel; Norbert Arnold; Ludger AWessjohann

    2016-01-01

      Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified...

  1. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  2. Synthesis of Nucleoside Derivatives Containing Benzophenoxazinone Moiety

    Institute of Scientific and Technical Information of China (English)

    Yu GAO; Wu Xin ZOU; Ling WU; Jin Shui LI; Ji Tao WANG; Ji Ben MENG

    2004-01-01

    Two new nucleoside derivatives containing benzophenoxazinone moiety were synthesized. Their luminescence spectra show that they have strong near infrared fluorescence. Our study provides a new method for direct introduction of near infrared fluorescent probe to bioactive molecules.

  3. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  4. Synthesis and evaluation of factors affecting the in vitro bioactivity and antibacterial activity of bioactive glass ceramics

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat

    2017-01-01

    In the present study, two novel silicate glass-ceramics having chemical composition 38SiO2-41CaO-6P2O5-(15 - x)Na2O-xCaF2 (x = 0, 0.43 mol%) were synthesized. These glass derivatives were subjected to stimulated body fluid for 24 days in SBF under static condition at 37∘C in order to evaluate the bioactive properties of specimens. The antibacterial activity of glass ceramics against three pathogenic bacteria was determined using the modified Kirby Bauer method. It was found that the antibacterial activity primarily depends on the dissolution rate; faster release of ions caused rapid increase in the pH of the solution. Antibacterial properties were found to be strongly affected by changes in the pH of supernatant. The in vitro bioactivity assays showed that both glass derivatives were capable of bonding with bone and secondly effectively inhibit bacteria. However, the glass ceramic without CaF2 (B2) showed high dissolution rate, better bioactive ability and stronger antibacterial efficacy.

  5. Synthesis of (-)-arctigenin derivatives and their anticancer activity.

    Science.gov (United States)

    Gui-Rong, Chen; Li-Ping, Cai; De-Qiang, Dou; Ting-Guo, Kang; Hong-Fu, Li; Fu-Rui, Li; Ning, Jiang

    2012-01-01

    The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin, which was prepared from fructus arctii, showed obvious anticancer activity. The synthesis of four new (-)-arctigenin derivatives and their anticancer bioactivities were examined. The structures of the four new synthetic derivatives were elucidated.

  6. Bioactive Egg Components and Inflammation.

    Science.gov (United States)

    Andersen, Catherine J

    2015-09-16

    Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.

  7. Bioactive Egg Components and Inflammation

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2015-09-01

    Full Text Available Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.

  8. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  9. The Steroids and Their Bioactivities of a Sponge-Derived Fungus Pleosporaceae sp.%一株海绵共附生真菌Pleosporaceaesp.中甾体类化合物及其生物活性

    Institute of Scientific and Technical Information of China (English)

    赵琨; 孙雪萍; 韩磊; 郑彩娟; 陈敏; 邵长伦; 佘志刚; 王长云

    2011-01-01

    Under the guidance of bioassay, five steroids were isolated from the ethyl acetate extract of a sponge-derived fungus Pleosporaceae sp. By column chromatography on silica gel and Sephadex LH-20 and preparative-HPLC, Their structures were elucidated as (22E, 24jR)-5α,8α-epidioxy-ergosta-6, 22-dien-3β-ol (1), (22E,24R)-5α,8α-epidioxy-ergosta -6,9,22-trien-3β-ol (2), (22E)-ergosta-5,7,22-trien-3β-ol (3), ergosta-6α-hydroxy-4,22-dien-3-one (4) and (22E)-5crcholesta-7,22-diene-3β,5α,6β-triol (5), respectively, on the basis of their spectroscopic data including NMR and MS, combining with the data of literatures. All of the compounds were isolated from the genus of Pleosporaceae for the first time. Compounds 1 and 5 exhibited strong lethality to brine shrimp Artemia salina. And compound 1 showed potent antifouling activity against the larval settlement of barnacle Balanus amphitrite with the EC50 of 0. 85 μg/mL.%在生物活性测定指导下,综合运用硅胶柱层析、凝胶柱层析以及半制备HPLC等方法,从南海海绵Xestos pongia testudinaria来源的一株共附生真菌Pleosporaceae sp.发酵液的乙酸乙酯提取物中分离鉴定出5个甾体类化物,通过NMR,MS等波谱技术鉴定其结构分别为:(22E,24R)-5α,8α- epidioxy-ergosta-6,22-dien-3β-ol (1),(22E,24R)-5α,8α- epidioxy-ergosta-6,9,22-trien-3-ol (2),(22E)-ergosta-5,7,22-trien-3β-ol (3),ergosta-6α-hydroxy-4,22-dien-3-one (4),(22E)-5α-cholesta-7,22-diene-3β,5α,6β-triol (5).这些化合物均为首次从leos poraceae属真菌中分离获得.化合物1,4和5具有较强的卤虫Artemia salina致死活性,化合物1还显示强的抗藤壶Balanus amphitrite附着活性,其EC5o为0.85 μg/mL.

  10. 1,2,3-噻二唑酰胺类化合物的合成与生物活性研究%Synthesis and bioactivity of 1,2,3-thiadiazole carboxamide derivatives

    Institute of Scientific and Technical Information of China (English)

    吴志兵; 何雪峰; 蔡桦; 吴世喜; 邝继清

    2013-01-01

    为了寻找到高活性的杂环酰胺类化合物,设计、合成了6个N-(取代吡唑基)-1,2,3-噻二唑-5-酰胺类化合物;采用生长速率法,测试了化合物对小麦赤霉病菌( Gibberella zeae )、辣椒枯萎病菌( Fusarium oxysporum )和苹果腐烂病菌( Cytospora mandshurica )的抑制活性,初步生物活性表明,目标化合物在50μg· mL-1浓度下对三种病原菌有一定的抑制作用,其中化合物10e表现出较好的抑菌活性,对小麦赤霉病菌、辣椒枯萎病菌和苹果腐烂病菌的抑制率分别46.2%、47.8和55.1%;目标化合物对烟草花叶病毒( TMV )和黄瓜花叶病毒(CMV)的测试表明,在浓度为500μg· mL-1时,化合物10b 和10f 对 TMV和 CMV 的抑制率分别为10b (38.6%和32.8%)、9f(34.4%和36.1%),其中化合物10d对CMV的抑制率达到47.0%,具有一定的研究价值。%In order to find heterocyclic carboxamide derivatives with high activity ,six N-(substituted pyrazole-yl)-1,2,3-thiadi-azole-5-carboxamide compounds were designed and synthesized.All target compounds were bioassayed in vitro against three kinds of phytopathogenic fungi ( Gibberella zeae ,Fusarium oxysporum ,Cytospora mandshurica ).The results indicated most of the synthesized compounds possessed antifungal activity to a certain extent ,among which compounds 10e displayed 46.2%、47.8 and 55.1%inhi-bition activities against G.zeae、F.oxysporum and C.mandshurica at 50μg· mL-1 respectively.The anti-CMV and anti-TMV activity were tested at 500μg· mL-1 ,the results showed that the inhibition activities of compounds 10b and 10f against TMV and CMV were 10b(38.6%and 32.8%),10f(34.4%and 36.1%)respectively;Compound 10b showed good activity against CMV should be pay close attention.

  11. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  12. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    Science.gov (United States)

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  13. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  15. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications.

  16. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    Science.gov (United States)

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  17. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering.

    Science.gov (United States)

    Gantar, Ana; da Silva, Lucilia P; Oliveira, Joaquim M; Marques, Alexandra P; Correlo, Vitor M; Novak, Saša; Reis, Rui L

    2014-10-01

    This work presents bioactive-glass-reinforced gellan-gum spongy-like hydrogels (GG-BAG) as novel hydrophilic materials for use as the scaffolding in bone-tissue engineering. The reinforcement with bioactive-glass particles resulted in an improvement to the microstructure and to the mechanical properties of the material. These mechanical properties were found to be dependent on the composition and improved with the amount of bioactive glass; however, values necessary to accommodate biomechanical loading were not achieved in this study. Nevertheless, by incorporating the bioactive-glass particles, the composite material acquired the ability to form an apatite layer when soaked in simulated body fluid. Furthermore, human-adipose-derived stem cells were able to adhere and spread within the gellan-gum, spongy-like hydrogels reinforced with the bioactive glass, and remain viable, which is an important result when considering their use in bone-tissue engineering. Thus, hydrogels based on gellan gum and bioactive glass are promising biomaterials for use either alone or with cells, and with the potential for use in osteogenic differentiation.

  18. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  19. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  20. Fungal endophytes - secret producers of bioactive plant metabolites.

    Science.gov (United States)

    Aly, A H; Debbab, A; Proksch, P

    2013-07-01

    The potential of endophytic fungi as promising sources of bioactive natural products continues to attract broad attention. Endophytic fungi are defined as fungi that live asymptomatically within the tissues of higher plants. This overview will highlight the uniqueness of endophytic fungi as alternative sources of pharmaceutically valuable compounds originally isolated from higher plants, e.g. paclitaxel, camptothecin and podophyllotoxin. In addition, it will shed light on the fungal biosynthesis of plant associated metabolites as well as new approaches developed to improve the production of commercially important plant derived compounds with the involvement of endophytic fungi.

  1. Planctomycetes as novel source of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    2016-08-01

    Full Text Available Marine environments are a fruitful source of bioactive compounds some of which are the newest leading drugs in medicinal therapeutics. Of particular importance are organisms like sponges and macroalgae and their associated microbiome. Planctomycetes, abundant in macroalgae biofilms, are promising producers of bioactive compounds since they share characteristics, like large genomes and complex life cycles, with the most bioactive bacteria, the Actinobacteria. Furthermore, genome mining revealed the presence of secondary metabolite pathway genes or clusters in 13 analyzed Planctomycetes genomes.In order to assess the antimicrobial production of a large and diverse collection of Planctomycetes isolated from macroalgae from the Portuguese coast, molecular and bioactivity assays were performed in 40 bacteria from several taxa. Two genes commonly associated with the production of bioactive compounds, nonribosomal peptide synthetases (NRPS and polyketide synthases (PKS genes were screened. Molecular analysis revealed that 95 % of the planctomycetes potentially have one or both secondary bioactive genes; 85 % amplified with PKS-I primers and 55 % with NRPS primers. Some of the amplified genes were confirmed to be involved in secondary metabolite pathways. Using bioinformatic tools their biosynthetic pathways were predicted. The secondary metabolite genomic potential of strains LF1, UC8 and FC18 was assessed using in silico analysis of their genomes. Aqueous and organic extracts of the Planctomycetes were evaluated for their antimicrobial activity against an environmental Escherichia coli, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633 and a clinical isolate of Candida albicans. The screening assays showed a high number of planctomycetes with bioactive extracts revealing antifungal (43 % and antibacterial (54 % activity against C. albicans and B. subtilis, respectively

  2. Bioactive phenolic derivatives from Acaena splendens methanol extract.

    Science.gov (United States)

    Backhouse, N; Delporte, C; Negrete, R; Feliciano, S A San; López-Pérez, J L

    2002-09-01

    Acaena splendens H. et A. has been used in Chilean folk medicine for the treatment of fever and inflammation. A description of the in vivo reduction of bacterial pyrogen-induced fever in rabbits and carrageenan-induced paw oedema in guinea pigs is presented. The methanol extract named ME-1, obtained after succesive extractions with petroleum ether and dichloromethane, showed a strong antipyretic action (45.7% of effect), though the antiinflammatory activity was only observed after submitting this extract to column fractionation, giving a crude mixture of flavonoids named C4 with both activities (55.7% and 98.9% of antiinflammatory and antipyretic effect respectively at a dose of 600 mg/kg). The bioassay-guided fractionation by column chromatography afforded the active fraction, which contained (-,-)-epicatechin, tiliroside, 7-O-acetyl-3-O-beta-D-glucosyl-kaempferol and 7-beta-D-glucosyloxy-5-hydroxy-chromone.

  3. Syntheses, Crystal Structures and Bioactivities of Two Novel Isatin Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHANG Jian-li; LI Hui-dong; SHANG Jun; SONG Hai-bin; LI Zheng-ming; WANG Jian-guo

    2011-01-01

    Two novel compoundsl-(4-fluorobenzyl)-4-chloro-(Z)-3-benzoylhydrazono-2-indolinone(1) and 1-(4-methoxybenzyl)-(Z)-3-benzoylhydrazono-2-indolinone(2) were synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Compound 1(C22H15ClFN3O2) crystallized in the triclinic system,space group P1- with a=0.94198(19) nm,b=1.4339(3) nm,c=1.5018(3) nm,a=101.58(3)°,β=102.96(3)°,γ=102.73°,V=1.8602(6) nm3,Mr=407.82,Dc=1.456 g/cm3,μ=0.240 mm-1,F(000)=840,Z=4,R1=0.0442 and wR2=0.1064.Compound 2(C23H19N3O3) crystallized in the triclinic system,space group P1- with a=1.0022(2) nm,b=1.0192(2) nm,c=1.0461(2) nm,a=99.86(3)°,β=117.30(3)°,γ=94.13(3)°,V=0.9215(3) nm3,Mr=385.41,Dc=1.389 g/cm3,μ=0.094mm-1,F(000)=404,Z=2,R1=0.0403 and wR2=0.1142.The preliminary herbicidal activities of the two compounds were also evaluated.

  4. Bioactivities and Health Benefits of Wild Fruits.

    Science.gov (United States)

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-08-04

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  5. Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin

    DEFF Research Database (Denmark)

    Frydenlund Michelsen, Charlotte; Jensen, Helle; Venditto, Vincent J.;

    2015-01-01

    Bioactive microbial metabolites provide a successful source of novel compounds with pharmaceutical potentials. The bacterium Pseudomonas sp. In5 is a biocontrol strain isolated from a plant disease suppressive soil in Greenland, which produces two antimicrobial nonribosomal peptides (NRPs......), nunapeptin and nunamycin. In this study, we used in vitro antimicrobial and anticancer bioassays to evaluate the potential bioactivities of both a crude extract derived from Pseudomonas sp. In5 and NRPs purified from the crude extract....

