WorldWideScience

Sample records for nonnative plant species

  1. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  2. Effects of ecological restoration alternative treatments on nonnative plant species establishment

    Science.gov (United States)

    Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule

    2008-01-01

    Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...

  3. Non-native plant invasions of United States National parks

    Science.gov (United States)

    Allen, J.A.; Brown, C.S.; Stohlgren, T.J.

    2009-01-01

    The United States National Park Service was created to protect and make accessible to the public the nation's most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many threatened and endangered plants and high native plant species richness also had high non-native plant species richness. Non-native plant species richness was correlated with number of visitors and kilometers of backcountry trails and rivers. In addition, this work reveals patterns that can be further explored empirically to understand the underlying mechanisms. ?? Springer Science+Business Media B.V. 2008.

  4. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  5. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  6. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  7. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  8. Plant-soil interactions promote co-occurrence of three nonnative woody shrubs.

    Science.gov (United States)

    Kuebbing, Sara E; Classen, Aimée T; Call, Jaime J; Henning, Jeremiah A; Simberloff, Daniel

    2015-08-01

    Ecosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives. However, plant-soil interactions could promote nonnative co-occurrence if a nonnative accumulates beneficial soil mutualists that also assist other nonnatives. Here, we use greenhouse and field experiments to ask whether plant-soil interactions (1) promote the codominance of two common nonnative shrubs (Ligustrum sinense and Lonicera maackii) and (2) facilitate the invasion of a less-common nonnative shrub (Rhamnus davurica) in deciduous forests of the southeastern United States. In the greenhouse, we found that two of the nonnatives, L. maackii and R. davurica, performed better in soils conditioned by nonnative shrubs compared to uninvaded forest soils, which. suggests that positive feedbacks among co-occurring nonnative shrubs can promote continued invasion of a site. In both greenhouse and field experiments, we found consistent signals that the codominance of the nonnatives L. sinense and L. maackii may be at least partially explained by the increased growth of L. sinense in L. maackii soils. Overall, significant effects of plant-soil interactions on shrub performance indicate that plant-soil interactions can potentially structure the co-occurrence patterns of these nonnatives.

  9. Periphyton density is similar on native and non-native plant species

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, Elisabeth M.; van Donk, E.; Bakker, E.S.

    2017-01-01

    Non-native plants increasingly dominate the vegetation in aquatic ecosystems and thrive in eutrophic conditions. In eutrophic conditions, submerged plants risk being overgrown by epiphytic algae; however, if non-native plants are less susceptible to periphyton than natives, this would contribute to

  10. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Science.gov (United States)

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  11. The role of wildfire in the establishment and range expansion of nonnative plant species into natural areas: A review of current literature

    Science.gov (United States)

    Mara Johnson; Lisa J. Rew; Bruce D. Maxwell; Steve Sutherland

    2006-01-01

    Nonnative invasive plants are one of the greatest threats to natural ecosystems worldwide (Vitousek et al. 1996). In fact, their spread has been described as "a raging biological wildfire" (Dewey et al. 1995). Disturbances tend to create conditions that are favorable for germination and establishment of plant species. Nonnative plant species are often...

  12. Native fruit traits may mediate dispersal competition between native and non-native plants

    Directory of Open Access Journals (Sweden)

    Clare Aslan

    2012-02-01

    Full Text Available Seed disperser preferences may mediate the impact of invasive, non-native plant species on their new ecological communities. Significant seed disperser preference for invasives over native species could facilitate the spread of the invasives while impeding native plant dispersal. Such competition for dispersers could negatively impact the fitness of some native plants. Here, we review published literature to identify circumstances under which preference for non-native fruits occurs. The importance of fruit attraction is underscored by several studies demonstrating that invasive, fleshy-fruited plant species are particularly attractive to regional frugivores. A small set of studies directly compare frugivore preference for native vs. invasive species, and we find that different designs and goals within such studies frequently yield contrasting results. When similar native and non-native plant species have been compared, frugivores have tended to show preference for the non-natives. This preference appears to stem from enhanced feeding efficiency or accessibility associated with the non-native fruits. On the other hand, studies examining preference within existing suites of co-occurring species, with no attempt to maximize fruit similarity, show mixed results, with frugivores in most cases acting opportunistically or preferring native species. A simple, exploratory meta-analysis finds significant preference for native species when these studies are examined as a group. We illustrate the contrasting findings typical of these two approaches with results from two small-scale aviary experiments we conducted to determine preference by frugivorous bird species in northern California. In these case studies, native birds preferred the native fruit species as long as it was dissimilar from non-native fruits, while non-native European starlings preferred non-native fruit. However, native birds showed slight, non-significant preference for non-native fruit

  13. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    Science.gov (United States)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  14. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  15. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient.

    Science.gov (United States)

    Haider, Sylvia; Kueffer, Christoph; Edwards, Peter J; Alexander, Jake M

    2012-09-01

    A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.

  16. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.

    Science.gov (United States)

    Golivets, Marina; Wallin, Kimberly F

    2018-05-01

    High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.

  17. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  18. Non-native Species in Floodplain Secondary Forests in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Rasidah Hashim

    2010-01-01

    Full Text Available There is an increasing concern of alien species invading our tropical ecosystems because anthropogenic land use can create conditions in which non-native species thrive. This study is an assessment of bioinvasion using a quantitative survey of non-native plant species in floodplain secondary forests in Peninsular Malaysia. The study area is known to have a long cultivation and settlement history that provides ample time for non-native species introduction. The survey results showed that introduced species constituted 23% of all the identified species, with seven species unique to riparian forest strips and eleven species unique to abandoned paddy fields and the remaining five species being shared between the two secondary forest types. There existed some habitat preferences amongst the species implying both secondary forests were potentially susceptible to bioinvasion. Fourteen species are also invasive elsewhere (PIER invasives whereas fifteen species have acquired local uses such for traditional medicine and food products. The presence of these non-native species could alter native plant succession trajectory, and eventually leads to native species impoverishment if the exotics managed to outcompete the native species. As such, the findings of this study have a far-reaching application for the national biodiversity conservation efforts because it provides the required information on bioinvasion.

  19. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  20. Negative, neutral, and positive interactions among nonnative plants: patterns, processes, and management implications.

    Science.gov (United States)

    Kuebbing, Sara E; Nuñez, Martin A

    2015-02-01

    The movement of species is one of the most pervasive forms of global change, and few ecosystems remain uninvaded by nonnative species. Studying species interactions is crucial for understanding their distribution and abundance, particularly for nonnative species because interactions may influence the probability of invasion and consequent ecological impact. Interactions among nonnatives are relatively understudied, though the likelihood of nonnative species co-occurrence is high. We quantify and describe the types of interactions among nonnative plants and determine what factors affect interaction outcomes for ecosystems globally. We reviewed 65 studies comprising 201 observations and recorded the interaction type, traits of the interacting species, and study characteristics. We conducted a census of interaction types and a meta-analysis of experiments that tested nonnative competition intensity. Both methods showed that negative and neutral interactions prevailed, and a number of studies reported that the removal of a dominant nonnative led to competitive release of other nonnatives. Positive interactions were less frequently reported and positive mean effect sizes were rare, but the plant characteristics nitrogen fixation, life cycle (annual or perennial), and functional group significantly influenced positive interactions. Positive interactions were three times more frequent when a neighboring nonnative was a nitrogen fixer and 3.5 times lower when a neighboring nonnative was an annual. Woody plants were two or four times more likely to have positive interactions relative to grasses or herbs, respectively. The prevalence of negative interactions suggests that managers should prepare for reinvasion of sites when treating dominant nonnatives. Though positive interactions were infrequent, managers may be able to anticipate positive interactions among nonnatives based upon traits of the co-occurring invaders. Predicting positive nonnative interactions is an

  1. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    OpenAIRE

    Clause, J.; Forey, E.; Lortie, C. J.; Lambert, A. M.; Barot, Sébastien

    2015-01-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant ...

  2. Nonnative invasive plants: Maintaining biotic and soceioeconomic integrity along the urban-rural-natural gradient

    Science.gov (United States)

    Cynthia D. Huebner; David J. Nowak; Richard V. Pouyat; Allison R. Bodine

    2012-01-01

    In this chapter, we evaluate nonnative invasive plant species of the urban-rural-natural area gradient in order to reduce negative impacts of invasive plants on native species and ecosystems. This evaluation includes addressing (i) the concept of urban areas as the primary source of invasive plant species and characteristics of urban nonnative plants, including their...

  3. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Directory of Open Access Journals (Sweden)

    Joshua P Averett

    Full Text Available Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20 were evenly stratified by elevation (~70 m intervals along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for

  4. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Science.gov (United States)

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low

  5. Ecological impacts of non-native species: Chapter 2

    Science.gov (United States)

    Pilliod, David S.; Griffiths, R.A.; Kuzmin, S.L.; Heatwole, Harold; Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  6. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants

    NARCIS (Netherlands)

    Grutters, Bart M.C.; Saccomanno, Benedetta; Gross, Elisabeth M.; Van de Waal, Dedmer B.; van Donk, Ellen; Bakker, Elisabeth S.

    2017-01-01

    Secondary compounds can contribute to the success of non-native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary com- pounds of non-native plant species are stronger than those of

  7. Non-native tree species in urban areas of the city of Nitra

    International Nuclear Information System (INIS)

    Galis, M

    2014-01-01

    Non-native plant species are part of our environment. The introduction of these species is huge conditioned by anthropogenic activities, such as the urban environment is characterized by. During the field surveys of selected town Nitra (Chrenova, Mikova Ves, Zobor), we studied the frequency of non-native tree species in the contact zone. Overall, we found out the presence of 10 alien species, observed in this area. Our results show dominant presence of the species Rhus typhina, followed by the Robinia pseudoacacia and Ailanthus altissima. Individual plants were tied largely to the surrounding of built-up areas, often growns directly in front of houses, or as a part of urban green. (author)

  8. Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach.

    Science.gov (United States)

    Koch, Christiane; Jeschke, Jonathan M; Overbeck, Gerhard E; Kollmann, Johannes

    2016-09-01

    Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.

  9. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  10. Response of six non-native invasive plant species to wildfires in the northern Rocky Mountains, USA

    Science.gov (United States)

    Dennis E. Ferguson; Christine L. Craig

    2010-01-01

    This paper presents early results on the response of six non-native invasive plant species to eight wildfires on six National Forests (NFs) in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density. Data for this report are from 219 stands...

  11. Positive and Negative Impacts of Non-Native Bee Species around the World.

    Science.gov (United States)

    Russo, Laura

    2016-11-28

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile . The best studied genera are Apis and Bombus , and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  12. Positive and Negative Impacts of Non-Native Bee Species around the World

    Directory of Open Access Journals (Sweden)

    Laura Russo

    2016-11-01

    Full Text Available Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile. The best studied genera are Apis and Bombus, and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  13. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    Science.gov (United States)

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  14. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  15. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  16. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  17. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  18. The Role of Fuel Breaks in the Invasion of Nonnative Plants

    Science.gov (United States)

    Merriam, Kyle E.; Keeley, Jon E.; Beyers, Jan L.

    2007-01-01

    Executive Summary Fuel reduction projects have become an increasingly important component of state and federal fuels management programs. However, an unintended result of some pre-fire fuel manipulation projects may be the introduction of nonnative invasive plants. The establishment of nonnative plants within fuel breaks is a serious concern because the presence of invasive species in areas treated to reduce fuels could make adjacent wildland areas more susceptible to invasion, particularly following widespread disturbances such as fires. This report presents the results of a research project investigating the relationship between fuel reduction treatments and the invasion of nonnative plants. Throughout the rest of this document, we will collectively refer to these treatments as fuel breaks, although we sampled a range of fuel breaks described variously as fuel breaks, shaded fuel breaks, defensible fuel reduction zones, defensible fuel profile zones, fuel reduction projects, fuel management zones, wildfire protection zones, and community protection zones.

  19. Effects of Nonnative Ungulate Removal on Plant Communities and Soil Biogeochemistry in Tropical Forests

    Science.gov (United States)

    Cole, R. J.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.

    2014-12-01

    Non-native ungulates have substantial impacts on native ecosystems globally, altering both plant communities and soil biogeochemistry. Across tropical and temperate ecosystems, land managers fence and remove non-native ungulates to conserve native biodiversity, a costly management action, yet long-term outcomes are not well quantified. Specifically, knowledge gaps include: (i) the magnitude and time frame of plant community recovery; (ii) the response of non-native invasive plants; and (iii) changes to soil biogeochemistry. In 2010, we established a series of paired ungulate presence vs. removal plots that span a 20 yr. chronosequence in tropical montane wet forests on the Island of Hawaii to quantify the impacts and temporal legacy of feral pig removal on plant communities and soil biogeochemistry. We also compared soil biogeochemistry in targeted areas of low and high feral pig impact. Our work shows that both native and non-native vegetation respond positively to release from top-down control following removal of feral pigs, but species of high conservation concern recover only if initially present at the time of non-native ungulate removal. Feral pig impacts on soil biogeochemistry appear to last for at least 20 years following ungulate removal. We observed that both soil physical and chemical properties changed with feral pig removal. Soil bulk density and volumetric water content decreased while extractable base cations and inorganic N increased in low vs. high feral pig impact areas. We hypothesize that altered soil biogeochemistry facilitates continued invasions by non-native plants, even decades after non-native ungulate removal. Future work will concentrate on comparisons between wet and dry forest ecosystems and test whether manipulation of soil nutrients can be used to favor native vs. non-native plant establishment.

  20. Eight nonnative plants in western Oregon forests: associations with environment and management.

    Science.gov (United States)

    Andrew. Gray

    2005-01-01

    Nonnative plants have tremendous ecological and economic impacts on plant communities globally, but comprehensive data on the distribution and ecological relationships of individual species is often scarce or nonexistent. The objective of this study was to assess the influence of vegetation type, climate, topography, and management history on the distribution and...

  1. Are native songbird populations affected by non-native plant invasion?

    Science.gov (United States)

    Amanda M. Conover; Christopher K. Williams; Vincent. D' Amico

    2011-01-01

    Development into forested areas is occurring rapidly across the United States, and many of the remnant forests within suburban landscapes are being fragmented into smaller patches, impacting the quality of this habitat for avian species. An ecological effect linked to forest fragmentation is the invasion of non-native plants into the ecosystem.

  2. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants

    NARCIS (Netherlands)

    Grutters, Bart; Pollux, B.J.A.; Verberk, W.C.E.P.; Bakker, E.S.

    2015-01-01

    Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known

  3. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies.

    Science.gov (United States)

    Kuebbing, Sara E; Patterson, Courtney M; Classen, Aimée T; Simberloff, Daniel

    2016-09-01

    To maximize limited conservation funds and prioritize management projects that are likely to succeed, accurate assessment of invasive nonnative species impacts is essential. A common challenge to prioritization is a limited knowledge of the difference between the impacts of a single nonnative species compared to the impacts of nonnative species when they co-occur, and in particular predicting when impacts of co-occurring nonnative species will be non-additive. Understanding non-additivity is important for management decisions because the management of only one co-occurring invader will not necessarily lead to a predictable reduction in the impact or growth of the other nonnative plant. Nonnative plants are frequently associated with changes in soil biotic and abiotic characteristics, which lead to plant-soil interactions that influence the performance of other species grown in those soils. Whether co-occurring nonnative plants alter soil properties additively or non-additively relative to their effects on soils when they grow in monoculture is rarely addressed. We use a greenhouse plant-soil feedback experiment to test for non-additive soil impacts of two common invasive nonnative woody shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence

  4. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  5. Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement

    Science.gov (United States)

    Gavin Ferris; Vincent D' Amico; Christopher K. Williams

    2012-01-01

    Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...

  6. Wildland fire in ecosystems: fire and nonnative invasive plants

    Science.gov (United States)

    Kristin Zouhar; Jane Kapler Smith; Steve Sutherland; Matthew L. Brooks

    2008-01-01

    This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradication or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between...

  7. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Directory of Open Access Journals (Sweden)

    Rita S. W. Yam

    2015-04-01

    Full Text Available Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages on ecosystem services (ES based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%, but <3% by non-native birds. Although most non-native species could damage ES regulation (disease control and wastewater purification, some could be beneficial to the urbanized wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands.

  8. Exploring public perception of non-native species from a visions of nature perspective.

    Science.gov (United States)

    Verbrugge, Laura N H; Van den Born, Riyan J G; Lenders, H J Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  9. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  10. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  11. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  12. Non-native species impacts on pond occupancy by an anuran

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher A.; Galvan, Stephanie; McCreary, Brome

    2011-01-01

    Non-native fish and bullfrogs (Lithobates catesbeianus; Rana catesbeiana) are frequently cited as factors contributing to the decline of ranid frogs in the western United States (Bradford 2005). This hypothesis is supported by studies showing competition with or predation by these introduced species (Kupferberg 1997, Kiesecker and Blaustein 1998, Lawler et al. 1999, Knapp et al. 2001) and studies suggesting a deficit of native frogs at sites occupied by bullfrogs or game fish (Hammerson 1982, Schwalbe and Rosen 1988, Fisher and Shaffer 1996, Adams 1999). Conversely, other studies failed to find a negative association between native ranids and bullfrogs and point out that presence of non-native species correlates with habitat alterations that could also contribute to declines of native species (Hayes and Jennings 1986; Adams 1999, 2000; Pearl et al. 2005). A criticism of these studies is that they may not detect an effect of non-native species if the process of displacement is at an early stage. We are not aware of any studies that have monitored a set of native frog populations to determine if non-native species predict population losses. Our objective was to study site occupancy trends in relation to non-native species for northern red-legged frogs (Rana aurora) on federal lands in the southern Willamette Valley, Oregon. We conducted a 5-yr monitoring study to answer the following questions about the status and trends of the northern red-legged frog: 1) What is the rate of local extinction (how often is a site that is occupied in year t unoccupied in year t+1) and what factors predict variation in local extinction? and 2) What is the rate of colonization (how often is a site that is unoccupied in year t occupied in year t+1) and what factors predict variation in colonization? The factors we hypothesized for local extinction were: 1) bullfrog presence, 2) bullfrogs mediated by wetland vegetation, 3) non-native fish (Centrarchidae), 4) non-native fish mediated by

  13. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  14. Prevention, early detection and containment of invasive, nonnative plants in the Hawaiian Islands: current efforts and needs

    Science.gov (United States)

    Christoph Kueffer,; Loope, Lloyd

    2009-01-01

    Introduction: Invasive, non-native plants (or environmental weeds) have long been recognized as a major threat to the native biodiversity of oceanic islands (Cronk & Fuller, 1995; Denslow, 2003). Globally, several hundred non-native plant species have been reported to have major impacts on natural areas on oceanic islands (Kueffer et al., 2009). In Hawaii, at least some 50 non-native plant species reach dominance in natural areas (Kueffer et al., 2009) and many of them are known to impact ecosystem processes or biodiversity. One example is the invasive Australian tree fern (Cyathea cooperi), which has been shown to be very efficient at utilizing soil nitrogen and can grow six times as rapidly in height, maintain four times more fronds, and produce significantly more fertile fronds per month than the native Hawaiian endemic tree ferns, Cibotium spp. (Durand & Goldstein, 2001a, b). Additionally, while native tree ferns provide an ideal substrate for epiphytic growth of many understory ferns and flowering plants, the Australian tree fern has the effect of impoverishing the understory and failing to support an abundance of native epiphytes (Medeiros & Loope, 1993). Other notorious examples of invasive plant species problematic for biodiversity and ecosystem processes in Hawaii include miconia (Miconia calvescens), strawberry guava (Psidium cattleianum), albizia (Falcataria moluccana), firetree (Morella faya), clidemia (Clidemia hirta), kahili ginger (Hedychium gardnerianum), and fountain grass (Pennisetum setaceum), to name just a few. Fireweed (Senecio madagascariensis) is a recent example of a seriously problematic invasive species for Hawaii’s agriculture and is damaging certain high-elevations native ecosystems as well.

  15. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  16. Occurrence and spread of nonnative invasive plants in stands treated with fire and/or mechanical treatments in the upper piedmont of South Carolina

    Science.gov (United States)

    Ross J. Phillips; Thomas A. Waldrop; Aaron D. Stottlemyer

    2013-01-01

    Increasing numbers of nonnative invasive plant species and the expansion of existing nonnative plant populations provide challenges for land managers trying to achieve commercial and restoration goals. Some methods used to achieve these goals, e.g., prescribed fire and mechanical treatments, may result in disturbances that promote the establishment and spread of...

  17. Interactive influences of wildfire and nonnative species on plant community succession in Hawaii Volcanoes National Park.

    Science.gov (United States)

    Alison Ainsworth

    2007-01-01

    The role of fire as a natural disturbance, its interactions with nonnative species and effects of repeated fires in the Hawaiian Islands have received little investigation. We are unsure of the role fire played in shaping forest structure and composition as well as affecting evolutionary processes of the native biota. Yet, many species do have adaptations that...

  18. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  19. Assessment of Nonnative Invasive Plants in the DOE Oak Ridge National Environmental Research Park

    Energy Technology Data Exchange (ETDEWEB)

    Drake, S.J.

    2002-11-05

    The Department of Energy (DOE) National Environmental Research Park at Oak Ridge, Tennessee, is composed of second-growth forest stands characteristic of much of the eastern deciduous forest of the Ridge and Valley Province of Tennessee. Human use of natural ecosystems in this region has facilitated the establishment of at least 167 nonnative, invasive plant species on the Research Park. Our objective was to assess the distribution, abundance, impact, and potential for control of the 18 most abundant invasive species on the Research Park. In 2000, field surveys were conducted of 16 management areas on the Research Park (14 Natural Areas, 1 Reference Area, and Walker Branch Watershed) and the Research Park as a whole to acquire qualitative and quantitative data on the distribution and abundance of these taxa. Data from the surveys were used to rank the relative importance of these species using the ''Alien Plant Ranking System, Version 5.1'' developed by the U.S. Geological Survey. Microstegium (Microstegium vimineum) was ranked highest, or most problematic, for the entire Research Park because of its potential impact on natural systems, its tendency to become a management problem, and how difficult it is to control. Microstegium was present in 12 of the 16 individual sites surveyed; when present, it consistently ranked as the most problematic invasive species, particularly in terms of its potential impact on natural systems. Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense) were the second- and third-most problematic plant species on the Research Park; these two species were present in 12 and 9 of the 16 sites surveyed, respectively, and often ranked second- or third-most problematic. Other nonnative, invasive species, in decreasing rank order, included kudzu (Pueraria montma), multiflora rose (Rosa multiflora), Chinese lespedeza (Lespedeza cuneara), and other species representing a variety of life forms and growth

  20. Show me the numbers: What data currently exist for non-native species in the USA?

    Science.gov (United States)

    Crall, Alycia W.; Meyerson, Laura A.; Stohlgren, Thomas J.; Jarnevich, Catherine S.; Newman, Gregory J.; Graham, James

    2006-01-01

    Non-native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non-native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non-native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non-native species in the US from county, state, multi-state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non-native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts.

  1. Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Z. Elek

    2001-06-01

    Full Text Available The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old, young (15 yr after planting, middle-aged (30 yr after planting, old Norway spruce Picea abies plantation (50 yr after planting, and a native submontane beech forest (Fagetum sylvaticae as a control stand were compared.

    Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness.

    Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.

  2. Vulnerability of freshwater native biodiversity to non-native ...

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  3. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    Science.gov (United States)

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (tamarisk seed production, or in 1986, a year following several

  4. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    Science.gov (United States)

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  5. Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments

    OpenAIRE

    Verloove, F.

    2013-01-01

    Se propone correcciones taxonómicas y nomenclaturales respecto a 88 taxones no nativos de la lista de plantas vasculares de las Islas Canarias (España). Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments. Corrections and other adjustments are proposed for 88 non-native taxa from the checklist of vascular plants from the Canary Islands (Spain).

