WorldWideScience

Sample records for nonnative plant species

  1. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    Directory of Open Access Journals (Sweden)

    Franziska Humair

    Full Text Available Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625 to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  2. Tualatin River - Implementation of a Comprehensive Survey for Invasive and Other Nonnative Plant Species on the Tualatin River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The proposed project will use GPS and GIS technology to quantitatively determine species occurrence of nonnative and invasive plants on refuge lands. Currently the...

  3. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  4. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  5. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  6. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  7. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    Science.gov (United States)

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  8. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  9. Altitudinal occurrence of non-native plant species (neophytes) and their habitat affinity to anthropogenic biotopes in conditions of South-Western Slovakia

    OpenAIRE

    Beniak Michal; Pauková Žaneta; Fehér Alexander

    2015-01-01

    Many ecological studies showed that species density (the number of species per unit area) in nonnative organism groups of the mountain areas decreases with increasing altitude. The aim of the paper is to determine the variability in the incidence of non-native plant species (neophytes) associated with the change in altitude and links of the invading taxons to reference habitat types, as well as their links to three ecologically very similar, however in natural conditions, different areas. In ...

  10. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  11. Non-native plant species sampling at Lacreek National Wildlife Refuge : A prototype study for other refuges [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes the results and implications of a rapid assessment of nonnative plant invasions at the Lacreek National Wildlife Refuge. This effort was a...

  12. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  13. Practitioner perspectives on using nonnative plants for revegetation

    Directory of Open Access Journals (Sweden)

    Elise Gornish

    2016-09-01

    Full Text Available Restoration practitioners use both native and nonnative plant species for revegetation projects. Typically, when rehabilitating damaged working lands, more practitioners consider nonnative plants; while those working to restore habitat have focused on native plants. But this may be shifting. Novel ecosystems (non-analog communities are commonly being discussed in academic circles, while practical factors such as affordability and availability of natives and the need for more drought tolerant species to accommodate climate change may be making nonnative species attractive to land managers. To better understand the current use of nonnatives for revegetation, we surveyed 192 California restoration stakeholders who worked in a variety of habitats. A large portion (42% of them considered nonnatives for their projects, and of survey respondents who did not use nonnatives in vegetation rehabilitation, almost half indicated that they would consider them in the future. Across habitats, the dominant value of nonnatives for vegetation rehabilitation was found to be erosion control, and many respondents noted the high cost and unavailability of natives as important drivers of nonnative use in revegetation projects. Moreover, 37% of respondents noted they had changed their opinion or use of nonnatives in response to climate change.

  14. Retention of gene diversity during the spread of a non-native plant species.

    Science.gov (United States)

    Vandepitte, Katrien; Helsen, Kenny; Van Acker, Kasper; Mergeay, Joachim; Honnay, Olivier

    2017-06-01

    Spatial expansion, which is a crucial stage in the process to successful biological invasion, is anticipated to profoundly affect the magnitude and spatial distribution of genetic diversity in novel colonized areas. Here, we show that, contrasting common expectations, Pyrenean rocket (Sisymbrium austriacum), retained SNP diversity as this introduced plant species descended in the Meuse River Basin. Allele frequencies did not mirror between-population distances along the predominant expansion axis. Reconstruction of invasion history based on the genotypes of historical herbarium specimens indicated no influence of additional introductions or multiple points of entry on this nongradual pattern. Assignment analysis suggested the admixture of distant upstream sources in recently founded downstream populations. River dynamics seem to have facilitated occasional long-distance dispersal which brought diversity to the expansion front and so maintained evolutionary potential. Our findings highlight the merit of a historical framework in interpreting extant patterns of genetic diversity in introduced species and underscore the need to integrate long-distance dispersal events in theoretical work on the genetic consequences of range expansion. © 2017 John Wiley & Sons Ltd.

  15. Invasional meltdown in northern lakes: Common carp invasion favors non-native plant species

    Science.gov (United States)

    Disturbances can lead to nonrandom changes in community composition due to interactions between the disturbance and the characteristics of species found in the community or available to colonize, producing both winners and losers of disturbance. When the disturbance is a biologic...

  16. Altitudinal occurrence of non-native plant species (neophytes and their habitat affinity to anthropogenic biotopes in conditions of South-Western Slovakia

    Directory of Open Access Journals (Sweden)

    Beniak Michal

    2015-03-01

    Full Text Available Many ecological studies showed that species density (the number of species per unit area in nonnative organism groups of the mountain areas decreases with increasing altitude. The aim of the paper is to determine the variability in the incidence of non-native plant species (neophytes associated with the change in altitude and links of the invading taxons to reference habitat types, as well as their links to three ecologically very similar, however in natural conditions, different areas. In general, the most invaded habitats are those which are highly influenced by human activities. Firstly, data collection was conducted through field mapping of build-up areas in South-western Slovakia. Subsequently, with the assistance of ordination methods, we evaluated the level of association of invasive neophytes according to the set objectives. We found that altitude was an important factor determining variability of invasive neophytes’ occurrence. Total amount of habitats with invasive neophytes’ occurrence showed a linear increase along the altitudinal gradient. Many invasive neophytes adapted to abandoned habitats of upland territory were also able to grow along roads, and vice versa, abandoned and unused habitats of lowland areas created conditions for many typical invasive neophytes occurring along roads and habitats of gardens and yards. Railways of lowland areas provided habitats and means of spread of invasive woody neophytes. Gardens and yards were important sources of alien neophytes in all observed territories. Invasive neophyte Aster novi-belgii can be described as a very variable species tolerant to a wide range of factors limiting the spread of species along the elevation gradient.

  17. Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska

    Science.gov (United States)

    Conway, Alexandra J.; Jean, Mélanie

    2017-01-01

    Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector. PMID:28158284

  18. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  19. Defining the Impact of Non-Native Species

    OpenAIRE

    Jeschke, Jonathan M; Bacher, Sven; Tim M Blackburn; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward ...

  20. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  1. Non-native species in the vascular flora of highlands and mountains of Iceland.

    Science.gov (United States)

    Wasowicz, Pawel

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland's highlands and mountain areas.

  2. Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach

    Science.gov (United States)

    Koch, Christiane; Jeschke, Jonathan M.; Overbeck, Gerhard E.; Kollmann, Johannes

    2016-09-01

    Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.

  3. Monitoring and assessment of regional impacts from nonnative invasive plants in forests of the Pacific Coast, United States

    Science.gov (United States)

    Andrew Gray

    2008-01-01

    Invasions of nonnative plants into new regions have a tremendous impact on many natural and managed ecosystems affecting their composition and function. Nonnative invasive species have a large economic impact through lost or degraded land costs, and are a primary cause of extinction of native species.

  4. Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.

    2003-01-01

    We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).

  5. Effects of Nonnative Ungulate Removal on Plant Communities and Soil Biogeochemistry in Tropical Forests

    Science.gov (United States)

    Cole, R. J.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.

    2014-12-01

    Non-native ungulates have substantial impacts on native ecosystems globally, altering both plant communities and soil biogeochemistry. Across tropical and temperate ecosystems, land managers fence and remove non-native ungulates to conserve native biodiversity, a costly management action, yet long-term outcomes are not well quantified. Specifically, knowledge gaps include: (i) the magnitude and time frame of plant community recovery; (ii) the response of non-native invasive plants; and (iii) changes to soil biogeochemistry. In 2010, we established a series of paired ungulate presence vs. removal plots that span a 20 yr. chronosequence in tropical montane wet forests on the Island of Hawaii to quantify the impacts and temporal legacy of feral pig removal on plant communities and soil biogeochemistry. We also compared soil biogeochemistry in targeted areas of low and high feral pig impact. Our work shows that both native and non-native vegetation respond positively to release from top-down control following removal of feral pigs, but species of high conservation concern recover only if initially present at the time of non-native ungulate removal. Feral pig impacts on soil biogeochemistry appear to last for at least 20 years following ungulate removal. We observed that both soil physical and chemical properties changed with feral pig removal. Soil bulk density and volumetric water content decreased while extractable base cations and inorganic N increased in low vs. high feral pig impact areas. We hypothesize that altered soil biogeochemistry facilitates continued invasions by non-native plants, even decades after non-native ungulate removal. Future work will concentrate on comparisons between wet and dry forest ecosystems and test whether manipulation of soil nutrients can be used to favor native vs. non-native plant establishment.

  6. Defining the impact of non-native species.

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-10-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  7. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    Science.gov (United States)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  8. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  9. Drivers of Non-Native Aquatic Species Invasions across the ...

    Science.gov (United States)

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m

  10. Non-native megaherbivores: the case for novel function to manage plant invasions on islands.

    Science.gov (United States)

    Hansen, Dennis M

    2015-07-20

    There is a heated debate about whether all non-native species are 'guilty until proven innocent', or whether some should be accepted or even welcomed. Further fanning the flames, I here present a case where introductions of carefully vetted, non-native species could provide a net conservation benefit. On many islands, native megaherbivores (flightless birds, tortoises) recently went extinct. Here, rewilding with carefully selected non-native species as ecological replacements is increasingly considered a solution, reinstating a herbivory regime that largely benefits the native flora. Based on these efforts, I suggest that restoration practitioners working on islands without a history of native megaherbivores that are threatened by invasive plants should consider introducing a non-native island megaherbivore, and that large and giant tortoises are ideal candidates. Such tortoises would be equally useful on islands where eradication of invasive mammals has led to increased problems with invasive plants, or on islands that never had introduced mammalian herbivores, but where invasive plants are a problem. My proposal may seem radical, but the reversibility of using giant tortoises means that nothing is lost from trying, and that indeed much is to be gained. As an easily regulated adaptive management tool, it represents an innovative, hypothesis-driven 'innocent until proven guilty' approach.

  11. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  12. Soil fertility and disturbance interact to drive contrasting responses of co-occurring native and nonnative species.