  6. 一株软珊瑚共附生真菌Aspergillus versicolor (ZJ-2008015)的次级代谢产物及其生物活性研究%Secondary metabolites and their bioactivities of a soft coral-derived fungus Aspergillus versicolor (ZJ-2008015)

    Institute of Scientific and Technical Information of China (English)

    郑彩娟; 邵长伦; 王开玲; 赵栋霖; 王亚楠; 王长云

    2012-01-01

    目的 对一株软珊瑚共附生真菌进行次级代谢产物及生物活性研究.方法 采用活性追踪分离的方法,利用硅胶柱层析、Sephadex LH-20凝胶柱层析和半制备HPLC等方法,对采自广西涠洲岛的肉芝软珊瑚Sarcophyton sp.中分离获得的杂色曲霉Aspergillus versicolor (ZJ-2008015)的发酵产物进行分离和纯化,利用NMR、MS等波谱方法,并与文献对照,确定化合物的结构;利用卤虫致死活性模型和抗菌活性模型评价化合物的生物活性.结果 从该菌发酵液的乙酸乙酯提取物中分离鉴定了6个单体化合物,分别为:(+)-sydonic acid (1),expansol G (2),(+)-sydowic acid(3),cyclo(L-Trp-L-Phe) (4),homodimeric WIN 64821 (5)和ergosta-6α-hydroxy-4,22-dien-3-one (6).结论 抗菌活性测试结果表明,没药烷型倍半萜类化合物1~3对白色葡萄球菌Staphylococcus albus和金黄色葡萄球菌Staphylococcus aureus显示较强的抗菌活性.%Objective To investigate the secondary metabolites and their bioactivities of a soft coral-derived fungus. Methods Under the guidance of bioassay, column chromatography on silica gel and Sepha-dex LH-20, and semi-preparative HPLC were used to isolate and purify the metabolites from the fermentation products of Aspergillus versicolor (ZJ-2008015) , a fungus obtained from a soft coral Sarco-phyton sp. collected from the South China Sea. The structures of the isolated compounds were identified by spectroscopic analysis including NMR and MS, and by comparison with the data of literature. The bioactivities of the compounds were evaluated with brine shrimp lethality and antibacteria models.Results Six compounds were isolated from the EtOAc extracts of the culture broth and the mycelia of A. versicolor (ZJ-2008015), and their structures were identified as (+)-sydonic acid (1), expansol G (2), (+)-sydowic acid (3), cyclo (L-Trp-L-Phe) (4), homodimeric WIN 64821 (5), and ergosta-6α-rhy- droxy-4,22-dien-3-one (6). Conclusion The

  7. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  8. Bioactive hepta- and penta-coordinated supramolecular diorganotin(IV) Schiff bases

    NARCIS (Netherlands)

    Shujah, Shaukat; Zia-ur-Rehman, [No Value; Muhammad, Niaz; Shah, Afzal; Ali, Saqib; Khalid, Nasir; Meetsma, Auke

    2013-01-01

    This article describes the synthesis, characterization and bioactivity of dimethyl (1), diethyl (2), diphenyl (3), di-n-octyl (4), di-tert-butyl (5), n-butylchlorotin(IV) (6) derivatives of N'-(2-hydroxy-3-methoxybenzylidene)formohydrazide ligand. On the basis of presence or absence of steric factor

  9. Bioactive compounds in dairy products and their relation to neurodegenerative disease

    Science.gov (United States)

    Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...

  10. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  11. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities

    Directory of Open Access Journals (Sweden)

    Maria Hayes

    2015-09-01

    Full Text Available Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  12. Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Vyas, V.; Sampath Kumar, A.; Ali, A.; Prasad, S.; Srivastava, P.; Prasanna Mallick, S.; Ershad, Md.; Prasad Singh, S.; Pyare, R.

    2016-07-01

    Many type of oxide substituted glass-ceramics like strontium, cobalt, barium and titanium have shown bioactivity with improved mechanical properties. The present work reports the in vitro bioactivity and mechanical properties of nickel oxide substituted in bioactive glass-ceramic and results were compared with 45S5 bioactive glass-ceramic. Bioactive glass ceramics were processed through controlled crystallization of their respective bioactive glasses. The formed crystalline phases in bioactive glass-ceramics were identified using X-ray diffraction (XRD) analysis. The formation of HA layer was assessed by immersing them in the simulated body fluid (SBF) for different soaking periods. The formation of hydroxyapatite was confirmed by FTIR spectrometry, SEM and pH measurement. Densities and mechanical properties of the samples were found to increase considerably with an increasing the concentration of nickel oxide. A decrease in glass transition temperature (Tg) with NiO addition showed that the nickel oxide had acted as an intermediate in smaller quantities in the bioactive glass. The cell culture studies demonstrated that the samples containing low concentration of NiO from 0 to 1.65mol% were non-cytotoxic against osteoblast cells. Finally, this investigation clearly concluded that NiO doped bioactive glass would be potential biomaterials for biomedical applications. (Author)

  13. Going viral: designing bioactive surfaces with bacteriophage.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Olsson, Adam L J; Tufenkji, Nathalie

    2014-12-01

    Bacteriophage-functionalized bioactive surfaces are functional materials that can be used as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. Despite offering immense potential, designing efficient phage-functionalized bioactive surfaces is hampered by a number of challenges. This review offers an overview of the current state of knowledge in this field and presents a critical perspective of the technological promises and challenges.

  14. Bioactivities and Health Benefits of Wild Fruits

    OpenAIRE

    Ya Li; Jiao-Jiao Zhang; Dong-Ping Xu; Tong Zhou; Yue. Zhou; Sha Li; Hua-Bin Li

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we rev...

  15. Microencapsulation of bioactives for food applications

    OpenAIRE

    Dias, Maria Inês; Isabel C. F. R. Ferreira; Barreiro, M.F.

    2015-01-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this co...

  16. Biomolecule immobilization techniques for bioactive paper fabrication.

    Science.gov (United States)

    Kong, Fanzhi; Hu, Yim Fun

    2012-04-01

    Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule-paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed.

  17. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  18. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials

    Science.gov (United States)

    Turcu, Ioana; Zarafu, Irina; Popa, Marcela; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Culita, Daniela; Ghica, Corneliu; Ionita, Petre

    2017-01-01

    Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents.

  19. An overview of the effects of thermal processing on bioactive glasses

    Directory of Open Access Journals (Sweden)

    Bellucci D.

    2010-01-01

    Full Text Available Bioglass® 45S5 is widely used in biomedical applications due to its ability to bond to bone and even to soft tissues. The sintering ability of Bioglass® powders is a key factor from a technological point of view, since its govern the production of advanced devices, ranging from highly porous scaffolds to functionalized coatings. Unfortunately this particular glass composition is prone to crystallize at the temperature required for sintering and this may impair the bioactivity of the original glass. For these reasons, a prerequisite to tailor the fabrication of Bioglass®-derived implants is to understand the interaction between sintering, crystallization and bioactivity. In this work the structural transformations which occur during the heat treatment of Bioglass® are reviewed and a special attention is paid to the sintering and crystallization processes. Moreover the bioactivity of the final glass-ceramics is discussed and some alternative glass formulations are reported.

  20. Phytochemical analysis and estimation of major bioactive compounds from Triticum aestivum L. grass with antimicrobial potential.

    Science.gov (United States)

    Rajoria, Anand; Mehta, Archana; Mehta, Pradeep; Ahirwal, Laxmi; Shukla, Shruti

    2015-11-01

    The aim of the present study was to investigate phytochemical analysis, and qualitative and quantitative determination of major bioactive compound present in various organic extracts of T. aestivum L. grass. Soxhlet apparatus was used for the extraction purpose using hexane, chloroform, methanol and distilled water as a solvent system. All the extracts derived from T. aestivum showed qualitative presence of major phytochemicals including alkaloids, steroids and cardiac glycosides tannins, flavonoids carbohydrates. Further, HPLC analysis revealed the presence of major bioactive compounds such as rutin, chlorogenic acid, tocopherol, chlorogenic acid, and gallic acid in various organic extracts responsible for the reported maximum antimicrobial activity of T. aestivum grass against pathogenic bacteria including Salmonella typhi, Staphylococcus aureus and Vibrio cholerae. These findings confirm that T. aestivum grass containing medicinally important bioactive compounds may have significant potential to be used in traditional medicine system for the treatment of various diseases caused by pathogenic microorganisms.

  1. Bioactivity-Directed Separation of an Anxiolytic Fraction from Aethusa cynapium L.

    Directory of Open Access Journals (Sweden)

    Richa Shri

    2009-01-01

    Full Text Available The present study evaluated the putative anxiolytic activity of petroleum ether, chloroform, methanol and water extracts of the aerial parts of Aethusa cynapium using the widely accepted elevated plus-maze (EPM model in mice. The bioactive fraction was isolated by bioactivity-directed fractionation, and two chromatographic procedures - column and flash chromatography. Fraction 3.1.3.2 derived from the methanol extract of the plant, showed significant anxiolytic activity at a dose of 50 mg/kg p.o. which was comparable to the standard drug, diazepam (2 mg/kg p.o.. This sub fraction comprised two components as seen in the TLC profile. Phytochemical screening indicated the presence of unsaturated fatty acid in Fraction 3.1.3.2. The study demonstrates that A.cynapium has significant anti anxiety activity. This activity may be due to fatty acids present in the bioactive fraction.

  2. Recent trends in the analysis of bioactive peptides in milk and dairy products.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2016-04-01

    Food-derived constituents represent important sources of several classes of bioactive compounds. Among them peptides have gained great attention in the last two decades thanks to the scientific evidence of their beneficial effects on health in addition to their established nutritional value. Several functionalities for bioactive peptides have been described, including antioxidative, antihypertensive, anti-inflammatory, immunomodulatory, and antimicrobial activity. They are now considered as novel and potential dietary ingredients to promote human health, though in some cases they may also have detrimental effects on health. Bioactive peptides can be naturally occurring, produced in vitro by enzymatic hydrolysis, and formed in vivo during gastrointestinal digestion of proteins. Thus, the need to gain a better understanding of the positive health effects of food peptides has prompted the development of analytical strategies for their isolation, separation, and identification in complex food matrices. Dairy products and milk are potential sources of bioactive peptides: several of them possess extra-nutritional physiological functions that qualify them to be classified under the functional food label. In this trends article we briefly describe the state-of-the-art of peptidomics methods for the identification and discovery of bioactive peptides, also considering recent progress in their analysis and highlighting the difficulty in the analysis of short amino acid sequences and endogenous peptides.

  3. NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts.

    Science.gov (United States)

    Paudel, Liladhar; Wyzgoski, Faith J; Giusti, M Monica; Johnson, Jodee L; Rinaldi, Peter L; Scheerens, Joseph C; Chanon, Ann M; Bomser, Joshua A; Miller, A Raymond; Hardy, James K; Reese, R Neil

    2014-02-26

    Black raspberry (Rubus occidentalis L.) (BR) fruit extracts with differing compound profiles have shown variable antiproliferative activities against HT-29 colon cancer cell lines. This study used partial least-squares (PLS) regression analysis to develop a high-resolution (1)H NMR-based multivariate statistical model for discerning the biological activity of BR constituents. This model identified specific bioactive compounds and ascertained their relative contribution against cancer cell proliferation. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were the predominant contributors to the extract bioactivity, but salicylic acid derivatives (e.g., salicylic acid glucosyl ester), quercetin 3-glucoside, quercetin 3-rutinoside, p-coumaric acid, epicatechin, methyl ellagic acid derivatives (e.g., methyl ellagic acetyl pentose), and citric acid derivatives also contributed significantly to the antiproliferative activity of the berry extracts. This approach enabled the identification of new bioactive components in BR fruits and demonstrates the utility of the method for assessing chemopreventive compounds in foods and food products.

  4. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  5. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  6. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  7. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Computer-Aided Drug Design of Bioactive Natural Products.

    Science.gov (United States)

    Prachayasittikul, Veda; Worachartcheewan, Apilak; Shoombuatong, Watshara; Songtawee, Napat; Simeon, Saw; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Natural products have been an integral part of sustaining civilizations because of their medicinal properties. Past discoveries of bioactive natural products have relied on serendipity, and these compounds serve as inspiration for the generation of analogs with desired physicochemical properties. Bioactive natural products with therapeutic potential are abundantly available in nature and some of them are beyond exploration by conventional methods. The effectiveness of computational approaches as versatile tools for facilitating drug discovery and development has been recognized for decades, without exception, in the case of natural products. In the post-genomic era, scientists are bombarded with data produced by advanced technologies. Thus, rendering these data into knowledge that is interpretable and meaningful becomes an essential issue. In this regard, computational approaches utilize the existing data to generate knowledge that provides valuable understanding for addressing current problems and guiding the further research and development of new natural-derived drugs. Furthermore, several medicinal plants have been continuously used in many traditional medicine systems since antiquity throughout the world, and their mechanisms have not yet been elucidated. Therefore, the utilization of computational approaches and advanced synthetic techniques would yield great benefit to improving the world's health population and well-being.

  9. Bioactive stilbenes from Vitis vinifera grapevine shoots extracts.

    Science.gov (United States)

    Chaher, Nassima; Arraki, Kamel; Dillinseger, Elsa; Temsamani, Hamza; Bernillon, Stéphane; Pedrot, Eric; Delaunay, Jean-Claude; Mérillon, Jean-Michel; Monti, Jean-Pierre; Izard, Jean-Claude; Atmani, Djebbar; Richard, Tristan

    2014-03-30

    Viticultural residues from commercial viticultural activities represent a potentially important source of bioactive stilbenes such as resveratrol. The main aim of the present study was therefore to isolate, identify and perform biological assays against amyloid-β peptide aggregation of original stilbenes from Vitis vinifera shoots. A new resveratrol oligomer, (Z)-cis-miyabenol C (3), was isolated from Vitis vinifera grapevine shoots together with two newly reported oligostilbenes from Vitis vinifera shoots, vitisinol C (1) and (E)-cis-miyabenol C (2), and six known compounds: piceatannol, resveratrol, (E)-ε-viniferin (trans-ε-viniferin), ω-viniferin, vitisinol C and (E)-miyabenol C. The structures of these resveratrol derivatives were established on the basis of detailed spectroscopic analysis including nuclear magnetic resonance experiments. All the newly reported compounds were tested for their anti-aggregative activity against amyloid-β fibril formation. Vitisinol C was found to exert a significant activity against amyloid-β aggregation. Vitis vinifera grapevine shoots are potentially interesting as a source of new bioactive stilbenes, such as vitisinol C. © 2013 Society of Chemical Industry.

  10. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment

    Directory of Open Access Journals (Sweden)

    Michael T. Puccinelli

    2017-07-01

    Full Text Available Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS, a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.

  11. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  12. Protein co-assembly for the delivery of bioactives.

    OpenAIRE

    Miranda-Tavares, Guilherme; Croguennec, Thomas; Hamon, Pascaline; Peres de sa Peixoto Junior, Paulo; De Carvahlo, Antonio Fernandes; Bouhallab, Said

    2015-01-01

    Introduction Protection and target delivery of food bioactives are main concerns when the manufacture of food products with health-benefit assets is involved. Natural delivery systems for bioactives for instance casein micelle for calcium phosphate are only encountered in some food products and allow the protection and control release of a limited number of bioactives. For this reason, the design of new devices that allow the encapsulation of any types of bioactives is required. Since a large...