  6. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  7. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  8. Germination responses of an invasive species in native and non-native ranges

    Science.gov (United States)

    Jose L. Hierro; Ozkan Eren; Liana Khetsuriani; Alecu Diaconu; Katalin Torok; Daniel Montesinos; Krikor Andonian; David Kikodze; Levan Janoian; Diego Villarreal; Maria Estanga-Mollica; Ragan M. Callaway

    2009-01-01

    Studying germination in the native and non-native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and nonnative populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation,...

  9. Environmental niche separation between native and non-native benthic invertebrate species: Case study of the northern Baltic Sea.

    Science.gov (United States)

    Jänes, Holger; Herkül, Kristjan; Kotta, Jonne

    2017-10-01

    Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  11. Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America

    Science.gov (United States)

    Robert E. Ricklefs; Qinfeng Guo; Hong Qian

    2008-01-01

    There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to...

  12. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  13. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  14. Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.

    2011-07-01

    Protecting water resources for expanding human enterprise while conserving valued natural habitat is among the greatest challenges of the 21st century. Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of non-native plant species in riparian areas along streams, canals and rivers in geographically arid regions. This paper sets out to identify when and where non-native riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semiarid river systems. We develop an ecophysiological framework that focuses on two main criteria: (1) examination of the physiological traits that promote non-native species establishment and persistence across environmental gradients, and (2) assessment of where and to what extent hydrologic fluxes are potentially altered by the establishment of introduced species at varying scales from individual plants, to small river reaches, to entire river basins. We highlight three non-native plant species that currently dominate southwestern United States riparian forests. These include tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). As with other recent reviews, we suspect that in many cases the removal of these, and other non-native species will have little or no impact on either streamflow volume or groundwater levels. However, we identify potential exceptions where the expansion of non-native plant species could have significant impact on ecohydrologic processes associated with southwestern United States river systems. Future research needs are outlined that will ultimately assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given

  15. Differences in Competitive Ability between Plants from Nonnative and Native Populations of a Tropical Invader Relates to Adaptive Responses in Abiotic and Biotic Environments

    Science.gov (United States)

    Liao, Zhi-Yong; Zhang, Ru; Barclay, Gregor F.; Feng, Yu-Long

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges). PMID:23977140

  16. Protected-area boundaries as filters of plant invasions.

    Science.gov (United States)

    Foxcroft, Llewellyn C; Jarošík, Vojtěch; Pyšek, Petr; Richardson, David M; Rouget, Mathieu

    2011-04-01

    Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area networks and drainage systems of rivers provide pathways for long-distance dispersal of non-native species. Nevertheless, the influence of protected-area boundaries on colonization of protected areas by invasive non-native species is unknown. We drew on a spatially explicit data set of more than 27,000 non-native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non-native species. The number of records of non-native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non-native plants. The number of non-native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human-induced disturbance, only the density of major roads outside the protected area significantly increased the number of non-native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably. ©2010 Society for Conservation Biology.

  17. Non-native fishes in Florida freshwaters: a literature review and synthesis

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.

    2015-01-01

    Non-native fishes have been known from freshwater ecosystems of Florida since the 1950s, and dozens of species have established self-sustaining populations. Nonetheless, no synthesis of data collected on those species in Florida has been published until now. We searched the literature for peer-reviewed publications reporting original data for 42 species of non-native fishes in Florida that are currently established, were established in the past, or are sustained by human intervention. Since the 1950s, the number of non-native fish species increased steadily at a rate of roughly six new species per decade. Studies documented (in decreasing abundance): geographic location/range expansion, life- and natural-history characteristics (e.g., diet, habitat use), ecophysiology, community composition, population structure, behaviour, aquatic-plant management, and fisheries/aquaculture. Although there is a great deal of taxonomic uncertainty and confusion associated with many taxa, very few studies focused on clarifying taxonomic ambiguities of non-native fishes in the State. Most studies were descriptive; only 15 % were manipulative. Risk assessments, population-control studies and evaluations of effects of non-native fishes were rare topics for research, although they are highly valued by natural-resource managers. Though some authors equated lack of data with lack of effects, research is needed to confirm or deny conclusions. Much more is known regarding the effects of lionfish (Pterois spp.) on native fauna, despite its much shorter establishment time. Natural-resource managers need biological and ecological information to make policy decisions regarding non-native fishes. Given the near-absence of empirical data on effects of Florida non-native fishes, and the lengthy time-frames usually needed to collect such information, we provide suggestions for data collection in a manner that may be useful in the evaluation and prediction of non-native fish effects.

  18. Is 30 years enough time to niche segregation between a non-native and a native congeneric fish species? Evidences from stable isotopes

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Zaia Alves

    2015-12-01

    Full Text Available The invasion of non-native species that are phylogenetically similar to native species was observed in the Upper Paraná River following the construction of the Itaipu hydroelectric plant and subsequent removal of a natural geographic barrier (Sete Quedas Falls. Endemic fish species from the Lower Paraná River, such as the piranha Serrasalmus marginatus, successfully colonized the new environment. A few years later, S. marginatus had become the dominant species, while the prevalence of the congeneric species, Serrasalmus maculatus, had declined. Considering that the two piranha species naturally coexist in the Pantanal and that S. marginatus is a non-native species in the Upper Paraná River floodplain, we hypothesized that trophic niche overlap between Serrasalmus species only occurred in the Upper Paraná River floodplain due to short-term co-existence. The study area in which the isotopic niche overlap between S. maculatus and S. marginatus was evaluated consisted of two ponds located in different floodplains, the Pantanal and the Upper Paraná River. We used carbon and nitrogen stable isotope analysis to elucidate the differences in the energy intake by the native and non-native species. We used mixing models and calculated the isotopic niche area and niche overlap to infer the nature of the trophic interactions between the species in both habitats. According to the mixing model, the predominant source of carbon for both species was terrestrial. Nevertheless, in Upper Paraná River, the δ13C signature of the two species differed significantly and the non-native species had a greater niche width than the native species. In the Pantanal, there were no differences in δ13C, but the species differed with respect to δ 15N, and the niche widths were narrow for both species.Based on these results, it can be inferred that the species depend on different food sources. Piranhas obtain energy from distinct prey species, which probably consume

  19. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  20. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  1. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    Science.gov (United States)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  2. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    Science.gov (United States)

    Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, ...

  3. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  4. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  5. Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees.

    Science.gov (United States)

    Crous, Casparus J; Burgess, Treena I; Le Roux, Johannes J; Richardson, David M; Slippers, Bernard; Wingfield, Michael J

    2016-12-23

    Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. Published by Oxford University Press on

  6. Nonnative plant response to silvicultural treatments: A model based on disturbance, propagule pressure, and competitive abilities

    Science.gov (United States)

    Steve Sutherland; Cara R. Nelson

    2010-01-01

    Invasion by nonnative plants can result in substantial adverse effects on the functions of native forest ecosystems, including nutrient cycling and fire regimes. Thus, forest managers need to be aware of the potential impacts of management activities, including silvicultural treatments, on nonnative vegetation. To aid in that effort, we created a conceptual model of...

  7. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders

    Science.gov (United States)

    Benjamin, J.R.; Fausch, K.D.; Baxter, C.V.

    2011-01-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. ?? 2011 Springer-Verlag.

  8. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  9. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  10. Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Rydlova, J.; Vosatka, M. [Academy of Science. Pruhonice (Czech Republic). Inst. of Botany

    2001-07-01

    Among plants colonizing mine spoil banks in Northern Bohemia the first colonizers, mainly ruderal annuals from Chenopodiaceae and Brassicaceae were found not to be associated with arbuscular mycorrhizal fungi (AMF). These species cultivated in pots with soil from four sites in different succession stages of the spoil bank did not respond to the presence of native or non-native AMF. All grass species studied (Elytrigia repens, Calamagrostis epigejos and Arrhenatherum elatius) were found moderately colonized in the field. Carduus acanthoides was found to be highly colonized in the field; however, it did not show growth response to AMF in the pot experiment. The AMF native in four sites on the spoil banks showed high infectivity but low effectiveness in association with colonizing plants compared to the non-native isolate G. fistulosum BEG23. In general, dependence on AMF in the cultivation experiment was rather low, regardless of the fact that plants were found to be associated with AMF either in the field or in pots. Occurrence and effectiveness of mycorrhizal associations might relate primarily to the mycotrophic status of each plant species rather than to the age of the spoil bank sites studied.

  11. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions

    Science.gov (United States)

    Lawson, Katelyn M.; Tuckett, Quenton M.; Ritch, Jared L.; Nico, Leo; Fuller, Pam; Matheson, Richard E.; Hill, Jeffrey E.

    2017-01-01

    The Tampa Bay region of Florida (USA) is a hot spot for non-native freshwater fishes. However, published information on most non-native fishes in the basin is not current. Systematic sampling efforts targeting non-native fishes in the region were conducted from 2013–2015 by the University of Florida Tropical Aquaculture Laboratory. Data from these recent surveys were analyzed, along with historic and new data from published and unpublished sources, to assess current fish distributions and determine status. We focus on five of the non-native species sampled: pike killifish Belonesox belizanus Kner, 1860, green swordtail Xiphophorus hellerii Heckel, 1848, southern platyfish Xiphophorus maculatus (Günther, 1866), Mayan cichlid Mayaheros urophthalmus (Günther, 1862), and Jack Dempsey Rocio octofasciata (Regan, 1903). All five were found to have reproducing populations in the basin, each showing broader distributions than previously indicated. Non-native populations of four of the species have persisted in the Tampa Bay region since at least the 1990s. In contrast, the presence of Mayan cichlid in the basin was not confirmed until 2004. Based on numbers, distributions, and years of persistence, these five species all maintain established populations. Pike killifish and Mayan cichlid are established and spreading throughout multiple habitat types, while green swordtail, southern platyfish, and Jack Dempsey are localized and found primarily in more marginal habitats (e.g., small ditches and first order tributary streams). Factors affecting continued existence and distributions likely include aquaculture, biotic resistance, and thermal and salinity tolerances. We also clarify non-native species status determination using a multi-agency collaborative approach, and reconcile differences in terminology usage and interpretation.

  12. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  13. COMPARISON OF ANNUAL PRODUCTION ECOLOGY OF NATIVE EELGRASS ZOSTERA MARINA AND THE NON-NATIVE DWARF EELGRASS Z. JAPONICA IN YAQUINA BAY, OREGON

    Science.gov (United States)

    When non-native plant species invade a system they often change patterns of primary production. I evaluate the contribution of the seagrass Zostera marina and it's non-native congener Z. japonica to primary production in Yaquina Bay. Few measurements of Z. japonica production e...

  14. Invasive plants in 21st Century landscapes.

    Science.gov (United States)

    Valerie. Rapp

    2005-01-01

    A plant species is defined as invasive if it is nonnative to the ecosystem under consideration, and if it causes or is likely to cause economic or environmental harm or harm to human health. Nonnative plant invasions are generally considered to have reached the Pacific Northwest in the mid-1800s with the arrival of European-American settlers. Invasive species such as...

  15. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Small nonnative fishes as predators of larval razorback suckers

    Science.gov (United States)

    Carpenter, J.; Mueller, G.A.

    2008-01-01

    The razorback sucker (Xyrauchen texanus), an endangered big-river fish of the Colorado River basin, has demonstrated no sustainable recruitment in 4 decades, despite presence of spawning adults and larvae. Lack of adequate recruitment has been attributed to several factors, including predation by nonnative fishes. Substantial funding and effort has been expended on mechanically removing nonnative game fishes, typically targeting large predators. As a result, abundance of larger predators has declined, but the abundance of small nonnative fishes has increased in some areas. We conducted laboratory experiments to determine if small nonnative fishes would consume larval razorback suckers. We tested adults of three small species (threadfin shad, Dorosoma petenense; red shiner, Cyprinella lutrensis; fathead minnow, Pimephales promelas) and juveniles of six larger species (common carp, Cyprinus carpio; yellow bullhead, Ameiurus natalis; channel catfish, Ictalurus punctatus; rainbow trout, Oncorhynchus mykiss; green sunfish, Lepomis cyanellus; bluegill, L. macrochirus). These nonnative fishes span a broad ecological range and are abundant within the historical range of the razorback sucker. All nine species fed on larval razorback suckers (total length, 9-16 mm). Our results suggest that predation by small nonnative fishes could be responsible for limiting recovery of this endangered species.

  17. Vulnerability of freshwater native biodiversity to non-native species invasions across the continental United States

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analy...

  18. 77 FR 57647 - Endangered and Threatened Wildlife and Plants; Endangered Status for 23 Species on Oahu and...

    Science.gov (United States)

    2012-09-18

    ... habitats, primarily from introduced ungulates, such as feral pigs and goats, and the spread of nonnative plants. Six of these species face threats from habitat destruction and modification from fire. Fourteen... loss due to agriculture and urban development, from stream diversion and channelization, and by...

  19. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.

    Science.gov (United States)

    Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

    2014-12-01

    With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. © 2014 Society for Conservation Biology.

  20. Competitive effects of non-native plants are lowest in native plant communities that are most vulnerable to invasion

    Science.gov (United States)

    J.Stephen Brewer; W. Chase Bailey

    2014-01-01

    Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not...

  1. Impacts of nonnative invasive species on US forests and recommendations for policy and management

    Science.gov (United States)

    W. Keith Moser; Edward L. Barnard; Ronald F. Billings; Susan J. Crocker; Andrew N. Gray; George G. Ice; Mee-Sook Kim; Richard Reid; Sue U. Rodman; William H. McWilliams

    2009-01-01

    The introduction of nonnative invasive species (NNIS) into the United States has had tremendous impacts on the nation's commercial and urban forest resources. Of principal concern are the effects of NNIS on forest composition, structure, function, productivity, and patterns of carbon sequestration. In 2006, the Society of American Foresters commissioned an ad hoc...

  2. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  3. The Army Priority List of At-Risk Species: 2009-2010 Status Update

    Science.gov (United States)

    2010-09-01

    modification through conifer en- croachment, invasive nonnative plants, roadside maintenance, and grass- land/meadow management activities such as...will be secondarily affecting the species through reduced genetic diversity and limited natural reproduction . Ex- tant populations still occur in the...nonnative plants that compete for light and nutrients; and by the loss of pollinators that negatively affect the reproductive viability of the species

  4. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species

    Directory of Open Access Journals (Sweden)

    E. N. Fragoso-Moura

    Full Text Available Abstract The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD. Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010 of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass and Pygocentrus nattereri (red piranha are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  5. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    Science.gov (United States)

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  6. Susceptibility of burned black spruce (Picea mariana) forests to non-native plant invasions in interior Alaska

    Science.gov (United States)

    Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth

    2014-01-01

    As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...

  7. Human disturbance and upward expansion of plants in a warming climate

    Science.gov (United States)

    Dainese, Matteo; Aikio, Sami; Hulme, Philip E.; Bertolli, Alessio; Prosser, Filippo; Marini, Lorenzo

    2017-08-01

    Climate change is expected to trigger an upward expansion of plants in mountain regions and, although there is strong evidence that many native species have already shifted their distributions to higher elevations, little is known regarding how fast non-native species might respond to climate change. By analysing 131,394 occurrence records of 1,334 plant species collected over 20 years in the European Alps, we found that non-natives are spreading upwards approximately twice as fast as natives. Whereas the spread of natives was enhanced by traits favouring longer dispersal distances, this was not the case for non-natives. This was due to the non-native species pool already being strongly biased towards species that had traits facilitating spread. A large proportion of native and non-native species seemed to be able to spread upwards faster than the current velocity of climate change. In particular, long-distance dispersal events and proximity to roads proved to be key drivers for the observed rapid spread. Our findings highlight that invasions by non-native species into native alpine communities are a potentially significant additional pressure on these vulnerable ecosystems that are already likely to suffer dramatic vegetation changes with ongoing warming and increasing human activity in mountain regions.

  8. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  9. Regional patterns of major nonnative invasive plants and associated factors in upper Midwest forests

    Science.gov (United States)

    Zhaofei Fan; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2013-01-01

    Nonnative invasive plants (IPs) are rapidly spreading into natural ecosystems (e.g., forests and grasslands). Potential threats of IP invasion into natural ecosystems include biodiversity loss, structural and environmental change, habitat degradation, and economic losses. The Upper Midwest of the United States encompasses the states of Illinois, Indiana, Iowa, Michigan...

  10. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii volcanoes national park

    Science.gov (United States)

    Alison Ainsworth; J. Boone Kauffman

    2010-01-01

    Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr...

  11. Conservation and restoration of forest trees impacted by non-native pathogens: the role of genetics and tree improvement

    Science.gov (United States)

    R.A. Sniezko; L.A. Winn

    2017-01-01

    North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...

  12. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  13. The influence of ungulates on non-native plant invasions in forests and rangelands: a review.

    Science.gov (United States)

    Catherine G. Parks; Michael J. Wisdom; John G. Kie

    2005-01-01

    Herbivory by wild and domestic ungulates can strongly influence vegetation composition and productivity in forest and range ecosystems. However, the role of ungulates as contributors to the establishment and spread of non-native invasive plants is not well known. Ungulates spread seeds through endozoochory (passing through an animal's digestive tract) or...

  14. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  15. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species.

    Science.gov (United States)

    Wang, Xiao-Nan; Liu, Zheng-Tao; Yan, Zhen-Guang; Zhang, Cong; Wang, Wei-Li; Zhou, Jun-Li; Pei, Shu-Wei

    2013-09-15

    Triclosan (TCS) is an antimicrobial agent which is used as a broad-spectrum bacteriostatic and found in personal care products, and due to this it is widely spread in the aquatic environment. However, there is no paper dealing with the aquatic life criteria of TCS, mainly result from the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 9 acute toxicity tests and 3 chronic toxicity tests using 9 Chinese native aquatic species from different taxonomic levels, and the aquatic life criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSD) between native and non-native species were compared. Among the tested species, demersal fish Misgurnus anguillicaudatus was the most sensitive species, and the fishes were more sensitive than the aquatic invertebrates of Annelid and insect, and the insect was the least sensitive species. The comparison showed that there was no significant difference between SSDs constructed from native and non-native taxa. Finally, a criterion maximum concentration of 0.009 mg/L and a criterion continuous concentration of 0.002 mg/L were developed based on different taxa, according to the U.S. Environmental Protection Agency guidelines. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Do native brown trout and non-native brook trout interact reproductively?

    Science.gov (United States)

    Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.

    2008-07-01

    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.

  17. Resolving whether botanic gardens are on the road to conservation or a pathway for plant invasions.

    Science.gov (United States)

    Hulme, Philip E

    2015-06-01

    A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non-native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non-native species; the relative composition of threatened, ornamental, or invasive non-native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non-native plants occurred in one or more living collections (99%), less than one-quarter of red-listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non-native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non-native species (20) as red-listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non-native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10-fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future

  18. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  19. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  20. 78 FR 75313 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To Reclassify...

    Science.gov (United States)

    2013-12-11

    ... the removal or reduction of the Act's protections. A species is an ``endangered species'' for purposes... invasive, nonnative plant species was not identified as a specific threat to E. altissimum in the 1994... and its habitat. The primary invasive, nonnative species of concern is Ehrharta calycina, a perennial...

  1. The Public and Professionals Reason Similarly about the Management of Non-Native Invasive Species: A Quantitative Investigation of the Relationship between Beliefs and Attitudes

    Science.gov (United States)

    Fischer, Anke; Selge, Sebastian; van der Wal, René; Larson, Brendon M. H.

    2014-01-01

    Despite continued critique of the idea of clear boundaries between scientific and lay knowledge, the ‘deficit-model’ of public understanding of ecological issues still seems prevalent in discourses of biodiversity management. Prominent invasion biologists, for example, still argue that citizens need to be educated so that they accept scientists’ views on the management of non-native invasive species. We conducted a questionnaire-based survey with members of the public and professionals in invasive species management (n = 732) in Canada and the UK to investigate commonalities and differences in their perceptions of species and, more importantly, how these perceptions were connected to attitudes towards species management. Both native and non-native mammal and tree species were included. Professionals tended to have more extreme views than the public, especially in relation to nativeness and abundance of a species. In both groups, species that were perceived to be more abundant, non-native, unattractive or harmful to nature and the economy were more likely to be regarded as in need of management. While perceptions of species and attitudes towards management thus often differed between public and professionals, these perceptions were linked to attitudes in very similar ways across the two groups. This suggests that ways of reasoning about invasive species employed by professionals and the public might be more compatible with each other than commonly thought. We recommend that managers and local people engage in open discussion about each other’s beliefs and attitudes prior to an invasive species control programme. This could ultimately reduce conflict over invasive species control. PMID:25170957

  2. A Rose by Any Other Name: Plant Identification Knowledge & Socio-Demographics.

    Directory of Open Access Journals (Sweden)

    Beth S Robinson

    Full Text Available Concern has been expressed over societal losses of plant species identification skills. These losses have potential implications for engagement with conservation issues, gaining human wellbeing benefits from biodiversity (such as those resulting from nature-based recreational activities, and early warning of the spread of problematic species. However, understanding of the prevailing level of species identification skills, and of its key drivers, remains poor. Here, we explore socio-demographic factors influencing plant identification knowledge and ability to classify plants as native or non-native, employing a novel method of using real physical plants, rather than photographs or illustrations. We conducted face-to-face surveys at three different sites chosen to capture respondents with a range of socio-demographic circumstances, in Cornwall, UK. We found that survey participants correctly identified c.60% of common plant species, were significantly worse at naming non-native than native plants, and that less than 20% of people recognised Japanese knotweed Fallopia japonica, which is a widespread high profile invasive non-native in the study region. Success at naming plants was higher if participants were female, a member of at least one environmental, conservation or gardening organisation, in an older age group (than the base category of 18-29 years, or a resident (rather than visitor of the study area. Understanding patterns of variation in plant identification knowledge can inform the development of education and engagement strategies, for example, by targeting sectors of society where knowledge is lowest. Furthermore, greater understanding of general levels of identification of problematic invasive non-native plants can guide awareness and education campaigns to mitigate their impacts.

  3. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  4. Invasive plants found in Louisiana’s forests, 2009 forest inventory and analysis factsheet

    Science.gov (United States)

    Sonja N. Oswalt; Christopher M. Oswalt

    2012-01-01

    Foresters and ecologists have noted the spread of nonnative invasive species onto U.S. forest land for decades. Despite soaring costs related to the management of and removal of invasive plants, and inestimable environmental impacts (e.g., altered soil chemistry, competition with native species, altered light environment; Pimentel and others 2005), nonnative invasive...

  5. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  6. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  7. A new species of Oochoristica (Cyclophyllidea: Linstowiidae) from non-native Mediterranean geckos, Hemidactylus turcicus (Sauria: Gekkonidae), from Texas, USA.

    Science.gov (United States)

    McAllister, Chris T; Bursey, Charles R

    2017-06-01

    A new species of cyclophyllidean tapeworm, Oochoristica harschi sp. nov. is described from 2 of 18 (11%) non-native Mediterranean geckos (Hemidactylus turcicus) collected in June 2016 from Tom Green County, Texas, USA The new species has few characteristics in common with 17 species of Oochoristica previously described from Nearctic reptiles. Of this group, O. harschi is most similar to O. macallisteri Bursey and Goldberg, 1996 from the side-blotched lizard, Uta stansburiana from Arizona and California, USA, in number of testes, 14-20 vs. 12-20. However, O. harschi has oval suckers and a long neck compared to the circular suckers and absent neck in O. macallisteri. On comparison with other species of Oochoristica, it was found O. chinensis Jensen, Schmidt and Kuntz, 1983 from the Sino-Japanese realm, O. iguanae Bursey and Goldberg, 1996 from the Neotropical realm, and O. maccoyi Bursey and Goldberg, 1966 from the Panamanian realm were most similar to the new species. However, O. harschi can be differentiated by possessing a much longer neck and a shorter cirrus pouch. It can be further differentiated from O. chinensis by possessing an ovoid vs. an irregular vitellarium, from O. iguanae by having a smaller strobilus (65 vs. 110 mm) as well as an ovoid vs. a triangular vitellarium, and from O. maccoyi by having significantly more proglottids (145 vs. 89) and a longer strobilus (65 vs. 20 mm). The new species is the fifth species of Oochoristica reported from non-native H. turcicus and the 18th species described from the Nearctic region.