    Science.gov (United States)

    Peltzer, Duane A; Kurokawa, Hiroko; Wardle, David A

    2016-02-01

    Some plant functional groups such as nonnative invasive and nitrogen (N)-fixing plants are widely thought to have consistent, coordinated differences in their functional traits relative to other groups such as native and non -N-fixing plants. Recent evidence suggests that these trait differences between groups can be context dependent, varying with environmental factors such as resource availability and disturbance. However, many previous comparisons among plant groups differing in invasion status have not standardized growth form between groups or have compared species that do not co-occur, which could result in invasion status per se being confounded with other factors. We determined growth and leaf functional trait responses of 20 co-occurring woody species, that is, five species within each of four functional groups (native N-fixers, native non -N-fixers, nonnative [invasive] N-fixers and nonnative [invasive] non-N-fixers), to factorial combinations of soil fertility and defoliation treatments in a mesocosm experiment to test each of two hypotheses. First, we hypothesized that nonnative invasive and N-fixing species will have functional traits associated with rapid resource acquisition whereas natives and non -N-fixing species will have traits linked to resource conservation. Second, we hypothesized that plant growth and leaf traits of nonnative and N-fixing species will be more strongly influenced by environmental factors (i.e., soil fertility and disturbance) than will natives and non-N-fixers. Plant growth, foliar nutrients, and leaf structural traits varied among plant functional groups in a manner consistent with our first hypothesis. Support for our second hypothesis was mixed; origin (native vs. nonnative) and soil fertility rarely interacted to determine plant growth or variation in leaf traits whereas interactions involving N-fixing ability and soil fertility were common. Further, there were no consistent interactive effects between plant groupings and

  13. Identifying and ascribing the relative significance of introduction pathways for non-native plants into Iceland

    Directory of Open Access Journals (Sweden)

    Wasowicz Pawel

    2014-12-01

    Full Text Available The study is aimed at identifying pathways frequently used by non-native plant species, assessing their relative significance and development in time. Pathways were defined following NOBANIS framework (Madsen et al., 2014. Species assessments were based on HARMONIA scheme (Branquart, 2007. Four categories of environmental hazards were assessed plus two additional categories summarizing impacts on health and economy. Temporal development of pathways was assessed using cumulative per annum taxa records. To quantify the activity of investigated pathways over time an index (δ10 showing the number of new species introduced during the period of 10 years was calculated. The study shows that horticulture, landscaping and agriculture can be pointed out as pathways of concern in Iceland. A set of species of concern is also proposed. Two plant taxa are included in A list (high risk species: Anthriscus sylvestis and Lupinus nootkatensis. Three taxa are placed in B list (watch list: Heracleum mantegazzianum, Heracleum persicum and Pinus contorta. Results of the present study are compared with similar studies carried out in Denmark, Scandinavia and Baltic countries. Different measures to prevent introductions of new and potentially dangerous non-native species are also discussed including selection of good practices that may significantly reduce the threat from non-native species used in agriculture and horticulture.

  14. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  15. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  16. Defining the Impact of Non-Native Species

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; VilÀ, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los

  17. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  18. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico

    OpenAIRE

    2014-01-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-nati...

  19. Evolution of an invasive species research program and implications for large-scale management of a non-native, invasive plant pathogen

    Science.gov (United States)

    Christopher A. Lee; Janice M. Alexander; Susan J. Frankel; Yana Valachovic

    2012-01-01

    We conducted a research needs assessment (RNA) in 2010 to gather opinions of "experts" and a larger public on research priorities for Phytophthora ramorum, the pathogen that causes sudden oak death in forest trees and Ramorum blight in ornamental plants. We place these 2010 findings in context with findings of similar P. ramorum...

  20. Exploring Public Perception of Non-native Species from a Visions of Nature Perspective

    Science.gov (United States)

    Verbrugge, Laura N. H.; Van den Born, Riyan J. G.; Lenders, H. J. Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  1. Assessment of Nonnative Invasive Plants in the DOE Oak Ridge National Environmental Research Park

    Energy Technology Data Exchange (ETDEWEB)

    Drake, S.J.

    2002-11-05

    The Department of Energy (DOE) National Environmental Research Park at Oak Ridge, Tennessee, is composed of second-growth forest stands characteristic of much of the eastern deciduous forest of the Ridge and Valley Province of Tennessee. Human use of natural ecosystems in this region has facilitated the establishment of at least 167 nonnative, invasive plant species on the Research Park. Our objective was to assess the distribution, abundance, impact, and potential for control of the 18 most abundant invasive species on the Research Park. In 2000, field surveys were conducted of 16 management areas on the Research Park (14 Natural Areas, 1 Reference Area, and Walker Branch Watershed) and the Research Park as a whole to acquire qualitative and quantitative data on the distribution and abundance of these taxa. Data from the surveys were used to rank the relative importance of these species using the ''Alien Plant Ranking System, Version 5.1'' developed by the U.S. Geological Survey. Microstegium (Microstegium vimineum) was ranked highest, or most problematic, for the entire Research Park because of its potential impact on natural systems, its tendency to become a management problem, and how difficult it is to control. Microstegium was present in 12 of the 16 individual sites surveyed; when present, it consistently ranked as the most problematic invasive species, particularly in terms of its potential impact on natural systems. Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense) were the second- and third-most problematic plant species on the Research Park; these two species were present in 12 and 9 of the 16 sites surveyed, respectively, and often ranked second- or third-most problematic. Other nonnative, invasive species, in decreasing rank order, included kudzu (Pueraria montma), multiflora rose (Rosa multiflora), Chinese lespedeza (Lespedeza cuneara), and other species representing a variety of life forms and growth

  2. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  3. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  4. 2011 Invasive Non-native Plant Inventory dataset : Quivira National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset is a product of the 2011 invasive non-native plant inventory conducted at Quivira National Wildlife Refuge by Utah State University. This inventory...

  5. Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America

    Science.gov (United States)

    Robert E. Ricklefs; Qinfeng Guo; Hong Qian

    2008-01-01

    There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to...

  6. Global exchange and accumulation of non-native plants

    Science.gov (United States)

    van Kleunen, Mark; Dawson, Wayne; Essl, Franz; Pergl, Jan; Winter, Marten; Weber, Ewald; Kreft, Holger; Weigelt, Patrick; Kartesz, John; Nishino, Misako; Antonova, Liubov A.; Barcelona, Julie F.; Cabezas, Francisco J.; Cárdenas, Dairon; Cárdenas-Toro, Juliana; Castaño, Nicolás; Chacón, Eduardo; Chatelain, Cyrille; Ebel, Aleksandr L.; Figueiredo, Estrela; Fuentes, Nicol; Groom, Quentin J.; Henderson, Lesley; Inderjit; Kupriyanov, Andrey; Masciadri, Silvana; Meerman, Jan; Morozova, Olga; Moser, Dietmar; Nickrent, Daniel L.; Patzelt, Annette; Pelser, Pieter B.; Baptiste, María P.; Poopath, Manop; Schulze, Maria; Seebens, Hanno; Shu, Wen-Sheng; Thomas, Jacob; Velayos, Mauricio; Wieringa, Jan J.; Pyšek, Petr

    2015-09-01

    All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

  7. High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought.

    Science.gov (United States)

    Valliere, Justin M; Irvine, Irina C; Santiago, Louis; Allen, Edith B

    2017-03-20

    Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multi-year drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation type-conversion. This article is protected by copyright. All rights reserved.

  8. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  9. 75 FR 60405 - Lincoln National Forest, New Mexico, Integrated Non-Native Invasive Plant Project

    Science.gov (United States)

    2010-09-30

    ... Forest Service Lincoln National Forest, New Mexico, Integrated Non-Native Invasive Plant Project AGENCY... control spread of non- native invasive plants (NNIP) within the LNF. The proposal utilizes several... methods, and adaptive management. Invasive plants designated by the State of New Mexico as noxious weeds...

  10. Tolerance of native and non-native fish species to chemical stress: a case study for the River Rhine

    NARCIS (Netherlands)

    A. Fedorenkova; J.A. Vonk; A.M. Breure; A.J. Hendriks; R.S.E.W. Leuven

    2013-01-01

    Freshwater ecosystems can be impacted by invasive species. Non-native species can become invasive due to their high tolerance to environmental stressors (e.g., pollution and habitat modifications). Yet, tolerance of native and non-native fish species exposed simultaneously to multiple chemical stres

  11. 5.0 Monitoring methods for forests vulnerable to non-native invasive pest species

    Science.gov (United States)

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans

    2008-01-01

    Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...

  12. Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Liao

    Full Text Available The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more, which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait. In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges.

  13. Prevention, early detection and containment of invasive, nonnative plants in the Hawaiian Islands: current efforts and needs

    Science.gov (United States)

    Christoph Kueffer,; Loope, Lloyd

    2009-01-01

    Introduction: Invasive, non-native plants (or environmental weeds) have long been recognized as a major threat to the native biodiversity of oceanic islands (Cronk & Fuller, 1995; Denslow, 2003). Globally, several hundred non-native plant species have been reported to have major impacts on natural areas on oceanic islands (Kueffer et al., 2009). In Hawaii, at least some 50 non-native plant species reach dominance in natural areas (Kueffer et al., 2009) and many of them are known to impact ecosystem processes or biodiversity. One example is the invasive Australian tree fern (Cyathea cooperi), which has been shown to be very efficient at utilizing soil nitrogen and can grow six times as rapidly in height, maintain four times more fronds, and produce significantly more fertile fronds per month than the native Hawaiian endemic tree ferns, Cibotium spp. (Durand & Goldstein, 2001a, b). Additionally, while native tree ferns provide an ideal substrate for epiphytic growth of many understory ferns and flowering plants, the Australian tree fern has the effect of impoverishing the understory and failing to support an abundance of native epiphytes (Medeiros & Loope, 1993). Other notorious examples of invasive plant species problematic for biodiversity and ecosystem processes in Hawaii include miconia (Miconia calvescens), strawberry guava (Psidium cattleianum), albizia (Falcataria moluccana), firetree (Morella faya), clidemia (Clidemia hirta), kahili ginger (Hedychium gardnerianum), and fountain grass (Pennisetum setaceum), to name just a few. Fireweed (Senecio madagascariensis) is a recent example of a seriously problematic invasive species for Hawaii’s agriculture and is damaging certain high-elevations native ecosystems as well.