  13. Bioactive polymers for cardiac tissue engineering

    Science.gov (United States)

    Wall, Samuel Thomas

    2007-05-01

    Prevalent in the US and worldwide, acute myocardial infarctions (AMI) can cause ischemic injuries to the heart that persist and lead to progressive degradation of the organ. Tissue engineering techniques exploiting biomaterials present a hopeful means of treating these injuries, either by mechanically stabilizing the injured ventricle, or by fostering cell growth to replace myocytes lost to damage. This thesis describes the development and testing of a synthetic extracellular matrix for cardiac tissue engineering applications. The first stage of this process was using an advanced finite element model of an injured ovine left ventricle to evaluate the potential benefits of injecting synthetic materials into the heart. These simulations indicated that addition of small amounts non-contractile material (on the order of 1--5% total wall volume) to infarct border zone regions reduced pathological systolic fiber stress to levels near those found in normal remote regions. Simulations also determined that direct addition to the infarct itself caused increases in ventricle ejection fraction while the underlying performance of the pump, ascertained by the Starling relation, was not improved. From these theoretical results, biomaterials were developed specifically for injection into the injured myocardium, and were characterized and tested for their mechanical properties and ability to sustain the proliferation of a stem cell population suitable for transplantation. Thermoresponsive synthetic copolymer hydrogels consisting of N-isopropylacrylamide and acrylic acid, p(NIPAAm-co-AAc), crosslinked with protease degradable amino acid sequences and modified with integrin binding ligands were synthesized, characterized in vitro, and used for myocardial implantation. These injectable materials could maintain a population of bone marrow derived mesenchymal stem cells in both two dimensional and three dimensional culture, and when tested in vivo in a murine infarct model they

  14. Micro-ion beam analysis of physico-chemical reactions in vitro induced by nano-structured sol-gel derived bioactive glasses; Caracterisation par micro-faisceau d'ions des reactions physico-chimiques induites in vitro par des verres bioactifs nanostructures elabores par la methode sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J

    2007-07-15

    The study of bioactive glasses is a multi-field area of research aiming at a major goal: the development of new generation biomaterials that would be able to bond with host tissues through the formation of a strong interfacial bond, together with helping the body heal itself through the stimulation of specific cellular responses. Thus clinical applications of bioactive glasses mainly concern dental surgery and orthopedics, for filling osseous defects. For this purpose, we have elaborated bioactive glasses in the binary SiO{sub 2}-CaO system, ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system, and for the first time, to our knowledge, strontium-doped SiO{sub 2}-CaO-SrO and SiO{sub 2}-CaO-P{sub 2}O{sub 5}-SrO glasses. The materials were elaborated using the sol-gel process, which allowed the synthesis of nano-porous materials with great purity and homogeneity. The bio-activity of the glasses was clearly demonstrated in vitro: in contact with biological fluids, the whole lot of mate-rials were able to induce the formation of a Ca-P-Mg layer a few microns thick at their surface. Our work is characterized by the use of PIXE-RBS nuclear microprobes to study the bioactive glass/biological fluids interface. Thanks to these methods we obtained chemical maps that made possible the analysis of major and trace elements concentrations at the interface. Moreover, quantitative information regarding the local reactivity of glasses were acquired. These data are important to evaluate the kinetics and amplitude of the physico-chemical reactions involved in the bio-activity process. Thus, we highlighted that the binary glass is the highest reactive regarding the dissolution of the glassy matrix as well as the first appearance of the Ca-P rich layer. However the Ca/P atomic ratio calculated at the glass/biological fluids interface decreases slowly, indicating that the Ca-P-Mg layer encounters difficulties to be changed into a more stable apatitic phase. For the P-containing glasses, the de

  15. Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities

    Directory of Open Access Journals (Sweden)

    Sarah Lee

    2015-11-01

    Full Text Available Chemotaxonomic metabolite profiling of 62 indigenous Korean plant species was performed by ultrahigh performance liquid chromatography (UHPLC-linear trap quadrupole-ion trap (LTQ-IT mass spectrometry/mass spectrometry (MS/MS combined with multivariate statistical analysis. In partial least squares discriminant analysis (PLS-DA, the 62 species clustered depending on their phylogenetic family, in particular, Aceraceae, Betulaceae, and Fagaceae were distinguished from Rosaceae, Fabaceae, and Asteraceae. Quinic acid, gallic acid, quercetin, quercetin derivatives, kaempferol, and kaempferol derivatives were identified as family-specific metabolites, and were found in relatively high concentrations in Aceraceae, Betulaceae, and Fagaceae. Fagaceae and Asteraceae were selected based on results of PLS-DA and bioactivities to determine the correlation between metabolic differences among plant families and bioactivities. Quinic acid, quercetin, kaempferol, quercetin derivatives, and kaempferol derivatives were found in higher concentrations in Fagaceae than in Asteraceae, and were positively correlated with antioxidant and tyrosinase inhibition activities. These results suggest that metabolite profiling was a useful tool for finding the different metabolic states of each plant family and understanding the correlation between metabolites and bioactivities in accordance with plant family.

  16. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  17. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    2010-01-01

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  18. Five new bioactive compounds from Chenopodium ambrosioides.

    Science.gov (United States)

    Song, Kun; Zhang, Jian; Zhang, Peng; Wang, Hong-Qing; Liu, Chao; Li, Bao-Ming; Kang, Jie; Chen, Ruo-Yun

    2015-05-01

    Five new bioactive compounds, chenopodiumamines A-D (1-4) and chenopodiumoside A (5), were isolated from the ethanol extract of Chenopodium ambrosioides. The structures of these compounds were elucidated by various spectroscopic means (UV, IR, HR-ESI-MS, 1D and 2D NMR). Compounds 1-3 had moderate antioxidant and anti-inflammatory activities.

  19. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  20. Marine Bioactives and Potential Application in Sports

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2014-04-01

    Full Text Available An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP, such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB, macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  1. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  2. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  3. Bioactive motifs of agouti signal protein.

    Science.gov (United States)

    Virador, V M; Santis, C; Furumura, M; Kalbacher, H; Hearing, V J

    2000-08-25

    The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.

  4. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  5. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  6. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  7. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  8. Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects

    Science.gov (United States)

    This publication is a review of the chemistry, biochemistry and bioactivity of limonoids occurring in citrus. The review chronologically relates the evolution of research in citrus limonoids beginning with their association with bitterness development in citrus juices. The chemical and biochemical...

  9. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance.

  10. Bioactive constituents from the leaves of Clinacanthus nutans Lindau.

    Science.gov (United States)

    Sakdarat, Santi; Shuyprom, Aussavashai; Pientong, Chamsai; Ekalaksananan, Tipaya; Thongchai, Sasithorn

    2009-03-01

    Three chlorophyll derivatives (phaeophytins) were isolated from the chloroform extract of Clinacanthus nutans Lindau leaves by means of chromatographic techniques and bioactivity-guided fractionation to give three pure compounds. Structure elucidation of the isolated compounds was carried out on the basis of spectral analyses. Three of these were known compounds with structures related to chlorophyll a and chlorophyll b namely 13(2)-hydroxy-(13(2)-R)-phaeophytin b, 13(2)-hydroxy-(13(2)-S)-phaeophytin a and 13(2)-hydroxy-(13(2)-R)-phaeophytin a. These compounds, which have not previously been reported in this plant, were shown to have anti-herpes simplex activity. They exhibited anti-HSV-1F activity at subtoxic concentrations. Their inhibitory activity affected the virus before viral entry to the host cells. This effect might be virucidal or interference with viral adsorption or penetration.

  11. BIOACTIVE COMPOUNDS AND ANTIOXIDANT POTENTIAL OF SOY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Beatriz Cervejeira BOLANHO

    2011-12-01

    Full Text Available The aim of this work was to evaluated the amounts of bioactive compounds in soybean and derived products and the antioxidant activity (AA assessed by the methods of ABTS·+ , DPPH· , FRAP and peroxidation of linoleic acid (PLA. The micronized soy protein (MSP, defatted soy flour (DSF and textured soy protein (TSP had a higher content of phenolic compounds and higher antioxidant activity (AA, than the other products. MSP and tofus had the highest content of flavonoids and phytic acid (PA, respectively. The AA correlated with total phenolics and flavonoids, but the PA can act synergistically chelating the pro oxidants ions iron and copper. The highest concentration of copper was in soy protein isolate, and of iron in an ingredient of soy fiber and soy germ. Many compounds present in soy products contribute for the AA, but the concentration and potential will depend on final preparation of the grain or ingredients before consumption.

  12. Bioactive molecules as authenticity markers of Italian Chinotto (Citrus×myrtifolia) fruits and beverages.

    Science.gov (United States)

    Protti, Michele; Valle, Francesco; Poli, Ferruccio; Raggi, Maria Augusta; Mercolini, Laura

    2015-02-01

    Chinotto (Citrus×myrtifolia) is a uncommon fruit belonging to the Citrus genus, mainly cultivated in small areas of the Italian territory, where the main use concerns the eponymous drink, marketed with the name of "Chinotto". The lack of information about this fruit highlights the usefulness of nutraceutical compound characterization, as well as the need to identify genuineness markers in derived commercial products. An analytical strategy based on SPE-HPLC-F was developed to identify and quantify different bioactive compounds in Chinotto (Citrus×myrtifolia) fruits and commercial beverages. The method was fully validated and successfully applied to the analysis of nutraceutical compounds in Chinotto fruits of Italian origin and in some Chinotto-based beverages, granting reliable and consistent data. The obtained results provided preliminary key information about the bioactive profiling of Citrus×myrtifolia and proved the suitability of the selected compounds as authenticity markers of derived commercial soft drinks.

  13. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  14. STUDY ON THE CATALYTIC ABILITY OF BIOACTIVE FIBERS

    Institute of Scientific and Technical Information of China (English)

    YAO Yuyuan; CHEN Wenxing

    2006-01-01

    Two kinds of water-soluble metallophthalocyanines (Mt2Pc2), binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were supported on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme, Mt2Pc2 used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results demonstrated that the catalytic activity of such bioactive fibers was tightly correlative to the types of bioactive fibers and substrates.

  15. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract

    OpenAIRE

    Bocanegra-García Virgilio; del Rayo Camacho-Corona María; Ramírez-Cabrera Mónica; Rivera Gildardo; Garza-González Elvira

    2009-01-01

    Abstract Background Lower respiratory tract infections are a major cause of illness and death. Such infections are common in intensive care units (ICU) and their lethality persists despite advances in diagnosis, treatment and prevention. In Mexico, some plants are used in traditional medicine to treat respiratory diseases or ailments such as cough, bronchitis, tuberculosis and other infections. Medical knowledge derived from traditional societies has motivated searches for new bioactive molec...

  16. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value

    OpenAIRE

    2016-01-01

    Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenti...

  17. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

    Science.gov (United States)

    Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

    2014-12-01

    Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Switching Mechanism in Doxorubicin Bioactivation Can Be Exploited to Control Doxorubicin Toxicity

    Science.gov (United States)

    Finn, Nnenna A.; Findley, Harry W.; Kemp, Melissa L.

    2011-01-01

    Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation. PMID:21935349

  19. Bioactive sol-gel glass added ionomer cement for the regeneration of tooth structure.

    Science.gov (United States)

    Choi, Jung-Young; Lee, Hae-Hyoung; Kim, Hae-Won

    2008-10-01

    Dental cements including the glass ionomer cement (GIC) have found widespread use in restoring tooth structures. In this study, a sol-gel derived glass (SG) with a bioactive composition (70SiO(2).25CaO.5P(2)O(5)) was added to the commercial GIC (GC, Fuji I) to improve the bioactivity and tooth regeneration capability. The SG powders prepared with sizes in the range of a few micrometers were mixed with GIC at SG/GC ratios of 10 and 30 wt%. The setting time, diametral tensile strength, and in vitro bioactivity of the GC-SG cements were examined. The setting time of the GC-SG cements increased with increasing amount of SG. However, the addition of SG did not significantly alter the diametral tensile strength of the GC. GC-SG induced the precipitation of an apatite bone-mineral phase on the surface after immersion in a simulated body fluid (SBF), showing in vitro bone bioactivity. However, no mineral induction in SBF was observed in the commercial GIC after the immersion. The in vitro cell assay confirmed that the GC-SG samples produced higher cell viability than the GC sample with cell culturing for up to 7 days.

  20. Microemulsion systems containing bioactive natural oils: an overview on the state of the art.

    Science.gov (United States)

    Xavier-Junior, F H; Vauthier, C; Morais, A R V; Alencar, E N; Egito, E S T

    2017-05-01

    Natural oils are extremely complex mixtures containing compounds of different chemical nature. Some of them have physiological or therapeutic activities that may act either alone or in synergy. Therefore, they are used in the pharmaceutical, agronomic, food, sanitary and cosmetic industries. Today, the interest in bioactive natural oils is growing due to their immense potential to prevent and treat numerous human diseases. Formulation in microemulsions (MEs) containing natural oils appeared suitable to improve pharmaceutical and biopharmaceutical properties of bioactive compound derivatives from these oils. Microemulsion systems are thermodynamically stable, transparent, and are isotropic dispersions consisting of oil and water stabilized by an interfacial film of surfactants, typically in combination with a cosurfactant. They can protect labile compounds from premature degradation, control release, increase solubility and hence enhance the bioavailability of poorly bioavailable compounds. The aim of this work was to review the various advantages of bioactive compounds presented in natural oil loaded ME systems to be used as delivery systems. First, the state of the art of the parameters involved in the ME formation, including the basic concepts of the physicochemical formulation of the ME systems, and the main aspects of production and the energy responsible for their formation were reported. The second section describes the use of ME systems and reviews the recent applications of natural oil-loaded in the ME systems as the bioactive compound in the formulation.

  1. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    NARCIS (Netherlands)

    Al-Subeihi, A.A.; Spenkelink, A.; Punt, A.; Boersma, M.G.; Bladeren, van P.J.; Rietjens, I.

    2012-01-01

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the curr

  2. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  3. MECANISMUL DE PROTEOLIZĂ A FICOCIANINEI, PROTEINEI BIOACTIVE DIN SPIRULINĂ SUB ACŢIUNEA PAPAINEI

    Directory of Open Access Journals (Sweden)

    Angela RUDAKOVA

    2016-02-01

    Full Text Available Elaborarea unor procedee de obţinere a peptidelor bioactive din ficocianină prin intermediul hidrolizei proteolitice prezintă un interes sporit pentru cercetători în contextul utilizării acestora în calitate de remedii anticancer şi pentru alte proprietăţi terapeutice. Peptidele derivate din ficocianină ar putea manifesta proprietăţi terapeutice mult mai pronunţate comparativ cu ficocianina. În prezenta lucrare sunt studiate dinamica proteolizei ficocianinei cu papaina şi mecanismul de hidroliză a acestei proteine.Mechanism of proteolysis of C-phycocyanin, bioactive protein from Spirulina, under the action of papainThe elaboration of the procedures of obtaining of bioactive peptides derived from phycocyanin, as a result of it proteolytic hydrolysis presents great interest for researchers in the terms of theirs use as anti-cancer drugs and for other therapeutic properties. It can be assumed that peptides derived from phycocyanin could manifest more pronounced therapeutic effects compared to phycocyanin. Dynamics of phycocyanin proteolisis by papain, as well as mechanism of phycocyanin hydrolysis were studied in the present work. 

  4. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  5. Bioactive foods and ingredients for health.

    Science.gov (United States)

    Weaver, Connie M

    2014-05-01

    Bioactive compounds in foods have been gaining interest, and processes to consider them for public health recommendations are being discussed. However, the evidence base is difficult to assemble. It is difficult to demonstrate causality, and there often is not a single compound-single effect relation. Furthermore, health benefits may be due to metabolites produced by the host or gut microbiome rather than the food constituent per se. Properties that can be measured in a food may not translate to in vivo health effects. Compounds that are being pursued may increase gut microbial diversity, improve endothelial function, improve cognitive function, reduce bone loss, and so forth. A new type of bioactive component is emerging from epigenetic modifications by our diet, including microRNA transfer from our diet, which can regulate expression of human genes. Policy processes are needed to establish the level of evidence needed to determine dietary advice and policy recommendations and to set research agendas.

  6. Secondary metabolites and bioactivities of Myrtus communis

    OpenAIRE

    Mahmoud I Nassar; Aboutabl, El-Sayed A.; Rania F. Ahmed; EL-Khrisy, Ezzel-Din A.; Khaled M Ibrahim; Sleem, Amany A.

    2010-01-01

    Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Dete...

  7. Bioactive compounds in whole grain wheat

    OpenAIRE

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much in their content. The external fractions of the grain, the bran and specially the aleurone, are the richest. We observed that processing the bran in whole-grain breads increased three times the leve...