  8. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Patterson, Courtney M.; Classen, Aimee Taylor

    2016-01-01

    shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned...... by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth...... in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence of the nonnative L. sinense relative to this native herbaceous community, and could provide an explanation of why native species...

  9. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  10. Vascular Plant and Vertebrate Inventory of Coronado National Memorial

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Swann, Don E.; Halvorson, William L.

    2007-01-01

    We conducted inventories for amphibians and reptiles, birds, and mammals; and summarized past inventories for vascular plants at Coronado National Memorial (NM) in Arizona. We used our data as well as data from previous research to compile species lists for the memorial, assess inventory completeness, and make suggestions on future monitoring efforts. There have been 940 species of plants and vertebrates recorded at Coronado NM (Table 1), of which 46 (5%) are non-native. The species richness of the memorial is one of the highest in the Sonoran Desert Network of park units, third only to park units that are two and one-half (Chiricahua National Monument), 19 (Saguaro National Park) and 70 (Organ Pipe Cactus National Monument) times larger in area. The high species diversities are due to the large elevational gradient, overlap of bigeographical regions, wide range of geology and soils, and diverse vegetation communities present at the memorial. Changes in species composition have occurred at the memorial over the last 20 years in all major taxonomic groups. These changes are likely due to increases in grassy plant species (both native and non-native) at the lower elevations of the memorial. We suspect that grassy plant cover has increased because of changes in grazing intensity, introduction of some non-native species, and a recent fire. All recent vertebrate inventories have yielded grassland obligate species not previously recorded at the memorial. Based on the review of past studies, we believe the inventory for most taxa, except bats, is nearly complete, though some rare or elusive species will likely be added with additional survey effort.

  11. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  12. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  13. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  14. 78 FR 46889 - Endangered and Threatened Wildlife and Plants; 12-Month Finding and Candidate Removal for...

    Science.gov (United States)

    2013-08-02

    ... Removal for Potentilla basaltica; Proposed Threatened Species Status for Ivesia webberi AGENCY: Fish and..., invasive plant species--have been substantially reduced since 2002. The BLM implemented several measures... respond to nonnative, invasive plant species using chemical control and other treatment methods (Service...

  15. Climate change will increase the naturalization risk from garden plants in Europe.

    Science.gov (United States)

    Dullinger, Iwona; Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda

    2017-01-01

    Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Europe. We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.

  16. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.

  17. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    International Nuclear Information System (INIS)

    Robson, D.B.

    2003-01-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control

  18. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    Energy Technology Data Exchange (ETDEWEB)

    Robson, D.B.

    2003-07-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control.

  19. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Directory of Open Access Journals (Sweden)

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  20. Nonnative invasive plants in the Penobscot Experimental Forest in Maine, USA: influence of site, silviculture, and land use history

    Science.gov (United States)

    Elizabeth Olson; Laura S. Kenefic; Alison C. Dibble; John C. Brissette

    2011-01-01

    We investigated the occurrence of nonnative invasive plants on approximately 175 ha comprising a long-term, 60-year-old U.S. Forest Service silvicultural experiment and old-field stands in the Penobscot Experimental Forest (PEF) in central Maine. Stands in the silvicultural experiment were never cleared for agriculture, but have been repeatedly partially cut. Our...

  1. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  2. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  3. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  4. Avian use of introduced plants: ornithologist records illuminate interspecific associations and research needs.

    Science.gov (United States)

    Aslan, Clare E; Rejmánek, Marcel

    2010-06-01

    Introduced species have the potential to impact processes central to the organization of ecological communities. Although hundreds of nonnative plant species have naturalized in the United States, only a small percentage of these have been studied in their new biotic communities. Their interactions with resident (native and introduced) bird species remain largely unexplored. As a group, citizen scientists such as ornithologists possess a wide range of experiences. They may offer insights into the prevalence and form of bird interactions with nonnative plants on a broad geographic scale. We surveyed 173 ornithologists from four U.S. states, asking them to report observations of bird interactions with nonnative plants. The primary goal of the survey was to obtain information useful in guiding future empirical research. In all, 1143 unique bird-plant interactions were reported, involving 99 plant taxa and 168 bird species. Forty-seven percent of reported interactions concerned potential dispersal (feeding on seeds or fruits). Remaining "habitat interactions" involved bird use of plants for nesting, perching, woodpecking, gleaning, and other activities. We utilized detrended correspondence analysis to ordinate birds with respect to the plants they reportedly utilize. Results illuminate the new guilds formed by these interactions. We assessed the existing level of knowledge about invasiveness of those plants reported most often in feeding interactions, identifying information gaps for biological invasions research priority. To exemplify the usefulness of citizen science data, we utilized survey results to guide field research on invasiveness in some of these plant species and observed both qualitatively and quantitatively strong agreement between survey reports and our empirical data. Questionnaire reports are therefore heuristically informative for the fields of both avian ecology and invasion biology.

  5. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Michael S. Long; Creighton M. Litton; Christian P. Giardina; Jonathan Deenik; Rebecca J. Cole; Jed P. Sparks

    2017-01-01

    Conservation and restoration of ecosystems impacted by nonnative ungulates increasingly involves their removal and exclusion. While the influence of nonnative ungulate removal on plant communities is commonly monitored, impacts on underlying ecological processes are seldom quantified. Here we examined how nonnative feral pig (

  6. Species-environment interactions changed by introduced herbivores in an oceanic high-mountain ecosystem.

    Science.gov (United States)

    Seguí, Jaume; López-Darias, Marta; Pérez, Antonio J; Nogales, Manuel; Traveset, Anna

    2017-01-05

    Summit areas of oceanic islands constitute some of the most isolated ecosystems on earth, highly vulnerable to climate change and introduced species. Within the unique high-elevation communities of Tenerife (Canary Islands), reproductive success and thus long-term survival of species may depend on environmental suitability as well as threat by introduced herbivores. By experimentally modifying the endemic and vulnerable species Viola cheiranthifolia along its entire altitudinal occurrence range, we studied plant performance, autofertility, pollen limitation and visitation rate and the interactive effect of grazing by non-native rabbits on them. We assessed the grazing effects by recording (1) the proportion of consumed plants and flowers along the gradient, (2) comparing fitness traits of herbivore-excluded plants along the gradient, and (3) comparing fitness traits, autofertility and pollen limitation between plants excluded from herbivores with unexcluded plants at the same locality. Our results showed that V. cheiranthifolia performance is mainly affected by inter-annual and microhabitat variability along the gradient, especially in the lowest edge. Despite the increasingly adverse environmental conditions, the plant showed no pollen limitation with elevation, which is attributed to the increase in autofertility levels (≥ 50% of reproductive output) and decrease in competition for pollinators at higher elevations. Plant fitness is, however, extremely reduced owing to the presence of non-native rabbits in the area (consuming more than 75% of the individuals in some localities), which in turn change plant trait-environment interactions along the gradient. Taken together, these findings indicate that the elevational variation found on plant performance results from the combined action of non-native rabbits with the microhabitat variability, exerting intricate ecological influences that threaten the survival of this violet species. Published by Oxford University

  7. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  8. Growth rate differences between resident native brook trout and non-native brown trout

    Science.gov (United States)

    Carlson, S.M.; Hendry, A.P.; Letcher, B.H.

    2007-01-01

    Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.

  9. Lower lethal temperatures for nonnative freshwater fishes in Everglades National Park, Florida

    Science.gov (United States)

    Schofield, Pam; Kline, Jeffrey L.

    2018-01-01

    Temperature is an important factor that shapes biogeography and species composition. In southern Florida, the tolerance of nonnative freshwater fishes to low temperatures is a critical factor in delineating their geographic spread. In this study, we provide empirical information on experimentally derived low-temperature tolerance limits of Banded Cichlid Heros severus and Spotfin Spiny Eel Macrognathus siamensis, two nonnative Everglades fishes that were lacking data, and African Jewelfish Hemichromis letourneuxi and Mayan Cichlid Cichlasoma urophthalmus, species for which previous results were derived from studies with small sample sizes. We also provide a literature review summarizing the current state of knowledge of low-temperature tolerances for all 17 nonnative freshwater fishes that have been found in Everglades National Park. Mean lower lethal temperature tolerances ranged from 4°C (Orinoco Sailfin Catfish Pterygoplichthys multiradiatus) to 16.1°C (Butterfly Peacock Bass Cichla ocellaris). These low-temperature limits may inform the understanding of the ecological role or influence of nonnative fishes and may lead to potential management opportunities and applications.

  10. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  11. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    Science.gov (United States)

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  12. Assessing the consequences of nonnative trout in headwater ecosystems in western North America

    Science.gov (United States)

    Jason B. Dunham; David S. Pilliod; Michael K. Young

    2004-01-01

    Intentional introductions of nonnative trout into headwater lakes and streams can have numerous effects on the receiving ecosystems, potentially threatening native species and disrupting key ecological processes. In this perspective, we focus on seven key issues for assessing the biological and economic consequences of nonnative trout in headwater ecosystems: (1)...

  13. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  14. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    Science.gov (United States)

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  15. Nest-location and nest-survival of black-chinned hummingbirds in New Mexico: A comparison between rivers with differing levels of regulation and invasion of nonnative plants

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Scott H. Stoleson

    2014-01-01

    We compared plants used as sites for nests and survival of nests of black-chinned hummingbirds (Archilochus alexandri) along two rivers in New Mexico. Along the free-flowing Gila River which was dominated by native plants, most nests were constructed in boxelder (Acer negundo). Along the flow-restricted Middle Rio Grande which was dominated by nonnative plants, most...

  16. (Non)native Speakered: Rethinking (Non)nativeness and Teacher Identity in TESOL Teacher Education

    Science.gov (United States)

    Aneja, Geeta A.

    2016-01-01

    Despite its imprecision, the native-nonnative dichotomy has become the dominant paradigm for examining language teacher identity development. The nonnative English speaking teacher (NNEST) movement in particular has considered the impact of deficit framings of nonnativeness on "NNEST" preservice teachers. Although these efforts have…

  17. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (H max ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' H max , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of H max of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative H max of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not

  18. Density-dependent effects of non-native brown trout Salmo trutta on the species-area relationship in stream fish assemblages.

    Science.gov (United States)

    Hasegawa, K; Mori, T; Yamazaki, C

    2017-01-01

    The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.

  19. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  20. Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands

    DEFF Research Database (Denmark)

    Steinbauer, Manuel; Irl, Severin David Howard; González-Mancebo, Juana Maria

    2017-01-01

    and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. Methods: We assess the vascular plant species richness as well as the number and percentage of endemic species and non-native species...

  1. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    Science.gov (United States)

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  2. Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Burda Raisa

    2018-03-01

    Full Text Available This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist contains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was generalised into some categories of five characteristic features: climamorphotype (life form, time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS. Two assessments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contamination of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.

  3. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  5. Establishment of native species on a natural gas pipeline: the importance of seeding rate, aspect, and species selection

    Science.gov (United States)

    Melissa A. Thomas-Van Gundy; Pamela J. Edwards; Thomas M. Schuler

    2018-01-01

    With the increase in natural gas production in the United States, land managers need solutions and best practices to mitigate potential negative impacts of forest and soil disturbance and meet landowner objectives and desired conditions. Mitigation often includes the use of native seed mixes for maintaining plant diversity, controlling nonnative invasive species, and...

  6. Can transgenerational plasticity contribute to the invasion success of annual plant species?

    Science.gov (United States)

    Fenesi, Annamária; Dyer, Andrew R; Geréd, Júliánna; Sándor, Dorottya; Ruprecht, Eszter

    2014-09-01

    Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.

  7. Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host.

    Science.gov (United States)

    Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W

    2016-05-01

    Many species have been introduced worldwide into areas outside their natural range. Often these non-native species are introduced without their natural enemies, which sometimes leads to uncontrolled population growth. It is rarely reported that an introduced species provides a new resource for a native species. The rose hips of the Japanese rose, Rosa rugosa, which has been introduced in large parts of Europe, are infested by the native monophagous tephritid fruit fly Rhagoletis alternata. We studied differences in fitness benefits between R. alternata larvae using R. rugosa as well as native Rosa species in the Netherlands. R. alternata pupae were larger and heavier when the larvae fed on rose hips of R. rugosa. Larvae feeding on R. rugosa were parasitized less frequently by parasitic wasps than were larvae feeding on native roses. The differences in parasitization are probably due to morphological differences between the native and non-native rose hips: the hypanthium of a R. rugosa hip is thicker and provides the larvae with the possibility to feed deeper into the hip, meaning that the parasitoids cannot reach them with their ovipositor and the larvae escape parasitization. Our study shows that native species switching to a novel non-native host can experience fitness benefits compared to the original native host.

  8. Invasion strategy and abiotic activity triggers for non-native gobiids of the River Rhine.

    Directory of Open Access Journals (Sweden)

    Jan Baer

    Full Text Available The 24 hour activity patterns of three non-native gobiids (round goby Neogobius melanostomus, Western tubenose goby Proterorhinus semilunaris and bighead goby Ponticola kessleri were assessed over 46 consecutive months between 2011 and 2014 from their occurrence in the cooling water intake of a nuclear power plant on the River Rhine, Germany. In total, 117717 gobiids were identified and classified. The occurrence of all three species varied strongly between sampling years, and species-specific activity triggers were identified. The activity of juveniles of all three gobiids species was positively temperature dependent while adult tubenose goby activity appeared to be negatively temperature dependent. Increasing fluvial discharge in the adjoining main river stimulated the activity of juvenile round goby but inhibited activity of adult tubenose goby. Except for adult bighead goby, activity was also structured by time of day, but with no uniform mean. Meteorological factors such as precipitation, air pressure and duration of sunshine hours had little or no influence on gobiid activity. On selected rare occasions, mainly at night, all three species exhibited pulsed swarming behaviour, with thousands of individuals recorded in the intake water. Round goby swarms exhibited both the highest intensity and the largest swarming individuals, suggesting a potential competitive advantage over tubenose and bighead goby. Electric fishing surveys in natural river stretches corroborated this observation. Negative effects on the native fish fauna were apparent only for the bullhead, Cottus gobio. The activity triggers identified offer a unique insight into the invasion mechanisms of these ecosystem-changing non-native gobiids.

  9. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  10. Microscopic examination of skin in native and nonnative fish from Lake Tahoe exposed to ultraviolet radiation and fluoranthene

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, Amanda K., E-mail: agevertz@geiconsultants.com [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States); GEI Consultants, Inc. , 4601 DTC Blvd, Suite 900, Denver 80237, Colorado (United States); Oris, James T., E-mail: orisjt@miamioh.edu [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States)

    2014-02-15

    Highlights: •PAH cause photo-induced toxicity in aquatic organisms in the natural environment. •Montane lakes like Lake Tahoe receive PAH exposure from recreational watercraft. •These lakes are susceptible to invasion and establishment of non-native species. •Non-natives were less tolerant to photo-toxicity compared to native species. •Sensitivity differences were related to levels of oxidative damage in epidermis. -- Abstract: The presence of nonnative species in Lake Tahoe (CA/NV), USA has been an ongoing concern for many decades, and the management of these species calls for an understanding of their ability to cope with the Lake's stressors and for an understanding of their potential to out-compete and reduce the populations of native species. Decreasing levels of ultraviolet radiation (UVR) due to eutrophication and increasing levels of phototoxic polycyclic aromatic hydrocarbons (PAHs) due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. Following a series of toxicity tests which exposed larvae of the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) to UVR and FLU, the occurrence of skin damage and/or physiologic defense mechanisms were studied using multiple microscopic techniques. The native minnow appeared to exhibit fewer instances of skin damage and increased instances of cellular coping mechanisms. This study supports the results of previous work conducted by the authors, who determined that the native redside minnow is the more tolerant of the two species, and that setting and adhering to a water quality standard for UVR transparency may aid in preventing the spread of the less tolerant nonnative bluegill and similar warm-water species.

  11. 77 FR 49893 - Endangered and Threatened Wildlife and Plants; Determination of Status for the Gierisch Mallow...

    Science.gov (United States)

    2012-08-17

    ... impacts, such as regulations governing mining operations; The spread of nonnative, invasive plant species... gypsum mining necessarily involves removal of the topsoil, eliminating, at least temporarily, the species..., invasive species such as cheatgrass and red brome. Livestock have been implicated in the spread of weeds...

  12. When Anthropogenic River Disturbance Decreases Hybridisation between Non-Native and Endemic Cyprinids and Drives an Ecomorphological Displacement towards Juvenile State in Both Species.

    Directory of Open Access Journals (Sweden)

    Emmanuel Corse

    Full Text Available Understanding the impact of non-native species on native species is a major challenge in molecular ecology, particularly for genetically compatible fish species. Invasions are generally difficult to study because their effects may be confused with those of environmental or human disturbances. Colonized ecosystems are differently impacted by human activities, resulting in diverse responses and interactions between native and non-native species. We studied the dynamics between two Cyprinids species (invasive Chondrostoma nasus and endemic Parachondrostoma toxostoma and their hybrids in 16 populations (from allopatric to sympatric situations and from little to highly fragmented areas corresponding to 2,256 specimens. Each specimen was assigned to a particular species or to a hybrid pool using molecular identification (cytochrome b and 41 microsatellites. We carried out an ecomorphological analysis based on size, age, body shape, and diet (gut vacuity and molecular fecal contents. Our results contradicted our initial assumptions on the pattern of invasion and the rate of introgression. There was no sign of underperformance for the endemic species in areas where hybridisation occurred. In the unfragmented zone, the introduced species was found mostly downstream, with body shapes similar to those in allopatric populations while both species were found to be more insectivorous than the reference populations. However, high level of hybridisation was detected, suggesting interactions between the two species during spawning and/or the existence of hybrid swarm. In the disturbed zone, introgression was less frequent and slender body shape was associated with diatomivorous behaviour, smaller size (juvenile characteristics and greater gut vacuity. Results suggested that habitat degradation induced similar ecomorphological trait changes in the two species and their hybrids (i.e. a transition towards a pedomorphic state where the invasive species is more

  13. Non-Native (Exotic) Snake Envenomations in the U.S., 2005–2011

    OpenAIRE

    Warrick, Brandon J.; Boyer, Leslie V.; Seifert, Steven A.

    2014-01-01

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40). Males comprised 79% and females 21%. The averag...

  14. Vascular Plant and Vertebrate Inventory of Tumacacori National Historical Park

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Anning, Pamela; Docherty, Kathleen

    2005-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Tumacacori National Historical Park (NHP) in southern Arizona. These surveys were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. From 2000 to 2003 we surveyed for vascular plants and vertebrates (fish, amphibians, reptiles, birds, and mammals) at Tumacacori NHP to document presence of species within the administrative boundaries of the park's three units. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a long-term monitoring program. We recorded 591 species at Tumacacori NHP, significantly increasing the number of known species for the park (Table 1). Species of note in each taxonomic group include: * Plants: second record in Arizona of muster John Henry, a non-native species that is ranked a 'Class A noxious weed' in California; * Amphibian: Great Plains narrow-mouthed toad; * Reptiles: eastern fence lizard and Sonoran mud turtle; * Birds: yellow-billed cuckoo, green kingfisher, and one observation of the endangered southwestern willow flycatcher; * Fishes: four native species including an important population of the endangered Gila topminnow in the Tumacacori Channel; * Mammals: black bear and all four species of skunk known to occur in Arizona. We recorded 79 non-native species (Table E.S.1), many of which are of management concern, including: Bermudagrass, tamarisk, western mosquitofish, largemouth bass, bluegill, sunfish, American bullfrog, feral cats and dogs, and cattle. We also noted an abundance of crayfish (a non-native invertebrate). We review some of the important non-native species and make recommendations to remove them or to minimize their impacts on the native biota of the park. Based on the observed species richness, Tumacacori NHP possesses high biological diversity of plants, fish

  15. Long-term trends of native and non-native fish faunas in the American Southwest

    Directory of Open Access Journals (Sweden)

    Olden, J. D.

    2005-06-01

    Full Text Available Environmental degradation and the proliferation of non-native fish species threaten the endemic, and highly unique fish faunas of the American Southwest. The present study examines long-term trends (> 160 years of fish species distributions in the Lower Colorado River Basin and identifies those native species (n = 28 exhibiting the greatest rates of decline and those non-native species (n = 48 exhibiting the highest rates of spread. Among the fastest expanding invaders in the basin are red shiner (Cyprinella lutrensis, fathead minnow (Pimephales promelas, green sunfish (Lepomis cyanellus, largemouth bass (Micropterus salmoides, western mosquitofish (Gambussia affinis and channel catfish (Ictalurus punctatus; species considered to be the most invasive in terms of their negative impacts on native fish communities. Interestingly, non-native species that have been recently introduced (1950+ have generally spread at substantially lower rates as compared to species introduced prior to this time (especially from 1920 to 1950, likely reflecting reductions in human-aided spread of species. We found general agreement between patterns of species decline and extant distribution sizes and official listing status under the U.S. Endangered Species Act. ‘Endangered’ species have generally experienced greater declines and have smaller present-day distributions compared to ‘threatened’ species, which in turn have shown greater declines and smaller distributions than those species not currently listed. A number of notable exceptions did exist, however, and these may provide critical information to help guide the future listing of species (i.e., identification of candidates and the upgrading or downgrading of current listed species that are endemic to the Lower Colorado River Basin. The strong correlation between probability estimates of local extirpation and patterns of native species decline and present-day distributions suggest a possible proactive

  16. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  17. Latitudinal shifts of introduced species: possible causes and implications

    Science.gov (United States)

    Qinfeng Guo; Dov F. Sax; Hong Qian; Regan Early

    2012-01-01

    This study aims to document shifts in the latitudinal distributions of non-native species relative to their own native distributions and to discuss possible causes and implications of these shifts. We used published and newly compiled data on intercontinentally introduced birds, mammals and plants. We found strong correlations between the latitudinal distributions...

  18. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  19. Endangered species management and ecosystem restoration: Finding the common ground

    Science.gov (United States)

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  20. Endangered species management and ecosystem restoration: finding the common ground

    Directory of Open Access Journals (Sweden)

    Michael L. Casazza

    2016-03-01

    Full Text Available Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway's Rail (Rallus obsoletus obsoletus; hereafter, California rail, a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora. California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora à - S. foliosa readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict

  1. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  2. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    Science.gov (United States)

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  3. The role of CVS (and FIA) data and genetic tests in assessing species vulnerability to invasive pests and changing climate

    Science.gov (United States)

    R.A. Sniezko; H.E. Lintz

    2017-01-01

    United States tree species and their associated ecosystems, managed forests, and urban plantings are increasingly vulnerable to non-native invasive pathogens and insects as well as effects associated with a changing climate. Some species, such as whitebark pine (Pinus albicaulis), have been proposed for listing under the Endangered Species Act. To...

  4. Competition overwhelms the positive plant-soil feedback generated by an invasive plant.

    Science.gov (United States)

    Crawford, Kerri M; Knight, Tiffany M

    2017-01-01

    Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant-soil feedbacks. We tested how community context altered plant-soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant-soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant-soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant-soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

  5. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  6. Woody invasions of urban trails and the changing face of urban forests in the great plains, USA

    Science.gov (United States)

    Nemec, K.T.; Allen, Craig R.; Alai, A.; Clements, G.; Kessler, A.C.; Kinsell, T.; Major, A.; Stephen, B.J.