  14. Impacts of nonnative invasive species on US forests and recommendations for policy and management

    Science.gov (United States)

    W. Keith Moser; Edward L. Barnard; Ronald F. Billings; Susan J. Crocker; Mary Ellen Dix; Andrew N. Gray; George G. Ice; Mee-Sook Kim; Richard Reid; Sue U. Rodman; William H. McWilliams

    2009-01-01

    The introduction of nonnative invasive species (NNIS) into the United States has had tremendous impacts on the nation's commercial and urban forest resources. Of principal concern are the effects of NNIS on forest composition, structure, function, productivity, and patterns of carbon sequestration. In 2006, the Society of American Foresters commissioned an ad hoc...

  15. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  16. Chapter 13: Effects of fuel and vegetation management activities on nonnative invasive plants

    Science.gov (United States)

    Erik J. Martinson; Molly E. Hunter; Jonathan P. Freeman; Philip N. Omi

    2008-01-01

    Twentieth century land use and management practices have increased the vertical and horizontal continuity of fuels over expansive landscapes. Thus the likelihood of large, severe wildfires has increased, especially in forest types that previously experienced more frequent, less severe fire (Allen and others 2002). Disturbances such as fire may promote nonnative plant...

  17. Regional patterns of major nonnative invasive plants and associated factors in upper Midwest forests

    Science.gov (United States)

    Zhaofei Fan; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2013-01-01

    Nonnative invasive plants (IPs) are rapidly spreading into natural ecosystems (e.g., forests and grasslands). Potential threats of IP invasion into natural ecosystems include biodiversity loss, structural and environmental change, habitat degradation, and economic losses. The Upper Midwest of the United States encompasses the states of Illinois, Indiana, Iowa, Michigan...

  18. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  19. Understanding the threats posed by non-native species: public vs. conservation managers.

    Science.gov (United States)

    Gozlan, Rodolphe E; Burnard, Dean; Andreou, Demetra; Britton, J Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  20. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  1. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    Full Text Available The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead. Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  2. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  3. Vision of a cyberinfrastructure for nonnative, invasive species management

    Science.gov (United States)

    2008-01-01

    Although the quantity of data on the location, status, and management of invasive species is ever increasing, invasive species data sets are often difficult to obtain and integrate. A cyberinfrastructure for such information could make these data available for Internet users. The data can be used to create regional watch lists, to send e-mail alerts when a new species enters a region, to construct models of species' current and future distributions, and to inform management. Although the exchange of environmental data over the Internet in the form of raster data is maturing, and the exchange of species occurrence data is developing quickly, there is room for improvement. In this article, we present a vision for a comprehensive invasive species cyberinfrastructure that is capable of accessing data effectively, creating models of invasive species spread, and distributing this information.

  4. Elucidating Native and Non-Native Plant-Fog Interactions Across Microclimatic Zones in San Cristobal Island, Galapagos

    Science.gov (United States)

    Schmitt, S.; Riveros-Iregui, D. A.; Hu, J.

    2015-12-01

    Changes in land use, such as the clear cutting of forests and the abandonment of land once used for agriculture, pose an incredible threat to the fragile ecosystems in the tropics. One such consequence of land use change in the tropics is the propagation of invasive plant species. The Galapagos Islands, an ecosystem subject to significant anthropogenic pressure by both increasing tourism and a growing native population, are especially threatened by invasive plant species. More than 800 plant species have been introduced in Galapagos, comprising over 60% of the total flora. San Cristobal Island in particular has been impacted by the introduction of non-native species; the combined pressures of invasive species and land use change have fundamentally altered 70% of the landscape of the island. We performed stable isotope analysis of fog water, surface water and plant xylem water to examine water use by both native and invasive plant species across different microclimatic zones. We conducted these measurements starting at the end of the rainy season and through the middle of the dry season. Our results represent an initial effort to characterize the effects of a changing vegetative cover on the water cycling of tropical islands and provide insight into the interactions between plants, surface water and groundwater at various spatial and temporal scales.

  5. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation.

    Science.gov (United States)

    Taylor, Andrew T; Papeş, Monica; Long, James M

    2017-09-06

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the shoal bass (Micropterus cataractae) is a fluvial-specialist species experiencing continual range loss, yet how perceived threats have contributed to range loss is largely unknown. We employed species distribution models (SDMs) to disentangle which factors are contributing most to shoal bass range loss by estimating a potential distribution based on natural abiotic factors and by estimating a series of current, occupied distributions that also incorporated variables characterizing land cover, non-native species, and fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). Model construction allowed for interspecific relationships between non-native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of current occupied distribution illustrated increased range loss as fragmentation intensified. Response curves from current occupied models indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non-native congeners, wherein non-natives may be favored at the highest fragmentation intensity. Response curves also suggested that free-flowing fragment lengths of > 100 km were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested models had favorable predictive and discriminative abilities. Similar approaches that use readily-available, diverse geospatial datasets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Competitive effects of non-native plants are lowest in native plant communities that are most vulnerable to invasion

    Science.gov (United States)

    J.Stephen Brewer; W. Chase Bailey

    2014-01-01

    Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not...

  7. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  8. Paragonimiasis acquired in the United States: native and nonnative species.

    Science.gov (United States)

    Diaz, James H

    2013-07-01

    Paragonimiasis is a parasitic lung infection caused by lung flukes of the genus Paragonimus, with most cases reported from Asia and caused by P. westermani following consumption of raw or undercooked crustaceans. With the exception of imported P. westermani cases in immigrants, in travelers returning from areas of disease endemicity, and in clusters of acquired cases following consumption of imported Asian crabs, human paragonimiasis caused by native lung flukes is rarely described in the United States, which has only one indigenous species of lung fluke, Paragonimus kellicotti. Clinicians should inquire about the consumption of raw or undercooked freshwater crabs by immigrants, expatriates, and returning travelers, and the consumption of raw or undercooked crayfish in U.S. freshwater river systems where P. kellicotti is endemic when evaluating patients presenting with unexplained fever, cough, rales, hemoptysis, pleural effusions, and peripheral eosinophilia. Diagnostic evaluation by specific parasitological, radiological, serological, and molecular methods will be required in order to differentiate paragonimiasis from tuberculosis, which is not uncommon in recent Asian immigrants. All cases of imported and locally acquired paragonimiasis will require treatment with oral praziquantel to avoid any potential pulmonary and cerebral complications of paragonimiasis, some of which may require surgical interventions.

  9. Global exchange and accumulation of non-native plants

    NARCIS (Netherlands)

    Kleunen, Van Mark; Dawson, Wayne; Essl, Franz; Pergl, Jan; Winter, Marten; Weber, Ewald; Kreft, Holger; Weigelt, Patrick; Kartesz, John; Nishino, Misako; Antonova, Liubov A.; Barcelona, Julie F.; Cabezas, Francisco J.; Cárdenas, Dairon; Cárdenas-Toro, Juliana; Castaño, Nicolás; Chacón, Eduardo; Chatelain, Cyrille; Ebel, Aleksandr L.; Figueiredo, Estrela; Fuentes, Nicol; Groom, Quentin J.; Henderson, Lesley; Inderjit,; Kupriyanov, Andrey; Masciadri, Silvana; Meerman, Jan; Morozova, Olga; Moser, Dietmar; Nickrent, Daniel L.; Patzelt, Annette; Pelser, Pieter B.; Baptiste, María P.; Poopath, Manop; Schulze, Maria; Seebens, Hanno; Shu, Wen Sheng; Thomas, Jacob; Velayos, Mauricio; Wieringa, Jan J.; Pyšek, Petr

    2015-01-01

    All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause e

  10. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds.

    Directory of Open Access Journals (Sweden)

    Olatz San Sebastián

    Full Text Available One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis or alternative resources (opportunistic hypothesis. To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals, the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter.

  11. 77 FR 57647 - Endangered and Threatened Wildlife and Plants; Endangered Status for 23 Species on Oahu and...

    Science.gov (United States)

    2012-09-18

    ... habitats, primarily from introduced ungulates, such as feral pigs and goats, and the spread of nonnative... herbivory on 19 of the 20 plant species by nonnative pigs, goats, rats, and invertebrates; and predation on... mistletoe family (Viscaceae), is parasitic on the native trees Sapindus oahuensis (kaulu) and...

  12. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  13. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders.

    Science.gov (United States)

    Benjamin, Joseph R; Fausch, Kurt D; Baxter, Colden V

    2011-10-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout.

  14. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders

    Science.gov (United States)

    Benjamin, J.R.; Fausch, K.D.; Baxter, C.V.

    2011-01-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. ?? 2011 Springer-Verlag.

  15. Virulence of oomycete pathogens from Phragmites australis-invaded and noninvaded soils to seedlings of wetland plant species.

    Science.gov (United States)

    Crocker, Ellen V; Karp, Mary Ann; Nelson, Eric B

    2015-06-01

    Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species.

  16. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  17. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    Science.gov (United States)

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  18. Impact of non-native plant removal on lizards in riparian habitats in the southwestern United States

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell

    2008-01-01

    Many natural processes in the riparian cottonwood (Populus deltoides) forest of the Middle Rio Grande (MRG) in the southwestern United States have been disrupted or altered, allowing non-native plants such as saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) to establish. We investigated...

  19. Nonnative invasive plants in the Penobscot Experimental Forest in Maine, USA: influence of site, silviculture, and land use history

    Science.gov (United States)

    Elizabeth Olson; Laura S. Kenefic; Alison C. Dibble; John C. Brissette

    2011-01-01

    We investigated the occurrence of nonnative invasive plants on approximately 175 ha comprising a long-term, 60-year-old U.S. Forest Service silvicultural experiment and old-field stands in the Penobscot Experimental Forest (PEF) in central Maine. Stands in the silvicultural experiment were never cleared for agriculture, but have been repeatedly partially cut. Our...

  20. Cognitive and Emotional Evaluation of Two Educational Outdoor Programs Dealing with Non-Native Bird Species

    Science.gov (United States)

    Braun, Michael; Buyer, Regine; Randler, Christoph

    2010-01-01

    "Non-native organisms are a major threat to biodiversity". This statement is often made by biologists, but general conclusions cannot be drawn easily because of contradictory evidence. To introduce pupils aged 11-14 years to this topic, we employed an educational program dealing with non-native animals in Central Europe. The pupils took part in a…

  1. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Lucy G Anderson

    Full Text Available Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts; and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS as the tourism and outdoor recreation sectors grow.