  8. Pinocembrine: a bioactive flavanone from Teloxys graveolens.

    Science.gov (United States)

    Del Rayo Camacho, M; Sanchez, B; Quiroz, H; Contreras, J L; Mata, R

    1991-03-01

    Bioactivity directed fractionation of the acetone extract of Teloxys graveolens (Willd.) Weber (Chenopodiaceae), using the brine shrimp lethality test, led to the isolation of 5,7-dihydroxyflavanone (pinocembrine) (LC50 = 4.25 micrograms/ml) as the only active compound. Pinocembrine also exhibited fasciolicide, ovicide and larvicide activities on newly excysted Fasciola hepatica, on infective eggs of Ascaridi galli and on stage three larvae of Stomoxys calcitrans, respectively.

  9. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  11. Bioactive lipids naturally occurring in bovine milk.

    Science.gov (United States)

    Molkentin, J

    1999-06-01

    Bioactive properties of food components increasingly gain in importance in the modern diet. Bovine milk fat (BMF) exhibits bioactive substances mainly in the class of fatty acids. Currently, most interest is addressed to trans fatty acids (TFA) and particularly conjugated linoleic acids (CLA) with BMF being the main source of CLA in food. Whereas saturated fatty acids (C12-C16) and TFA are reported to be positively correlated (negatively for oleic acid) with atherosclerosis and coronary heart disease, CLA are regarded as potent anticarcinogens. Also butyric acid (C4) as well as some phospholipids and either lipids present in BMF are thought to have anticarcinogenic properties. Furthermore, BMF contains the essential fatty acids C18:2 n-6 and C18:3 n-3 that have many and diverse functions in human metabolism and, thus, control a variety of biochemical and physiological processes. Altogether, BMF contains approximately 75 wt% of bioactive substances. However, the overall impact on human health can hardly be assessed.

  12. Minimum information about a bioactive entity (MIABE).

    Science.gov (United States)

    Orchard, Sandra; Al-Lazikani, Bissan; Bryant, Steve; Clark, Dominic; Calder, Elizabeth; Dix, Ian; Engkvist, Ola; Forster, Mark; Gaulton, Anna; Gilson, Michael; Glen, Robert; Grigorov, Martin; Hammond-Kosack, Kim; Harland, Lee; Hopkins, Andrew; Larminie, Christopher; Lynch, Nick; Mann, Romeena K; Murray-Rust, Peter; Lo Piparo, Elena; Southan, Christopher; Steinbeck, Christoph; Wishart, David; Hermjakob, Henning; Overington, John; Thornton, Janet

    2011-08-31

    Bioactive molecules such as drugs, pesticides and food additives are produced in large numbers by many commercial and academic groups around the world. Enormous quantities of data are generated on the biological properties and quality of these molecules. Access to such data - both on licensed and commercially available compounds, and also on those that fail during development - is crucial for understanding how improved molecules could be developed. For example, computational analysis of aggregated data on molecules that are investigated in drug discovery programmes has led to a greater understanding of the properties of successful drugs. However, the information required to perform these analyses is rarely published, and when it is made available it is often missing crucial data or is in a format that is inappropriate for efficient data-mining. Here, we propose a solution: the definition of reporting guidelines for bioactive entities - the Minimum Information About a Bioactive Entity (MIABE) - which has been developed by representatives of pharmaceutical companies, data resource providers and academic groups.

  13. Prokaryotic Expression of Chimeric Gene Derived from the Group 1 Allergens of Dust Mites and Bioactivity Identification%两种尘螨1类变应原嵌合基因的原核表达及生物活性鉴定

    Institute of Scientific and Technical Information of China (English)

    郭伟; 姜玉新; 李朝品

    2012-01-01

    .05或0.01). 结论 表达了具有低变应原性和高免疫原性的尘螨1类变应原嵌合基因R8.%Objective To express a chimeric gene R8 derived from the group 1 allergens of dust mites using prokaryotic expression system and detect their bioactivities. Methods PCR amplification was performed using specific primers of Derfl gene and the pUCm-T recombinant plasmid containing the R8 chimeric gene as a template. The PCR products were inserted into the pET28a(+) empty vector after double digestion using restriction endonuclease BamH I and Xho I , respectively. The recombinant plasmid was transferred into E. coli line BL21 and induced by 1 mmol/L isopropyl-β-D-l-thiogalactopyranoside (IPTG). The expressed product was detected by SDS-PAGE and the target protein was purified. IgE binding assay of the purified protein R8 was detected by ELISA using dust mite allergic patient sera. For determining immunogenicity of R8 protein, 75 BALB/c mice were randomly divided into 5 groups, namely PBS (negative control), rDer f 1 group and rDer p 1 group (positive groups), R8 group and asthma group. The mice were treated with dust mite extract at 0, 7, 14 day by intraperitoneal injection of allergens (100 μ1, 0.1 μg/μl) and inhaled challenge as aerosol (0.5 μg/ml, 30 min/d) on day 21 for 7 days. Before inhalation in immunotherapy groups at 25-27 day, specific allergen immunotherapy was performed using rDer f 1, rDer p 1 and R8 allergens respectively. Mice in negative control group were treated with PBS all the time. Twenty-four hours after the last challenge, mice in every group were sacrificed. The bron-choalveolar lavage fluid (BALF) was collected. ELISA was used to detect the level of interferon-γ (IFN-γ) and interleukin 4 (IL-4) in BALF. Results SDS-PAGE analysis revealed that chimeric gene R8 was expressed with a band of approximately M, 35 000. Compared with groups of rDer f 1 and rDer p 1 [(80.44±15.50) and (90.79±10.38) μg/ml, respectively], IgE binding capacity

  14. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Directory of Open Access Journals (Sweden)

    S Sudha

    2012-10-01

    Conclusion: This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs. These results help us to conclude that the potential of using metabolic engineering and post genomic approaches to isolate more bioactive compounds and make their possible commercial application is not far off.

  15. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  16. Bio-solid-phase extraction/tandem mass spectrometry for identification of bioactive compounds in mixtures.

    Science.gov (United States)

    Forsberg, Erica M; Brennan, John D

    2014-08-19

    We describe a two-step column-based bioassay method with tandem mass spectrometric detection for rapid identification of bioactive species in mixtures. The first step uses an immobilized enzyme reactor (IMER) column interfaced to an electrospray ionization mass spectrometer (ESI-MS) to identify mixtures containing bioactive compounds (i.e., enzyme inhibitors), while the second step uses bioselective solid-phase extraction (bioSPE) columns to isolate compounds from "hit" mixtures, which are then identified online by data-dependent ESI-MS. IMER columns were prepared by entrapment of adenosine deaminase (ADA) into sol-gel derived monolithic silica columns, and used to perform a primary IMER screen of mixtures prepared from a bioactive library, which resulted in four apparent hit compounds. Such columns did not provide sufficient binding site density to allow bioSPE, and thus a new column format was developed using ADA that was covalently immobilized to monolithic silica capillary columns, providing ∼500-fold more protein binding sites than were present in columns containing entrapped proteins. Using the covalently linked ADA columns, bioactive mixtures identified by IMER were infused until a maximum total ion current was achieved, followed by washing with a buffer to remove unbound compounds. A harsh wash with 3% acetic acid eluted the strongly bound ligands and the resulting peak triggered data dependent MS/MS to identify the ligand, showing that two of the apparent hits were true ADA inhibitors and demonstrating the ability of this method to rapidly identify bioactive compounds in mixtures.

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    Science.gov (United States)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  18. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Pourhaghgouy, Masoud, E-mail: m.pourhaghgouy@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Shahrezaee, Mostafa, E-mail: moshahrezaee@yahoo.com [Department of Orthopedic Surgery, AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Masouleh, Milad Pourbaghi, E-mail: miladpourbaghi@gmail.com [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of)

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO{sub 2}.28CaO.8P{sub 2}O{sub 5}) prepared by sol–gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. - Highlights: • Particle size of synthesized bioactive glass was approximately less than 20 nm. • Increase in BGNP content did not change the pore channels size. • Addition of 10 wt.% of BGNP led to absence of the pores located on chitosan walls. • Mechanical properties of chitosan scaffold significantly improved by addition of BGNPs. • Chi-BGNPs30 scaffold indicated acceptable absorption capacity and bioactivity behavior.

  19. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass.

    Science.gov (United States)

    Rizk, Marta; Hohlfeld, Lisa; Thanh, Loan Tao; Biehl, Ralf; Lühmann, Nicole; Mohn, Dirk; Wiegand, Annette

    2017-09-01

    This study aimed to analyze the effect of infiltrating a commercial adhesive with nanosized bioactive glass (BG-Bi) particles or methacryl-functionalized polyhedral oligomeric silsesquioxanes (POSS) on material properties and bioactivity. An acetone-based dental adhesive (Solobond Plus adhesive, VOCO GmbH, Cuxhaven, Germany) was infiltrated with nanosized bioactive glass particles (0.1 or 1wt%), or with monofunctional or multifunctional POSS particles (10 or 20wt%). Unfilled adhesive served as control. Dispersion and hydrodynamic radius of the nanoparticles were studied by dynamic light scattering. Set specimens were immersed for 28days in artificial saliva at 37°C, and surfaces were mapped for the formation of calcium phospate (Ca/P) precipitates (scanning electron microscopy/energy-dispersive X-ray spectroscopy). Viscosity (rheometry) and the structural characteristic of the networks were studied, such as degree of conversion (FTIR spectroscopy), sol fraction and water sorption. POSS particles showed a good dispersion of the particles for both types of particles being smaller than 3nm, while the bioactive glass particles had a strong tendency to agglomerate. All nanoparticles induced the formation of Ca/P precipitates. The viscosity of the adhesive was not or only slightly increased by POSS particle addition but strongly increased by the bioactive glass particles. The degree of conversion, water sorption and sol fraction showed a maintained or improved network structure and properties when filled with BG-Bi and multifunctional POSS, however, less polymerization was found when loading a monofunctional POSS. Multifunctional POSS may be incorporated into dental adhesives to provide a bioactive potential without changing material properties adversely. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  1. Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom

    Indian Academy of Sciences (India)

    Poonam Yadav; Nalini V Purohit

    2013-01-01

    Some new 3,4-disubstituted isocoumarins were synthesized having bioactive pyrazole molecule at 3rd position of isocoumarin moiety (5a,b), from isocoumarin -3- carboxylic acid hydrazide (4a,b) followed by cyclization with acetyl acetone. A series of isocoumarin derivative having Schiff base as lateral side chain at 3rd position of isocoumarin moiety were also synthesized (7a,b), by condensing isocoumarin acid hydrazide and benzaldehyde derivative followed by dehydration. The chemical structures of all the compounds were determined by analytical and spectral method. The lead compounds were screened for antimicrobial and analgesic activities.

  2. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  3. 海洋分离芽胞杆菌抗白念珠菌活性物质的理化性质及类别%Physico-Chemical Characters & Classification of Anti-Candida Bioactive Substances Produced by 7 Marine-Derived Bacillus Strains

    Institute of Scientific and Technical Information of China (English)

    刘全永; 杨铭; 王书锦

    2015-01-01

    为寻找新型抗真菌活性物质,采用管碟法对7株分离自海洋的芽胞杆菌在不同NaCl浓度下产生抗白念珠菌活性物质特性、活性物质的耐热性及不同pH值条件下的活性进行了比较,八大溶剂系统纸层析法对活性物质的类别进行了初步鉴定。结果表明,随着NaCl浓度的变化产生活性物质的量也在变化,NaCl浓度达7%时均不能产生,但在正常海洋环境盐浓度( NaCl含量2%~3%)下都产生;活性物质有很强的耐热性和耐酸碱性,说明其较稳定;7株菌产生的抗白念珠菌活性物质均为碱性水溶性抗生素。由于目前临床上抑制人体病原真菌活性物质绝大多数为脂溶性,因而这些芽胞杆菌产生的抗白念珠活性物质有可能为新型物质,此外本研究结果为这些菌株所产生活性物质的分离纯化提供了依据。%In order to search for new type of anti-fungal bioactive substances,method of tube plate was adopted to compare the features of 7 marine-isolated Bacillus strains producing anti-candida bioactive substances at different NaCl concentrations and their thermal resistance and under the condition of different pH value activity. Eight major solvent system of paper chromatography to initially identify the category of active substances was carried out. The result showed that with the variation of NaCl concentration the amount of the bioactive substances produced by the Bacillus strains also varied,all the Bacillus strains cannot produce anti-candida substances when NaCl was as high as 7%, however,they all could produce bioactive substances under normal sea circumstances saline concentration( NaCl con-tent at 2% ~3%);the active substances had strong heat and acid-alkaline resistances,suggesting they are fairly sta-ble. The anti-candida active substances produced by 7 strains were all alkaline and water soluble antibiotics. Due to the current clinically inhibiting human pathogenic fungi active

  4. Bioactive Plant Metabolites in the Management of Non-Communicable Metabolic Diseases: Looking at Opportunities beyond the Horizon

    Directory of Open Access Journals (Sweden)

    Chandan Prasad

    2015-12-01

    Full Text Available There has been an unprecedented worldwide rise in non-communicable metabolic diseases (NCDs, particularly cardiovascular diseases (CVD and diabetes. While modern pharmacotherapy has decreased the mortality in the existing population, it has failed to stem the rise. Furthermore, a large segment of the world population cannot afford expensive pharmacotherapy. Therefore, there is an urgent need for inexpensive preventive measures to control the rise in CVD and diabetes and associated co-morbidities. The purpose of this review is to explore the role of food bioactives in prevention of NCDs. To this end, we have critically analyzed the possible utility of three classes of food bioactives: (a resistant starch, a metabolically resistant carbohydrate known to favorably modulate insulin secretion and glucose metabolism; (b cyclo (His-Pro, a food-derived cyclic dipeptides; and (c polyphenol-rich berries. Finally, we have also briefly outlined the strategies needed to prepare these food-bioactives for human use.

  5. Marine natural products sourced from marine-derived Penicillium fungi.

    Science.gov (United States)

    Ma, Hong-Guang; Liu, Qiang; Zhu, Guo-Liang; Liu, Hai-Shan; Zhu, Wei-Ming

    2016-01-01

    Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.

  6. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    Science.gov (United States)

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity.

  7. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: a comparison between the herb and its preparations.

    Science.gov (United States)

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2013-01-15

    Roman chamomile, Chamaemelum nobile L. (Asteraceae), has been used for medicinal applications, mainly through oral dosage forms (decoctions and infusions). Herein, the nutritional characterisation of C. nobile was performed, and herbal material and its decoction and infusion were submitted to an analysis of phytochemicals and bioactivity evaluation. The antioxidant activity was determined by free radicals scavenging activity, reducing power and inhibition of lipid peroxidation, the antitumour potential was tested in human tumour cell lines (breast, lung, colon, cervical and hepatocellular carcinomas), and the hepatotoxicity was evaluated using a porcine liver primary cell culture. C. nobile proved to be an equilibrated valuable herb rich in carbohydrates and proteins, and poor in fat, providing tocopherols, carotenoids and essential fatty acids (C18:2n6 and C18:3n3). Moreover, the herb and its infusion are a source of phenolic compounds (flavonoids such as flavonols and flavones, phenolic acids and derivatives) and organic acids (oxalic, quinic, malic, citric and fumaric acids) that showed antioxidant and antitumour activities, without hepatotoxicity. The most abundant compounds in the plant extract and infusion were 5-O-caffeoylquinic acid and an apigenin derivative. These, as well as other bioactive compounds, are affected in C. nobile decoction, leading to a lower antioxidant potential and absence of antitumour potential. The plant bioactivity could be explored in the medicine, food, and cosmetic industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    Directory of Open Access Journals (Sweden)

    Joseph M. Antonucci

    2011-09-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP’s bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration.