    2011-01-01

    Corridors such as roads and trails can facilitate invasions by non-native plant species. The open, disturbed habitat associated with corridors provides favorable growing conditions for many non-native plant species. Bike trails are a corridor system common to many urban areas that have not been studied for their potential role in plant invasions. We sampled five linear segments of urban forest along bike trails in Lincoln, Nebraska to assess the invasion of woody non-native species relative to corridors and to assess the composition of these urban forests. The most abundant plant species were generally native species, but five non-native species were also present: white mulberry (Morus alba), common buckthorn (Rhamnus cathartica), tree-of-heaven (Ailanthus altissima), honeysuckle (Lonicera spp.) and elm (Ulmus spp.). The distribution of two of the woody species sampled, common buckthorn and honeysuckle, significantly decreased with increasing distance from a source patch of vegetation (P = 0.031 and 0.030). These linear habitats are being invaded by non-native tree and shrub species, which may change the structure of these urban forest corridors. If non-native woody plant species become abundant in the future, they may homogenize the plant community and reduce native biodiversity in these areas. ?? 2011 American Midland Naturalist.

  7. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion.

    Science.gov (United States)

    Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M

    2016-09-01

    Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion

  8. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  9. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    Science.gov (United States)

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  10. Managing conflicts arising from fisheries enhancements based on non-native fishes in southern Africa.

    Science.gov (United States)

    Ellender, B R; Woodford, D J; Weyl, O L F; Cowx, I G

    2014-12-01

    Southern Africa has a long history of non-native fish introductions for the enhancement of recreational and commercial fisheries, due to a perceived lack of suitable native species. This has resulted in some important inland fisheries being based on non-native fishes. Regionally, these introductions are predominantly not benign, and non-native fishes are considered one of the main threats to aquatic biodiversity because they affect native biota through predation, competition, habitat alteration, disease transfer and hybridization. To achieve national policy objectives of economic development, food security and poverty eradication, countries are increasingly looking towards inland fisheries as vehicles for development. As a result, conflicts have developed between economic and conservation objectives. In South Africa, as is the case for other invasive biota, the control and management of non-native fishes is included in the National Environmental Management: Biodiversity Act. Implementation measures include import and movement controls and, more recently, non-native fish eradication in conservation priority areas. Management actions are, however, complicated because many non-native fishes are important components in recreational and subsistence fisheries that contribute towards regional economies and food security. In other southern African countries, little attention has focussed on issues and management of non-native fishes, and this is cause for concern. This paper provides an overview of introductions, impacts and fisheries in southern Africa with emphasis on existing and evolving legislation, conflicts, implementation strategies and the sometimes innovative approaches that have been used to prioritize conservation areas and manage non-native fishes. © 2014 The Fisheries Society of the British Isles.

  11. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  12. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  13. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  14. Economic impacts of non-native forest insects in the continental United States.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.

  15. Vascular Plant and Vertebrate Inventory of Chiricahua National Monument

    Science.gov (United States)

    Powell, Brian F.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela

    2009-01-01

    This report summarizes the results of the first comprehensive inventory of vascular plants and vertebrates at Chiricahua National Monument (NM) in Arizona. This project was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in the Sonoran Desert Network of parks in Arizona and New Mexico. In 2002, 2003, and 2004 we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Chiricahua NM to document the presence of species within the boundaries of the monument. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the monument. This report is also the first summary of previous research from the monument and therefore it provides an important overview of survey efforts to date. We used data from our inventory and previous research to compile complete species lists for the monument and to assess inventory completeness. We recorded a total of 424 species, including 37 not previously found at the monument (Table 1). We found 10 species of non-native plants and one non-native mammal. Most non-native plants were found along the western boundary of the monument. Based on a review of our inventory and past research at the monument, there have been a total of 1,137 species of plants and vertebrates found at the monument. We believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network. The mammal community at the monument had the highest species richness (69 species) and the amphibian and reptile community was among the lowest species richness (33 species) of any park in the Sonoran Desert Network. Species richness of the plant and bird communities was intermediate. Among the important determinants of species richness for all groups is the geographic location of the monument

  16. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges

    NARCIS (Netherlands)

    Reinhart, K.O.; Packer, A.; Van der Putten, W.H.; Clay, K.A.

    2003-01-01

    One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges,

  17. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  18. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Science.gov (United States)

    Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon

    2016-01-01

    Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  19. Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways

    Science.gov (United States)

    Andrew M. Liebhold; Takehiko Yamanaka; Alain Roques; Sylvie Augustin; Steven L. Chown; Eckehard G. Brockerhoff; Petr Pysek

    2016-01-01

    Insects are among the world's most ecologically and economically important invasive species. Here we assemble inventories of native and nonnative species from 20 world regions and contrast relative numbers among these species assemblages. Multivariate ordination indicates that the distribution of species among insect orders is completely different between native...

  20. Minimal effectiveness of native and non-native seeding following three high-severity wildfire

    Science.gov (United States)

    Ken A. Stella; Carolyn H. Sieg; Pete Z. Fule

    2010-01-01

    The rationale for seeding following high-severity wildfires is to enhance plant cover and reduce bare ground, thus decreasing the potential for soil erosion and non-native plant invasion. However, experimental tests of the effectiveness of seeding in meeting these objectives in forests are lacking. We conducted three experimental studies of the effectiveness of seeding...

  1. A management guide for invasive plants in southern forests

    Science.gov (United States)

    James H. Miller; Steven T. Manning; Stephen F. Enloe

    2013-01-01

    Invasions of nonnative plants into forests of the Southern United States continue to spread and include new species, increasingly eroding forest productivity, hindering forest use and management activities, and degrading diversity and wildlife habitat. This book provides the latest information on how to organize and enact prevention programs, build strategies,...

  2. The nature of plant species.

    Science.gov (United States)

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  3. Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda)

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Hudcová, Iveta; Dávidová, Martina; Adámek, Zdeněk; Kašný, M.; Jurajda, Pavel

    2015-01-01

    Roč. 8, č. 1 (2015), s. 382 ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Bucephalus polymorphus * Complex life cycle * Goby * Infectivity * Intermediate host * Non-native species * Trematode Subject RIV: EH - Ecology, Behaviour Impact factor: 3.234, year: 2015

  4.  Invasibility of three major non-native invasive shrubs and associated factors in Upper Midwest U.S. forest lands

    Science.gov (United States)

    W. Keith Moser; Zhaofei Fan; Mark H. Hansen; Michael K. Crosby; Shirley X. Fan

    2016-01-01

    We used non-native invasive plant data from the US Forest Service’s Forest Inventory and Analysis (FIA) program, spatial statistical methods, and the space (cover class)-for-time approach to quantify the invasion potential and success ("invasibility") of three major invasive shrubs (multiflora rose, non-native bush honeysuckles, and common buckthorn...

  5. Non-native educators in English language teaching

    CERN Document Server

    Braine, George

    2013-01-01

    The place of native and non-native speakers in the role of English teachers has probably been an issue ever since English was taught internationally. Although ESL and EFL literature is awash, in fact dependent upon, the scrutiny of non-native learners, interest in non-native academics and teachers is fairly new. Until recently, the voices of non-native speakers articulating their own concerns have been even rarer. This book is a response to this notable vacuum in the ELT literature, providing a forum for language educators from diverse geographical origins and language backgrounds. In addition to presenting autobiographical narratives, these authors argue sociopolitical issues and discuss implications for teacher education, all relating to the theme of non-native educators in ETL. All of the authors are non-native speakers of English. Some are long established professionals, whereas others are more recent initiates to the field. All but one received part of the higher education in North America, and all excep...

  6. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization

    Directory of Open Access Journals (Sweden)

    Ramona-Elena Irimia

    2017-08-01

    Full Text Available Centaurea solstitialis L. (yellow starthistle, Asteraceae is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes, however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg, with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  7. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization.

    Science.gov (United States)

    Irimia, Ramona-Elena; Montesinos, Daniel; Eren, Özkan; Lortie, Christopher J; French, Kristine; Cavieres, Lohengrin A; Sotes, Gastón J; Hierro, José L; Jorge, Andreia; Loureiro, João

    2017-01-01

    Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C . solstitialis had been reported to be diploid (2 n  = 2 x  = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C . solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C . solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  8. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    Science.gov (United States)

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  9. A new species of the plant bug genus Rubrocuneocoris Schuh (Heteroptera: Miridae: Phylinae) from Hawaii

    Science.gov (United States)

    The new non-native species Rubrocuneocoris calvertae, n. sp. (Heteroptera: Miridae: Phylinae), found on the flowers of the invasive parasol leaf tree, Macaranga tanarius (L.) Müll. Arg., is described from Oahu and Hawaii counties in the Hawaiian Islands. Because the nearest relatives of this new sp...

  10. Invasion by non-native brook trout in Panther Creek, Idaho: Roles of habitat quality, biotic resistance, and connectivity to source habitats

    Science.gov (United States)

    Joseph R. Benjamin; Jason B. Dunham; Matthew R. Dare

    2007-01-01

    Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus...

  11. Weed Warriors

    Science.gov (United States)

    Buczynski, Sandy

    2007-01-01

    In these activities, middle school and high school students examine the threat of nonnative plant species to Hawaiian ecosystems. Students explore different viewpoints on alien plants and consider how beliefs and attitudes may affect others' decisions concerning nonnative plant species. Students also identify invasive plant characteristics and…

  12. Credibility of native and non-native speakers of English revisited: Do non-native listeners feel the same?

    OpenAIRE

    Hanzlíková, Dagmar; Skarnitzl, Radek

    2017-01-01

    This study reports on research stimulated by Lev-Ari and Keysar (2010) who showed that native listeners find statements delivered by foreign-accented speakers to be less true than those read by native speakers. Our objective was to replicate the study with non-native listeners to see whether this effect is also relevant in international communication contexts. The same set of statements from the original study was recorded by 6 native and 6 nonnative speakers of English. 121 non-native listen...

  13. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community.

    Science.gov (United States)

    Kimball, Sarah; Gremer, Jennifer R; Barron-Gafford, Greg A; Angert, Amy L; Huxman, Travis E; Venable, D Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

  14. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    Directory of Open Access Journals (Sweden)

    Rachel Wooliver

    Full Text Available A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1 native species monocultures and 2 mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both

  15. Climatic niche of Selinum alatum (Apiaceae, Selineae), a new invasive plant species in Central Europe and its alterations according to the climate change scenarios: Are the European mountains threatened by invasion?

    Science.gov (United States)

    Konowalik, Kamil; Proćków, Małgorzata; Proćków, Jarosław

    2017-01-01

    In recent years, a few established populations of Selinum alatum have been found in the Eastern Carpathians outside its native range that is the Caucasus and the Armenian Highlands. The species is spreading predominantly in Poland where it can outcompete native plants in certain cases. This study addresses a potential climatic niche of the plant with the special aims to illuminate future spreading and indicate areas suitable for invasion. Our results show that the extent of the favourable habitat of the species is broader than currently known. This suggests that the plant has the ability to become a potential new element in some semi-natural or disturbed ecosystems associated with mountainous areas, especially in Central and Southern Europe. Future (2070) models mostly rendered similar suitability maps, but showed slight differences over particular areas and a contraction of suitable habitats, mainly in the northern part of the non-native range.

  16. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  17. Non-native molluscan colonizers on deliberately placed shipwrecks in the Florida Keys, with description of a new species of potentially invasive worm-snail (Gastropoda: Vermetidae

    Directory of Open Access Journals (Sweden)

    Rüdiger Bieler

    2017-04-01

    Full Text Available Artificial reefs created by deliberately sinking ships off the coast of the Florida Keys island chain are providing new habitat for marine invertebrates. This newly developing fouling community includes the previously reported invasive orange tube coral Tubastraea coccinea and the non-native giant foam oyster Hyotissa hyotis. New SCUBA-based surveys involving five shipwrecks spanning the upper, middle, and lower Florida Keys, show T. coccinea now also established in the lower Keys and H. hyotis likewise extending to new sites. Two additional mollusks found on the artificial reefs, the amathinid gastropod Cyclothyca pacei and gryphaeid oyster Hyotissa mcgintyi, the latter also common in the natural reef areas, are discussed as potentially non-native. A new species of sessile, suspension-feeding, worm-snail, Thylacodes vandyensis Bieler, Rawlings & Collins n. sp. (Vermetidae, is described from the wreck of the USNS Vandenberg off Key West and discussed as potentially invasive. This new species is compared morphologically and by DNA barcode markers to other known members of the genus, and may be a recent arrival from the Pacific Ocean. Thylacodes vandyensis is polychromatic, with individuals varying in both overall head-foot coloration and mantle margin color pattern. Females brood stalked egg capsules attached to their shell within the confines of their mantle cavity, and give rise to crawl-away juveniles. Such direct-developing species have the demonstrated capacity for colonizing habitats isolated far from their native ranges and establishing rapidly growing founder populations. Vermetid gastropods are common components of the marine fouling community in warm temperate and tropical waters and, as such, have been tagged as potentially invasive or with a high potential to be invasive in the Pacific Ocean. As vermetids can influence coral growth/composition in the Pacific and have been reported serving as intermediate hosts for blood flukes of

  18. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion

    Science.gov (United States)

    B. M. Connolly; D. E. Pearson; R. N. Mack

    2014-01-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food...

  19. Economic impacts of invasive species in forest past, present, and future

    Science.gov (United States)

    Thomas P. Holmes; Juliann E. Aukema; Betsy Von Holle; Andrew Liebhold; Erin Sills

    2009-01-01

    Biological invasions by nonnative species are a by-product of economic activities, with the vast majority of nonnative species introduced by trade and transport of products and people. Although most introduced species are relatively innocuous, a few species ultimately cause irreversible economic and ecological impacts, such as the chestnut blight that functionally...

  20. Non-native fishes of the central Indian River Lagoon

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.; Reaver, Kristen M.

    2018-01-01

    We provide a comprehensive review of the status of non-native fishes in the central Indian River Lagoon (from Cape Canaveral to Grant-Valkaria, east of I-95) through literature review and field surveys. Historical records exist for 17 taxa (15 species, one hybrid, one species complex). We found historical records for one additional species, and collected one species in our field survey that had never been recorded in the region before (and which we eradicated). Thus, we evaluate 19 total taxa herein. Of these, we documented range expansion of four salt-tolerant cichlid species, extirpation of six species that were previously recorded from the area and eradication of three species. There was no noticeable change in geographic range for one widespread species and the records for one species are doubtful and may be erroneous. Currently, there is not enough information to evaluate geographic ranges for four species although at least one of those is established.

  1. Experiments on Automatic Recognition of Nonnative Arabic Speech

    Directory of Open Access Journals (Sweden)

    Douglas O'Shaughnessy

    2008-05-01

    Full Text Available The automatic recognition of foreign-accented Arabic speech is a challenging task since it involves a large number of nonnative accents. As well, the nonnative speech data available for training are generally insufficient. Moreover, as compared to other languages, the Arabic language has sparked a relatively small number of research efforts. In this paper, we are concerned with the problem of nonnative speech in a speaker independent, large-vocabulary speech recognition system for modern standard Arabic (MSA. We analyze some major differences at the phonetic level in order to determine which phonemes have a significant part in the recognition performance for both native and nonnative speakers. Special attention is given to specific Arabic phonemes. The performance of an HMM-based Arabic speech recognition system is analyzed with respect to speaker gender and its native origin. The WestPoint modern standard Arabic database from the language data consortium (LDC and the hidden Markov Model Toolkit (HTK are used throughout all experiments. Our study shows that the best performance in the overall phoneme recognition is obtained when nonnative speakers are involved in both training and testing phases. This is not the case when a language model and phonetic lattice networks are incorporated in the system. At the phonetic level, the results show that female nonnative speakers perform better than nonnative male speakers, and that emphatic phonemes yield a significant decrease in performance when they are uttered by both male and female nonnative speakers.

  2. Experiments on Automatic Recognition of Nonnative Arabic Speech

    Directory of Open Access Journals (Sweden)

    Selouani Sid-Ahmed

    2008-01-01

    Full Text Available The automatic recognition of foreign-accented Arabic speech is a challenging task since it involves a large number of nonnative accents. As well, the nonnative speech data available for training are generally insufficient. Moreover, as compared to other languages, the Arabic language has sparked a relatively small number of research efforts. In this paper, we are concerned with the problem of nonnative speech in a speaker independent, large-vocabulary speech recognition system for modern standard Arabic (MSA. We analyze some major differences at the phonetic level in order to determine which phonemes have a significant part in the recognition performance for both native and nonnative speakers. Special attention is given to specific Arabic phonemes. The performance of an HMM-based Arabic speech recognition system is analyzed with respect to speaker gender and its native origin. The WestPoint modern standard Arabic database from the language data consortium (LDC and the hidden Markov Model Toolkit (HTK are used throughout all experiments. Our study shows that the best performance in the overall phoneme recognition is obtained when nonnative speakers are involved in both training and testing phases. This is not the case when a language model and phonetic lattice networks are incorporated in the system. At the phonetic level, the results show that female nonnative speakers perform better than nonnative male speakers, and that emphatic phonemes yield a significant decrease in performance when they are uttered by both male and female nonnative speakers.

  3. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    Science.gov (United States)

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  4. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii.

    Science.gov (United States)

    Lurie, Matthew H; Barton, Kasey E; Daehler, Curtis C

    2017-12-01

    Plant-herbivore interactions have been predicted to play a fundamental role in plant invasions, although support for this assertion from previous research is mixed. While plants may escape from specialist herbivores in their introduced ranges, herbivory from generalists is common. Tolerance traits may allow non-native plants to mitigate the negative consequences of generalist herbivory that they cannot avoid in their introduced range. Here we address whether tolerance to herbivory, quantified as survival and compensatory growth, is associated with plant invasion success in Hawaii and investigate traits that may enhance tolerance in seedlings, the life stage most susceptible to herbivory. In a greenhouse experiment, we measured seedling tolerance to simulated herbivory through mechanical damage (50% leaf removal) of 16 non-native woody plant species differing in invasion status (invasive vs. non-invasive). Seedlings were grown for 2 weeks following damage and analyzed for biomass to determine whether damaged plants could fully compensate for the lost leaf tissue. Over 99% of all seedlings survived defoliation. Although species varied significantly in their levels of compensation, there was no consistent difference between invasive and non-invasive species. Seedlings of 11 species undercompensated and remained substantially smaller than control seedlings 2 weeks after damage; four species were close to compensating, while one species overcompensated. Across species, compensation was positively associated with an increased investment in potential storage reserves, specifically cotyledons and roots, suggesting that these organs provide resources that help seedlings re-grow following damage. Our results add to a growing consensus that pre-damage growth patterns determine tolerance to damage, even in young seedlings which have relatively low biomass. The lack of higher tolerance in highly invasive species may suggest that invaders overcome herbivory barriers to invasion

  5. Projecting invasion risk of non-native watersnakes (Nerodia fasciata and Nerodia sipedon in the western United States.

    Directory of Open Access Journals (Sweden)

    Jonathan P Rose

    Full Text Available Species distribution models (SDMs are increasingly used to project the potential distribution of introduced species outside their native range. Such studies rarely explicitly evaluate potential conflicts with native species should the range of introduced species expand. Two snake species native to eastern North America, Nerodia fasciata and Nerodia sipedon, have been introduced to California where they represent a new stressor to declining native amphibians, fish, and reptiles. To project the potential distributions of these non-native watersnakes in western North America, we built ensemble SDMs using MaxEnt, Boosted Regression Trees, and Random Forests and habitat and climatic variables. We then compared the overlap between the projected distribution of invasive watersnakes and the distributions of imperiled native amphibians, fish, and reptiles that can serve as prey or competitors for the invaders, to estimate the risk to native species posed by non-native watersnakes. Large areas of western North America were projected to be climatically suitable for both species of Nerodia according to our ensemble SDMs, including much of central California. The potential distributions of both N. fasciata and N. sipedon overlap extensively with the federally threatened Giant Gartersnake, Thamnophis gigas, which inhabits a similar ecological niche. N. fasciata also poses risk to the federally threatened California Tiger Salamander, Ambystoma californiense, whereas N. sipedon poses risk to some amphibians of conservation concern, including the Foothill Yellow-legged Frog, Rana boylii. We conclude that non-native watersnakes in California can likely inhabit ranges of several native species of conservation concern that are expected to suffer as prey or competing species for these invaders. Action should be taken now to eradicate or control these invasions before detrimental impacts on native species are widespread. Our methods can be applied broadly to quantify

  6. Using GIS to integrate FIA and remotely sensed data to estimate the invasibility of major forest types by non-native invasive plants in the Upper Midwest, USA

    Science.gov (United States)

    Zhaofei Fan; W. Keith Moser; Michael K. Crosby; Weiming Yu

    2012-01-01

    Non-native invasive plants (NNIP) are rapidly spreading into natural ecosystems such as forests in the Upper Midwest. Using the strategic inventory data from the 2005-2006 U.S. Department of Agriculture, Forest Service’s Forest Inventory and Analysis (FIA) program and forest land cover data, we estimated the regional-invasibility patterns of NNIPs for major...

  7. Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England.

    Science.gov (United States)

    Gallinat, Amanda S; Russo, Luca; Melaas, Eli K; Willis, Charles G; Primack, Richard B

    2018-01-01

    Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year. © 2018 Botanical Society of America.

  8. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  9. Locking horns with Hawai‘i’s non-native ungulate issues

    Science.gov (United States)

    Hess, Steve

    2014-01-01

    Conservation and management interests for sustained-yield hunting of non-native ungulates in Hawai‘i have conflicted with the conservation of native biota for several decades. Hawaiian ecosystems evolved in the absence of large mammals and all currently hunted animals in Hawai‘i are non-native species. The best-studied aspects of Hawai‘i’s ungulates have dealt primarily with direct negative effects on native biota in natural areas, but there has been little research in population dynamics for sustained-yield management. Ungulates have been removed from approximately 750 km2 throughout the Hawaiian Islands to protect these natural areas, thereby reducing the amount of land area available for hunting activities and the maintenance of game populations. At the same time, unauthorized introductions of additional wild ungulate species between Hawaiian Islands have recently increased in frequency. The majority of hunting activities are of feral domestic livestock species for subsistence purposes, which typically do not generate sufficient revenue to offset costs of game management. Moreover, bag limits and seasons are generally not determined from biological criteria because harvest reporting is voluntary and game populations are rarely monitored. Consequently, ungulate populations cannot be managed for any particular level of abundance or other objectives. Research and monitoring which emphasize population dynamics and productivity would enable more precisely regulated sustained-yield game management programs and may reduce potential conflicts with the conservation of native biota.

  10. Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes.