  2. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Anderson, Lucy G; Rocliffe, Steve; Haddaway, Neal R; Dunn, Alison M

    2015-01-01

    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow.

  3. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion.

    Science.gov (United States)

    Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M

    2016-09-01

    Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion

  4. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    Science.gov (United States)

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  5. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    Science.gov (United States)

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  6. Rapid genetic adaptation precedes the spread of an exotic plant species.

    Science.gov (United States)

    Vandepitte, Katrien; de Meyer, Tim; Helsen, Kenny; van Acker, Kasper; Roldán-Ruiz, Isabel; Mergeay, Joachim; Honnay, Olivier

    2014-05-01

    Human activities have increasingly introduced plant species far outside their native ranges under environmental conditions that can strongly differ from those originally met. Therefore, before spreading, and potentially causing ecological and economical damage, non-native species may rapidly evolve. Evidence of genetically based adaptation during the process of becoming invasive is very scant, however, which is due to the lack of knowledge regarding the historical genetic makeup of the introduced populations and the lack of genomic resources. Capitalizing on the availability of old non-native herbarium specimens, we examined frequency shifts in genic SNPs of the Pyrenean Rocket (Sisymbrium austriacum subsp. chrysanthum), comparing the (i) native, (ii) currently spreading non-native and (iii) historically introduced gene pool. Results show strong divergence in flowering time genes during the establishment phase, indicating that rapid genetic adaptation preceded the spread of this species and possibly assisted in overcoming environmental constraints.

  7. Determination of the acute toxicity of Supaverm® to native and nonnative fish species of southwestern watersheds in static exposures

    Science.gov (United States)

    Schreier, Theresa M.; Hubert, Terrance D.

    2017-01-01

    Many fishes native to the Gila River Basin, Arizona, are on the decline with about 70 percent of the 17 fish species Federally listed as endangered or threatened. The decline has been partly attributed to the introduction of nonnative fishes that are of recreational interest such as catfish and smallmouth bass. Effective management practices are needed to control the nuisance nonnative fishes in Southwestern United States watersheds to prevent further decline of the native species and facilitate their restoration. An effective approach is the use of chemical toxicants to control the nuisance species. One chemical mixture of interest, Supaverm®, a combination of mebendazole and closantel, has been reported to show selectivity toward nonnative fish species of concern. We conducted acute toxicity tests on native and nonnative fish species of the Gila River (Arizona). Our findings showed that Supaverm® was not selectively toxic to the nonnative fish species suggesting that the use of the chemical mixture to eradicate those fish would not be effective.

  8. Sediment composition mediates the invasibility of aquatic ecosystems by a non-native Poaceae species

    Directory of Open Access Journals (Sweden)

    José Vitor Botter Fasoli

    2015-06-01

    Full Text Available Aim: To test the invasibility of aquatic ecosystems by an exotic species, we used the invasive macrophyte Urochloa arrecta, which has invaded many Neotropical waterbodies and has reduced biodiversity in these habitats. The extensive growth of this macrophyte can be related to its affinity for mud-rich sediments, which occur primarily in secondary river channels and lentic habitats.MethodsTo test this hypothesis, we cultivated U. arrecta in trays with different percentages of mud and we measured the sprout length and biomass of the plants after 75 days.ResultsOur results showed a positive and significant relationship between sediment mud percentage and nitrogen, phosphorus and organic matter. Both plant length and biomass increased significantly and continuously with increasing mud content, indicating that the growth of this species is not limited even at the highest levels of mud, which is shown to be toxic for other species of macrophytes. Thus, it is probable that sand-rich sites, such as river shores, are less vulnerable to invasion by this species than relatively mud-rich sites, such as lakes.ConclusionsThis finding indicates that relatively mud-rich ecosystems should be prioritised in monitoring programs to prevent invasion by this species. In addition, the slow development of this species in sandy sediments opens a potential window for its management, at least on small spatial scales. However, despite the reduced growth of U. arrecta in sand-rich sediments, this grass is able to grow in several types of sediments, which explains its spread in a variety of habitats in Neotropical freshwater ecosystems.

  9. Comparison of Leaf Breakdown for Native and Non-native Riparian Species in Streams Draining Urban, Agricultural, and Forested Land Cover.

    Science.gov (United States)

    Powers, M. D.; Benfield, E. F.

    2005-05-01

    Organic matter breakdown rates in streams vary among riparian tree species and are dependent on a variety of in-stream biological, chemical, and physical factors. These factors and the composition and distribution of riparian vegetation are changed by anthropogenic modification of the landscape. This may result in altered energy flow through stream ecosystems that is reflected in changes in organic matter input and breakdown. The goal of this study was to compare leaf breakdown rates between a native (box elder, Acer negundo) and non-native (weeping willow, Salix babylonica) species among three land cover categories: urban, agricultural, and forested. We conducted this study over 14 weeks in 13 streams near Roanoke, Virginia. Box elder occurs naturally along disturbed riparian corridors in this region, while weeping willow has been actively planted for its aesthetic value. Our results indicate weeping willow breakdown rates were faster than box elder across all land cover categories. Breakdown rates for both species were slowest in the urban streams, intermediate in agricultural streams, and fastest in forested streams.

  10. Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands.

    Science.gov (United States)

    Duchicela, Jessica; Vogelsang, Keith M; Schultz, Peggy A; Kaonongbua, Wittaya; Middleton, Elizabeth L; Bever, James D

    2012-10-01

    • Soil aggregate stability is an important ecosystem property that is altered by anthropogenic disturbance. Yet, the generalization of these alterations and the identification of the main contributors are limited by the absence of cross-site comparisons and the application of inconsistent methodologies across regions. • We assessed aggregate stability in paired remnant and post-disturbance grasslands across California, shortgrass and tallgrass prairies, and in manipulative experiments of plant composition and soil microbial inoculation. • Grasslands recovering from anthropogenic disturbance consistently had lower aggregate stability than remnants. Across all grasslands, non-native plant diversity was significantly associated with reduced soil aggregate stability. A negative effect of non-native plants on aggregate stability was also observed in a mesocosm experiment comparing native and non-native plants from California grasslands. Moreover, an inoculation study demonstrated that the degradation of the microbial community also contributes to the decline in soil aggregate stability in disturbed grasslands. • Anthropogenic disturbance consistently reduced water-stable aggregates. The stability of aggregates was reduced by non-native plants and the degradation of the native soil microbial community. This latter effect might contribute to the sustained decline in aggregate stability following anthropogenic disturbance. Further exploration is advocated to understand the generality of these potential mechanisms.

  11. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    Science.gov (United States)

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  12. Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new North American species, Tuber arnoldianum sp. nov.

    Science.gov (United States)

    Healy, Rosanne A; Zurier, Hannah; Bonito, Gregory; Smith, Matthew E; Pfister, Donald H

    2016-10-01

    During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees.

  13. The public and professionals reason similarly about the management of non-native invasive species: a quantitative investigation of the relationship between beliefs and attitudes.

    Directory of Open Access Journals (Sweden)

    Anke Fischer

    Full Text Available Despite continued critique of the idea of clear boundaries between scientific and lay knowledge, the 'deficit-model' of public understanding of ecological issues still seems prevalent in discourses of biodiversity management. Prominent invasion biologists, for example, still argue that citizens need to be educated so that they accept scientists' views on the management of non-native invasive species. We conducted a questionnaire-based survey with members of the public and professionals in invasive species management (n = 732 in Canada and the UK to investigate commonalities and differences in their perceptions of species and, more importantly, how these perceptions were connected to attitudes towards species management. Both native and non-native mammal and tree species were included. Professionals tended to have more extreme views than the public, especially in relation to nativeness and abundance of a species. In both groups, species that were perceived to be more abundant, non-native, unattractive or harmful to nature and the economy were more likely to be regarded as in need of management. While perceptions of species and attitudes towards management thus often differed between public and professionals, these perceptions were linked to attitudes in very similar ways across the two groups. This suggests that ways of reasoning about invasive species employed by professionals and the public might be more compatible with each other than commonly thought. We recommend that managers and local people engage in open discussion about each other's beliefs and attitudes prior to an invasive species control programme. This could ultimately reduce conflict over invasive species control.

  14. The public and professionals reason similarly about the management of non-native invasive species: a quantitative investigation of the relationship between beliefs and attitudes.

    Science.gov (United States)

    Fischer, Anke; Selge, Sebastian; van der Wal, René; Larson, Brendon M H

    2014-01-01

    Despite continued critique of the idea of clear boundaries between scientific and lay knowledge, the 'deficit-model' of public understanding of ecological issues still seems prevalent in discourses of biodiversity management. Prominent invasion biologists, for example, still argue that citizens need to be educated so that they accept scientists' views on the management of non-native invasive species. We conducted a questionnaire-based survey with members of the public and professionals in invasive species management (n = 732) in Canada and the UK to investigate commonalities and differences in their perceptions of species and, more importantly, how these perceptions were connected to attitudes towards species management. Both native and non-native mammal and tree species were included. Professionals tended to have more extreme views than the public, especially in relation to nativeness and abundance of a species. In both groups, species that were perceived to be more abundant, non-native, unattractive or harmful to nature and the economy were more likely to be regarded as in need of management. While perceptions of species and attitudes towards management thus often differed between public and professionals, these perceptions were linked to attitudes in very similar ways across the two groups. This suggests that ways of reasoning about invasive species employed by professionals and the public might be more compatible with each other than commonly thought. We recommend that managers and local people engage in open discussion about each other's beliefs and attitudes prior to an invasive species control programme. This could ultimately reduce conflict over invasive species control.

  15. First recording of the non-native species Beroe ovata Mayer 1912 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    T.A. SHIGANOVA

    2007-06-01

    Full Text Available A new alien species Beroe ovata Mayer 1912 was recorded in the Aegean Sea. It is most likely that this species spread on the currents from the Black Sea. Beroe ovata is also alien to the Black Sea, where it was introduced in ballast waters from the Atlantic coastal area of the northern America. The species is established in the Black Sea and has decreased the population of another invaderMnemiopsis leidyi, which has favoured the recovery of the Black Sea ecosystem.We compare a new 1 species with the native species fam. Beroidae from the Mediterranean and predict its role in the ecosystem of the Aegean Sea using the Black Sea experience.