  9. Mannich reaction: A versatile and convenient approach to bioactive skeletons

    Indian Academy of Sciences (India)

    Selva Ganesan Subramaniapillai

    2013-05-01

    This review gives an insight into the recent applications of Mannich reaction and its variants in the construction of bioactive molecules. Emphasis is given to the Mannich reaction that provides bioactive molecules and/or modifies the property of an existing bioactive molecule. The role of Mannich reaction in the construction of antimalarial, antitumour, antimicrobial, antitubercular, antiinflammatory and anticonvulsant molecules and also the significance of aminoalkyl Mannich side chain on the biological property of molecules is discussed here.

  10. Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots.

    Science.gov (United States)

    Sivakumar, Ganapathy

    2006-12-01

    Plants are the richest source for different bioactive molecules. Because of the vast number of side effects associated with synthetic pharmaceuticals, medical biotechnologists turned to nature to provide new promising therapeutic molecules from plant biofactories. The large-scale availability of the disease- and pesticide-free raw material is, however, restricted in vivo. Many bioactive plant secondary metabolites are accumulated in roots. Engineered plants can also produce human therapeutic proteins. Vaccines and diagnostic monoclonal antibodies can be won from their roots, so that engineered plants hold immense potential for the biopharmaceutical industry. To obtain sufficient amounts of the plant bioactive molecules for application in human therapy, adventitious and hairy roots have to be cultured in in vitro systems. High-tech pilot-scale bioreactor technology for the establishment of a long-term adventitious root culture from biopharmaceutical plants has recently been established. In this review, I briefly discuss a technology for cultivating bioactive molecule-rich adventitious and hairy roots from plants using a high-tech bioreactor system, as well as the principles and application of genome-restructuring mechanisms for plant-based biopharmaceutical production from roots. High-tech bioreactor-derived bioactive phytomolecules and biopharmaceuticals hold the prospect of providing permanent remedies for improving human well-being.

  11. Carbohydrate-based bioactive compounds for medicinal chemistry applications.

    Science.gov (United States)

    Cipolla, L; Peri, F

    2011-01-01

    In this article we review our work over the years on carbohydrates and carbohydrate mimetics and their applications in medicinal chemistry. In the first part of the review innovative synthetic methods, such as the chemoselective glycosylation method originally developed by our group and its applications to the synthesis of neoglycoconjugates (neoglycopeptides, oligosaccharide mimetics, neoglycolipids, etc…) will be presented. The high density of functional groups (hydroxyls) on the monosaccharides and the structural role of sugars forming the core of complex glycans in scaffolding and orienting the external sugar units for the interaction with receptors, inspired us and others to use sugars as scaffolds for the construction of pharmacologically active compounds. In the second part of this review, we will present some examples of bioactive and pharmacologically active compounds obtained by decorating monosaccharide scaffolds with pharmacophore groups. Sugar-derived protein ligands were also used as chemical probes to study the interaction of their target with other proteins in the cell. In this context, sugar mimetics and sugar-derived compounds have been employed as tools for exploring biology according to the "chemical genetic" approach.

  12. Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules

    Directory of Open Access Journals (Sweden)

    Anna Mero

    2014-01-01

    Full Text Available Hyaluronic acid (HA has currently several therapeutic applications: in ophthalmology, osteoarthritis, wound healing, tissue regeneration, postoperative anti-adhesion and anesthetic medicine. In the last ten years, it has also been successfully investigated in the field of drug delivery, in the form of conjugates or hydrogel depot systems. HAylation, the covalent conjugation of HA to bioactive molecules, allows the overcoming of disadvantages associated with some pharmaceuticals, such as insolubility, instability and fast kidney clearance. These issues can be addressed also by covalent attachment of polyethylene glycol (PEGylation, but HA has the relevant advantages of biodegradability, high loading and specific targeting. In this review, the novel HA derivatives and the latest advances in HA-based drug delivery with a particular focus on the chemistry of conjugation will be discussed. Although, so far, there are no HA-drug conjugates on the market, several derivatives are presently under clinical investigation, and the promising results encourage further investigations and the exploitation of this versatile polysaccharide.

  13. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development.

  14. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  15. Microencapsulation for the improved delivery of bioactive compounds into foods.

    Science.gov (United States)

    Champagne, Claude P; Fustier, Patrick

    2007-04-01

    The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

  16. Bioactive Hierarchical Structures for Genetic Control of Bone Morphogenesis

    Directory of Open Access Journals (Sweden)

    Pilar Sepulveda

    2002-09-01

    Full Text Available For thirty years it has been known that certain compositions of Na2O-CaO-P2O5-SiO 2 glasses will form a mechanically strong, chemical bond to bone. These materials have become known as bioactive glasses and the process of bonding is called bioactive fixation. Bioactive glasses are widely used clinically in the repair of bone defects. Recent research at the Imperial College Tissue Engineering Centre has now established that there is a genetic control of the cellular response to bioactive materials. Seven families of genes are up-regulated when primary human osteoblasts are exposed to the ionic dissolution products of bioactive glasses. The gene expression occurs very rapidly, within two days, and includes enhanced expression of cell cycle regulators. The consequence is rapid differentiation of the osteoblasts into a mature phenotype and formation of large three-dimensional bone nodules within six days in vitro. These cell culture results correlate with extensive human clinical results using the same bioactive material. The new genetic theory of bioactive materials provides a scientific foundation for molecular design of new generation of resorbable bioactive materials for tissue engineering and in situ tissue regeneration and repair. Application of this theory to the synthesis of bioactive foams for tissue engineering of bone is described.

  17. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases.

    Science.gov (United States)

    Lordan, Sinéad; Ross, R Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.

  18. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-06-01

    Full Text Available The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.

  19. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target.

    Science.gov (United States)

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-08-04

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products' derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications.

  20. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents (BIOSTIMUL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Kuopio Univ., Department of Biosciences (Finland))

    2008-07-01

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type II diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and as derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type II diabetes) highlighting results. (orig.)

  1. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents - BIOSTIMUL

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Univ. of Eastern Finland, Kuopio (Finland). Dept. of Biosciences.), Email: atte.vonWright@uef.fi

    2010-10-15

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type II diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and its derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type II diabetes) highlighting results. (orig.)

  2. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents - BIOSTIMUL

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Univ. of Kuopio, Dept. of Biosciences (Finland)), email: atte.vonWright@uku.fi

    2009-10-15

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type 2 diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and its derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type 2 diabetes) highlighting results. (orig.)

  3. Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release.

    Science.gov (United States)

    Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Han, Xiao; Wu, Xiaodan; Qu, Fengyu

    2014-06-01

    The hierarchical porous bioglass combined with magnetic SBA-15 was synthesized. The bioactive glass materials possess a hierarchical porous structure with the macroporous (50μm) and the mesoporous (3.86nm) structures derived from the plant template (cattail stem) and triblock polyethylene oxide-propylene oxide block copolymer (P123), respectively. Magnetic SBA-15 was synthesized by adopting the post assembly method using Fe(NO3)3 as iron source and ethylene glycol as reduction. After coating PLGA, PLGA-IBU-magnetic SBA-15 also possessed super-paramagnetism and the corresponding saturation magnetizations (Ms) could reach 2.6emug(-1). Metformin HCl (MH) and ibuprofen (IBU) were used as model drugs, and the drug release kinetics was studied. MH and IBU could release 60% and 85% from the sample respectively. The system shows excellent dual-drug controlled delivery performance and good bioactivity in vitro that leads to good potential application on bone regeneration.

  4. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases

    Science.gov (United States)

    Lordan, Sinéad; Ross, R. Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases. PMID:21747748

  5. COMPARISON OF BIOACTIVE INGREDIENTS IN OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    R.Caroline Jeba

    2013-08-01

    Full Text Available With the increasing demand for health care approaches, resurgence of herbal medicines has taken up great dimensions in changing the health care scenario across the globe. However, identification of the correct species of therapeutic importance is of utmost necessity to deliver quality products to the global market. Hence, modern approach in the standardization of single herbal preparations employing sophisticated techniques is the need of the hour. The evaluation of a product in its entirety, so-called “fingerprinting” can be accomplished by appropriate methods, which may include HPLC, GC-MS, HPTLC-densitometry, FT-NIR, high-field NMR or a combination of these techniques. Using chemical fingerprinting, plants can be demarcated on the basis of their species, strain and geographical origin. Chemical fingerprinting of plants, through chromatographic fingerprinting is highly informative which includes its use as an absolute indicator of the chemical characteristics of plants. Adulterants can be distinguished even in processed samples, enabling the authentication of the drug. Herein, in the present study two varieties of Ocimum species with green and purple coloured leaves collected from Tirunelvelli district commonly known as “Tulasi” in Tamil or “Holy Basil” in English and widely used in both ayurvedic and siddha drugs was subjected to chemical fingerprinting using HPTLC and GC. Moreover, the secondary metabolities such as polyphenols, tannins, and flavonoids were quantified to check the potency of the crude drug material. The bioactive molecule such as eugenol was found to be varying in both the species and the purple variety was found to contain more of the bioactive molecules. The fingerprinting of chemical profile as well as the quantification of the bioactive molecules in the two varieties of Ocimum species exemplified that fingerprinting using analytical techniques are comprehensive and more informative to identify and

  6. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  7. In vitro bioactivity and cytocompatibility of porous scaffolds of bioactive borosilicate glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; FU HaiLuo; LIU Xin; YAO AiHua; WANG DePing; HUANG WenHai; ZHAO Ying; JIANG XinQuan

    2009-01-01

    The bioactive borosilicate scaffolds (R2O-RO-B2O3-SiO2-P2O5) with four different contents of borate were fabricated by replication technique. The bioactivity,degradability and the cytotoxicity of the scaffolds were studied in this paper. The porosity of the scaffolds was found to be 73%-80%,and the pore size was in the range of 200-300 μm. The porous scaffolds immersed in 0.02 mol. L-1 K2HPO4 solution were transformed into hydroxyapatite. And it is notable that the D-AIk-2B,D-AIk-3B-scaffolds were covered by hydroxyapatite layers after 7 h-immersion,which proved their high bioactivity. In the cell adhesion test,cells could be seen growing well on the scaffolds,showing stretched morphology and obvious pseudopodia,and only the high cumulative concentration of B ions released from the D-AIk-3B-scaffold samples had an inhibition effect on cell proliferation. But the inhibition effect could be alleviated by diluting the extract solution to a certain concentration (dilution ratio:1:8). Therefore,after suitable pretreatment,the porous borosilicate bioactive glass scaffold can be e desirable candidate for bone tissue engineering.

  8. Human milk composition: nutrients and bioactive factors.

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L

    2013-02-01

    This article provides an overview of the composition of human milk, its variation, and its clinical relevance. The composition of human milk is the biological norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules (eg, lactoferrin) are being investigated as novel therapeutic agents. Human milk changes in composition from colostrum to late lactation, within feeds, by gestational age, diurnally, and between mothers. Feeding infants with expressed human milk is increasing.

  9. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  10. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  11. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  12. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  13. Processing of apple pomace for bioactive molecules.

    Science.gov (United States)

    Bhushan, Shashi; Kalia, Kalpana; Sharma, Madhu; Singh, Bikram; Ahuja, P S

    2008-01-01

    The growth of horticulture industries worldwide has generated huge quantities of fruit wastes (25%-40% of the total fruits processed). These residues are generally a good source of carbohydrates, especially cell wall polysaccharides and other functionally important bioactive molecules such as proteins, vitamins, minerals and natural antioxidants. "Apple pomace" is a left-over solid biomass with a high moisture content, obtained as a by-product during the processing of apple fruits for juice, cider or wine preparation. Owing to the high carbohydrate content, apple pomace is used as a substrate in a number of microbial processes for the production of organic acids, enzymes, single cell protein, ethanol, low alcoholic drinks and pigments. Recent research trends reveal that there is an increase in the utilization of apple pomace as a food processing residue for the extraction of value added products such as dietary fibre, protein, natural antioxidants, biopolymers, pigments and compounds with unique properties. However, the central dogma is still the stability, safety and economic feasibility of the process(s)/product(s) developed. This review is mainly focused on assessing recent research developments in extraction, isolation and characterization of bioactive molecules from apple pomace, along with their commercial utilization, in food fortification.

  14. Quantification and bioaccessibility of california pistachio bioactives.

    Science.gov (United States)

    Liu, Yuntao; Blumberg, Jeffrey B; Chen, C-Y Oliver

    2014-02-19

    The content of carotenoids, chlorophylls, phenolics, and tocols in pistachios ( Pistacia vera L.) has not been methodically quantified. The objective of this study was to first optimize extraction protocols for lipophilic nutrients and then quantify the content of two phenolic acids, nine flavonoids, four carotenoids, two chlorophylls, and three tocols in the skin, nutmeat, and whole nut of California pistachios. The dominant bioactives in whole pistachios are lutein [42.35 μg/g fresh weight (FW)], chlorophyll a (142.24 μg/g FW), γ-tocopherol (182.20 μg/g FW), flavan-3-ols (catechins) (199.18 μg/g FW), luteolin (217.89 μg/g FW), myricetin (135.18 μg/g FW), and cyanidin-3-galactose (38.34 μg/g FW) in each nutrient class. Most phenolics are present in the skin, while the lipophilic nutrients are dominantly present in the nutmeat. Digestion with a gastrointestinal mimic showed pistachio matrices. In conclusion, 9 lipophilic and 11 hydrophilic bioactives in pistachios are systematically quantified.

  15. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  16. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  17. Bioactivity and chemical ecology of some intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Shirwaikar, P.

    stream_size 7 stream_content_type text/plain stream_name Bioactive_Com_Mar_Org_1991_29.pdf.txt stream_source_info Bioactive_Com_Mar_Org_1991_29.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  18. Bioactive compounds: Safety and efficacy (Consensus Meeting - Part II)

    NARCIS (Netherlands)

    Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.R.; Schrenk, D.; Walter, P.; Weber, P.

    2009-01-01

    The efficacy and safety of bioactive compounds depend on a few known and unknown parameters. What is a physiologic dose and how can that dose be defined in cases of bioactive compounds with a poor knowledge of supply and distribution? What safety sets are needed? How can individual aspects such as p

  19. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Bassan

    2016-05-01

    Full Text Available In this study, trypsin (Enzyme Comission 3.4.21.4 was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides.

  20. Recent Advances in Separation of Bioactive Natural Products

    Institute of Scientific and Technical Information of China (English)

    任其龙; 邢华斌; 鲍宗必; 苏宝根; 杨启炜; 杨亦文; 张治国

    2013-01-01

    Bioactive natural products are a main source of new drugs, functional foods and food additives. The separation of bioactive natural products plays an important role in transformation and use of biomass. The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products, so a series of extraction and separation techniques have been developed. This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coeffi-cients, recent extraction techniques and isolation techniques. This overview of recent technological advances, dis-cussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.

  1. Bioactive glasses: Importance of structure and properties in bone regeneration

    Science.gov (United States)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  2. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value†

    Science.gov (United States)

    Ferlemi, Anastasia-Varvara; Lamari, Fotini N.

    2016-01-01

    Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo. PMID:27258314

  3. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value

    Directory of Open Access Journals (Sweden)

    Anastasia-Varvara Ferlemi

    2016-06-01

    Full Text Available Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  4. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value.