    Science.gov (United States)

    Wang, C; Zhou, J; Liu, J; Jiang, K; Xiao, H; Du, D

    2018-01-01

    Soil fungal communities play an important role in the successful invasion of non-native species. It is common for two or more invasive plant species to co-occur in invaded ecosystems. This study aimed to determine the effects of co-invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high-throughput sequencing. Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance-based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non-native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co-invasion of E. annuus and S. canadensis than under independent invasion of either individual species. The co-invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co-invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  11. Vascular Plant and Vertebrate Inventory of Gila Cliff Dwellings National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Docherty, Kathleen; Anning, Pamela

    2006-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Gila Cliff Dwellings National Monument (NM) in western New Mexico. This project was part of a larger effort to inventory plants and vertebrates in eight National Park Service units in Arizona and New Mexico. Our surveys address many of the objectives that were set forth in the monument's natural resource management plan almost 20 years ago, but until this effort, those goals were never accomplished. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Gila Cliff Dwellings NM to document presence of species within the boundaries of the monument. For all taxonomic groups that we studied, we collected 'incidental' sightings on U.S. Forest Service lands adjacent to the monument, and in a few cases we did formal surveys on those lands. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a biological monitoring program for Gila Cliff Dwellings NM and surrounding lands. We recorded 552 species at Gila Cliff Dwellings NM and the surrounding lands (Table 1). We found no non-native species of reptiles, birds, or mammals, one non-native amphibian (American bullfrog), and 33 non-native plants. Particularly on lands adjacent to the monument we found that the American bullfrog was very abundant, which is a cause for significant management concern. Species of non-native plants that are of management concern include red brome, bufflegrass, and cheatgrass. For a park unit of its size and geographic location, we found the plant and vertebrate communities to be fairly diverse; for each taxonomic group we found representative species from a wide range of taxonomic orders and/or families. The monument's geographic location, with influences from the Rocky Mountain, Chihuahuan Desert, and Madrean ecological provinces, plays an important role in determining

  12. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  13. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  14. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  15. History of nonnative Monk Parakeets in Mexico.

    Science.gov (United States)

    Hobson, Elizabeth A; Smith-Vidaurre, Grace; Salinas-Melgoza, Alejandro

    2017-01-01

    Nonnative Monk Parakeets have been reported in increasing numbers across many cities in Mexico, and were formally classified as an invasive species in Mexico in late 2016. However, there has not been a large-scale attempt to determine how international pet trade and national and international governmental regulations have played a part in colonization, and when the species appeared in different areas. We describe the changes in regulations that led the international pet trade market to shift to Mexico, then used international trade data to determine how many parakeets were commercially imported each year and where those individuals originated. We also quantified the recent increases in Monk Parakeet (Myiopsitta monachus) sightings in Mexico in both the scientific literature and in citizen science reports. We describe the timeline of increased reports to understand the history of nonnative Monk Parakeets in Mexico. As in other areas where the species has colonized, the main mode of transport is through the international pet trade. Over half a million Monk Parakeets were commercially imported to Mexico during 2000-2015, with the majority of importation (90%) occurring in 2008-2014, and almost all (98%) were imported from Uruguay. The earliest record of a free-flying Monk Parakeet was observed during 1994-1995 in Mexico City, but sightings of the parakeets did not become geographically widespread in either the scientific literature or citizen science databases until 2012-2015. By 2015, parakeets had been reported in 97 cities in Mexico. Mexico City has consistently seen steep increases in reporting since this species was first reported in Mexico. Here we find that both national and international legal regulations and health concerns drove a rise and fall in Monk Parakeet pet trade importations, shortly followed by widespread sightings of feral parakeets across Mexico. Further monitoring of introduced Monk Parakeet populations in Mexico is needed to understand the

  16. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Diego S. Podadera; Vera L. Engel; John A. Parrotta; Deivid L. Machado; Luciane M. Sato; Giselda Durigan

    2015-01-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at...

  17. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  18. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  19. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  20. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    Science.gov (United States)

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  1. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  2. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  3. Non-native fish introductions and the reversibility of amphibian declines in the Sierra Nevada

    Science.gov (United States)

    Roland A. Knapp

    2004-01-01

    Amphibians are declining worldwide for a variety of reasons, including habitat alteration, introduction of non-native species, disease, climate change, and environmental contaminants. Amphibians often play important roles in structuring ecosystems, and, as a result, amphibian population declines or extinctions are likely to affect other trophic levels (Matthews and...

  4. Inventory of the Invasive Alien Plant Species in Indonesia

    OpenAIRE

    TJITROSOEDIRDJO, SRI SUDARMIYATI

    2005-01-01

    An inventory of the alien plant species in Indonesia based on the existing references and herbarium specimens concluded that 1936 alien plant species are found in Indonesia which belong to 187 families. Field studies should be done to get the complete figures of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be identified, followed by studies on the assessment of losses, biology, management and their possible utilizat...

  5. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  6. Invasional meltdown in northern lakes: Common carp invasion favors non-native plant species

    Science.gov (United States)

    Disturbances can lead to nonrandom changes in community composition due to interactions between the disturbance and the characteristics of species found in the community or available to colonize, producing both winners and losers of disturbance. When the disturbance is a biologic...

  7. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  8. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  9. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  10. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  11. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  12. The roles of climate, phylogenetic relatedness, introduction effort, and reproductive traits in the establishment of non-native reptiles and amphibians.

    Science.gov (United States)

    van Wilgen, Nicola J; Richardson, David M

    2012-04-01

    We developed a method to predict the potential of non-native reptiles and amphibians (herpetofauna) to establish populations. This method may inform efforts to prevent the introduction of invasive non-native species. We used boosted regression trees to determine whether nine variables influence establishment success of introduced herpetofauna in California and Florida. We used an independent data set to assess model performance. Propagule pressure was the variable most strongly associated with establishment success. Species with short juvenile periods and species with phylogenetically more distant relatives in regional biotas were more likely to establish than species that start breeding later and those that have close relatives. Average climate match (the similarity of climate between native and non-native range) and life form were also important. Frogs and lizards were the taxonomic groups most likely to establish, whereas a much lower proportion of snakes and turtles established. We used results from our best model to compile a spreadsheet-based model for easy use and interpretation. Probability scores obtained from the spreadsheet model were strongly correlated with establishment success as were probabilities predicted for independent data by the boosted regression tree model. However, the error rate for predictions made with independent data was much higher than with cross validation using training data. This difference in predictive power does not preclude use of the model to assess the probability of establishment of herpetofauna because (1) the independent data had no information for two variables (meaning the full predictive capacity of the model could not be realized) and (2) the model structure is consistent with the recent literature on the primary determinants of establishment success for herpetofauna. It may still be difficult to predict the establishment probability of poorly studied taxa, but it is clear that non-native species (especially lizards

  13. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    Science.gov (United States)

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  14. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  15. Abundance and species richness of snakes along the Middle Rio Grande riparian forest in New Mexico

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell; Deborah M. Finch

    2009-01-01

    To understand the effects of removal of non-native plants and fuels on wildlife in the riparian forest of the Middle Rio Grande in New Mexico, we monitored snakes from 2000 to 2006 using trap arrays of drift fences, pitfalls, and funnel traps. We recorded 158 captures of 13 species of snakes from 12 study sites. We captured more snakes in funnel traps than in pitfalls...

  16. E-commerce trade in invasive plants.

    Science.gov (United States)

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. © 2015 Society for

  17. Dispersal and selection mediate hybridization between a native and invasive species

    Science.gov (United States)

    Kovach, Ryan P.; Muhlfeld, Clint C.; Boyer, Matthew C.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2015-01-01

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age—relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) ¼ 0.60; s.e. ¼ 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. .

  18. Biotic constraints on the establishment and performance of native, naturalized, and invasive plants in Pacific Northwest (USA steppe and forest

    Directory of Open Access Journals (Sweden)

    Brian M. Connolly

    2017-02-01

    Full Text Available Factors that cause differential establishment among naturalized, invasive, and native species are inadequately documented, much less often quantified among different communities. We evaluated the effects of seed addition and disturbance (i.e., understory canopy removal on the establishment and seedling biomass among two naturalized, two invasive, and two native species (1 forb, 1 grass in each group within steppe and low elevation forest communities in eastern Washington, USA. Establishment within each plant immigrant class was enhanced by seed addition: naturalized species showed the greatest difference in establishment between seed addition and no seed addition plots, native and invasive species establishment also increased following seed addition but not to the same magnitude as naturalized species. Within seed addition plots, understory canopy disturbance resulted in significant increases in plant establishment (regardless of plant immigration class relative to undisturbed plots and the magnitude of this effect was comparable between steppe and adjacent forest. However, regardless of disturbance treatment fewer invasive plants established in the forest than in the steppe, whereas native and naturalized plant establishment did not differ between the habitats. Individual biomass of naturalized species were consistently greater in disturbed (canopy removed versus undisturbed control plots and naturalized species were also larger in the steppe than in the forest at the time of harvest. Similar trends in plant size were observed for the native and invasive species, but the differences in biomass for these two immigration classes between disturbance treatments and between habitats were not significant. We found that strong limitations of non-native species is correlated with intact canopy cover within the forest understory, likely driven by the direct or indirect consequences of low light transmittance through the arboreal and understory canopy

  19. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    Science.gov (United States)

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  20. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  1. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  2. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Directory of Open Access Journals (Sweden)

    Christopher M Ranger

    Full Text Available Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum and swamp white oak (Quercus bicolor. Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats

  3. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  4. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  5. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  6. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  7. Impacts of Climate Variability on Non-native Plant Invasion in the Western U.S.

    Science.gov (United States)

    Bradley, B. A.

    2006-12-01

    Plant invasions are changing ecosystem structure and function throughout the United States. In many areas of the west, invasive species such as tamarisk (Tamarix spp.), cheatgrass (Bromus tectorum), and yellow starthistle (Centaurea solstitialis) dominate landscapes. Expansion of these species is occurring at a staggering rate, and invasion rates may change in the future as native ecosystems become more or less susceptible to invasion because of changes in climate. For example, evidence suggests that some plant invaders are favored under increased ambient CO2 levels, potentially leading to increased invasion with continued greenhouse gas emissions. In this work, I predict how western invasive plant species may also be affected by changes in climate variability. According to IPCC reports, rising ocean temperatures may change the frequency and intensity of El Niño events, potentially resulting in wetter El Niño years and/or more extreme and lengthier drought. In semi-arid systems, changing frequency or magnitude of extreme weather events may further shift the competitive balance between native and invasive species. For example, cheatgrass and yellow starthistle, both annual invaders, display high inter-annual variability in response to water availability. As a result, plants are larger and produce more seeds than native competitors during extreme wet years. This phenological response is so strong in cheatgrass communities that it can be observed in regional satellite records. Further, dense cheatgrass growth leads to a secondary feedback in the form of wildfire; higher density cheatgrass increases fire frequency in shrublands and enables further cheatgrass colonization. In this work, I synthesize knowledge of invasive plant phenological response under different climate conditions, drawing on information gathered through geographical mapping efforts at state or regional levels by university and agency researchers. Using the ranges of climate tolerance from current

  8. Patterns of hybridization of nonnative cutthroat trout and hatchery rainbow trout with native redband trout in the Boise River, Idaho

    Science.gov (United States)

    Neville, Helen M.; Dunham, Jason B.

    2011-01-01

    Hybridization is one of the greatest threats to native fishes. Threats from hybridization are particularly important for native trout species as stocking of nonnative trout has been widespread within the ranges of native species, thus increasing the potential for hybridization. While many studies have documented hybridization between native cutthroat trout Oncorhynchus clarkii and nonnative rainbow trout O. mykiss, fewer have focused on this issue in native rainbow trout despite widespread threats from introductions of both nonnative cutthroat trout and hatchery rainbow trout. Here, we describe the current genetic (i.e., hybridization) status of native redband trout O. mykiss gairdneri populations in the upper Boise River, Idaho. Interspecific hybridization was widespread (detected at 14 of the 41 sampled locations), but high levels of hybridization between nonnative cutthroat trout and redband trout were detected in only a few streams. Intraspecific hybridization was considerably more widespread (almost 40% of sampled locations), and several local populations of native redband trout have been almost completely replaced with hatchery coastal rainbow trout O. mykiss irideus; other populations exist as hybrid swarms, some are in the process of being actively invaded, and some are maintaining genetic characteristics of native populations. The persistence of some redband trout populations with high genetic integrity provides some opportunity to conserve native genomes, but our findings also highlight the complex decisions facing managers today. Effective management strategies in this system may include analysis of the specific attributes of each site and population to evaluate the relative risks posed by isolation versus maintaining connectivity, identifying potential sites for control or eradication of nonnative trout, and long-term monitoring of the genetic integrity of remaining redband trout populations to track changes in their status.

  9. Trophic relationships of small nonnative fishes in a natural creek and several agricultural drains flowing into the Salton Sea, and their potential, effects on the endangered desert pupfish

    Science.gov (United States)

    Martin, Barbara A.; Saiki, Michael K.

    2009-01-01

    This study was conducted to characterize trophic relationships of small nonnative fishes and to determine if predation by these fishes contributes to the decline of desert pupfish (Cyprinodon macularius), an endangered cyprinodont on the verge of extinction. We sampled 403 hybrid Mozambique tilapias (Oreochromis mossambica by O. urolepis), 107 redbelly tilapias (Tilapia zillii), 32 longjaw mudsuckers (Gillkhthys mirabilis), 182 western mosquitofish (Gambusia affinis), 222 sailfin mollies (Poecilia latipinna), 63 shortfin mollies (Poecilia mexicana), and 235 porthole livebearers (Poecilurpsis gracilis) from a natural creek and four agricultural drains during September 1999- December 2001. Evidence of piscivory was in gastrointestinal contents of 14 hybrid Mozambique tilapias, 3 redbelly tilapias, 10 longjaw mudsuckers, 8 western mosquitofish, 2 sailfin mollies, and 8 porthole livebearers. Although digestion often was too advanced for identification of fishes consumed by nonnative fishes, remains of desert pupfish were in gastrointestinal contents of a longjaw mudsucker. Our findings, along with Field evidence from other studies that inverse relationships exist between abundances of desert pupfish and nonnative species, are consistent with the hypothesis that predation by nonnative species is contributing to decline of desert pupfish. We suspect that competitive interactions with nonnative fishes might also adversely affect abundance of desert pupfish.

  10. Lexical exposure to native language dialects can improve non-native phonetic discrimination.

    Science.gov (United States)

    Olmstead, Annie J; Viswanathan, Navin

    2018-04-01

    Nonnative phonetic learning is an area of great interest for language researchers, learners, and educators alike. In two studies, we examined whether nonnative phonetic discrimination of Hindi dental and retroflex stops can be improved by exposure to lexical items bearing the critical nonnative stops. We extend the lexical retuning paradigm of Norris, McQueen, and Cutler (Cognitive Psychology, 47, 204-238, 2003) by having naive American English (AE)-speaking participants perform a pretest-training-posttest procedure. They performed an AXB discrimination task with the Hindi retroflex and dental stops before and after transcribing naturally produced words from an Indian English speaker that either contained these tokens or not. Only those participants who heard words with the critical nonnative phones improved in their posttest discrimination. This finding suggests that exposure to nonnative phones in native lexical contexts supports learning of difficult nonnative phonetic discrimination.

  11. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  12. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  13. Seed Removal Increased by Scramble Competition with an Invasive Species.

    Science.gov (United States)

    Minor, Rebecca L; Koprowski, John L

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure.

  14. Seed Removal Increased by Scramble Competition with an Invasive Species.

    Directory of Open Access Journals (Sweden)

    Rebecca L Minor

    Full Text Available Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis, which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure.

  15. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of habitat quality, connectivity, and biotic resistance

    Science.gov (United States)

    Joseph R. Benjamin

    2006-01-01

    Theoretical models suggest the invasion of nonnative freshwater species is facilitated through the interaction of three factors: biotic resistance, habitat quality, and connectivity. We measured variables that represented each component to determine which were associated with small (150 mm) brook trout occurrence in Panther Creek, a tributary...

  16. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  17. Phenology, growth, and fecundity as determinants of distribution in closely related nonnative taxa

    Science.gov (United States)

    Marushia, Robin G.; Brooks, Matthew L.; Holt, Jodie S.

    2012-01-01

    Invasive species researchers often ask: Why do some species invade certain habitats while others do not? Ecological theories predict that taxonomically related species may invade similar habitats, but some related species exhibit contrasting invasion patterns. Brassica nigra, Brassica tournefortii, and Hirschfeldia incana are dominant, closely related nonnative species that have overlapping, but dissimilar, distributions. Brassica tournefortii is rapidly spreading in warm deserts of the southwestern United States, whereas B. nigra and H. incana are primarily limited to semiarid and mesic regions. We compared traits of B. tournefortii that might confer invasiveness in deserts with those of related species that have not invaded desert ecosystems. Brassica tournefortii, B. nigra and H. incana were compared in controlled experiments conducted outdoors in a mesic site (Riverside, CA) and a desert site (Blue Diamond, NV), and in greenhouses, over 3 yr. Desert and mesic B. tournefortii populations were also compared to determine whether locally adapted ecotypes contribute to desert invasion. Experimental variables included common garden sites and soil water availability. Response variables included emergence, growth, phenology, and reproduction. There was no evidence for B. tournefortii ecotypes, but B. tournefortii had a more rapid phenology than B. nigra or H. incana. Brassica tournefortii was less affected by site and water availability than B. nigra and H. incana, but was smaller and less fecund regardless of experimental conditions. Rapid phenology allows B. tournefortii to reproduce consistently under variable, stressful conditions such as those found in Southwestern deserts. Although more successful in milder, mesic ecosystems, B. nigra and H. incana may be limited by their ability to reproduce under desert conditions. Rapid phenology and drought response partition invasion patterns of nonnative mustards along a gradient of aridity in the southwestern United States

  18. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona

    Science.gov (United States)

    Choudhury, A.; Hoffnagle, T.L.; Cole, Rebecca A.

    2004-01-01

    A 2-yr, seasonal, parasitological study of 1,435 fish, belonging to 4 species of native fishes and 7 species of nonnative fishes from the lower Little Colorado River (LCR) and tributary creeks, Grand Canyon, Arizona, yielded 17 species of parasites. These comprised 1 myxozoan (Henneguya exilis), 2 copepods (Ergasilus arthrosis and Lernaea cyprinacea), 1 acarine (Oribatida gen. sp.), 1 piscicolid leech (Myzobdella lugubris), 4 monogeneans (Gyrodactylus hoffmani, Gyrodactylus sp., Dactylogyrus extensus, and Ligictaluridus floridanus), 4 nematodes (Contracaecum sp., Eustrongylides sp., Rhabdochona sp., and Truttaedacnitis truttae), 3 cestodes (Bothriocephalus acheilognathi, Corallobothrium fimbriatum, and Megathylacoides giganteum), and 2 trematodes (Ornithodiplostomum sp. and Posthodiplostomum sp.). Rhabdochona sp. was the only adult parasite native to the LCR. Infection intensities of Ornithodiplostomum sp. and B. acheilognathi were positively correlated with length of the humpback chub Gila cypha. Adult helminths showed a high degree of host specificity, except B. acheilognathi, which was recovered from all fish species examined but was most abundant in cyprinids. Abundance of B. acheilognathi in the humpback chub was highest in the fall and lowest in the summer in both reaches of the LCR. There was no major taxonomic difference in parasite assemblages between the 2 different reaches of the river (LC1 and LC2). Parasite community diversity was very similar in humpback chub, regardless of sampling site or time. The parasite fauna of the LCR is numerically dominated by B. acheilognathi and metacercariae of Ornithodiplostomum sp. The richest and most diverse component community occurred in a nonnative species, the channel catfish Ictalurus punctatus, but infracommunity species richness was highest in a native host, humpback chub.

  19. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  20. Non-native (exotic) snake envenomations in the U.S., 2005-2011.

    Science.gov (United States)

    Warrick, Brandon J; Boyer, Leslie V; Seifert, Steven A

    2014-09-29

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33-40). Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994-2004) in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases.

  1. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  2. Vascular Plant and Vertebrate Inventory of Saguaro National Park, Tucson Mountain District

    Science.gov (United States)

    Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Tucson Mountain District (TMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also carried out extensive infrared-triggered camera work for medium and large mammals from 2002-2005 and results from that effort are reported here. Our spatial sampling design for all taxa employed a combination of random and nonrandom survey sites. Survey effort was greatest for medium and large mammals and herpetofauna. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an overview of previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. The survey effort for herpetofauna, birds, and medium and large mammals was the most comprehensive ever undertaken in the district. We recorded a total of 320 plant and vertebrate species, including 21 species not previously found in the district (Table 1). Based on a review of our inventory and past research at the district, there have been a total of 723 species of plants and vertebrates found there. We believe inventories for most taxonomic groups are nearly complete. Based on our surveys, we believe the native plant and vertebrate community compositions of the district are relatively intact, though some species loss has occurred and threats are increasing, particularly to herpetofauna and larger mammals. Of particular note is the relatively small number of non-native species and their low abundance in the district, which is in contrast to many nearby natural areas. Rapidly expanding development on the west, north, and east sides of

  3. The forgotten flora of la Frontera

    Science.gov (United States)

    Thomas R. Van Devender; Ana L. Reina G.

    2005-01-01

    About 1,500 collections from within 100 kilometers of the Arizona border in Sonora yielded noteworthy records for 164 plants including 44 new species (12 non-native) for Sonora and 12 (six non-native) for Mexico, conservation species, and regional endemics. Many common widespread species were poorly collected. Southern range extensions (120 species) were more numerous...

  4. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  5. Data on introduced plants in Zimbabwe: Floristic changes and patterns of collection based on historical herbarium records.

    Science.gov (United States)

    Maroyi, Alfred

    2017-12-01

    National herbaria with significant historical plant collections are critical to tracking floristic changes and patterns, which include the introduction and spread of non-native plant species. To explore the importance of herbarium specimen data in understanding floristic changes in Zimbabwe, the plant collections housed by the National Herbarium (SRGH) in Harare, Zimbabwe were utilized with historical specimens dating back to 1870. A list of naturalised plant taxa and collection data were compiled. A total of 2916 plant specimens were recorded, comprising of 401 taxa, 237 genera and 76 plant families. Twenty eight specimens (1.0%) were collected between 1870 and 1908, prior to the establishment of the National Herbarium in 1909 and 123 specimens (4.2%) were collected in the first 25 years of the establishment of the institute (1909-1934). Intensive collection of herbarium specimens of casual, naturalised and invasive alien plant species occurred between 1950 and 1970. This data demonstrates the utility of plant species data housed in the National Herbaria and how such data can be used to map floristic changes and patterns.

  6. Toxic Exposure Surveillance System (TESS)-based characterization of U.S. non-native venomous snake exposures, 1995-2004.

    Science.gov (United States)

    Seifert, Steven A; Oakes, Jennifer A; Boyer, Leslie V

    2007-01-01

    Non-native (exotic) snake exposures in the United States have not been systematically characterized. The Toxic Exposure Surveillance System (TESS) database of the American Association of Poison Control Centers was analyzed to quantify the number and types, demographic associations, clinical presentations, managements and outcomes, and the health resource utilization of non-native snake exposures. From 1995 through 2004, there were 399 non-native exposures in the TESS database. Of these, 350 snakes (87%) were identified by genus and species, comprising at least 77 different varieties. Roughly equal percentages of snakes originated in Asia, Africa and Latin America, with a smaller number from the Middle-East, Australia, and Europe. Nearly half were viperids and a little more than a third were elapids. The vast majority of exposed individuals were adults. However, almost 15% were aged 17 years or less, and almost 7% were children aged 5 years or younger. Eighty-four percent were males. The vast majority of exposures occurred at the victim's own residence. Over 50% were evaluated at a healthcare facility, with 28.7% admitted to an ICU. Overall, 26% of patients were coded as receiving antivenom treatment. Coded outcomes were similar between viperid and elapid envenomations. There were three deaths, two involving viperid snakes and one elapid. Enhancements to the TESS database are required for better precision in and more complete characterization of non-native snake envenomations.