  16. First recording of the non-native species Beroe ovata Mayer 1912 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    T.A. SHIGANOVA

    2012-12-01

    Full Text Available A new alien species Beroe ovata Mayer 1912 was recorded in the Aegean Sea. It is most likely that this species spread on the currents from the Black Sea. Beroe ovata is also alien to the Black Sea, where it was introduced in ballast waters from the Atlantic coastal area of the northern America. The species is established in the Black Sea and has decreased the population of another invaderMnemiopsis leidyi, which has favoured the recovery of the Black Sea ecosystem.We compare a new 1 species with the native species fam. Beroidae from the Mediterranean and predict its role in the ecosystem of the Aegean Sea using the Black Sea experience.

  17. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  18. Assessing the impact of non-native freshwater fishes on native species using relative weight

    Directory of Open Access Journals (Sweden)

    Giannetto D.

    2012-01-01

    Full Text Available The aim of the research was to test relative weight (Wr, a condition index which allows evaluation of fish well-being, as a tool to investigate the impact of the presence of non native species (NNS on the condition of the key native species (NS of the Tiber River basin (Italy: Barbustyberinus Bonaparte, Leuciscus cephalus (Linnaeus, Leuciscus lucumonis Bianco, Rutilus rubilio (Bonaparte and Telestes muticellus (Bonaparte. By means of Canonical Correlation Analysis, data from 130 sampling sites, distributed throughout Tiber River basin, were examined. Wr of NS was related to densities of NNS and to environmental variables. Moreover, the correlation between Wr of NS and density of NNS was investigated through linear regression analysis and covariance analysis. Preliminary results encourage the use of Wr as a tool to assess the relationship between NS and ecological factors (such as the presence of NNS and to explain the changes that occur along the longitudinal gradient of a river.

  19. 2014 Invasive Non-Native Plant Inventory Middle Mississippi River National Wildlife Refuge Final Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A report detailing the methods and results of an invasive plant inventory in May of 2014 that inventoried 611 acres of the refuge. A total of 1,944 invasive plant...

  20. When Anthropogenic River Disturbance Decreases Hybridisation between Non-Native and Endemic Cyprinids and Drives an Ecomorphological Displacement towards Juvenile State in Both Species.

    Directory of Open Access Journals (Sweden)

    Emmanuel Corse

    Full Text Available Understanding the impact of non-native species on native species is a major challenge in molecular ecology, particularly for genetically compatible fish species. Invasions are generally difficult to study because their effects may be confused with those of environmental or human disturbances. Colonized ecosystems are differently impacted by human activities, resulting in diverse responses and interactions between native and non-native species. We studied the dynamics between two Cyprinids species (invasive Chondrostoma nasus and endemic Parachondrostoma toxostoma and their hybrids in 16 populations (from allopatric to sympatric situations and from little to highly fragmented areas corresponding to 2,256 specimens. Each specimen was assigned to a particular species or to a hybrid pool using molecular identification (cytochrome b and 41 microsatellites. We carried out an ecomorphological analysis based on size, age, body shape, and diet (gut vacuity and molecular fecal contents. Our results contradicted our initial assumptions on the pattern of invasion and the rate of introgression. There was no sign of underperformance for the endemic species in areas where hybridisation occurred. In the unfragmented zone, the introduced species was found mostly downstream, with body shapes similar to those in allopatric populations while both species were found to be more insectivorous than the reference populations. However, high level of hybridisation was detected, suggesting interactions between the two species during spawning and/or the existence of hybrid swarm. In the disturbed zone, introgression was less frequent and slender body shape was associated with diatomivorous behaviour, smaller size (juvenile characteristics and greater gut vacuity. Results suggested that habitat degradation induced similar ecomorphological trait changes in the two species and their hybrids (i.e. a transition towards a pedomorphic state where the invasive species is more

  1. Positive Effects of Nonnative Invasive Phragmites australis on Larval Bullfrogs

    OpenAIRE

    Mary Alta Rogalski; David Kiernan Skelly

    2012-01-01

    BACKGROUND: Nonnative Phragmites australis (common reed) is one of the most intensively researched and managed invasive plant species in the United States, yet as with many invasive species, our ability to predict, control or understand the consequences of invasions is limited. Rapid spread of dense Phragmites monocultures has prompted efforts to limit its expansion and remove existing stands. Motivation for large-scale Phragmites eradication programs includes purported negative impacts on na...

  2. 2011 Invasive Non-native Plant Inventory : Alligator National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The presence of invasive species at Alligator River NWR threatens many of the resources the refuge is tasked with protecting. Alligator River NWR has an extensive...

  3. 2011 Invasive Non-native Plant Inventory : Silvia O. Conte National Fish and Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The presence of invasive species at Silvio O. Conte NFWR threatens many of the resources and habitats that the refuge is tasked with protecting. Both the wetlands...

  4. 2011 Invasive Non-native Plant Inventory : Quivira National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The presence of invasive species at Quivira NWR threatens many of the resources and habitats that the refuge is tasked with protecting. Both the wetlands and prairie...

  5. Non-native fishes in Florida freshwaters: a literature review and synthesis

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.

    2015-01-01

    Non-native fishes have been known from freshwater ecosystems of Florida since the 1950s, and dozens of species have established self-sustaining populations. Nonetheless, no synthesis of data collected on those species in Florida has been published until now. We searched the literature for peer-reviewed publications reporting original data for 42 species of non-native fishes in Florida that are currently established, were established in the past, or are sustained by human intervention. Since the 1950s, the number of non-native fish species increased steadily at a rate of roughly six new species per decade. Studies documented (in decreasing abundance): geographic location/range expansion, life- and natural-history characteristics (e.g., diet, habitat use), ecophysiology, community composition, population structure, behaviour, aquatic-plant management, and fisheries/aquaculture. Although there is a great deal of taxonomic uncertainty and confusion associated with many taxa, very few studies focused on clarifying taxonomic ambiguities of non-native fishes in the State. Most studies were descriptive; only 15 % were manipulative. Risk assessments, population-control studies and evaluations of effects of non-native fishes were rare topics for research, although they are highly valued by natural-resource managers. Though some authors equated lack of data with lack of effects, research is needed to confirm or deny conclusions. Much more is known regarding the effects of lionfish (Pterois spp.) on native fauna, despite its much shorter establishment time. Natural-resource managers need biological and ecological information to make policy decisions regarding non-native fishes. Given the near-absence of empirical data on effects of Florida non-native fishes, and the lengthy time-frames usually needed to collect such information, we provide suggestions for data collection in a manner that may be useful in the evaluation and prediction of non-native fish effects.

  6. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  7. Plant species in the kilimanjaro agroforestry system

    Energy Technology Data Exchange (ETDEWEB)

    O' kting' ati, A.; Maghembe, J.A.; Fernandes, E.C.M.; Weaver, G.H.

    1984-01-01

    An inventory of plant species was conducted on 30 farms, farm boundaries and homesteads in 6 villages in Hai District on the slopes of Mt. Kilimanjaro, Tanzania. Of 111 plant species identified, 53 were tree species, 29 food crop species, 21 non-woody plants of economic value and 8 weed species. Information on uses was obtained through interviews with farmers. Useful plants (most with 2 or more uses) were carefully chosen and closely intercropped on the same unit of land. Of the tree species, 90% were used for fuelwood, 30% for medicines, 25% for poles, 24% for shade, 23% for timber and 10% for fodder. These, and food, were the most important plant uses.

  8. Laboratory and field validation of a simple method for detecting four species of non-native freshwater fish using eDNA.

    Science.gov (United States)

    Davison, P I; Créach, V; Liang, W-J; Andreou, D; Britton, J R; Copp, G H

    2016-09-01

    This paper presents the first phase in the development and validation of a simple and reliable environmental (e)DNA method using conventional PCR to detect four species of non-native freshwater fish: pumpkinseed Lepomis gibbosus, sunbleak Leucaspius delineatus, fathead minnow Pimephales promelas and topmouth gudgeon Pseudorasbora parva. The efficacy of the approach was demonstrated in indoor tank (44 l) trials in which all four species were detected within 24 h. Validation was through two field trials, in which L. gibbosus was detected 6-12 h after its introduction into outdoor experimental ponds and P. parva was successfully detected in disused fish rearing ponds where the species was known to exist. Thus, the filtration of small (30 ml) volumes of pond water was sufficient to capture fish eDNA and the approach emphasised the importance of taking multiple water samples of sufficient spatial coverage for detecting species of random or patchy distribution.

  9. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    Science.gov (United States)

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  10. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  11. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  12. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  13. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Directory of Open Access Journals (Sweden)

    Rachel D Simons

    Full Text Available Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  14. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Science.gov (United States)

    Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon

    2016-01-01

    Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  15. Historic land use influences contemporary establishment of invasive plant species.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  16. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  17. Non-native molluscan colonizers on deliberately placed shipwrecks in the Florida Keys, with description of a new species of potentially invasive worm-snail (Gastropoda: Vermetidae)

    Science.gov (United States)

    Granados-Cifuentes, Camila; Rawlings, Timothy A.; Sierwald, Petra; Collins, Timothy M.

    2017-01-01

    Artificial reefs created by deliberately sinking ships off the coast of the Florida Keys island chain are providing new habitat for marine invertebrates. This newly developing fouling community includes the previously reported invasive orange tube coral Tubastraea coccinea and the non-native giant foam oyster Hyotissa hyotis. New SCUBA-based surveys involving five shipwrecks spanning the upper, middle, and lower Florida Keys, show T. coccinea now also established in the lower Keys and H. hyotis likewise extending to new sites. Two additional mollusks found on the artificial reefs, the amathinid gastropod Cyclothyca pacei and gryphaeid oyster Hyotissa mcgintyi, the latter also common in the natural reef areas, are discussed as potentially non-native. A new species of sessile, suspension-feeding, worm-snail, Thylacodes vandyensis Bieler, Rawlings & Collins n. sp. (Vermetidae), is described from the wreck of the USNS Vandenberg off Key West and discussed as potentially invasive. This new species is compared morphologically and by DNA barcode markers to other known members of the genus, and may be a recent arrival from the Pacific Ocean. Thylacodes vandyensis is polychromatic, with individuals varying in both overall head-foot coloration and mantle margin color pattern. Females brood stalked egg capsules attached to their shell within the confines of their mantle cavity, and give rise to crawl-away juveniles. Such direct-developing species have the demonstrated capacity for colonizing habitats isolated far from their native ranges and establishing rapidly growing founder populations. Vermetid gastropods are common components of the marine fouling community in warm temperate and tropical waters and, as such, have been tagged as potentially invasive or with a high potential to be invasive in the Pacific Ocean. As vermetids can influence coral growth/composition in the Pacific and have been reported serving as intermediate hosts for blood flukes of loggerhead turtles

  18. An iterative and targeted sampling design informed by habitat suitability models for detecting focal plant species over extensive areas.