    Science.gov (United States)

    Ferlemi, Anastasia-Varvara; Lamari, Fotini N

    2016-06-01

    Berry fruits are recognized, worldwide, as "superfoods" due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  5. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    Science.gov (United States)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  6. Evaluating the potential bioactivity of a novel compound ER1626.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available BACKGROUND: ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. METHOD: MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. RESULTS: ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. CONCLUSION: In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  7. Potential Bioactive Compounds from Seaweed for Diabetes Management

    Directory of Open Access Journals (Sweden)

    Yusrizam Sharifuddin

    2015-08-01

    Full Text Available Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B and dipeptidyl-peptidase-4 (DPP-4. Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  8. Potential Bioactive Compounds from Seaweed for Diabetes Management.

    Science.gov (United States)

    Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi

    2015-08-21

    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  9. The Artemisia L. Genus: A Review of Bioactive Essential Oils

    Directory of Open Access Journals (Sweden)

    Paulina Bermejo

    2012-03-01

    Full Text Available Numerous members of the Anthemideae tribe are important as cut flowers and ornamental crops, as well as being medicinal and aromatic plants, many of which produce essential oils used in folk and modern medicine and in the cosmetics and pharmaceutical industry. Essential oils generally have a broad spectrum of bioactivity, owing to the presence of several active ingredients that work through various modes of action. Due to their mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes, phenol-derived aromatic and aliphatic components. The large genus Artemisia L., from the tribe Anthemideae, comprises important medicinal plants which are currently the subject of phytochemical attention due to their biological and chemical diversity. Artemisia species, widespread throughout the world, are one of the most popular plants in Chinese traditional preparations and are frequently used for the treatment of diseases such as malaria, hepatitis, cancer, inflammation and infections by fungi, bacteria and viruses. Extensive studies of the chemical components of Artemisia have led to the identification of many compounds as well as essentials oils. This review summarizes some of the main reports on the chemistry and anti-infective activities of Artemisia. Li. essential oils from the data in the recent literature (2000–2011.

  10. Production of Bioactive Recombinant Bovine Chymosin in Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Zheng-Yi Wei

    2016-04-01

    Full Text Available Chymosin (also known as rennin plays an essential role in the coagulation of milk in the cheese industry. Chymosin is traditionally extracted from the rumen of calves and is of high cost. Here, we present an alternative method to producing bovine chymosin from transgenic tobacco plants. The CYM gene, which encodes a preprochymosin from bovine, was introduced into the tobacco nuclear genome under control of the viral 35S cauliflower mosaic promoter. The integration and transcription of the foreign gene were confirmed with Southern blotting and reverse transcription PCR (RT-PCR analyses, respectively. Immunoblotting analyses were performed to demonstrate expression of chymosin, and the expression level was quantified by enzyme-linked immunosorbent assay (ELISA. The results indicated recombinant bovine chymosin was successfully expressed at an average level of 83.5 ng/g fresh weight, which is 0.52% of the total soluble protein. The tobacco-derived chymosin exhibited similar native milk coagulation bioactivity as the commercial product extracted from bovine rumen.

  11. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  12. Bioactivity of grape chemicals for human health.

    Science.gov (United States)

    Iriti, Marcello; Faoro, Franco

    2009-05-01

    Grapevine (Vitis vinifera) products, grape and grape juice, represent a valuable source of bioactive phytochemicals, synthesized by three secondary metabolic pathways (phenylpropanoid, isoprenoid and alkaloid biosynthetic routes) and stored in different plant tissues. In the last decades, compelling evidence suggested that regular consumption of these products may contribute to reducing the incidence of chronic illnesses, such as cancer, cardiovascular diseases, ischemic stroke, neurodegenerative disorders and aging, in a context of the Mediterranean dietary tradition. The health benefits arising from grape product intake can be ascribed to the potpourri of biologically active chemicals occurring in grapes. Among them, the recently discovered presence of melatonin adds a new element to the already complex grape chemistry. Melatonin, and its possible synergistic action with the great variety of polyphenols, contributes to further explaining the observed health benefits associated with regular grape product consumption.

  13. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  14. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  15. Thermal stability of bioactive enzymatic papers.

    Science.gov (United States)

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  16. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  17. New bioactive compounds from korean native mushrooms.

    Science.gov (United States)

    Kim, Seong-Eun; Hwang, Byung Soon; Song, Ja-Gyeong; Lee, Seung Woong; Lee, In-Kyoung; Yun, Bong-Sik

    2013-12-01

    Mushrooms are ubiquitous in nature and have high nutritional attributes. They have demonstrated diverse biological effects and therefore have been used in treatments of various diseases, including cancer, diabetes, bacterial and viral infections, and ulcer. In particular, polysaccharides, including β-glucan, are considered as the major constituents responsible for the biological activity of mushrooms. Although an overwhelming number of reports have been published on the importance of polysaccharides as immunomodulating agents, not all of the healing properties found in these mushrooms could be fully accounted for. Recently, many research groups have begun investigations on biologically active small-molecular weight compounds in wild mushrooms. In this mini-review, both structural diversity and biological activities of novel bioactive substances from Korean native mushrooms are described.

  18. Bioactive constituents of Cirsium japonicum var. australe.

    Science.gov (United States)

    Lai, Wan-Chun; Wu, Yang-Chang; Dankó, Balázs; Cheng, Yuan-Bin; Hsieh, Tusty-Jiuan; Hsieh, Chi-Ting; Tsai, Yu-Chi; El-Shazly, Mohamed; Martins, Ana; Hohmann, Judit; Hunyadi, Attila; Chang, Fang-Rong

    2014-07-25

    Cirsium japonicum var. australe, used as a folk medicine in Taiwan, has been employed traditionally in the treatment of diabetes and inflammatory symptoms. Bioactivity-guided fractionation of its ethanolic extract, utilizing centrifugal partition chromatography monitored by DPPH-TLC analysis, led to the isolation of three new acetylenic phenylacrylic acid esters (1-3) and two new polyacetylenes (4 and 5), together with seven known compounds (6-12). The structures of 1-5 were elucidated by spectroscopic methods including 1D and 2D NMR techniques. The absolute configurations of 4 and 7 were determined utilizing Mosher's method and ECD/CD experiments. The DPPH scavenging activity of the constituents isolated from the C. japonicum var. australe ethanolic extract was evaluated. The potential antidiabetic activity of some of the isolates was evaluated using in vitro cellular glucose uptake and oil red staining assays.

  19. Bioactive properties of honey with propolis.

    Science.gov (United States)

    Osés, S M; Pascual-Maté, A; Fernández-Muiño, M A; López-Díaz, T M; Sancho, M T

    2016-04-01

    Nowadays, propolis is used as an innovative preservative and as a bioactive food supplement. Due to its bitter and astringent flavour, propolis is hardly accepted by consumers. The aim of this study was to obtain a likeable food product made with honey and propolis, whose antimicrobial, antioxidant and anti-inflammatory properties were enhanced in comparison with those of the base honeys used. 0.1%, 0.3% and 0.5% soft propolis extracts were added to honeys and the products that most appealed to the users were subjected to further research. Total phenolics, flavonoids, ABTS free radical and hydroxyl radicals scavenging and anti-inflammatory activities increased in all mixtures. Antimicrobial activity of the combined products showed synergic effects, resulting in higher results than those of the base honeys and propolis extracts. Therefore, honeys enriched with small amounts of propolis extracts are promising functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fluorescent Bioactive Corrole Grafted-Chitosan Films.

    Science.gov (United States)

    Barata, Joana F B; Pinto, Ricardo J B; Vaz Serra, Vanda I R C; Silvestre, Armando J D; Trindade, Tito; Neves, Maria Graça P M S; Cavaleiro, José A S; Daina, Sara; Sadocco, Patrizia; Freire, Carmen S R

    2016-04-11

    Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time. The obtained transparent films presented fluorescence which increases with the amount of grafted corrole units. Additionally, all films showed bacteriostatic effect against S. aureus, as well as good thermomechanical properties and thermal stability. Considering these features, promising applications may be envisaged for these corrole-chitosan films, such as biosensors, bioimaging agents, and bioactive optical devices.

  1. Bioactive Labels for Fresh Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Liana Nasui

    2013-11-01

    Full Text Available Pesticide residues and microbial load on the surface of fresh fruits and vegetables becomes a major concern due to the safety and quality of these products for consumer.In order to minimize these risk factors (pesticide residues and microbial load, were achieved labels for fruits and vegetables that are consumed with shell which disintegrates under the influence of water jet and thus reduce the amount of these contaminants. Were elaborated labels based on polymer (chitosan at a concentration of 2%, which incorporate bioactive compounds from green tea with potential decontaminant of the peel of this products. Green tea extract was obtained by infusing 1 g of dried green tea in 100 ml water at 80° C for 10 minutes. The extract was filtered and then mixed with 2 g chitosan acidified with 0.7% glacial acetic acid and dilute to the mark with distilled water. Were identified bioactive compounds from green tea, using UV-VIS and HPLC. Then were elaborated the labels. These tags were used on pepper, tomato, apple and  nectarine. Were quantified the microbial load and the pesticide residues on their surface unwashed, washed only with water and were monitored the influence of labels on these factors. Identified pesticides were mefenoxan and thiamethoxam, which were quantified by HPLC. In what it concerns the influence, were founded the absence of germs at pepper and a significant decrease at the other. In terms of  the potential of reducing pesticide, the experimental results have indicated that the label can prove its effectiveness.

  2. Bioactive Labels for Fresh Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Nasui Liana

    2013-11-01

    Full Text Available Pesticide residues and microbial load on the surface of fresh fruits and vegetables becomes a major concern due to the safety and quality of these products for consumer.In order to minimize these risk factors (pesticide residues and microbial load, were achieved labels for fruits and vegetables that are consumed with shell which disintegrates under the influence of water jet and thus reduce the amount of these contaminants. Were elaborated labels based on polymer (chitosan at a concentration of 2%, which incorporate bioactive compounds from green tea with potential decontaminant of the peel of this products. Green tea extract was obtained by infusing 1 g of dried green tea in 100 ml water at 80° C for 10 minutes. The extract was filtered and then mixed with 2 g chitosan acidified with 0.7% glacial acetic acid and dilute to the mark with distilled water. Were identified bioactive compounds from green tea, using UV-VIS and HPLC. Then were elaborated the labels. These tags were used on pepper, tomato, apple and  nectarine. Were quantified the microbial load and the pesticide residues on their surface unwashed, washed only with water and were monitored the influence of labels on these factors. Identified pesticides were mefenoxan and thiamethoxam, which were quantified by HPLC. In what it concerns the influence, were founded the absence of germs at pepper and a significant decrease at the other. In terms of  the potential of reducing pesticide, the experimental results have indicated that the label can prove its effectiveness.  

  3. Bioactive Metabolites from Spilanthes acmella Murr.

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2009-02-01

    Full Text Available Spilanthes acmella Murr. (Compositae has been used as a traditional medicine for toothache, rheumatism and fever. Its extracts had been shown to exhibit vasorelaxant and antioxidant activities. Herein, its antimicrobial, antioxidant and cytotoxic activities were evaluated. Agar dilution method assays against 27 strains of microorganisms were performed. Results showed that fractions from the chloroform and methanol extracts inhibited the growth of many tested organisms, e.g. Corynebacterium diphtheriae NCTC 10356 with minimum inhibitory concentration (MIC of 64-256 mg/mL and Bacillus subtilis ATCC 6633 with MIC of 128-256 mg/mL. The tested fractions all exhibited antioxidant properties in both DPPH and SOD assays. Potent radical scavenging activity was observed in the DPPH assay. No cytotoxic effects of the extracts against KB and HuCCA-1 cell lines were evident. Bioassay-guided isolation resulted in a diverse group of bioactive compounds such as phenolics [vanillic acid (2, trans-ferulic acid (5 and trans-isoferulic acid (6], coumarin (scopoletin, 4 and triterpenoids like 3-acetylaleuritolic acid (1, b-sitostenone (3, stigmasterol and stigmasteryl-3-O-b-D-glucopyranosides, in addition to a mixture of stigmasteryl-and b-sitosteryl-3-O-b-D-glucopyranosides. The compounds 1–6 represent bioactive metabolites of S. acmella Murr. that were never previously reported. Our findings demonstrate for the first time the potential benefits of this medicinal plant as a rich source of high therapeutic value compounds for medicines, cosmetics, supplements and as a health food.

  4. Patents on Therapeutic and Cosmetic Applications of Bioactives of Crocus Sativus L. and their Production through Synthetic Biology Methods: A Review.

    Science.gov (United States)

    Dawalbhakta, Mitali; Telang, Manasi

    2017-01-01

    Saffron (Crocus sativus L.) has a long history of use as a food additive and a traditional medicine for treating a number of disorders. Prominent bioactives of saffron are crocin, crocetin and safranal. The aim of this study was to carry out an extensive patent search to collect information on saffron bioactives and their derivatives as therapeutic and cosmeceutical agents. All patents related to the area of interest published globally till date have been reviewed. Moreover, a recent synthetic biology approach to cost effective and consistent production of saffron bioactives has been highlighted. A patent search strategy was designed based on keywords and concepts related to Crocus sativus L. and its bioactives- safranal, crocin and crocetin in combination with different patent classification codes relevant to the technology areas. This search strategy was employed to retrieve patents from various patent databases. The patents which focused on therapeutic or cosmetic applications and claimed compositions comprising crocin, crocetin or safranal as the main active component were selected and analysed. Maximum patenting activity was noticed towards the use of these bioactives in the treatment of neurological disorders followed by multiple uses of the same compound, use in treatment of metabolic disorders and use as cosmeceuticals. Interestingly, there were no patent records related to use of these bioactives in treating infectious disorders. Our patent analysis points out the populous and less explored uses of saffron bioactives and areas where there is further scope for research and growth. Recently developed synthetic biology approach is contributory in improving availability, consistency and cost effectiveness of saffron bioactives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass

    Indian Academy of Sciences (India)

    Vikash Kumar Vyas; Arepalli Sampath Kumar; Sunil Prasad; S P Singh; Ram Pyare

    2015-08-01

    Bioactive glasses are materials capable of bonding implants to tissues. 45S5 Bio-glass® is one such material capable of bonding strongly to bone within 6 weeks. It develops a hydroxy-carbonate apatite layer on the implant that is chemically and crystallographically equivalent to the mineral phase of bone. However, it suffers from a mechanical weakness and low fracture toughness due to an amorphous glass network and is not suitable for load-bearing applications. In order to improve its mechanical strength and bioactivity, the present work explores the effects of cobalt oxide additions. Bioactivity of the glass samples was assessed through their hydroxyapatite formation ability by immersing them in the simulated body fluid for different soaking periods. The formation of hydroxyapatite was confirmed by Fourier transform infrared spectrometry, pH measurement and microstructure evaluation through scanning electron microscopy. Densities and mechanical properties of the samples were found to increase considerably with an increase in the concentration of cobalt oxide.

  6. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites.

  7. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  8. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Marco Malaguti

    2014-11-01

    Full Text Available Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation. Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

  9. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    Science.gov (United States)

    Malaguti, Marco; Dinelli, Giovanni; Leoncini, Emanuela; Bregola, Valeria; Bosi, Sara; Cicero, Arrigo F. G.; Hrelia, Silvana

    2014-01-01

    Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation). Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo. PMID:25405741

  10. Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects.