  7. Native and Non-native English Teachers' Perceptions of their Professional Identity: Convergent or Divergent?

    Directory of Open Access Journals (Sweden)

    Zia Tajeddin

    2016-10-01

    Full Text Available There is still a preference for native speaker teachers in the language teaching profession, which is supposed to influence the self-perceptions of native and nonnative teachers. However, the status of English as a globalized language is changing the legitimacy of native/nonnative teacher dichotomy. This study sought to investigate native and nonnative English-speaking teachers’ perceptions about native and nonnative teachers’ status and the advantages and disadvantages of being a native or nonnative teacher. Data were collected by means of a questionnaire and a semi-structured interview. A total of 200 native and nonnative teachers of English from the UK and the US, i.e. the inner circle, and Turkey and Iran, the expanding circle, participated in this study. A significant majority of nonnative teachers believed that native speaker teachers have better speaking proficiency, better pronunciation, and greater self-confidence. The findings also showed nonnative teachers’ lack of self-confidence and awareness of their role and status compared with native-speaker teachers, which could be the result of existing inequities between native and nonnative English-speaking teachers in ELT. The findings also revealed that native teachers disagreed more strongly with the concept of native teachers’ superiority over nonnative teachers. Native teachers argued that nonnative teachers have a good understanding of teaching methodology whereas native teachers are more competent in correct language. It can be concluded that teacher education programs in the expanding-circle countries should include materials for teachers to raise their awareness of their own professional status and role and to remove their misconception about native speaker fallacy.

  8. Diet of non-native northern snakehead (Channa argus) compared to three co-occurring predators in the lower Potomac River, USA

    Science.gov (United States)

    Ryan K. Saylor,; Nicolas W.R. Laointe,; Angermeier, Paul

    2012-01-01

    Introductions of large, non-native, carnivorous fishes continue to occur worldwide and represent a substantial management concern to global biodiversity. One of the most recent non-native fishes to successfully establish in North America is the northern snakehead (Channa argus), found in the lower Potomac River catchment. Dispersal of the northern snakehead throughout this system has been well documented since its original discovery in May 2004; however, little is known about the foraging habits of this species and its interactions with co-occurring predators. Here, we quantify northern snakehead diet in comparison with the diets of naturalised largemouth bass (Micropterus salmoides), and native American eel (Anguilla rostrata) and yellow perch (Perca flavescens) collected from tidal freshwaters bordering Virginia and Maryland near Fort Belvoir, Virginia. Over 97% of northern snakehead gut contents were fishes, with fundulid and centrarchid species consumed most frequently. Dietary overlap was biologically significant only between northern snakehead and largemouth bass. Aquatic invertebrates were >10 times more common in native predator diets, reducing dietary overlap with northern snakehead. Ontogenic shifts in adult northern snakehead diet were also detected, which may be explained by optimal foraging rather than true prey specificity. Northern snakehead may be occupying a novel niche based on a piscivorous diet, therefore limiting competition with resident predators in the lower Potomac River. Further research into interactions between largemouth bass and northern snakehead is needed to inform management decisions and understand the ecological impacts of this non-native species.

  9. Non-native Speech Learning in Older Adults.

    Science.gov (United States)

    Ingvalson, Erin M; Nowicki, Casandra; Zong, Audrey; Wong, Patrick C M

    2017-01-01

    Though there is an extensive literature investigating the ability of younger adults to learn non-native phonology, including investigations into individual differences in younger adults' lexical tone learning, very little is known about older adults' ability to learn non-native phonology, including lexical tone. There are several reasons to suspect that older adults would use different learning mechanisms when learning lexical tone than younger adults, including poorer perception of dynamic pitch, greater reliance on working memory capacity in second language learning, and poorer category learning in older adulthood. The present study examined the relationships among older adults' baseline sensitivity for pitch patterns, working memory capacity, and declarative memory capacity with their ability to learn to associate tone with lexical meaning. In older adults, baseline pitch pattern sensitivity was not associated with generalization performance. Rather, older adults' learning performance was best predicted by declarative memory capacity. These data suggest that training paradigms will need to be modified to optimize older adults' non-native speech sound learning success.

  10. Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?

    Science.gov (United States)

    Wells, A. J.; Balster, N. J.

    2009-12-01

    Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p invasive plant tissue had a slightly faster decomposition rate than the native litter and this rate was elevated under invasive

  11. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  12. Exploring Native and Non-Native Intuitions of Word Frequency.

    Science.gov (United States)

    Schmitt, Norbert; Dunham, Bruce

    1999-01-01

    Asked native and nonnative speakers to give judgments of frequency for near synonyms in second-language lexical sets and compared those responses to modern corpus word counts. Native speakers were able to discern the core word in lexical sets either 77% or 85%, and nonnative speakers at 71% or 79%. (Author/VWL)

  13. Feedback in online course for non-native English-speaking students

    CERN Document Server

    Olesova, Larisa

    2013-01-01

    Feedback in Online Course for Non-Native English-Speaking Students is an investigation of the effectiveness of audio and text feedback provided in English in an online course for non-native English-speaking students. The study presents results showing how audio and text feedback can impact on non-native English-speaking students' higher-order learning as they participate in an asynchronous online course. It also discusses the results of how students perceive both types of the feedback provided. In addition, the study examines how the impact and perceptions differ when the instructor giving the

  14. Ecosystem and restoration consequences of invasive woody species removal in Hawaiian lowland wet forest

    Science.gov (United States)

    R. Ostertag; S. Cordell; J. Michaud; T.C. Cole; J.R. Schulten; K.M. Publico; J.H. Enoka

    2009-01-01

    A removal experiment was used to examine the restoration potential of a lowland wet forest in Hawaii, a remnant forest type that has been heavily invaded by non-native species and in which there is very little native species regeneration. All non-native woody and herbaceous biomass (approximately 45% of basal area) was removed in four 100-m² removal plots;...

  15. Assessing the potential to restore historic grazing ecosystems with tortoise ecological replacements.

    Science.gov (United States)

    Griffiths, Christine J; Zuël, Nicolas; Jones, Carl G; Ahamud, Zairabee; Harris, Stephen

    2013-08-01

    The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape-based long-term restoration approach is to replace missing plant-herbivore interactions with non-native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non-native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3-136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free-roaming tortoises grazed on most non-native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non-native tortoises are a more cost-effective approach to control non-native vegetation than manual weeding. Numerous long-term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. © 2013 Society for Conservation Biology.

  16. Non-native Listeners’ Recognition of High-Variability Speech Using PRESTO

    Science.gov (United States)

    Tamati, Terrin N.; Pisoni, David B.

    2015-01-01

    Background Natural variability in speech is a significant challenge to robust successful spoken word recognition. In everyday listening environments, listeners must quickly adapt and adjust to multiple sources of variability in both the signal and listening environments. High-variability speech may be particularly difficult to understand for non-native listeners, who have less experience with the second language (L2) phonological system and less detailed knowledge of sociolinguistic variation of the L2. Purpose The purpose of this study was to investigate the effects of high-variability sentences on non-native speech recognition and to explore the underlying sources of individual differences in speech recognition abilities of non-native listeners. Research Design Participants completed two sentence recognition tasks involving high-variability and low-variability sentences. They also completed a battery of behavioral tasks and self-report questionnaires designed to assess their indexical processing skills, vocabulary knowledge, and several core neurocognitive abilities. Study Sample Native speakers of Mandarin (n = 25) living in the United States recruited from the Indiana University community participated in the current study. A native comparison group consisted of scores obtained from native speakers of English (n = 21) in the Indiana University community taken from an earlier study. Data Collection and Analysis Speech recognition in high-variability listening conditions was assessed with a sentence recognition task using sentences from PRESTO (Perceptually Robust English Sentence Test Open-Set) mixed in 6-talker multitalker babble. Speech recognition in low-variability listening conditions was assessed using sentences from HINT (Hearing In Noise Test) mixed in 6-talker multitalker babble. Indexical processing skills were measured using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Vocabulary

  17. The Non-Native English Speaker Teachers in TESOL Movement

    Science.gov (United States)

    Kamhi-Stein, Lía D.

    2016-01-01

    It has been almost 20 years since what is known as the non-native English-speaking (NNES) professionals' movement--designed to increase the status of NNES professionals--started within the US-based TESOL International Association. However, still missing from the literature is an understanding of what a movement is, and why non-native English…

  18. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  19. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  20. Distribution and content of ellagitannins in Finnish plant species.

    Science.gov (United States)

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  2. Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region

    Science.gov (United States)

    Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.

    2011-12-01

    Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were

  3. The legacy of Charles Marlatt and efforts to limit plant pest invasions

    Science.gov (United States)

    Andrew M. Liebhold; Robert L. Griffin

    2016-01-01

    The problem of invasions by non-native plant pests has come to dominate the field of applied entomology. Most of the damaging insect pests of agriculture and forestry are non-native (Sailer 1978, Aukema et al. 2010) and this is a problem being faced around the world. This problem did not arise overnight; instead, there has been a steady accumulation of non-native...

  4. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Science.gov (United States)

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  5. 77 FR 31870 - Final Comprehensive Conservation Plan for the Bowdoin National Wildlife Refuge Complex

    Science.gov (United States)

    2012-05-30

    .... Water level manipulation is used to improve wetland habitats and invasive and non-native plant species... nonnative plants that are causing habitat losses and fragmentation would be controlled or eradicated...-led. A sanctuary area would be created for waterfowl on the east side of the Bowdoin National Wildlife...

  6. Comprehending non-native speakers: theory and evidence for adjustment in manner of processing.

    Science.gov (United States)

    Lev-Ari, Shiri

    2014-01-01

    Non-native speakers have lower linguistic competence than native speakers, which renders their language less reliable in conveying their intentions. We suggest that expectations of lower competence lead listeners to adapt their manner of processing when they listen to non-native speakers. We propose that listeners use cognitive resources to adjust by increasing their reliance on top-down processes and extracting less information from the language of the non-native speaker. An eye-tracking study supports our proposal by showing that when following instructions by a non-native speaker, listeners make more contextually-induced interpretations. Those with relatively high working memory also increase their reliance on context to anticipate the speaker's upcoming reference, and are less likely to notice lexical errors in the non-native speech, indicating that they take less information from the speaker's language. These results contribute to our understanding of the flexibility in language processing and have implications for interactions between native and non-native speakers.

  7. Impact scores of invasive plants are biased by disregard of environmental co-variation and non-linearity

    Directory of Open Access Journals (Sweden)

    Jan Thiele

    2011-10-01

    Full Text Available Prioritisation of high-impact species is becoming increasingly important for management of introduced species (‘neobiota’ because of their growing number of which, however, only a small fraction has substantial impacts. Impact scores for prioritising species may be affected by the type of effect model used. Recent studies have shown that environmental co-variation and non-linearity may be significant for effect models of biological invasions. Here, we test for differences in impact scores between simple and complex effect models of three invasive plant species (Heracleum mantegazzianum, Lupinus polyphyllus, Rosa rugosa.We investigated the effects of cover percentages of the invasive plants on species richness of invaded communities using both simple linear effect models (‘basic models’ and more complex linear or non-linear models including environmental co-factors (‘full models’. Then, we calculated impact scores for each invasive species as the average reduction of species richness predicted by basic and full effect models.All three non-native species had negative effects on species richness, but the full effect models also indicated significant influence of habitat types. Heracleum mantegazzianum had uniform linear effects in all habitats, while effects of L. polyphyllus interacted strongly with habitat type, and R. rugosa showed a marked non-linear relationship. Impact scores were overestimated by basic effect models for H. mantegazzianum and R. rugosa due to disregard of habitat effects and non-linearity, respectively. In contrast, impact of L. polyphyllus was underestimated by the basic model that did not account for the strong interaction of invader cover and habitat type.We conclude that simple linear models will often yield inaccurate impact scores of non-native species. Hence, effect models should consider environmental co-variation and, if necessary, non-linearity of the effects of biological invasions on native ecosystems.

  8. Count your eggs before they invade: identifying and quantifying egg clutches of two invasive apple snail species (Pomacea.

    Directory of Open Access Journals (Sweden)

    Colin H Kyle

    Full Text Available Winning the war against invasive species requires early detection of invasions. Compared to terrestrial invaders, aquatic species often thrive undetected under water and do not garner notice until too late for early action. However, fortunately for managers, apple snails (Family Ampullariidae, Genus Pomacea provide their own conspicuous sign of invasion in the form of vibrantly colored egg clutches. Managers can potentially use egg clutches laid in the riparian zone as a means of early detection and species identification. To facilitate such efforts, we quantified differences in characteristics (length, width, depth, mass, egg number of field-laid clutches for the two most common invasive species of apple snail, P. canaliculata and P. maculata, in native and non-native populations. Pomacea canaliculata native and non-native populations differed noticeably only in width. Native P. maculata clutches possessed significantly greater width, mass and eggs numbers compared with native P. canaliculata. Non-native P. maculata clutches significantly exceeded all other populations in all measured characteristics. Consequently, these traits may successfully distinguish between species. Fecundity data also allowed us to develop models that accurately estimated the number of eggs per clutch for each species based on clutch dimensions. We tested one, two and three dimensional models of clutches, including rendering a clutch as either a complete ellipsoid or an ellipsoid intersected by a cylinder to represent the oviposition site. Model comparisons found the product of length and depth, with a different function for each population, best predicted egg number for both species. Comparisons of egg number to clutch volume and mass implied non-native P. canaliculata may be food limited, while non-native P. maculata appeared to produce such enormous clutches by having access to greater nutrients than the native population. With these new tools, researchers and

  9. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  10. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    2011-03-01

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.Os lagos do Vale do médio rio Doce (MG têm sofrido impactos devido à introdução de espécies invasoras de peixes, principalmente de espécies piscívoras como a piranha Pygocentrus nattereri e o tucunaré Cichla kelberi. Peixes foram coletados em seis amostragens bimestrais durante um ano. O presente trabalho demonstrou que a composição das assembleias de peixes nativos está significativamente relacionada à presença e ao tipo de espécies não nativas. A distribuição de espécies entre os lagos pode ser explicada por diferenças no tamanho corporal: espécies nativas de

  11. Non-Native & Native English Teachers

    Directory of Open Access Journals (Sweden)

    İrfan Tosuncuoglu

    2017-12-01

    Full Text Available In many countries the primary (mother tongue language is not English but there is a great demand for English language teachers all over the world. The demand in this field is try to be filled largely by non-native English speaking teachers who have learned English in the country or abroad, or from another non native English peaking teachers. In some countries, particularly those where English speaking is a a sign of status, the students prefer to learn English from a native English speaker. The perception is that a non-native English speaking teacher is a less authentic teacher than a native English speaker and their instruction is not satifactory in some ways. This paper will try to examine the literature to explore whether there is a difference in instructional effectiveness between NNESTs and native English teachers.

  12. Damage by pathogens and insects to Scots pine and lodgepole pine 25 years after reciprocal plantings in Canada and Sweden

    OpenAIRE

    Fries, Anders

    2017-01-01

    A combined species - provenance - family experiment with Scots pine and lodgepole pine was planted in Canada and Sweden. One aim of the experiment was to evaluate the two species' sensitivities to pathogens and insects 25 years after establishment in their non-native continents. In Canada, Scots pine had better average survival than lodgepole pine, but survival rates among trees from the best seed-lots were equal. In Canada only western gall rust infected Scots pine to some extent, and mounta...

  13. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  14. 78 FR 25679 - Endangered and Threatened Wildlife and Plants; Proposed Revision of Critical Habitat for the...

    Science.gov (United States)

    2013-05-02

    ... dryopid beetle, Comal Springs riffle beetle, and Peck's cave amphipod from human activity, the degree of... changes to existing water flow regimes; the introduction or augmentation of nonnative species; and..., introduction or augmentation of nonnative species, and physical, biological, or chemical changes to current...

  15. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  16. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  17. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  18. Invasive Plant Species in the National Parks of Vietnam

    OpenAIRE

    Bernard Dell; Pham Quang Thu; Dang Thanh Tan

    2012-01-01

    The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from ...

  19. Kalispel Non-Native Fish Suppression Project 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

    2008-11-18

    Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public

  20. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  1. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  2. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  4. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  5. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  6. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  7. DNA metabarcoding of fish larvae for detection of non-native fishes

    Science.gov (United States)

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection because...

  8. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    Science.gov (United States)

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  9. Data on introduced plants in Zimbabwe: Floristic changes and patterns of collection based on historical herbarium records

    Directory of Open Access Journals (Sweden)

    Alfred Maroyi

    2017-12-01

    Full Text Available National herbaria with significant historical plant collections are critical to tracking floristic changes and patterns, which include the introduction and spread of non-native plant species. To explore the importance of herbarium specimen data in understanding floristic changes in Zimbabwe, the plant collections housed by the National Herbarium (SRGH in Harare, Zimbabwe were utilized with historical specimens dating back to 1870. A list of naturalised plant taxa and collection data were compiled. A total of 2916 plant specimens were recorded, comprising of 401 taxa, 237 genera and 76 plant families. Twenty eight specimens (1.0% were collected between 1870 and 1908, prior to the establishment of the National Herbarium in 1909 and 123 specimens (4.2% were collected in the first 25 years of the establishment of the institute (1909–1934. Intensive collection of herbarium specimens of casual, naturalised and invasive alien plant species occurred between 1950 and 1970. This data demonstrates the utility of plant species data housed in the National Herbaria and how such data can be used to map floristic changes and patterns. Keywords: Casual, Floristic changes, Invasive, Naturalised, National herbarium, Zimbabwe

  10. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  11. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    Science.gov (United States)

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  12. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  13. Contribution of climate, soil, and MODIS predictors when modeling forest inventory invasive species distribution using forest inventory data

    Science.gov (United States)

    Dumitru Salajanu; Dennis Jacobs

    2010-01-01

    Forest inventory and analysis data are used to monitor the presence and extent of certain non-native invasive species. Effective control of its spread requires quality spatial distribution information. There is no clear consensus why some ecosystems are more favorable to non-native species. The objective of this study is to evaluate the reelative contribution of geo-...

  14. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  15. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    Science.gov (United States)

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  16. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  17. Non-Native (Exotic) Snake Envenomations in the U.S., 2005–2011

    Science.gov (United States)

    Warrick, Brandon J.; Boyer, Leslie V.; Seifert, Steven A.

    2014-01-01

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40). Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994–2004) in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases. PMID:25268980

  18. Non-Native (Exotic Snake Envenomations in the U.S., 2005–2011

    Directory of Open Access Journals (Sweden)

    Brandon J. Warrick

    2014-09-01

    Full Text Available Non-native (exotic snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.. We performed a retrospective case series of the National Poison Data System (NPDS database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40. Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994–2004 in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases.

  19. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  20. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  1. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  2. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  3. Analysis of trade-offs between threats of invasion by nonnative brook trout (Salvelinus fontinalis) and intentional isolation for native westslope cutthroat trout (Oncorhynchus clarkii lewisi)

    Science.gov (United States)

    Peterson, D.P.; Rieman, B.E.; Dunham, J.B.; Fausch, K.D.; Young, M.K.

    2008-01-01

    Native salmonid fishes often face simultaneous threats from habitat fragmentation and invasion by nonnative trout species. Unfortunately, management actions to address one may create or exacerbate the other. A consistent decision process would include a systematic analysis of when and where intentional use or removal of barriers is the most appropriate action. We developed a Bayesian belief network as a tool for such analyses. We focused on native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and nonnative brook trout (Salvelinus fontinalis) and considered the environmental factors influencing both species, their potential interactions, and the effects of isolation on the persistence of local cutthroat trout populations. The trade-offs between isolation and invasion were strongly influenced by size and habitat quality of the stream network to be isolated and existing demographic linkages within and among populations. An application of the model in several sites in western Montana (USA) showed the process could help clarify management objectives and options and prioritize conservation actions among streams. The approach can also facilitate communication among parties concerned with native salmonids, nonnative fish invasions, barriers and intentional isolation, and management of the associated habitats and populations. ?? 2008 NRC.

  4. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  5. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...

  6. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    Directory of Open Access Journals (Sweden)

    Peter W Dunwiddie

    Full Text Available Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae. This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable

  7. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  8. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys sp.) from Kerala, India

    Science.gov (United States)

    Kumar, A. Biju; Schofield, Pam; Raj, Smrithy; Satheesh, Sima

    2018-01-01

    Loricariid catfishes of the genus Pterygoplichthys are native to South America and have been introduced in many localities around the world. They are freshwater fishes, but may also use low-salinity habitats such as estuaries for feeding or dispersal. Here we report results of a field survey and salinity-tolerance experiments for a population of Pterygoplichthys sp. collected in Kerala, India. In both chronic and acute salinity-tolerance trials, fish were able to withstand salinities up to 12 ppt with no mortality; however, fish transferred to salinities > 12 ppt did not survive. The experimental results provide evidence that nonnative Pterygoplichthys sp. are able to tolerate mesohaline conditions for extended periods, and can easily invade the brackish water ecosystems of the state. Further, Pterygoplichthys sp. from Kerala have greater salinity tolerance than other congeners. These data are vital to predicting the invasion of non-native fishes such as Pterygoplichthys spp. into coastal systems in Kerala and worldwide. This is particularly important as estuarine ecosystems are under threat of global climate change and sea-level rise. In light of the results of the present study and considering the reports of negative impacts of the species in invaded water bodies, management authorities may consider controlling populations and/or instituting awareness programmes to prevent the spread of this nuisance aquatic invasive species in Kerala.

  9. Plant antiherbivore defenses in Fabaceae species of the Chaco.

    Science.gov (United States)

    Lima, T E; Sartori, A L B; Rodrigues, M L M

    2017-01-01

    The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  10. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  11. No positive feedback between fire and a nonnative perennial grass

    Science.gov (United States)

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  12. Colorful invasion in permissive Neotropical ecosystems: establishment of ornamental non-native poeciliids of the genera Poecilia/Xiphophorus (Cyprinodontiformes: Poeciliidae and management alternatives

    Directory of Open Access Journals (Sweden)

    André Lincoln Barroso Magalhães

    2017-03-01

    Full Text Available ABSTRACT Headwater creeks are environments susceptible to invasion by non-native fishes. We evaluated the reproduction of 22 populations of the non-native livebearers guppy Poecilia reticulata, black molly Poecilia sphenops, Yucatan molly Poecilia velifera, green swordtail Xiphophorus hellerii, southern platyfish Xiphophorus maculatus, and variable platyfish Xiphophorus variatus during an annual cycle in five headwater creeks located in the largest South American ornamental aquaculture center, Paraíba do Sul River basin, southeastern Brazil. With few exceptions, females of most species were found reproducing (stages 2, 3, 4 all year round in the creeks and gravid females of all species showed small sizes indicating stunting. Juveniles were frequent in all sites. The fecundity of the six poeciliids was always low in all periods. The sex ratio was biased for females in most species, both bimonthly as for the whole period. Water temperature, water level and rainfall were not significantly correlated with reproduction in any species. Therefore, most populations appeared well established. The pertinence of different management actions, such as devices to prevent fish escape, eradication with rotenone and research about negative effects on native species, is discussed in the light of current aquaculture practices in the region.

  13. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  14. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Shauna-Lee Chai

    Full Text Available Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis, tamarisk (Tamarix chinensis, and alkali swainsonpea (Sphaerophysa salsula. We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  15. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  16. Invasive Plant Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Giffen, Neil R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCracken, Kitty [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Invasive non-native plant species have become one of the greatest ecological threats across the country and around the world. Actively managing incursions of invasive plants is crucial to maintaining ecosystems, protecting natural resources, and ensuring proper function of facilities and their support infrastructures, power lines and other utility rights-of-way (ROWs), communications structures, roadways, and waterways. Invasive plants can threaten cultural resources, public and private properties, forests, wetlands, and other natural areas through increased risks of fire and storm damage, as well as decrease native plant diversity, particularly disrupting vital habitats of threatened and endangered species, both plant and animal. In 2000, the Federal Plant Protection Act came into effect. Under this Act, federal agencies are required to develop and coordinate an undesirable plants management program for control of invasive plants on federal lands under each agency’s respective jurisdiction. The agency must adequately fund the undesirable plants management program using an Integrated Pest Management Plan. Additionally, each agency is required to implement cooperative agreements with local and state agencies, as well as other federal agencies, to manage undesirable plants on federal lands under the agency’s jurisdiction. The US Department of Energy (DOE) takes its responsibility for addressing invasive and undesirable plant issues very seriously. Many DOE sites have programs to control invasive pest plant species. DOE has taken a proactive stance toward invasive plant control, and the Invasive Plant Management Plan— created to meet regulatory requirements of federal laws, executive orders, presidential memos, contracts, and agreements on DOE’s Oak Ridge Reservation (ORR)—has been in effect since 2004. This document represents the second revision of this plan.