    Science.gov (United States)

    Wang, Ophelia; Zachmann, Luke J; Sesnie, Steven E; Olsson, Aaryn D; Dickson, Brett G

    2014-01-01

    Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales. Habitat suitability models of five species were based on occurrence records and predictor variables derived from topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide detection data. The sampling methods

  19. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer (Odocoileus virginianus) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km(2), and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m(2) quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs (Eurybia divaricata, Maianthemum racemosum, Polygonatum pubescens and Trillium recurvatum) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  20. New mite species associated with certain plant species from Guam

    Directory of Open Access Journals (Sweden)

    Gadi V.P. Reddy

    2011-04-01

    Full Text Available Several new mite species have been reported from certain plants from Guam. Most remarkably, the spider mite, Tetranychus marianae (Prostigmata: Tetranychidae and the predatory mite Phytoseius horridus (Mesostigmata: Phytoseiidae (Solanum melongena have been found on eggplant. The noneconomically important species of Brevipalpus californicus(Banks Prostigmata: Tenuipalpidae,Eupodes sp. (Acarina: Eupodidae and predator Cunaxa sp. (Prostigmata: Cunaxidae have been reported on guava (Psidium guajava L.. Also, the non-economically important species Brevipalpus californicus Prostigmata: Tenuipalpidae, Lepidoglyphus destructor (Astigmata: Glycyphagidae and a predator Amblyseius obtusus, species group Amblyseius near lentiginosus (Mesostigmata: Phytoseiidae, have been recorded on cycad (Cycas micronesica.

  1. Food sources of dominant macrozoobenthos between native and non-native mangrove forests: A comparative study

    Science.gov (United States)

    Chen, Luzhen; Yan, Ting; Xiong, Yiyi; Zhang, Yihui; Lin, Guanghui

    2017-03-01

    The macrozoobenthos is an important link of the food web in coastal wetlands. Diet-habitat relationships may significantly depend on qualitative differences and seasonal availability of food sources. Increasing interest has been shown in food web structure altered by non-native plants. In particular, however, a non-native mangrove species from Bangladesh, Sonneratia apetala, has been widely planted in China, but little is known about its possible impact on food sources of macrozoobenthos living in these non-native mangrove forests. Therefore, in this study, we used fatty acid analysis to compare the food sources of one littorinid snail and two grapsid crab species between two native mangrove forests and one non-native S. apetala plantation in the Zhanjiang Mangrove National Nature Reserve of China. We found that the sediment of all three forests had high diatom and bacteria signals, but low mangrove leaf signals, while the opposite patterns were detected in the three macrozoobenthos. Specifically, the gastropod Littoraria melanostoma relied mainly on mangrove leaves and brown algae as food sources, with significant differences among the three mangrove forests, and showed significant seasonal variation in its diet. The grapsidae species (Perisesarma bidens and Parasesarma plicatum) mainly grazed on mangrove litter, brown and green algae, and occasionally consumed diatoms and bacteria, also showing significant seasonal variation in their diet. Overall, Principle Components Analysis (PCA) of the fatty acid profiles showed a significant overlapping in food sources among the macrozoobenthos living in the non-native and native mangrove forests, but significant seasonal variations in their food sources. This suggests that the planting of non-native S. apetala near original mangrove forests has had little effect on the feeding behavior of macrozoobenthos some 10 years after planting.

  2. Invasive forest species

    Science.gov (United States)

    Barbara L. Illman

    2006-01-01

    Nonnative organisms that cause a major change to native ecosystems-once called foreign species, biological invasions, alien invasives, exotics, or biohazards–are now generally referred to as invasive species or invasives. invasive species of insects, fungi, plants, fish, and other organisms present a rising threat to natural forest ecosystems worldwide. Invasive...

  3. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    Science.gov (United States)

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  4. Evidence for electrotropism in some plant species.

    Science.gov (United States)

    Gorgolewski, S; Rozej, B

    2001-01-01

    The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Fine-scale determinants of conservation value of river reaches in a hotspot of native and non-native species diversity.

    Science.gov (United States)

    Maceda-Veiga, Alberto; Baselga, Andrés; Sousa, Ronaldo; Vilà, Montserrat; Doadrio, Ignacio; de Sostoa, Adolfo

    2017-01-01

    Global freshwater biodiversity is declining at unprecedented rates while non-native species are expanding. Examining diversity patterns across variable river conditions can help develop better management strategies. However, many indicators can be used to determine the conservartion value of aquatic communities, and little is known of how well they correlate to each other in making diagnostics, including when testing for the efficacy of protected areas. Using an extensive data set (99,700km(2), n=530 sites) across protected and unprotected river reaches in 15 catchments of NE Spain, we examine correlations among 20 indicators of conservation value of fish communities, including the benefits they provide to birds and threatened mammals and mussels. Our results showed that total native fish abundance or richness correlated reasonably well with many native indicators. However, the lack of a strong congruence led modelling techniques to identify different river attributes for each indicator of conservation value. Overall, tributaries were identified as native fish refugees, and nutrient pollution, salinization, low water velocity and poor habitat structure as major threats to the native biota. We also found that protected areas offered limited coverage to major components of biodiversity, including rarity, threat and host-parasite relationships, even though values of non-native indicators were notably reduced. In conclusion, restoring natural hydrological regimes and water chemical status is a priority to stem freshwater biodiversity loss in this region. A complementary action can be the protection of tributaries, but more studies examining multiple components of diversity are necessary to fully test their potential as fluvial reserves in Mediterranean climate areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Biosecurity and vector behaviour: evaluating the potential threat posed by anglers and canoeists as pathways for the spread of invasive non-native species and pathogens.

    Science.gov (United States)

    Anderson, Lucy G; White, Piran C L; Stebbing, Paul D; Stentiford, Grant D; Dunn, Alison M

    2014-01-01

    Invasive non-native species (INNS) endanger native biodiversity and are a major economic problem. The management of pathways to prevent their introduction and establishment is a key target in the Convention on Biological Diversity's Aichi biodiversity targets for 2020. Freshwater environments are particularly susceptible to invasions as they are exposed to multiple introduction pathways, including non-native fish stocking and the release of boat ballast water. Since many freshwater INNS and aquatic pathogens can survive for several days in damp environments, there is potential for transport between water catchments on the equipment used by recreational anglers and canoeists. To quantify this biosecurity risk, we conducted an online questionnaire with 960 anglers and 599 canoeists to investigate their locations of activity, equipment used, and how frequently equipment was cleaned and/or dried after use. Anglers were also asked about their use and disposal of live bait. Our results indicate that 64% of anglers and 78.5% of canoeists use their equipment/boat in more than one catchment within a fortnight, the survival time of many of the INNS and pathogens considered in this study and that 12% of anglers and 50% of canoeists do so without either cleaning or drying their kit between uses. Furthermore, 8% of anglers and 28% of canoeists had used their equipment overseas without cleaning or drying it after each use which could facilitate both the introduction and secondary spread of INNS in the UK. Our results provide a baseline against which to evaluate the effectiveness of future biosecurity awareness campaigns, and identify groups to target with biosecurity awareness information. Our results also indicate that the biosecurity practices of these groups must improve to reduce the likelihood of inadvertently spreading INNS and pathogens through these activities.

  7. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  8. Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Rydlova, J.; Vosatka, M. [Academy of Science. Pruhonice (Czech Republic). Inst. of Botany

    2001-07-01

    Among plants colonizing mine spoil banks in Northern Bohemia the first colonizers, mainly ruderal annuals from Chenopodiaceae and Brassicaceae were found not to be associated with arbuscular mycorrhizal fungi (AMF). These species cultivated in pots with soil from four sites in different succession stages of the spoil bank did not respond to the presence of native or non-native AMF. All grass species studied (Elytrigia repens, Calamagrostis epigejos and Arrhenatherum elatius) were found moderately colonized in the field. Carduus acanthoides was found to be highly colonized in the field; however, it did not show growth response to AMF in the pot experiment. The AMF native in four sites on the spoil banks showed high infectivity but low effectiveness in association with colonizing plants compared to the non-native isolate G. fistulosum BEG23. In general, dependence on AMF in the cultivation experiment was rather low, regardless of the fact that plants were found to be associated with AMF either in the field or in pots. Occurrence and effectiveness of mycorrhizal associations might relate primarily to the mycotrophic status of each plant species rather than to the age of the spoil bank sites studied.

  9. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  10. Egyptian plant species as new ozone indicators.

    Science.gov (United States)

    Madkour, Samia A; Laurence, J A

    2002-01-01

    The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).

  11. Egyptian plant species as new ozone indicators

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, S.A.; Laurence, J.A

    2002-12-01

    Of more than 30 species of plants from Egypt screened for sensitivity to ozone, four were found to be suitable for use as bioindicators. - The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O{sub 3}). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O{sub 3} levels in urban and rural sites. Four plant species were found to be more sensitive to O{sub 3} than the universally used O{sub 3}-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O{sub 3} injury symptoms faster and at lower O{sub 3} concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O{sub 3} response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g{sub s}) and net photosynthetic CO{sub 2} assimilation (P{sub net}). Pigment degradation was found to be unreliable in predicting species sensitivity to O{sub 3}. Evidence supporting stomatal conductance involvement in O{sub 3} tolerance was found only in tolerant species. A good correlation was found between g{sub s}, restriction of O{sub 3} and CO{sub 2} influx into the mesophyll tissues, and P{sub net}. Changes in P{sub net} seemed to depend largely on fluctuations in g{sub s}.