    Science.gov (United States)

    Malaguti, Marco; Dinelli, Giovanni; Leoncini, Emanuela; Bregola, Valeria; Bosi, Sara; Cicero, Arrigo F G; Hrelia, Silvana

    2014-11-14

    Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation). Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

  11. Antifeedant and phytotoxic activity of the sesquiterpene p-benzoquinone perezone and some of its derivatives.

    Science.gov (United States)

    Burgueño-Tapia, Eleuterio; Castillo, Lucia; González-Coloma, Azucena; Joseph-Nathan, Pedro

    2008-06-01

    The sesquiterpene p-benzoquinone perezone (1), isolated from Perezia adnata var. alamani (Asteraceae), and its non-natural derivatives isoperezone (2), dihydroperezone (3), dihydroisoperezone (4), and anilidoperezone (5) were tested as antifeedants against the herbivorous insects Spodoptera littoralis, Leptinotarsa decemlineata, and Myzus persicae. Compounds 1-5 exhibited strong antifeedant activity against L. decemlineata and M. persicae, and elicited a low response by S. littoralis. Antifeedant activity on L. decemlineata and M. persicae increased when the hydroxyl group at C-3 in perezone (1) was changed to C-6 to give isoperezone (2). The same effect was found with hydrogenation of the double bond of the alkyl chain of (1) to yield dihydroperezone (3). In contrast, hydrogenation of this double bond in isoperezone (2) to give dihydroisoperezone (4) led to a reduction in antifeedant activity. Determination of the phytotoxic activity of 1-5 revealed that 3 had a significant inhibition effect on Lactuca sativa radicle length growth.

  12. Antioxidant capacity and bioactive compounds of four Brazilian native fruits

    Directory of Open Access Journals (Sweden)

    Cristiane C. Denardin

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the bioactive compounds and antioxidant activity of extracts from araçá (Psidium cattleianum, butiá (Butia eriospatha, and pitanga (Eugenia uniflora fruits with different flesh colors (i.e., purple, red, and orange, and blackberries (Rubus sp.; cv. Xavante and Cherokee collected in the southern region of Brazil. The content of ascorbic acid, total carotenoids, and phenolics were determined. The profile of the phenolic compounds was assessed by high-performance liquid chromatography combined with diode array detection (HPLC-DAD. The antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP assay, 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH assay, total reactive antioxidant potential (TRAP assay, and total antioxidant reactivity (TAR assay. The Xavante blackberry and purple-fleshed pitanga showed the highest total phenolic content [816.50 mg gallic acid equivalents (GAE/100g and 799.80 mg GAE/100g, respectively]. The araçá and red-fleshed pitanga showed the highest carotenoid content (6.27 ug β-carotene/g and 5.86 ug β-carotene/g, respectively. The fruits contained several phenolic compounds such as quercetin derivatives, quercitrin, isoquercitrin, and cyanidin derivatives, which may contribute differentially to the antioxidant capacity. The highest scavenging activity in the DPPH assay was found for purple-fleshed pitanga (IC50 36.78 mg/L, blackberries [IC50 44.70 (Xavante and IC50 78.25 mg/L (Cherokee], and araçá (IC50 48.05 mg/L, which also showed the highest FRAP, followed by orange- and red-fleshed pitanga. Our results revealed that some fruits grown in southern Brazil such as purple-fleshed pitanga, blackberries, and araçá are rich sources of phenolic compounds and have great antioxidant activity.

  13. Bioactive Compounds of Aristotelia chilensis Stuntz and their Pharmacological Effects.

    Science.gov (United States)

    Romanucci, Valeria; D'Alonzo, Daniele; Guaragna, Annalisa; Di Marino, Cinzia; Davinelli, Sergio; Scapagnini, Giovanni; Di Fabio, Giovanni; Zarrelli, Armando

    2016-01-01

    Aristotelia chilensis ([Molina], Stuntz) a member of the family Eleocarpaceae, is a plant native to Chile that is distributed in tropical and temperate Asia, Australia, the Pacific Area, and South America. The juice of its berries has important medicinal properties, as an astringent, tonic, and antidiarrhoeal. Its many qualities make the maqui berry the undisputed sovereign of the family of so-called "superfruits", as well as a valuable tool to combat cellular inflammation of bones and joints. Recently, it is discovered that the leaves of the maqui berry have important antibacterial and antitumour activities. This review provides a comprehensive overview of the traditional use, phytochemistry, and biological activity of A. chilensis using information collected from scientific journals, books, and electronic searches. Anthocyanins, other flavonoids, alkaloids, cinnamic acid derivatives, benzoic acid derivatives, other bioactive molecules, and mineral elements are summarized. A broad range of activities of plant extracts and fractions are presented, including antioxidant activity, inhibition of visible light-induced damage of photoreceptor cells, inhibition of α-glucosidase, inhibition of pancreatic lipase, anti-diabetic effects, anti-inflammatory effects, analgesic effects, anti-diabetes, effective prevention of atherosclerosis, promotion of hair growth, anti-photo ageing of the skin, and inhibition of lipid peroxidation. Although some ethnobotanical uses have been supported in in vitro experiments, further studies of the individual compounds or chemical classes of compounds responsible for the pharmacological effects and the mechanisms of action are necessary. In addition, the toxicity and the side effects from the use of A. chilensis, as well as clinical trials, require attention.

  14. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  15. Synthesis and Antibacterial Activities of Selenide Derivatives of Benzisoselenazolone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of Benzisolselenazolone (BISA) derivatives were synthesized and evaluated for their antibacterial activities against E coli. by using LKB-2277 bioactivity monitor. Other bioactivities were tested by the method of High Throughput Screening for pharmaceutical activity compounds (HTP) BISA derivatives 3b,at the concentration of 40 μg/mL, showed 100% antibacterial activity and 62% inhibition rate of aldose reductase(at the concentration of 5μg/mL). These new compound structures have determined by IR, 1H NM Rand MS spectra.

  16. BIOACTIVE SUBSTANCES WITH PREVENTIVE EFFECT IN CARDIOVASCULAR DISEASES.

    Science.gov (United States)

    Mulero, Juana; Abellán, José; Zafrilla, Pilar; Amores, Diego; Hernández Sánchez, Pilar

    2015-10-01

    The effect of diet on cardiovascular disease prevention has been widely studied for many years. Numerous studies have confirmed that diets rich in fruits and vegetables (Mediterranean diet) are beneficial to the cardiovascular system and various bioactive food components have preventive effect on chronic diseases such as cardiovascular disease. In this paper we review the effect of bioactive substances included in the group of flavonoids (catechins and proanthocyanidins, anthocyanins and isoflavones), stilbenes such as resveratrol, bioactive peptides, plant sterols and polyunsaturated fatty acids omega- 3 on the cardiovascular system.

  17. Development and clinical trial of a novel bioactive bone cement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Strontium(Sr)and related compounds have become more attractive in the prevention and treatment of osteoporosis.Previously,we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite(Sr-HA)filler and bisphenol A diglycidylether dimethacrylate(Bis-GMA)resin.This bone cement is superior to conventional polymethylmethacrylate (PMMA)bone cement in bioactivity,biocompatibility,and osseointegration.It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty(PVP)and total hip replacement(THR).In this paper,we review the in vitro,in vivo and clinical evidence for the effectiveness of this bioactive bone cement.

  18. Cyclodextrins as encapsulation agents for plant bioactive compounds.

    Science.gov (United States)

    Pinho, Eva; Grootveld, Martin; Soares, Graça; Henriques, Mariana

    2014-01-30

    Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.

  19. The development of the bioactive substances of the Antarctic krill%南极磷虾生物活性物质的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘志东; 曲映红; 王媛; 李灵智; 黄洪亮

    2012-01-01

    南极磷虾因其生活环境和方式的特殊性而具有产生新型生物活性物质的巨大潜力,也因其巨大的生物资源量和潜在的渔业价值而日益受到人们的重视.南极磷虾生物活性物质包括酶、脂质、甲壳素、生物活性肽和紫外吸收物质等.本文综述了南极磷虾生物活性物质的研究进展,并展望了南极磷虾生物资源开发利用的前景.%Antarctic krill (Euphausia superb) lives in the special environment in its particularly active way of life, which has powerfully potential in producing novel bioactive substances. It is also the subject of a large fishery now. While a few produce bioactive substances have been described and researched. The bioactive substances derived from Antarctic krill are diverse,including enzymes,lipids.chitin,bioactive peptides and the substances of UV-absorbing,and so on. The bioactive substances derived from Antarctic krill are reviewed in order to fully developing and utilizing this resource.

  20. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    OpenAIRE

    Hernández-Alcántara Annel M; Totosaus Alfonso; Pérez-Chabela M. Lourdes

    2016-01-01

    Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse). The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxid...

  1. Pyrazole derivatives as antitumor, anti-inflammatory and antibacterial agents.

    Science.gov (United States)

    Liu, Jia-Jia; Zhao, Meng-Yue; Zhang, Xin; Zhao, Xin; Zhu, Hai-Liang

    2013-11-01

    Within the past years, many researches on the synthesis, structure-activity relationships (SAR), antitumor, antiinflammatory and anti-bacterial activities of the pyrazole derivatives have been reported. Several pyrazole derivatives possess important pharmacological activities and they have been proved useful materials in drug research. Pyrazole derivatives play an important role in antitumor agents because of their good inhibitory activity against BRAF(V600E), EGFR, telomerase, ROS Receptor Tyrosine Kinase and Aurora-A kinase. In addition, pyrazole derivatives also show good antiinflammatory and anti-bacterial activities. In this review, the bioactivities of the pyrazole derivatives mentioned above will be summarized in detail. We sincerely hope that increasing knowledge of the SAR and cellular processes underlying the bioactivity of pyrazole derivatives will be beneficial to the rational design of new generation of small molecule drugs.

  2. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    Science.gov (United States)

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  3. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  4. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    Science.gov (United States)

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules.

  5. Stereochemical determination and bioactivity assessment of {(S)}-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    Electrospray ionization mass spectrometry-guided isolation of extracts from Didiscus aceratus led to the discovery of several new derivatives of the bioactive bisabolene-type sponge metabolite (S)-(+)-curcuphenol (1). The compounds obtained by this method included a mixture of known (2) and new (3...

  6. Evaluation of Bioactivities and Phenolic Content of Selected Edible ...

    African Journals Online (AJOL)

    Evaluation of Bioactivities and Phenolic Content of Selected Edible Mushrooms in Malaysia. ... Tropical Journal of Pharmaceutical Research ... metal chelating, antibacterial and cytotoxic activities of five edible mushrooms in Malaysia.

  7. Current Strategies to Improve the Bioactivity of PEEK

    Directory of Open Access Journals (Sweden)

    Rui Ma

    2014-03-01

    Full Text Available The synthetic thermoplastic polymer polyetheretherketone (PEEK is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications.

  8. Edible coatings as encapsulating matrices for bioactive compounds: a review.

    Science.gov (United States)

    Quirós-Sauceda, Ana Elena; Ayala-Zavala, Jesús Fernando; Olivas, Guadalupe I; González-Aguilar, Gustavo A

    2014-09-01

    Edible coatings can extend the shelf-life of many foods, controlling moisture and solute migration, gas exchange and oxidative reaction rates. Besides, edible coatings can be used as carriers of bioactive compounds to improve the quality of food products such as antioxidants, antimicrobials, flavors and probiotics. These approaches can be useful to extend shelf-life as well as provide a functional product. When edible coatings are used as a matrix holding bioactive compounds remarkable benefits arise; off odors and flavors can be masked, bioactive compounds are protected from the environment, and controlled release is allowed. In this sense, the present review will be focused on analyzing the potential use of encapsulation with edible coatings to incorporate bioactive compounds, solving the disadvantages of direct application.

  9. Design of foods with bioactive lipids for improved health.

    Science.gov (United States)

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2013-01-01

    Numerous studies have found an association between the consumption of certain bioactive lipids and improved human health, e.g., the prevention, delay, or treatment of chronic and acute diseases, such as cancer, cardiovascular disease (CVD), osteoporosis, and immune disorders. In this review, we discuss food-based sources and potential beneficial attributes of major dietary bioactive lipids: polyunsaturated fatty acids; carotenoids; phytosterols and phytostanols; and fat-soluble vitamins. We summarize the various challenges associated with incorporating these bioactive lipids into foods and beverages, such as poor water solubility, high melting point, and low chemical stability. Finally, we propose several techniques that have been used to solve the challenges and integrate dietary bioactive lipids into foods for improved health.

  10. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  11. Bioactive composites consisting of PEEK and calcium silicate powders.

    Science.gov (United States)

    Kim, Ill Yong; Sugino, Atsushi; Kikuta, Koichi; Ohtsuki, Chikara; Cho, Sung Baek

    2009-08-01

    Bioactive bone-repairing materials with mechanical properties analogous to those of natural bone can be obtained through the combination of bioactive ceramic fillers with organic polymers. Previously, we developed novel bioactive microspheres in a binary CaO-SiO2 system produced through a sol-gel process as filler for the fabrication of composites. In this study, we fabricate bioactive composites in which polyetheretherketone is reinforced with 0-50 vol% 30CaO x 70SiO2 (CS) microspheres. The prepared composites reinforced with CS particles form hydroxyapatite on their surfaces in simulated body fluid. The induction periods of hydroxyapatite formation on the composites decrease with increasing amount of CS particles. The mechanical properties of the composites are evaluated by three-point bending test. The composites reinforced with 20 vol% CS particles show 123.5 MPa and 6.43 GPa in bending strength and Young's modulus, respectively.

  12. Bioactive compounds in berries relevant to human health

    NARCIS (Netherlands)

    Battino, M.; Beekwilder, M.J.; Denoyes-Rothan, B.; Laimer, M.

    2009-01-01

    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific

  13. Bioactive foods in promoting health: probiotics and prebiotics

    National Research Council Canada - National Science Library

    Watson, Ronald R; Preedy, Victor R

    2010-01-01

    "Bioactive Foods in Health Promotion: Probiotics and Prebiotics brings together experts working on the different aspects of supplementation, foods, and bacterial preparations, in health promotion and disease prevention, to provide...

  14. Advancement into the Arctic region for bioactive sponge secondary metabolites.

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  15. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma.

    Science.gov (United States)

    Bahniuk, Markian S; Pirayesh, Hamidreza; Singh, Harsh D; Nychka, John A; Unsworth, Larry D

    2012-12-01

    Despite its medical applications, the mechanisms responsible for the osseointegration of bioactive glass (45S5) have yet to be fully understood. Evidence suggests that the strongest predictor for osseointegration of bioactive glasses, and ceramics, with bone tissue as the formation of an apatitic calcium phosphate layer atop the implanted material, with osteoblasts being the main mediator for new bone formation. Most have tried to understand the formation of this apatitic calcium phosphate layer, and other bioresponses between the host and bioactive glass 45S5 using Simulated Body Fluid; a solution containing ion concentrations similar to that found in human plasma without the presence of proteins. However, it is likely that cell attachment is probably largely mediated via the adsorbed protein layer. Plasma protein adsorption at the tissue bioactive glass interface has been largely overlooked. Herein, we compare crystalline and amorphous bioactive glass 45S5, in both melt-derived as well as sol-gel forms. Thus, allowing for a detailed understanding of both the role of crystallinity and powder morphology on surface ions, and plasma protein adsorption. It was found that sol-gel 45S5 powders, regardless of crystallinity, adsorbed 3-5 times as much protein as the crystalline melt-derived counterpart, as well as a greater variety of plasma proteins. The devitrification of melt-cast 45S5 resulted in only small differences in the amount and variety of the adsorbed proteome. Surface properties, and not material crystallinity, play a role in directing protein adsorption phenomena for bioactive glasses given the differences found between crystalline melt-cast 45S5 and sol-gel derived 45S5.