  17. Vision of a cyberinfrastructure for nonnative, invasive species management

    Science.gov (United States)

    2008-01-01

    Although the quantity of data on the location, status, and management of invasive species is ever increasing, invasive species data sets are often difficult to obtain and integrate. A cyberinfrastructure for such information could make these data available for Internet users. The data can be used to create regional watch lists, to send e-mail alerts when a new species enters a region, to construct models of species' current and future distributions, and to inform management. Although the exchange of environmental data over the Internet in the form of raster data is maturing, and the exchange of species occurrence data is developing quickly, there is room for improvement. In this article, we present a vision for a comprehensive invasive species cyberinfrastructure that is capable of accessing data effectively, creating models of invasive species spread, and distributing this information.

  18. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    Science.gov (United States)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  19. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    Science.gov (United States)

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  20. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.

    Science.gov (United States)

    Epanchin, Peter N; Knapp, Roland A; Lawler, Sharon P

    2010-08-01

    Adjacent food webs may be linked by cross-boundary subsidies: more-productive donor systems can subsidize consumers in less-productive neighboring recipient systems. Introduced species are known to have direct effects on organisms within invaded communities. However, few studies have addressed the indirect effects of nonnative species in donor systems on organisms in recipient systems. We studied the direct role of introduced trout in altering a lake-derived resource subsidy and their indirect effects in altering a passerine bird's response to that subsidy. We compared the abundance of aquatic insects and foraging Gray-crowned Rosy-Finches (Leucosticte tephrocotis dawsoni, "Rosy-Finch") at fish-containing vs. fishless lakes in the Sierra Nevada Mountains of California (USA). Introduced trout outcompeted Rosy-Finches for emerging aquatic insects (i.e., mayflies). Fish-containing lakes had 98% fewer mayflies than did fishless lakes. In lakes without fish, Rosy-Finches showed an aggregative response to emerging aquatic insects with 5.9 times more Rosy-Finches at fishless lakes than at fish-containing lakes. Therefore, the introduction of nonnative fish into the donor system reduced both the magnitude of the resource subsidy and the strength of cross-boundary trophic interactions. Importantly, the timing of the subsidy occurs when Rosy-Finches feed their young. If Rosy-Finches rely on aquatic-insect subsidies to fledge their young, reductions in the subsidy by introduced trout may have decreased Rosy-Finch abundances from historic levels. We recommend that terrestrial recipients of aquatic subsidies be included in conservation and restoration plans for ecosystems with alpine lakes.

  1. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  2. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  5. Optimal detection and control strategies for invasive species management

    Science.gov (United States)

    Shefali V. Mehta; Robert G. Haight; Frances R. Homans; Stephen Polasky; Robert C. Venette

    2007-01-01

    The increasing economic and environmental losses caused by non-native invasive species amplify the value of identifying and implementing optimal management options to prevent, detect, and control invasive species. Previous literature has focused largely on preventing introductions of invasive species and post-detection control activities; few have addressed the role of...

  6. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  7. Changes in the fish fauna of the Kissimmee River basin, peninsular Florida: Nonnative additions

    Science.gov (United States)

    Nico, L.G.

    2005-01-01

    Recent decades have seen substantial changes in fish assemblages in rivers of peninsular Florida. The most striking change has involved the addition of nonnative fishes, including taxa from Asia, Africa, and Central and South America. I review recent and historical records of fishes occurring in the Kissimmee River basin (7,800 km2), a low-gradient drainage with 47 extant native fishes (one possibly the result of an early transplant), at least 7 foreign fishes (most of which are widely established), and a stocked hybrid. Kissimmee assemblages include fewer marine fishes than the nearby Peace and Caloosahatchee rivers, and fewer introduced foreign fishes than south Florida canals. Fish assemblages of the Kissimmee and other subtropical Florida rivers are dynamic, due to new introductions, range expansions of nonnative fishes already present, and periodic declines in nonnative fish populations during occasional harsh winters. The addition, dispersal, and abundance of nonnative fishes in the basin is linked to many factors, including habitat disturbance, a subtropical climate, and the fact that the basin is centrally located in a region where drainage boundaries are blurred and introductions of foreign fishes commonplace. The first appearance of foreign fishes in the basin coincided with the complete channelization of the Kissimmee River in the 1970s. Although not a causal factor, artificial waterways connecting the upper lakes and channelization of the Kissimmee River have facilitated dispersal. With one possible exception, there have been no basin-wide losses of native fishes. When assessing change in peninsular Florida waters, extinction or extirpation of fishes appears to be a poor measure of impact. No endemic species are known from peninsular Florida (although some endemic subspecies have been noted). Most native freshwater fishes are themselves descended from recent invaders that reached the peninsula from the main continent. These invasions likely were

  8. Semantic and phonetic enhancements for speech-in-noise recognition by native and non-native listeners.

    Science.gov (United States)

    Bradlow, Ann R; Alexander, Jennifer A

    2007-04-01

    Previous research has shown that speech recognition differences between native and proficient non-native listeners emerge under suboptimal conditions. Current evidence has suggested that the key deficit that underlies this disproportionate effect of unfavorable listening conditions for non-native listeners is their less effective use of compensatory information at higher levels of processing to recover from information loss at the phoneme identification level. The present study investigated whether this non-native disadvantage could be overcome if enhancements at various levels of processing were presented in combination. Native and non-native listeners were presented with English sentences in which the final word varied in predictability and which were produced in either plain or clear speech. Results showed that, relative to the low-predictability-plain-speech baseline condition, non-native listener final word recognition improved only when both semantic and acoustic enhancements were available (high-predictability-clear-speech). In contrast, the native listeners benefited from each source of enhancement separately and in combination. These results suggests that native and non-native listeners apply similar strategies for speech-in-noise perception: The crucial difference is in the signal clarity required for contextual information to be effective, rather than in an inability of non-native listeners to take advantage of this contextual information per se.

  9. The distribution of a non-native (Rosa multiflora) and native (Kalmia latifolia) shrub in mature closed-canopy forests across soil fertility gradients

    Science.gov (United States)

    Cynthia D. Huebner; Jim Steinman; Todd F. Hutchinson; Todd E. Ristau; Alejandro A. Royo

    2014-01-01

    Background and aims. A soil fertility gradient, ranging from infertile to highly fertile soils, may define whether or not a plant will establish and spread at a site. We evaluated whether or not such a fertility gradient exists for Rosa multiflora Thunb., a nonnative invasive shrub, and Kalmia latifolia L., a...

  10. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  11. Founding population size of an aquatic invasive species

    Science.gov (United States)

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  12. Non-native Chinese Foreign Language (CFL) Teachers: Identity and Discourse

    DEFF Research Database (Denmark)

    Zhang, Chun

    2014-01-01

    Abstract Native Chinese foreign language (CFL) teacher identity is an emerging subject of research interest in the teacher education. Yet, limited study has been done on the construction of Non-native CFL teachers in their home culture. Guided by a concept of teacher identity-in-discourse, the pa......Abstract Native Chinese foreign language (CFL) teacher identity is an emerging subject of research interest in the teacher education. Yet, limited study has been done on the construction of Non-native CFL teachers in their home culture. Guided by a concept of teacher identity...... teachers face tensions and challenges in constructing their identities as CFL teachers, and the tensions and challenges that arose from Danish teaching culture could influence the Non-native CFL teachers' contributions to CFL teaching in their home cultures. The findings further show that in order to cope...

  13. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P guiding invasive species monitoring, and we support the use of an iterative sampling design for

  14. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  15. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  16. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  17. When Are Native Species Inappropriate for Conservation Plantings

    Science.gov (United States)

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  18. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  19. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  20. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  1. How much does language proficiency by non-native listeners influence speech audiometric tests in noise?

    Science.gov (United States)

    Warzybok, Anna; Brand, Thomas; Wagener, Kirsten C; Kollmeier, Birger

    2015-01-01

    The current study investigates the extent to which the linguistic complexity of three commonly employed speech recognition tests and second language proficiency influence speech recognition thresholds (SRTs) in noise in non-native listeners. SRTs were measured for non-natives and natives using three German speech recognition tests: the digit triplet test (DTT), the Oldenburg sentence test (OLSA), and the Göttingen sentence test (GÖSA). Sixty-four non-native and eight native listeners participated. Non-natives can show native-like SRTs in noise only for the linguistically easy speech material (DTT). Furthermore, the limitation of phonemic-acoustical cues in digit triplets affects speech recognition to the same extent in non-natives and natives. For more complex and less familiar speech materials, non-natives, ranging from basic to advanced proficiency in German, require on average 3-dB better signal-to-noise ratio for the OLSA and 6-dB for the GÖSA to obtain 50% speech recognition compared to native listeners. In clinical audiology, SRT measurements with a closed-set speech test (i.e. DTT for screening or OLSA test for clinical purposes) should be used with non-native listeners rather than open-set speech tests (such as the GÖSA or HINT), especially if a closed-set version in the patient's own native language is available.

  2. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.

    Science.gov (United States)

    Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K

    2014-06-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of

  3. Symbiosis in the Context of an Invasive, Non-Native Grass: Fungal Biodiversity and Student Engagement

    Science.gov (United States)

    Lehr, Gavin

    Grasslands in the western United States face severe environmental threats including those brought about by climate change, such as changes in precipitation regimes and altered fire cycles; land-use conversion and development; and the introduction, establishment, and spread of non-native species. Lehmann's lovegrass (Eragrostis lehmanniana) was introduced to the southwestern United States in the early 1900s. Since its introduction, it has become the dominant grass in the mid-elevation grasslands of southern Arizona, including the Santa Rita Experimental Range (SRER), where it has displaced native grasses including Arizona cottontop, three awns, and gramas. Like all plants in terrestrial ecosystems, this grass harbors fungal symbionts that can be important for its establishment and persistence. This thesis focuses on fungal symbionts of Lehmann's lovegrass and has two components. First, the diversity and distributions of endophytes in Lehmann's lovegrass are evaluated in the context of biotic and abiotic factors in the SRER. Culturing from roots and shoots of Lehmann's lovegrass at points beneath and outside the canopy of native mesquites, which are encroaching on grasslands over time, provides insight into how a single plant species can exhibit local variation in the composition of its symbionts. Second, the thesis is used as the basis for engagement of students in science, technology, engineering, and mathematics (STEM) through the development and implementation of classroom- and field activities centered on endophytes, which help high school students address core learning aims while also gaining real research experience. Engaging students in important questions relevant to their local environment can catalyze interest in science and help students cross the threshold into research. The contributions of such approaches with respect to learning not only fulfills key next-generation science standards and common core objectives, but provides students with a meaningful

  4. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  5. Suitability of California bay laurel and other species as hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle.

    Science.gov (United States)

    Albert (Bud) Mayfield; Martin MacKenzie; Philip G. Cannon; Steve Oak; Scott Horn; Jaesoon Hwang; Paul E. Kendra

    2013-01-01

    The redbay ambrosia beetle Xyleborus glabratus Eichhoff is a non-native vector of the pathogen that causes laurel wilt, a deadly disease of trees in the family Lauraceae in the southeastern U.S.A.Concern exists that X. glabratus and its fungal symbiont could be transported to the western U....

  6. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  7. Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America

    Science.gov (United States)

    Shafroth, Patrick B.; Briggs, Mark K.

    2008-01-01

    River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarixoccupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally.

  8. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  9. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  10. NATIVE VS NON-NATIVE ENGLISH TEACHERS

    Directory of Open Access Journals (Sweden)

    Masrizal Masrizal

    2013-02-01

    Full Text Available Although the majority of English language teachers worldwide are non-native English speakers (NNS, no research was conducted on these teachers until recently. A pioneer research by Peter Medgyes in 1994 took quite a long time until the other researchers found their interests in this issue. There is a widespread stereotype that a native speaker (NS is by nature the best person to teach his/her foreign language. In regard to this assumption, we then see a very limited room and opportunities for a non native teacher to teach language that is not his/hers. The aim of this article is to analyze the differences among these teachers in order to prove that non-native teachers have equal advantages that should be taken into account. The writer expects that the result of this short article could be a valuable input to the area of teaching English as a foreign language in Indonesia.

  11. Radiocaesium accumulation by different plant species

    International Nuclear Information System (INIS)

    Filiptsova, G.G.

    2000-01-01

    Using the model object influence of mineral nutritions level on radiocaesium accumulation by different plant species has been studied. It was shown the wheat roots accumulation the minimal value on radiocaesium on normal potassium level, the rye roots accumulation maximal level radiocaesium. (authors)

  12. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  13. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  14. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  15. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  16. Species coexistence: macroevolutionary relationships and the contingency of historical interactions.

    Science.gov (United States)

    Germain, Rachel M; Weir, Jason T; Gilbert, Benjamin

    2016-03-30

    Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species. © 2016 The Author(s).

  17. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  18. Economic Impacts of Non-Native Forest Insects in the Continental United States

    Science.gov (United States)

    Juliann E. Aukema; Brian. Leung; Kent Kovacs; Corey Chivers; Jeffrey Englin; Susan J. Frankel; Robert G. Haight; Thomas P. Holmes; Andrew M. Liebhold; Deborah G. McCullough; Betsy. Von Holle

    2011-01-01

    Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United...

  19. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained an...

  20. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  1. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  2. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  3. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers that...

  4. Non-natives: 141 scientists object

    OpenAIRE

    Simberloff, Daniel; Vilà, Montserrat

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. Jake Alexander Institute of Integrative Biology, Zurich, Switzerland. Fred Allendorf University of Montana, Missoula, Montana, USA. James Aronson CEFE/CNRS, Montpellier, France. Pedro M. Antunes Algoma University, Sault Ste. Marie, Onta...

  5. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River.

    Science.gov (United States)

    Horreo, Jose L; Abad, David; Dopico, Eduardo; Oberlin, Maud; Garcia-Vazquez, Eva

    2015-07-09

    The biological and anthropogenic (management) factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta) as a model species. The changes of users' opinion about stocking was studied employing social science methodology (surveys). The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks) and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks). Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science.

  6. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2015-07-01

    Full Text Available The biological and anthropogenic (management factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta as a model species. The changes of users’ opinion about stocking was studied employing social science methodology (surveys. The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks. Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science.

  7. Promoting Communities of Practice among Non-Native Speakers of English in Online Discussions

    Science.gov (United States)

    Kim, Hoe Kyeung

    2011-01-01

    An online discussion involving text-based computer-mediated communication has great potential for promoting equal participation among non-native speakers of English. Several studies claimed that online discussions could enhance the academic participation of non-native speakers of English. However, there is little research around participation…

  8. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  9. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  10. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  11. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  12. The Impact of Non-Native English Teachers' Linguistic Insecurity on Learners' Productive Skills

    Science.gov (United States)

    Daftari, Giti Ehtesham; Tavil, Zekiye Müge

    2017-01-01

    The discrimination between native and non-native English speaking teachers is reported in favor of native speakers in literature. The present study examines the linguistic insecurity of non-native English speaking teachers (NNESTs) and investigates its influence on learners' productive skills by using SPSS software. The eighteen teachers…

  13. Postglacial migration supplements climate in determining plant species ranges in Europe

    Science.gov (United States)

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  14. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  15. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    Science.gov (United States)

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  16. Reconstructing a herbivore’s diet using a novel rbcL DNA mini-barcode for plants

    Science.gov (United States)

    Erickson, David L.; Reed, Elizabeth; Ramachandran, Padmini; Bourg, Norman; McShea, William J.; Ottesen, Andrea

    2017-01-01

    sample’s total. When compared to the abundance of native and non-natives plants inventoried in the local community, our results support the observation that white-tailed deer have strong foraging preferences, but these preferences were not consistent for species in either class. Deer forage behaviour may favour some exotic species, but not all.

  17. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  18. Links between belowground and aboveground resource-related traits reveal species growth strategies that promote invasive advantages.

    Science.gov (United States)

    Smith, Maria S; Fridley, Jason D; Goebel, Marc; Bauerle, Taryn L

    2014-01-01

    Belowground processes are rarely considered in comparison studies of native verses invasive species. We examined relationships between belowground fine root production and lifespan, leaf phenology, and seasonal nitrogen dynamics of Lonicera japonica (non-native) versus L. sempervirens (native) and Frangula alnus (non-native) versus Rhamnus alnifolia (native), over time. First and second order fine roots were monitored from 2010 to 2012 using minirhizotron technology and rhizotron windows. 15N uptake of fine roots was measured across spring and fall seasons. Significant differences in fine root production across seasons were seen between Lonicera species, but not between Frangula and Rhamnus, with both groups having notable asynchrony in regards to the timing of leaf production. Root order and the number of root neighbors at the time of root death were the strongest predictors of root lifespan of both species pairs. Seasonal 15N uptake was higher in spring than in the fall, which did not support the need for higher root activity to correspond with extended leaf phenology. We found higher spring 15N uptake in non-native L. japonica compared to native L. sempervirens, although there was no difference in 15N uptake between Frangula and Rhamnus species. Our findings indicate the potential for fast-growing non-native Lonicera japonica and Frangula alnus to outcompete native counterparts through differences in biomass allocation, root turnover, and nitrogen uptake, however evidence that this is a general strategy of invader dominance is limited.

  19. Links between belowground and aboveground resource-related traits reveal species growth strategies that promote invasive advantages.

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    Full Text Available Belowground processes are rarely considered in comparison studies of native verses invasive species. We examined relationships between belowground fine root production and lifespan, leaf phenology, and seasonal nitrogen dynamics of Lonicera japonica (non-native versus L. sempervirens (native and Frangula alnus (non-native versus Rhamnus alnifolia (native, over time. First and second order fine roots were monitored from 2010 to 2012 using minirhizotron technology and rhizotron windows. 15N uptake of fine roots was measured across spring and fall seasons. Significant differences in fine root production across seasons were seen between Lonicera species, but not between Frangula and Rhamnus, with both groups having notable asynchrony in regards to the timing of leaf production. Root order and the number of root neighbors at the time of root death were the strongest predictors of root lifespan of both species pairs. Seasonal 15N uptake was higher in spring than in the fall, which did not support the need for higher root activity to correspond with extended leaf phenology. We found higher spring 15N uptake in non-native L. japonica compared to native L. sempervirens, although there was no difference in 15N uptake between Frangula and Rhamnus species. Our findings indicate the potential for fast-growing non-native Lonicera japonica and Frangula alnus to outcompete native counterparts through differences in biomass allocation, root turnover, and nitrogen uptake, however evidence that this is a general strategy of invader dominance is limited.

  20. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  1. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  2. Reanalysis and semantic persistence in native and non-native garden-path recovery.

    Science.gov (United States)

    Jacob, Gunnar; Felser, Claudia

    2016-01-01

    We report the results from an eye-movement monitoring study investigating how native and non-native speakers of English process temporarily ambiguous sentences such as While the gentleman was eating the burgers were still being reheated in the microwave, in which an initially plausible direct-object analysis is first ruled out by a syntactic disambiguation (were) and also later on by semantic information (being reheated). Both participant groups showed garden-path effects at the syntactic disambiguation, with native speakers showing significantly stronger effects of ambiguity than non-native speakers in later eye-movement measures but equally strong effects in first-pass reading times. Ambiguity effects at the semantic disambiguation and in participants' end-of-trial responses revealed that for both participant groups, the incorrect direct-object analysis was frequently maintained beyond the syntactic disambiguation. The non-native group showed weaker reanalysis effects at the syntactic disambiguation and was more likely to misinterpret the experimental sentences than the native group. Our results suggest that native language (L1) and non-native language (L2) parsing are similar with regard to sensitivity to syntactic and semantic error signals, but different with regard to processes of reanalysis.

  3. Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species.

    Science.gov (United States)

    Ikin, Karen; Tulloch, Ayesha; Gibbons, Philip; Ansell, Dean; Seddon, Julian; Lindenmayer, David

    2016-10-01

    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and

  4. Does enemy damage vary across the range of exotic plant species? Evidence from two coastal dune plant species in eastern Australia.

    Science.gov (United States)

    Tabassum, Samiya; Leishman, Michelle R

    2018-02-01

    Release from natural enemies is often cited as a key factor for understanding the success of invasive plant species in novel environments. However, with time invasive species will accumulate native enemies in their invaded range, with factors such as spread distance from the site of introduction, climate and leaf-level traits potentially affecting enemy acquisition rates. However, the influence of such factors is difficult to assess without examining enemy attack across the entire species' range. We tested the significance of factors associated with range expansion (distance from source population and maximum population density), climatic variables (annual temperature and rainfall) and leaf-level traits [specific leaf area (SLA) and foliar nitrogen concentration] in explaining variation in enemy damage across multiple populations of two coastal invasive plants (Gladiolus gueinzii Kunze and Hydrocotyle bonariensis Lam.) along their entire introduced distribution in eastern Australia. We found that for H. bonariensis, amount of foliar damage increased with distance from source population. In contrast, for G. gueinzii, probability and amount of foliar damage decreased with decreasing temperature and increasing rainfall, respectively. Our results show that patterns of enemy attack across species' ranges are complex and cannot be generalised between species or even range edges.

  5. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  6. Biosecurity Plan for Palmyra Atoll

    Science.gov (United States)

    Hathaway, Stacie A.; Fisher, Robert N.

    2010-01-01

    This Biosecurity Plan for Palmyra Atoll was developed for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. The Biosecurity Plan is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The Biosecurity Plan focuses on ecosystem security, and specifically identifies and addresses issues related to non-native and potentially invasive species. The Plan attempts to identify pathways of invasion and strategies for preventing or reducing new introductions. Overall, the Biosecurity Plan provides a framework to implement and track the progress of conservation and restoration goals related to non-native species on Palmyra Atoll. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. At present, Palmyra Atoll harbors various non-native or invasive species in the terrestrial and marine ecosystems. The most notable examples of terrestrial invasive species include coconut trees (Cocos nucifera) and black rats (Rattus rattus). Although it is unclear whether they are non-native, coconut trees are currently the most dominant plant across Palmyra Atoll. They compete with native plant species for space and resources, and are potentially detrimental to seabirds dependent on native vegetation. Black rats are known to predate ground-nesting seabirds and are likely responsible for the lack of burrowing seabird reproduction on Palmyra Atoll. The most notable example of a marine invasive species is the corallimorph (Rhodactis howsei). Although Rhodactis howsei is a native species, it can take advantage of human-altered habitat and significantly change the natural habitat by aggressively outcompeting native corals. Although the

  7. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa.