  12. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    Science.gov (United States)

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  13. Compound leaf development in model plant species.

    Science.gov (United States)

    Bar, Maya; Ori, Naomi

    2015-02-01

    Plant leaves develop in accordance with a common basic program, which is flexibly adjusted to the species, developmental stage and environment. Two key stages of leaf development are morphogenesis and differentiation. In the case of compound leaves, the morphogenesis stage is prolonged as compared to simple leaves, allowing for the initiation of leaflets. Here, we review recent advances in the understanding of how plant hormones and transcriptional regulators modulate compound leaf development, yielding a substantial diversity of leaf forms, focusing on four model compound leaf organisms: cardamine (Cardamine hirsuta), tomato (Solanum lycopersicum), medicago (Medicago truncatula) and pea (Pisum sativum).

  14. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  15. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  16. Historical assemblage distinctiveness and the introduction of widespread non-native species explain worldwide changes in freshwater fish taxonomic dissimilarity

    NARCIS (Netherlands)

    Toussaint, A.; Beauchard, O.; Oberdorff, T.; Brosse, S.; Villéger, S.

    2014-01-01

    Aim
    Taxonomic dissimilarity between assemblages can result from two processes - the replacement of species (turnover) and differences in richness - but it remains unclear how anthropogenic drivers (introductions and extirpations) affect these processes. Here, we investigate how historical pattern

  17. A new record of the non-native fish species Butis koilomatodon (Bleeker 1849 (Teleostei: Eleotridae for southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Riguel Feltrin Contente

    2016-05-01

    Full Text Available This work reports the second record of the Indo-Pacific invasive mud sleeper, Butis koilomatodon, for coastal São Paulo in southeastern Brazil, and represents the southernmost record for this species in the southwestern Atlantic Ocean. The risks of a potential invasion mediated by anthropogenic impacts on the area of occurrence are also discussed.

  18. Initial Survey Instructions for Invasive Plant Species Mapping and Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for Invasive Plant Species Mapping, 1.01a, and Invasive Plant Species Monitoring, 1.01b, at Fish Springs National Wildlife Refuge. These...

  19. Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.

    Science.gov (United States)

    Anderson, Lucy G; Dunn, Alison M; Rosewarne, Paula J; Stebbing, Paul D

    Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government's Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could 'clean' their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ(2) = 117.24, p water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns.

  20. Regional data refine local predictions: modeling the distribution of plant species abundance on a portion of the central plains.

    Science.gov (United States)

    Young, Nicholas E; Stohlgren, Thomas J; Evangelista, Paul H; Kumar, Sunil; Graham, Jim; Newman, Greg

    2012-09-01

    Species distribution models are frequently used to predict species occurrences in novel conditions, yet few studies have examined the consequences of extrapolating locally collected data to regional landscapes. Similarly, the process of using regional data to inform local prediction for species distribution models has not been adequately evaluated. Using boosted regression trees, we examined errors associated with extrapolating models developed with locally collected abundance data to regional-scale spatial extents and associated with using regional data for predictions at a local extent for a native and non-native plant species across the northeastern central plains of Colorado. Our objectives were to compare model results and accuracy between those developed locally and extrapolated regionally, those developed regionally and extrapolated locally, and to evaluate extending species distribution modeling from predicting the probability of presence to predicting abundance. We developed models to predict the spatial distribution of plant species abundance using topographic, remotely sensed, land cover and soil taxonomic predictor variables. We compared model predicted mean and range abundance values to observed values between local and regional. We also evaluated model prediction performance based on Pearson's correlation coefficient. We show that: (1) extrapolating local models to regional extents may restrict predictions, (2) regional data can help refine and improve local predictions, and (3) boosted regression trees can be useful to model and predict plant species abundance. Regional sampling designed in concert with large sampling frameworks such as the National Ecological Observatory Network may improve our ability to monitor changes in local species abundance.

  1. Density of red squirrels and their use of non-native tree species in the Rogów Arboretum

    Directory of Open Access Journals (Sweden)

    Krauze-Gryz Dagny

    2016-03-01

    Full Text Available The aim of the study was to compare the densities of red squirrel (Sciurus vulgaris in the arboretum and a neighbouring forest and to investigate which tree species the squirrels used. The study was conducted in the area of the Rogów Arboretum (53.76 ha and the so-called Zimna Woda and Wilczy Dół forest complexes (altogether 536 ha, all being part of an Experimental Forest Station in Rogów. The density of squirrels in the arboretum and the neighbouring forest was estimated and compared by means of snow tracks on transect routes. Changes in the abundance of squirrels throughout one year as well as their behaviour were determined on the basis of direct observations along transects running through the arboretum. More than half of the area of the arboretum was searched in order to record feeding signs of squirrels. Additionally, trees with bark stripping were recorded.

  2. New pasture plants intensify invasive species risk.

    Science.gov (United States)

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  3. The Language of Reactive Oxygen Species Signaling in Plants

    OpenAIRE

    2012-01-01

    Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear ...

  4. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (Hmax ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' Hmax , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of Hmax of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative Hmax of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not only

  5. Host heterogeneity influences the impact of a non-native disease invasion on populations of a foundation tree species

    Science.gov (United States)

    Jules, Erik S.; Carroll, Allyson L.; Garcia, Andrea M.; Steenbock, Christopher M.; Kauffman, Matthew J.

    2014-01-01

    Invasive pathogens are becoming increasingly important in forested ecosystems, yet they are often difficult to study because of their rapid transmission. The rate and extent of pathogen spread are thought to be partially controlled by variation in host characteristics, such as when host size and location influence susceptibility. Few host-pathogen systems, however, have been used to test this prediction. We used Port Orford cedar (Chamaecyparis lawsoniana), a foundation tree species in riparian areas of California and Oregon (USA), and the invasive oomycete Phytophthora lateralis to assess pathogen impacts and the role of host characteristics on invasion. Across three streams that had been infected for 13–18 years by P. lateralis, we mapped 2241 trees and determined whether they had been infected using dendrochronology. The infection probability of trees was governed by host size (diameter at breast height [DBH]) and geomorphic position (e.g., active channel, stream bank, floodplain, etc.) similarly across streams. For instance, only 23% of trees DBH were infected, while 69% of trees ≥20 cm DBH were infected. Presumably, because spores of P. lateralis are transported downstream in water, they are more likely to encounter well-developed root systems of larger trees. Also because of this water-transport of spores, differences in infection probability were found across the geomorphic positions: 59% of cedar in the active channel and the stream bank (combined) were infected, while 23% of trees found on higher geomorphic types were infected. Overall, 32% of cedar had been infected across the three streams. However, 63% of the total cedar basal area had been killed, because the greatest number of trees, and the largest trees, were found in the most susceptible positions. In the active channel and stream bank, 91% of the basal area was infected, while 46% was infected across higher geomorphic positions. The invasion of Port Orford cedar populations by

  6. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties.

    Science.gov (United States)

    Majewska, Marta L; Błaszkowski, Janusz; Nobis, Marcin; Rola, Kaja; Nobis, Agnieszka; Łakomiec, Daria; Czachura, Paweł; Zubek, Szymon

    In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.

  7. Suitability of California bay laurel and other species as hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle.

    Science.gov (United States)

    Albert (Bud) Mayfield; Martin MacKenzie; Philip G. Cannon; Steve Oak; Scott Horn; Jaesoon Hwang; Paul E. Kendra

    2013-01-01

    The redbay ambrosia beetle Xyleborus glabratus Eichhoff is a non-native vector of the pathogen that causes laurel wilt, a deadly disease of trees in the family Lauraceae in the southeastern U.S.A.Concern exists that X. glabratus and its fungal symbiont could be transported to the western U....

  8. Suitability of California bay laurel and other species as potential hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle

    Science.gov (United States)

    The redbay ambrosia beetle (Xyleborus glabratus Eichhoff) is a non-native invasive forest pest and vector of the pathogen that causes laurel wilt, a deadly disease of trees in the family Lauraceae in the southeastern United States (U.S.). Concern exists that X. glabratus and its fungal symbiont cou...

  9. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; Boer, de W.; Putten, van der W.H.

    2012-01-01

    Soil organisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soil organisms may promote plant species of characteristic habitats, and suppress plant species of disturbed habitats. We cl

  10. 78 FR 70103 - Endangered and Threatened Wildlife and Plants; Review of Native Species That are Candidates for...

    Science.gov (United States)

    2013-11-22

    ...) now dominate much of this species' range and have altered the fire regime by increasing the frequency of wildfire. Furthermore, nonnative annuals provide inconsistent forage quality for southern Idaho...; stream channelization; increased siltation associated with poor mining, logging, and...

  11. New pasture plants intensify invasive species risk

    Science.gov (United States)

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  12. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  13. Plant species diversity in a changing agricultural landscape: the ...

    African Journals Online (AJOL)

    Key words: Coffee plantation, plant species diversity, agroecosystem, vascular plants. Introduction. One of the ... Tbe livestock reared include cattle, goats, sheep, pigs and poultry. ... Assessment of trees, shrubs and grasses. Transects 500 m ...

  14. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  15. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  16. Phytoremediation applications in natural condition and in mesocosm: The uptake of cadmium by Lemna minuta Kunth, a non-native species in Italian watercourses.

    Science.gov (United States)

    Chiudioni, Filippo; Trabace, Teresa; Di Gennaro, Spartaco; Palma, Achille; Manes, Fausto; Mancini, Laura

    2017-04-03

    Metal pollution in water and soil is an environmental and public health issue. Cadmium (Cd) is included in the list of priority hazardous substances in the European Water Framework Directive. Phytoremediation system is a cost-effective, plant-based approach that takes advantage of the ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues. We studied the presence and the importance of an invasive species, such as Lemna minuta, in the environment and the effects of Cd pollution on this species. Growth, removal, and tolerance were evaluated for different Cd concentrations and different times of plant exposure. Overall, the results show that L. minuta has a good capacity of growth, metal bioconcentration, and tolerance up to 3 days of exposure at 0.5 and 1.5 mg L(-1) of Cd. In particular, L. minuta was able to accumulate Cd up to 3771 mg kg(-1) on dry mass basis. We can conclude that L. minuta possesses a great capability of Cd absorption and accumulation, thus supporting a potential use of this species in designing a metal bioremediation system in phytoremediation field.