  16. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review

    OpenAIRE

    2015-01-01

    Phenolic acids are present in our diet in different foods. In particular, mushrooms are a good source of these molecules. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulfated and methylated metabolites, displaying higher or lower bioactivity. To clarify the importance of the metabolism of phenolic acids, ...

  17. Sugar matrices in stabilization of bioactives by dehydration

    OpenAIRE

    Zhou, Yankun

    2013-01-01

    Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic ...

  18. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity.

    Science.gov (United States)

    Philippou, Anastassios; Maridaki, Maria; Pneumaticos, Spiros; Koutsilieris, Michael

    2014-05-07

    The insulinlike growth factor-I (IGF-I) is an important factor which regulates a variety of cellular responses in multiple biological systems. The IGF1 gene comprises a highly conserved sequence and contains six exons, which give rise to heterogeneous mRNA transcripts by a combination of multiple transcription initiation sites and alternative splicing. These multiple transcripts code for different precursor IGF-I polypeptides, namely the IGF-IEa, IGF-IEb and IGF-IEc isoforms in humans, which also undergo posttranslational modifications, such as proteolytic processing and glycosylation. IGF-I actions are mediated through its binding to several cell-membrane receptors and the IGF-I domain responsible for the receptor binding is the bioactive mature IGF-I peptide, which is derived after the posttranslational cleavage of the pro-IGF-I isoforms and the removal of their carboxy-terminal E-peptides (that is, the Ea, Eb and Ec). Interestingly, differential biological activities have been reported for the different IGF-I isoforms, or for their E-peptides, implying that IGF-I peptides other than the IGF-I ligand also possess bioactivity and, thus, both common and unique or complementary pathways exist for the IGF-I isoforms to promote biological effects. The multiple peptides derived from IGF-I and the differential expression of its various transcripts in different conditions and pathologies appear to be compatible with the distinct cellular responses observed to the different IGF-I peptides and with the concept of a complex and possibly isoform-specific IGF-I bioactivity. This concept is discussed in the present review, in the context of the broad range of modifications that this growth factor undergoes which might regulate its mechanism(s) of action.

  19. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    OpenAIRE

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of t...

  20. Secondary metabolites and bioactivities of Myrtus communis

    Directory of Open Access Journals (Sweden)

    Mahmoud I Nassar

    2010-01-01

    Full Text Available Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Determination of the median lethal dose (LD 50 revealed that the volatile oil, alcoholic and aqueous extracts were practically nontoxic and highly safe as no lethality was observed. The tested materials (volatile oil, alcoholic and aqueous extracts, myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid showed significant antihyperglycemic, anti-inflammatory and antinociceptive effects as compared with control groups and reference drugs. Conclusion : Administration of extracts of M. communis leaves could be safe at the dose used in this study.

  1. Bioactivities examination of Cinchona leaves ethanol extracts

    Science.gov (United States)

    Artanti, Nina; Udin, Linar Z.; Hanafi, M.; Jamilah, Kurniasih, Ida Rahmi; Primahana, Gian; Anita, Yulia; Sundowo, Andini; Kandace, Yoice Sri

    2017-01-01

    Cinchona species especially the barks are commonly known for commercial production of quinine as antimalarial. Although it is also reported for treatment of depurative, whooping cough, influenza and dysentery. In this paper we reported in vitro examination of other bioactivities (antidiabetes, antioxidant and in vitro cytotoxicity) of 70% ethanol extract of Cinchona ledgeriana and C. succirubra leaves as well as qunine, quinidine, and cinchonine the major alkaloids found in Cinchona species. Antidiabetes was conducted using α-glucosidase inhibitory activity assay. Antioxidant was conducted using DPPH free radical scavenging activity assay. In vitro cytotoxic activity was concucted by microscopic observation on growth of breast cancer cell line MCF-7. The results showed that at concentration of 100 µg/ml, C. ledgeriana leaves ethanol extracts showed the best activity as antidiabetes (98% inhibitory of α-glucosidase activity) and antioxidant (92% DPPH free radical scavenging activity), whereas at the same concentration C. succirubra, quinine, quinidine and cinchonine showed very low activities of antidiabetes and antioxidant. Microscopic observation of in vitro cytotoxicity showed that C. ledgeriana also has excellent cytotoxicity to breast cancer cell line MCF-7 which better than quinine, quinidine and cinchonine, whereas C. succirubra showed low cytotoxicity. These results suggest that cinchona species have many potential as the source of drugs discovery and development other than just for malaria treatment. Therefore it is important to conduct further studies and to maintain the available Cinchona plantation in Indonesia.

  2. Structural diversity and bioactivities of natural benzophenones.

    Science.gov (United States)

    Wu, Shi-Biao; Long, Chunlin; Kennelly, Edward J

    2014-09-01

    Natural benzophenones are a class of compounds consisting of more than 300 members, which exhibit great structural diversity and bioactive properties. Many benzophenones have been reported from higher plants or fungi, most with polyisoprenylated benzophenone skeletons, and are mainly found in the Clusiaceae (formerly Guttiferae) family, a number from edible or medicinal species. Owing to their variable substituents and complex ring systems, many new polyisoprenylated benzophenones (PPBS), including ones with unusual skeletons, were isolated and identified. These natural benzophenones exhibit a range of biological activities including antifungal, anti-HIV, antimicrobial, antioxidant, antiviral and cytotoxic. Because of the increased numbers and biological importance of these unique natural product polyphenols, we will review natural benzophenones and provide an in-depth discussion of their structural diversity and biological activity. By focusing on these key developments in benzophenones, we will contribute a focused review, selecting examples mostly from the last 15 years, but extending our scope to other historically important benzophenones discovered prior to that time.

  3. Triterpene Composition and Bioactivities of Centella asiatica

    Directory of Open Access Journals (Sweden)

    Uma Devi Palanisamy

    2011-01-01

    Full Text Available Leaves of Centella asiatica (Centella were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18 column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL and asiaticoside (1.97 ± 2.65 mg/mL, but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84% was compared to grape seed extract (83% and Vitamin C (88%. Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  4. Isolation of bioactive natural products from myxomycetes.

    Science.gov (United States)

    Ishibashi, Masami

    2005-11-01

    The Myxomycetes (true slime molds) are an unusual group of primitive organisms that may be assigned to one of the lowest classes of eukaryotes. As their fruit bodies are very small and it is very difficult to collect much quantity of slime molds, few studies have been made on the chemistry of myxomycetes. Cultivation of the plasmodium of myxomycetes in a practical scale for natural products chemistry studies is known only for very limited species. Here is described a review on the recent results on isolation of bioactive natural products from myxomycetes obtained in these two years in the laboratories. Spore germination experiments were studied of hundreds of field-collected myxomycetes collected in Japan and succeeded in laboratory culture of plasmodia of several myxomycetes in a practical scale for natural products chemistry studies. As a result, pyrroloiminoquinones, polyene yellow pigments, and a peptide lactone from cultured plasmodia of Didymium iridis, Physarum rigidum and P. melleum, respectively were isolated. New naphthoquinone pigments, cycloanthranilylprolines, tyrosine-kinase inhibitory bisindoles, and a cytotoxic triterpenoid aldehyde lactone were also isolated from field-collected fruit bodies of Cribraria purpurea, Fuligo candida, Tubifera casparyi, and Tubifera dimorphotheca, respectively.

  5. Burchellin: study of bioactivity against Aedes aegypti.

    Science.gov (United States)

    Narciso, Juliana Oliveira Abreu; Soares, Renata Oliveira de Araújo; Reis dos Santos Mallet, Jacenir; Guimarães, Anthony Érico; de Oliveira Chaves, Maria Célia; Barbosa-Filho, José Maria; Maleck, Marise

    2014-04-08

    The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti.

  6. Screening for bioactive compounds from algae.

    Science.gov (United States)

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  7. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    calcium binding ability and used as stainless steel substrates coating. The osteocalcin mimetic peptide has ability to promote hydroxyapatite crystal formation on the substrates and increase surface bioactivity. - Highlights: • The effect of osteocalcin (OC) mimetic peptide as coating material is investigated. • The bioactivity is assessed by the ability of the substrates to form hydroxyapatite (HA). • It is demonstrated that OC-derived peptide promotes HA crystal nucleation and growth. • OC mimetic peptide promotes hard tissue regeneration as coating material.

  8. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?

    Directory of Open Access Journals (Sweden)

    Undurti N. Das

    2017-08-01

    Full Text Available Inflammation, decreased levels of circulating endothelial nitric oxide (eNO and brain-derived neurotrophic factor (BDNF, altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM. Type 1 diabetes mellitus (type 1 DM is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s. On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats. Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic

  9. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?

    Science.gov (United States)

    Das, Undurti N.

    2017-01-01

    Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which

  10. Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques.

    Science.gov (United States)

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-09-15

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals.

  11. Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Jesús Lozano-Sánchez

    2014-09-01

    Full Text Available The potential of by-products generated during extra-virgin olive oil (EVOO filtration as a natural source of phenolic compounds (with demonstrated bioactivity has been evaluated using pressurized liquid extraction (PLE and considering mixtures of two GRAS (generally recognized as safe solvents (ethanol and water at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC coupled to diode array detection (DAD and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product, secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones, flavones (luteolin and apigenin and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals.

  12. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Madamanchi Geethangili

    2011-01-01

    Full Text Available Antrodia camphorata is a unique mushroom of Taiwan, which has been used as a traditional medicine for protection of diverse health-related conditions. In an effort to translate this Eastern medicine into Western-accepted therapy, a great deal of work has been carried out on A. camphorata. This review discusses the biological activities of the crude extracts and the main bioactive compounds of A. camphorata. The list of bioactivities of crude extracts is huge, ranging from anti-cancer to vasorelaxation and others. Over 78 compounds consisting of terpenoids, benzenoids, lignans, benzoquinone derivatives, succinic and maleic derivatives, in addition to polysaccharides have been identified. Many of these compounds were evaluated for biological activity. Many activities of crude extracts and pure compounds of A. camphorata against some major diseases of our time, and thus, a current review is of great importance. It is concluded that A. camphorata can be considered as an efficient alternative phytotherapeutic agent or a synergizer in the treatment of cancer and other immune-related diseases. However, clinical trails of human on A. camphorata extracts are limited and those of pure compounds are absent. The next step is to produce some medicines from A. camphorata, however, the production may be hampered by problems related to mass production.

  13. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  14. Interactions of bioactive glass materials in the oral environment

    Science.gov (United States)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  15. Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass

    Indian Academy of Sciences (India)

    VIKASH KUMAR VYAS; A SAMPATH KUMAR; S P SINGH; RAM PYARE

    2016-09-01

    A small amount of nickel oxide is doped in bioglass$^{\\circledR}$ system and it is replaced by silica. The use of 45S5 glass composition is one such material able to bond strongly to bone within 42 days. The 45S5 bioglass$^{\\circledR}$ system develops a hydroxyl carbonate apatite (HCA) layer, which is chemically and crystallographically similar to mineral phase of bone. But it has low fracture toughness and mechanical weakness due to an amorphous glass network andit is not compatible for load-bearing applications. In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and doped glass samples were tested through their HCA abilities by immersing them in simulated body fluid (SBF) for different days. The formation of HCA was confirmed by FTIR spectroscopy and pH measurement. Densities and mechanical properties of samples were also increased considerably by increasing the concentration of nickel oxide.

  16. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  17. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    Science.gov (United States)

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed.

  18. Bioactivity-guided navigation of chemical space.

    Science.gov (United States)

    Bon, Robin S; Waldmann, Herbert

    2010-08-17

    A central aim of biological research is to elucidate the many roles of proteins in complex, dynamic living systems; the selective perturbation of protein function is an important tool in achieving this goal. Because chemical perturbations offer opportunities often not accessible with genetic methods, the development of small-molecule modulators of protein function is at the heart of chemical biology research. In this endeavor, the identification of biologically relevant starting points within the vast chemical space available for the design of compound collections is a particularly relevant, yet difficult, task. In this Account, we present our research aimed at linking chemical and biological space to define suitable starting points that guide the synthesis of compound collections with biological relevance. Both protein folds and natural product (NP) scaffolds are highly conserved in nature. Whereas different amino acid sequences can make up ligand-binding sites in proteins with highly similar fold types, differently substituted NPs characterized by particular scaffold classes often display diverse biological activities. Therefore, we hypothesized that (i) ligand-binding sites with similar ligand-sensing cores embedded in their folds would bind NPs with similar scaffolds and (ii) selectivity is ensured by variation of both amino acid side chains and NP substituents. To investigate this notion in compound library design, we developed an approach termed biology-oriented synthesis (BIOS). BIOS employs chem- and bioinformatic methods for mapping biologically relevant chemical space and protein space to generate hypotheses for compound collection design and synthesis. BIOS also provides hypotheses for potential bioactivity of compound library members. On the one hand, protein structure similarity clustering (PSSC) is used to identify ligand binding sites with high subfold similarity, that is, high structural similarity in their ligand-sensing cores. On the other hand

  19. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units

    KAUST Repository

    Johansson, Johan R.

    2014-02-14

    Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report here a new set of peptidomimetics derived from δ-peptides, consisting of n units of a 1,5-disubstituted 1,2,3-triazole amino acid (5Tzl). The monomer was prepared using ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) chemistry using [RuCl2Cp]x as the catalyst, allowing for simpler purification and resulting in excellent yields. This achiral monomer was used to prepare peptide oligomers that are water soluble independent of peptide chain length. Conformational analysis and structural investigations of the oligomers were performed by 2D NOESY NMR experiments, and by quantum chemical calculations using the ωB97X-D functional. These data indicate that several conformations may co-exist with slight energetic differences. Together with their increased hydrophilicity, this feature of homo-5Tzl may prove essential for mimicking natural peptides composed of α-amino acids, where the various secondary structures are achieved by side chain effects and not by the rigidity of the peptide backbone. The improved synthetic method allows for facile variation of the 5Tzl amino acid side chains, further increasing the versatility of these compounds. A new set of non-natural peptides composed of 1,5-disubstituted 1,2,3-triazole amino acids is presented. These peptides benefit from: a) modular synthesis of the monomers, allowing variation of the side chains; b) increased solubility of the oligomers in water, irrespective of peptide length; c) flexibility of the backbone allowing these foldamers to adopt several conformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts.

    Science.gov (United States)

    Ajila, C M; Rao, L Jaganmohan; Rao, U J S Prasada

    2010-12-01

    Mango is one of the important tropical fruits in the world. As it is a seasonal fruit, it is processed for various products. During its processing, peel is one of the major byproducts, which is being wasted. Bioactive conserves were extracted using 80% acetone from peels of raw and ripe mango fruits and subjected to acid hydrolysis. The prominent phenolic compounds identified by HPLC were protocatechuic acid, gentisic acid and gallic acid. The phenolic acid derivatives present in acetone extracts of raw and ripe peels were tentatively identified by LC-MS. Gallic acid, syringic acid, mangiferin, ellagic acid, gentisyl-protocatechuic acid, quercetin were the phenolic compounds identified in both raw and ripe peels, while raw peel showed the presence of glycosylated iriflophenone and maclurin derivatives also. β-Carotene was the major carotenoid followed by violaxanthin and lutein. Thus, both raw and ripe mango peel extracts have different phenolic compounds and carotenoids, which will have various pharmaceutical applications.