    Science.gov (United States)

    Johnson, Steven D; Raguso, Robert A

    2016-01-01

    Unrelated organisms that share similar niches often exhibit patterns of convergent evolution in functional traits. Based on bimodal distributions of hawkmoth tongue lengths and tubular white flowers in Africa, this study hypothesized that long-tongued hawkmoths comprise a pollination niche (ecological opportunity) that is distinct from that of shorter-tongued hawkmoths. Field observations, light trapping, camera surveillance and pollen load analysis were used to identify pollinators of plant species with very long-tubed (>8 cm) flowers. The nectar properties and spectral reflectance of these flowers were also measured. The frequency distributions of proboscis length for all captured hawkmoths and floral tube length for a representative sample of night-blooming plant species were determined. The geographical distributions of both native and introduced plant species with very long floral tubes were mapped. The convolvulus hawkmoth Agrius convolvuli is identified as the most important pollinator of African plants with very long-tubed flowers. Plants pollinated by this hawkmoth species tend to have a very long (approx. 10 cm) and narrow flower tube or spur, white flowers and large volumes of dilute nectar. It is estimated that >70 grassland and savanna plant species in Africa belong to the Agrius pollination guild. In South Africa, at least 23 native species have very long floral tubes, and pollination by A. convolvuli or, rarely, by the closely related hawkmoth Coelonia fulvinotata, has been confirmed for 11 of these species. The guild is strikingly absent from the species-rich Cape floral region and now includes at least four non-native invasive species with long-tubed flowers that are pre-adapted for pollination by A. convolvuli. This study highlights the value of a niche perspective on pollination, which provides a framework for making predictions about the ecological importance of keystone pollinators, and for understanding patterns of convergent evolution and

  8. Biology and impacts of Pacific Islands invasive species. 14. Sus scrofa the feral pig (Artiodactyla: Suidae)

    Science.gov (United States)

    Wehr, Nathaniel H.; Hess, Steven C.; Litton, Creighton M.

    2018-01-01

    Feral pigs (Sus scrofa L.) are perhaps the most abundant, widespread, and economically significant large introduced vertebrate across the Pacific island region. Unlike many other nonnative invasive species, feral pigs have both cultural and recreational importance in the region, complicating their management. Today, Pacific island feral pigs are a mixture of several strains of domestic swine, Asiatic wild boar, and European wild boar. Due to their generalist diet and rooting behavior, feral pigs alter soils and watersheds and negatively impact native and nonnative flora and fauna. As a result, feral pigs have played a role in the extinction of several species of plants and animals on Pacific islands and have negative effects on both ecotourism and agricultural industries in the region. Despite numerous published studies on feral pigs in the Pacific island region, of which the majority include systematic analyses of original empirical data, some fundamental aspects of feral pig ecology remain poorly characterized, at least partly due to the remote and inaccessible environments that they often inhabit. To address these knowledge gaps, effort should be made to integrate research conducted outside the Pacific island region into local management strategies. This review summarizes the origins, history, ecology, environmental effects, and current management of feral pigs in the Pacific island region; integrates regional scientific findings with those of other insular and continental systems; and identifies current knowledge gaps requiring further research to inform the ecology and management of this impactful invasive species.

  9. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs.

    Science.gov (United States)

    Tuell, Julianna K; Fiedler, Anna K; Landis, Douglas; Isaacs, Rufus

    2008-06-01

    Addition of floral resources to agricultural field margins has been shown to increase abundance of beneficial insects in crop fields, but most plants recommended for this use are non-native annuals. Native perennial plants with different bloom periods can provide floral resources for bees throughout the growing season for use in pollinator conservation projects. To identify the most suitable plants for this use, we examined the relative attractiveness to wild and managed bees of 43 eastern U.S. native perennial plants, grown in a common garden setting. Floral characteristics were evaluated for their ability to predict bee abundance and taxa richness. Of the wild bees collected, the most common species (62%) was Bombus impatiens Cresson. Five other wild bee species were present between 3 and 6% of the total: Lasioglossum admirandum (Sandhouse), Hylaeus affinis (Smith), Agapostemon virescens (F.), Halictus ligatus Say, and Ceratina calcarata/dupla Robertson/Say. The remaining wild bee species were present at wild bees; 9 were highly attractive, and 20 were moderately attractive. Honey bees visited 24 of the 43 plant species at least once. Floral area was the only measured factor accounting for variation in abundance and richness of wild bees but did not explain variation in honey bee abundance. Results of this study can be used to guide selection of flowering plants to provide season-long forage for conservation of wild bees.

  10. Political skill: explaining the effects of nonnative accent on managerial hiring and entrepreneurial investment decisions.

    Science.gov (United States)

    Huang, Laura; Frideger, Marcia; Pearce, Jone L

    2013-11-01

    We propose and test a new theory explaining glass-ceiling bias against nonnative speakers as driven by perceptions that nonnative speakers have weak political skill. Although nonnative accent is a complex signal, its effects on assessments of the speakers' political skill are something that speakers can actively mitigate; this makes it an important bias to understand. In Study 1, White and Asian nonnative speakers using the same scripted responses as native speakers were found to be significantly less likely to be recommended for a middle-management position, and this bias was fully mediated by assessments of their political skill. The alternative explanations of race, communication skill, and collaborative skill were nonsignificant. In Study 2, entrepreneurial start-up pitches from national high-technology, new-venture funding competitions were shown to experienced executive MBA students. Nonnative speakers were found to have a significantly lower likelihood of receiving new-venture funding, and this was fully mediated by the coders' assessments of their political skill. The entrepreneurs' race, communication skill, and collaborative skill had no effect. We discuss the value of empirically testing various posited reasons for glass-ceiling biases, how the importance and ambiguity of political skill for executive success serve as an ostensibly meritocratic cover for nonnative speaker bias, and other theoretical and practical implications of this work. (c) 2013 APA, all rights reserved.

  11. Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions

    Directory of Open Access Journals (Sweden)

    Wesley Dattilo

    2012-12-01

    Full Text Available The knowledge of the mechanisms that shape biodiversity-stability relationships is essential to understand ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant networks: symbiotic (ants and myrmecophytes and nonsymbiotic (ants and plants with extrafloral nectaries. Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new approach. For this, I used models based on simulations of cumulative removals of species from the network at random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic network tends to be functionally redundant and more robust to species extinction. The difference for food resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes in facultative and obligate mutualisms.

  12. Determinants of success in native and non-native listening comprehension: an individual differences approach

    NARCIS (Netherlands)

    Andringa, S.; Olsthoorn, N.; van Beuningen, C.; Schoonen, R.; Hulstijn, J.

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation

  13. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  14. Productivity of selected plant species adapted to arid regions. [Crassulacean metabolizing plants; Agave deserti and Ferocactus acanthodes

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1980-01-01

    The biomass potential of selected arid region species for alcohol production merits careful consideration. The basis for this interest is the current low agronomic use of arid lands and the potential productivity of certain species adapted to these lands. Plants displaying Crassulacean acid metabolism (CAM) are particularly interesting with reference to biomass for fuel in regions with low rainfall, because plants with this photosynthetic process are strikingly efficient in water requirements. For CAM plants, CO/sub 2/ fixation occurs primarily at night, when tissue surface temperature and hence transpirational water loss is less than daytime values. For Agave deserti in the Sonoran desert, the water-use efficiency (mass of CO/sub 2/ fixed/mass of water transpired) over an entire year is an order of magnitude or more larger than for C-3 and C-4 plants. This indicates how well adapted CAM species are to arid regions. The potential productivity per unit land area of CAM plants is fairly substantial and, therefore, of considerable economic interest for arid areas where growth of agricultural plants is minimal.

  15. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  16. Adaptive Management Plan for Sensitive Plant Species on the Nevada Test Site

    International Nuclear Information System (INIS)

    Wills, C. A.

    2001-01-01

    The Nevada Test Site supports numerous plant species considered sensitive because of their past or present status under the Endangered Species Act and with federal and state agencies. In 1998, the U.S. Department of Energy, Nevada Operation Office (DOE/NV) prepared a Resource Management Plan which commits to protects and conserve these sensitive plant species and to minimize accumulative impacts to them. This document presents the procedures of a long-term adaptive management plan which is meant to ensure that these goals are met. It identifies the parameters that are measured for all sensitive plant populations during long-term monitoring and the adaptive management actions which may be taken if significant threats to these populations are detected. This plan does not, however, identify the current list of sensitive plant species know to occur on the Nevada Test Site. The current species list and progress on their monitoring is reported annually by DOE/NV in the Resource Management Plan

  17. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  18. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  19. A Collaboration-Mediated Exploration of Nonnative L2 Teachers' Cognition of Language Teaching Methodology

    Science.gov (United States)

    Tajeddin, Zia; Aryaeian, Nafeeseh

    2017-01-01

    The present study sought to investigate nonnative L2 teachers' cognition of teaching methodology based on their collaborative talks. Participants were 12 nonnative EFL teachers categorized into three collaborative discussion groups by their teaching experience. Collaborative discussions were aimed at exploring the participants' cognition of…

  20. What does "local" firewood buy you? Managing the risk of invasive species introduction.

    Science.gov (United States)

    Tobin, Patrick C; Diss-Torrance, Andrea; Blackburn, Laura M; Brown, Brian D

    2010-10-01

    Firewood can serve as a vector in the transport of non-native species, including wood-boring insects that feed within the wood and thus can be transported accidentally. Governments have enacted limitations on the movement of firewood in an effort to limit the anthropogenic movement of non-native species through, for example, recreational camping. Although the movement of invasive species through firewood is a documented invasion pathway, it is not trivial for governments to determine a "safe" allowable distance for moving firewood. We were motivated by this challenge and developed a theoretical simulation to determine the campgrounds that could be potentially exposed to infested firewood based upon the hypothetical distribution of an invasive species and the allowable distance for moving firewood. We extend this concept to the known distributions of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) Coleoptera: Cerambycidae). We illustrate, based upon theoretical and empirical observations, that as the distribution of an invasive species increases, more rigid constraints on the movement of firewood would be required relative to those species that are distributed over a smaller scale. Also, on the level of management within a state, smaller states have far less margin for error than larger ones, as even extremely rigid restrictions on the movement of firewood could have little management effect unless the infested area is spatially limited. These results collectively suggest the potential for a dynamic management strategy that adjusts allowable distances for firewood movement based upon the distribution of the non-native species.

  1. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  2. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  3. Alien plant species (ephemerophytes in Romensko-Poltavsky Geobotanical District, Ukraine

    Directory of Open Access Journals (Sweden)

    Dvirna Tetyana S.

    2017-09-01

    Full Text Available This paper presents the results of research on ephemerophytes of the alien portion of the flora of the Romensko-Poltavsky Geobotanical District (north-eastern Ukraine. It is a detailed study of this group of plants, conducted for the first time in the Ukraine. The checklist of alien vascular plants contains 345 species, of which 27 species are ephemerophytes (or 8%: Adonis aestivalis, A. annua, Papaver albiflorum, Urtica cannabina, Gypsophila perfoliata, Atriplex micrantha, Chenopodium × preissmannii, Ch. × thellungii, Rumex longifolius, Sisymbrium polymorphum, Euphorbia humifusa, Malus sylvestris, Onobrychis viciifolia, Astrodaucus orientalis, Datura tatula, Solanum schultesii, Lindernia procumbens, Melampyrum cristatum, Helianthus annuus, Petasites spurius, Xanthium ripicola × Xanthium albinum, Echinochloa tzvelevii, Panicum capillare, Panicum capillare L. subsp. barvipulvinatum, Phalaris canariensis, Setaria ×ambigua, Sorghum halepense. The basis of this work is original data of the author obtained during field studies, and a critical study of the literature, archival, cartographic materials and herbarium collections, and the use of classical methods of botanical classification. Complex research of this group of plants was conducted and as a result of these investigations the following characteristics were established: a predominance of kenophytes of Mediterranean origin in this group, species of arid areas, cosmopolitan species with a diffuse type of space structure, therophytes, herbaceous monocarpic plants, mesotrophes, heliophytes and xeromesophytes, with an insignificant degree of impact on native plant communities and with a limited distribution within the study region. The combination of these results indicates that ephemerophytes comprise a temporary, unstable component of the flora of this region of the Ukraine. The paper provides maps of the distribution of these 27 species.

  4. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  5. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  6. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  7. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  8. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  10. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    International Nuclear Information System (INIS)

    Mayer, J.J.

    1999-01-01

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species

  11. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.

    1999-12-17

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species.

  12. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  13. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  14. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Drost, Charles A.; Halvorson, William Lee

    2006-01-01

    Executive Summary We summarize past inventory efforts for vascular plants and vertebrates at Montezuma Castle National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 784 species recorded at Montezuma Castle NM, of which 85 (11%) are non-native. In each taxon-specific chapter we highlight areas of resources that contributed to species richness or unique species for the monument. Of particular importance are Montezuma Well and Beaver and Wet Beaver creeks and the surrounding riparian vegetation, which are responsible for the monument having one of the highest numbers of bird species in the Sonoran Desert Network of park units. Beaver Creek is also home to populations of federally-listed fish species of concern. Other important resources include the cliffs along the creeks and around Montezuma Well (for cliff and cave roosting bats). Based on the review of past studies, we believe the inventory for most taxa is nearly complete, though some rare or elusive species will be added with additional survey effort. We recommend additional inventory, monitoring and research studies.

  15. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  16. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  17. Geographic variability in elevation and topographic constraints on the distribution of native and nonnative trout in the Great Basin

    Science.gov (United States)

    Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David

    2014-01-01

    Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing

  18. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  19. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    plant species of medicinal and other economic values. The investigation was ... A total of 41 and 24 representative ... INTRODUCTION. Baseline .... at 100m interval, involving a total of 15 sampling locations .... explained by factors such as climate, productivity and ... encouraging the: Maintenance of traditional tree species.

  20. Marine Invasive Species Management: Adapting in the Arctic

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    The rapid pace of climate change and increased human disturbance of ecosystems in the Arctic is bringing urgency to concern over non-native species introductions and their potential threats to the marine environment and its economic productivity, where before environmental conditions served...

  1. Conserving pollinators in North American forests: A review

    Science.gov (United States)

    James L. Hanula; Michael D. Ulyshen; Scott Horn

    2016-01-01

    Bees and butterflies generally favor open forest habitats regardless of forest type, geographic region, or methods used to create these habitats. Dense shrub layers of native or nonnative species beneath forest canopies negatively impact herbaceous plant cover and diversity, and pollinators. The presence of nonnative flowers as a source of nectar, pollen, or larval...

  2. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    Science.gov (United States)

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  3. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  4. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  5. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  6. Determinants of Success in Native and Non-Native Listening Comprehension: An Individual Differences Approach

    Science.gov (United States)

    Andringa, Sible; Olsthoorn, Nomi; van Beuningen, Catherine; Schoonen, Rob; Hulstijn, Jan

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation modeling was used to identify the predictors of…

  7. 76 FR 20706 - South Farallon Islands Nonnative Mouse Eradication Project; Farallon National Wildlife Refuge...

    Science.gov (United States)

    2011-04-13

    ... Noonday Rock. In 1969 the Refuge was expanded to include the South Farallon Islands and is still managed... eradicate nonnative mice from the South Farallon Islands, part of the Farallon National Wildlife Refuge off... eradicate nonnative house mice (Mus musculus) from the South Farallon Islands. The purpose of this project...

  8. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  9. Predicting establishment of non-native fishes in Greece: identifying key features

    Directory of Open Access Journals (Sweden)

    Christos Gkenas

    2015-11-01

    Full Text Available Non-native fishes are known to cause economic damage to human society and are considered a major threat to biodiversity loss in freshwater ecosystems. The growing concern about these impacts has driven to an investigation of the biological traits that facilitate the establishment of non-native fish. However, invalid assessment in choosing the appropriate statistical model can lead researchers to ambiguous conclusions. Here, we present a comprehensive comparison of traditional and alternative statistical methods for predicting fish invasions using logistic regression, classification trees, multicorrespondence analysis and random forest analysis to determine characteristics of successful and failed non-native fishes in Hellenic Peninsula through establishment. We defined fifteen categorical predictor variables with biological relevance and measures of human interest. Our study showed that accuracy differed according to the model and the number of factors considered. Among all the models tested, random forest and logistic regression performed best, although all approaches predicted non-native fish establishment with moderate to excellent results. Detailed evaluation among the models corresponded with differences in variables importance, with three biological variables (parental care, distance from nearest native source and maximum size and two variables of human interest (prior invasion success and propagule pressure being important in predicting establishment. The analyzed statistical methods presented have a high predictive power and can be used as a risk assessment tool to prevent future freshwater fish invasions in this region with an imperiled fish fauna.

  10. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.

    Science.gov (United States)

    Vanderwerf, Eric A

    2012-10-01

    The majority of bird extinctions since 1800 have occurred on islands, and non-native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life-history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non-native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16-year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest-building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long-term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population. ©2012 Society for Conservation Biology.

  11. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  12. Distribution patterns of rare earth elements in various plant species

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.

    1997-01-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs

  13. Effects of an invasive plant species, celastrus orbiculatus, on soil composition and processes

    Science.gov (United States)

    Leicht-Young, S. A.; O'Donnell, H.; Latimer, A.M.; Silander, J.A.

    2009-01-01

    Celastrus orbiculatus is a non-native, invasive liana that was introduced to the United States in the 1860s and has spread rapidly throughout the Northeast Several attributes contribute to the invasiveness of C. orbiculatus, including tolerance to a wide range of light levels and habitat types. We compared soil characteristics in seven sets of adjacent, paired plots, spanning a range of habitats and soil types, with and without C. orbiculatus. The paired plots were similar other than the presence or absence of Celastrus. Plots with C. orbiculatus had significantly higher soil pH, potassium, calcium and magnesium levels. Furthermore, nitrogen mineralization and litter decomposition rates were higher in plots with C. orbiculatus. Phosphorus levels were not significantly different between the paired plots. The results of this study contribute to the growing body of research of the effects of invasive species on ecosystem processes.

  14. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  15. Chinese College Students' Views on Native English and Non-Native English in EFL Classrooms

    Science.gov (United States)

    Qian, Yang; Jingxia, Liu

    2016-01-01

    With the development of globalization, English is clearly spoken by many more non-native than native speakers, which raises the discussion of English varieties and the debate regarding the conformity to Standard English. Although a large number of studies have shown scholars' attitudes towards native English and non-native English, little research…

  16. Preferences for different nitrogen forms by coexisting plant species and soil microbes.

    Science.gov (United States)

    Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D

    2007-04-01

    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms

  17. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    DEFF Research Database (Denmark)

    Lekberg, Ylva; Gibbons, Sean; Rosendahl, Søren

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge...... plant provenance.The ISME Journal advance online publication, 14 March 2013; doi:10.1038/ismej.2013.41....

  18. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    NARCIS (Netherlands)

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  19. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  20. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  1. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  2. Effects of climate change on native fish and other aquatic species [Chapter 5

    Science.gov (United States)

    Daniel J. Isaak; Michael K. Young; Cynthia Tait; Daniel Duffield; Dona L. Horan; David E. Nagel; Matthew C. Groce

    2018-01-01

    The diverse landscapes of the Intermountain Adaptation Partnership (IAP) region contain a broad range of aquatic habitats and biological communities. A number of aquatic species are regional endemics, several are threatened or endangered under the U.S. Endangered Species Act (ESA), and many have declined because of the introduction of nonnative aquatic species, habitat...

  3. Nonnative forest insects and pathogens in the United States: impacts and policy options

    Science.gov (United States)

    Gary M. Lovett; Marissa Weiss; Andrew M. Liebhold; Tom Holmes; Brian Leung; Kathy-Fallon Lambert; David A. Orwig; Faith T. Campbell; Jonathan Rosenthal; Deborah G. McCullough; Radka Wildova; Matthew P. Ayres; Charles D. Canham; David R. Foster; Shannon L. LaDeau; Troy Weldy

    2016-01-01

    We review and synthesize information on invasions of nonnative forest insects and diseases in the United States, including their ecological and economic impacts, pathways of arrival, distribution within the United States, and policy options for reducing future invasions. Nonnative insects have accumulated in United States forests at a rate of ~2.5 per yr over the last...

  4. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    Modularity is a structural property of ecological networks, which has received much interest, but has been poorly explored. Modules are distinct subsets of species interacting strongly with each other, but sparsely with species outside the subset. Using a series of temporal cumulative networks, we...... all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  5. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  6. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  7. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Berge, ten W.F.; Jansen, B.P.

    2003-01-01

    Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation

  8. Non-Native University Students' Perception of Plagiarism

    Science.gov (United States)

    Ahmad, Ummul Khair; Mansourizadeh, Kobra; Ai, Grace Koh Ming

    2012-01-01

    Plagiarism is a complex issue especially among non-native students and it has received a lot of attention from researchers and scholars of academic writing. Some scholars attribute this problem to cultural perceptions and different attitudes toward texts. This study evaluates student perception of different aspects of plagiarism. A small group of…

  9. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  10. Hemispheric asymmetry of emotion words in a non-native mind: a divided visual field study.

    Science.gov (United States)

    Jończyk, Rafał

    2015-05-01

    This study investigates hemispheric specialization for emotional words among proficient non-native speakers of English by means of the divided visual field paradigm. The motivation behind the study is to extend the monolingual hemifield research to the non-native context and see how emotion words are processed in a non-native mind. Sixty eight females participated in the study, all highly proficient in English. The stimuli comprised 12 positive nouns, 12 negative nouns, 12 non-emotional nouns and 36 pseudo-words. To examine the lateralization of emotion, stimuli were presented unilaterally in a random fashion for 180 ms in a go/no-go lexical decision task. The perceptual data showed a right hemispheric advantage for processing speed of negative words and a complementary role of the two hemispheres in the recognition accuracy of experimental stimuli. The data indicate that processing of emotion words in non-native language may require greater interhemispheric communication, but at the same time demonstrates a specific role of the right hemisphere in the processing of negative relative to positive valence. The results of the study are discussed in light of the methodological inconsistencies in the hemifield research as well as the non-native context in which the study was conducted.

  11. Ecology and impacts of nonnative salmonids with special reference to brook trout (Salvelinus fontinalis Mitchill) in North Europe

    OpenAIRE

    Korsu, K. (Kai)

    2008-01-01

    Abstract My main objectives in this thesis were to explore general patterns and mechanisms driving salmonid invasions globally and, more specifically, to examine the invasion dynamics and impacts of the North American brook trout in North European stream systems. Non-native salmonids have often spread extensively and caused many harmful impacts on their native counterparts. Among the three globally introduced salmonids, the European brown trout appeared as the 'worst' alien species (st...

  12. Climate and soil attributes determine plant species turnover in global drylands.

    Science.gov (United States)

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate

  13. Climate and soil attributes determine plant species turnover in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These

  14. CE of phytosiderophores and related metal species in plants.

    Science.gov (United States)

    Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther

    2007-10-01

    Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.

  15. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding.

    Science.gov (United States)

    Nithaniyal, Stalin; Vassou, Sophie Lorraine; Poovitha, Sundar; Raju, Balaji; Parani, Madasamy

    2017-02-01

    Plants are the major source of therapeutic ingredients in complementary and alternative medicine (CAM). However, species adulteration in traded medicinal plant raw drugs threatens the reliability and safety of CAM. Since morphological features of medicinal plants are often not intact in the raw drugs, DNA barcoding was employed for species identification. Adulteration in 112 traded raw drugs was tested after creating a reference DNA barcode library consisting of 1452 rbcL and matK barcodes from 521 medicinal plant species. Species resolution of this library was 74.4%, 90.2%, and 93.0% for rbcL, matK, and rbcL + matK, respectively. DNA barcoding revealed adulteration in about 20% of the raw drugs, and at least 6% of them were derived from plants with completely different medicinal or toxic properties. Raw drugs in the form of dried roots, powders, and whole plants were found to be more prone to adulteration than rhizomes, fruits, and seeds. Morphological resemblance, co-occurrence, mislabeling, confusing vernacular names, and unauthorized or fraudulent substitutions might have contributed to species adulteration in the raw drugs. Therefore, this library can be routinely used to authenticate traded raw drugs for the benefit of all stakeholders: traders, consumers, and regulatory agencies.

  16. Introduced and invasive species in novel rangeland ecosystems: friends or foes?

    Science.gov (United States)

    Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.

    2012-01-01

    Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses

  17. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  18. Screening of plant species as ground cover on uranium mill tailings

    International Nuclear Information System (INIS)

    Venu Babu, P.; Eapen, S.

    2012-01-01

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  19. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  20. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.