  17. Binucleation to breed new plant species adaptable to their environments.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation.

  18. Features and distribution patterns of Chinese endemic seed plant species

    Institute of Scientific and Technical Information of China (English)

    Ji-Hong HUANG; Jian-Hua CHEN; Jun-Sheng YING; Ke-Ping MA

    2011-01-01

    We compiled and identified a list of Chinese. endemic seed plant species based on a large number of published References and expert reviews. The characters of these seed plant species and their distribution patterns were described at length. China is rich in endemic seed plants, with a total of 14 939 species (accounting for 52.1%of its total seed plant species) belonging to 1584 genera and 191 families. Temperate families and genera have a significantly higher proportion of endemism than cosmopolitan and tropical ones. The most primitive and derived groups have significantly higher endemism than the other groups. The endemism of tree, shrub, and liana or vine is higher than that of total species; in contrast, the endemism of herb is lower than that of total species. Geographically,these Chinese endemic plants are mainly distributed in Yunnan and Sichuan provinces, southwest China. Species richness and proportion of these endemic plants decrease with increased latitude and have a unimodal response to altitude. The peak value of proportion of endemism is at higher altitudes than that of total species and endemic species richness. The proportions of endemic shrub, liana or vine, and herb increase with altitude and have a clear unimodal curve. In contrast, the proportion of tree increases with altitude, with a sudden increase at~4000 m and has a completely different model. To date, our study provides the most comprehensive list of Chinese endemic seed plant species and their basic composition and distribution features.

  19. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  20. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    Science.gov (United States)

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  1. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    Directory of Open Access Journals (Sweden)

    Kellen Calinger

    Full Text Available Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0; Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1. Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  2. Positive effects of nonnative invasive Phragmites australis on larval bullfrogs.

    Directory of Open Access Journals (Sweden)

    Mary Alta Rogalski

    Full Text Available BACKGROUND: Nonnative Phragmites australis (common reed is one of the most intensively researched and managed invasive plant species in the United States, yet as with many invasive species, our ability to predict, control or understand the consequences of invasions is limited. Rapid spread of dense Phragmites monocultures has prompted efforts to limit its expansion and remove existing stands. Motivation for large-scale Phragmites eradication programs includes purported negative impacts on native wildlife, a view based primarily on observational results. We took an experimental approach to test this assumption, estimating the effects of nonnative Phragmites australis on a native amphibian. METHODOLOGY/PRINCIPAL FINDINGS: Concurrent common garden and reciprocal transplant field experiments revealed consistently strong positive influences of Phragmites on Rana catesbeiana (North American bullfrog larval performance. Decomposing Phragmites litter appears to contribute to the effect. CONCLUSIONS/SIGNIFICANCE: Positive effects of Phragmites merit further research, particularly in regions where both Phragmites and R. catesbeiana are invasive. More broadly, the findings of this study reinforce the importance of experimental evaluations of the effects of biological invasion to make informed conservation and restoration decisions.

  3. Plant growth regulation of Bt-cotton through Bacillus species

    OpenAIRE

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2013-01-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, wit...

  4. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  5. Native Plant Species Suitable for Ecological Restoration

    Science.gov (United States)

    2011-05-10

    Center The Dalles Research Facility Dallesport, WA Eau Galle Laboratory Spring Valley, WI Lewisville Aquatic Ecosystems Research Facility Lew isville, TX...of Agriculture . PLANTS data base. http://plants.usda.gov/  U.S. Department of Agriculture , Forest Service. Fire Effects Information System. http

  6. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  7. Phytophthora Species, New Threats to the Plant Health in Korea

    OpenAIRE

    Ik-Hwa Hyun; Woobong Choi

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries ...

  8. Status of vascular plant species on Hainan Island

    Directory of Open Access Journals (Sweden)

    Yukai Chen

    2016-08-01

    Full Text Available Maintaining plant diversity on tropical islands is a priority for biodiversity conservation. Hainan Island, located in the northern tropics, is the second largest island in China with high plant diversity. Several updated plant lists of local flora have been published after decades of field investigations. In this paper, we investigated the plant diversity on Hainan Island by conducting extensive field surveys and a literature review. Results indicated that, as of December 2015, there were 6,036 vascular plants recorded on Hainan Island with voucher specimens or practical materials. Among these species, 1,220 species were revised as synonymously, 4,579 species were wild (including 483 endemic and 512 rare and endangered species, 163 were naturalized species (including 57 invasive species and 1,294 species were cultivated species. Since the publication of Flora Hainanica in 1964–1977, a large proportion of newly recorded species were mainly wild or introduced species, and accounted for 35.9% and 75.9% of their corresponding totals, respectively.

  9. Determination of arsenic species in water, soils and plants

    Energy Technology Data Exchange (ETDEWEB)

    Mattusch, J.; Wennrich, R. [UFZ - Center for Environmental Research Leipzig / Halle, Department of Analytical Chemistry, Leipzig (Germany); Schmidt, A.C.; Reisser, W. [University of Leipzig, Institute of Botany, Leipzig (Germany)

    2000-01-01

    Ion chromatographic separation coupled with ICP-MS was used to determine arsenic species in plant and soil extracts. A scheme for growth, harvesting, sample pre-treatment and analysis was developed for the arsenic species to enable determination. Preliminary results obtained with ten herb plants grown on arsenic-contaminated soil compared to non-contaminated soil show a heterogeneous pattern of accumulation rate, metabolization and detoxification mechanisms in monocots and dicots. Arsenite appears to be the major component in plants with good growth. Organic arsenic species were even detected at very low concentrations (< 150 {mu}g kg{sup -1} (dry mass)). (orig.)

  10. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  11. Plant species persistence and turnover on small Bahamian islands.

    Science.gov (United States)

    Morrison, Lloyd W

    2003-06-01

    I conducted surveys of the plant species occupying 136 small islands in the Exuma Cays and 58 small islands near Andros, Bahamas. Most species occurred on relatively few islands, and most islands contained relatively few species. Identities of the most common species differed between the two archipelagos. Comparisons with earlier surveys revealed species extinctions and immigrations. Turnover was relatively low on both a per island and a per species basis on both archipelagos, although significant spatial variation in turnover rates between archipelagos was found. Most islands experienced no turnover; islands on which turnover did occur were larger and had higher species richness. Likewise, most species did not turnover, although much variation existed in turnover rates among those that did. Experimental introductions of two species to very small islands naturally devoid of vegetation revealed that these islands could support plant life. One species survived on eight of ten islands for >9 years, including the effects of a moderate (class 2) hurricane. This hurricane caused substantial damage and loss of plant biomass, but resulted in no species extinctions on 30 small islands. Data for the small islands in this region, now spanning almost a decade, reveal that most populations are persistent over periods of years to decades, rarely going extinct or immigrating. Even moderate hurricanes seem to have little impact on species compositions.

  12. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  13. Allelopathic Effects of Invasive Woody Plant Species in Hungary

    Directory of Open Access Journals (Sweden)

    CSISZÁR, Ágnes

    2009-01-01

    Full Text Available Allelopathy may play an important role in the invasion success of adventive plant species.The aim of this study was to determine the allelopathic potential of invasive woody plant species occurringin Hungary. Juglone index of fourteen invasive woody plant species in Hungary was determined by themethod of Szabó (1997, comparing the effects of juglone and substance extracted of plant species withunknown allelopathic potential on the germination rate, shoot length and rooth length of white mustard(Sinapis alba L. used as receiver species. Results have proven a more or less expressed allelopathicpotential in case of all species. The juglone index at higher concentration extracts (5 g dry plant materialextracted with 100 ml distilled water of almost every studied species approaches to 1 or is above 1, thismeans the effect of the extracts is similar to juglone or surpasses it. In terms of juglone index, theallelopathic potential of false indigo (Amorpha fruticosa L., tree-of-heaven (Ailanthus altissima (Mill.Swingle and hackberry (Celtis occidentalis L. were the highest. Besides these species the treatment withthe extracts of black walnut (Juglans nigra L., black cherry (Prunus serotina Ehrh. and green ash(Fraxinus pennsylvanica MARSH. var. subintegerrima (Vahl Fern. reduced extremely significantly thegermination rate, shoot and root length, compared to the control.

  14. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  15. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  16. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  17. 76 FR 55169 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on Five Petitions To List Seven...

    Science.gov (United States)

    2011-09-06

    ... excluding feral ungulates with fencing, managing weeds, and planting native species ( http://hawaii.gov/dlnr..., the DLNR is building a predator-proof fence to prevent nonnative species, such as cats and dogs that... feral ungulates, and the control of selected priority invasive plant species ( http://hawaii.gov/dlnr...

  18. an assessment of seed propagation of oilferous plant species with

    African Journals Online (AJOL)

    nb

    pedata grew luxuriously in all soil types while Jatropha curcas performed poorly ... recalcitrant and probably needed special attention and shortest storage time .... assess the effect of growth media on seed ..... Figure 4: Plant height of 4 plant species grown in 4 different soils 180 days .... utilize more light prior to leaf canopy.

  19. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  20. Binucleation to breed new plant species adaptable to their environments

    OpenAIRE

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial at...

  1. Invasive plants, insects, and diseases in the forests of the Anthropocene

    Science.gov (United States)

    Alexander M. Evans

    2014-01-01

    Invasive species, non-native plants, insects, and diseases can devastate forests. They outcompete native species, replace them in the ecosystem, and even drive keystone forest species to functional extinction. Invasives have negative effects on forest hydrology, carbon storage, and nutrient cycling. The damage caused by invasive species exacerbates the other forest...

  2. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P.; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  3. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  4. Plant species differences in particulate matter accumulation on leaf surfaces.

    Science.gov (United States)

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  5. Lignans from the plant species Achillea lingulata

    Directory of Open Access Journals (Sweden)

    SLOBODAN MILOSAVLJEVIC

    2003-05-01

    Full Text Available Five lignans with a 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane skeleton, epieudesmin, kobusin, pinoresinol, fargesin and sesartemin, were isolated from the aerial parts and roots of Achillea lingulata. Their structures were identified by comparison of their 1H-NMR and MS data to those in the literature. Fargesin and pinoresinol have not been isolated previously from any species of the genus Achillea.

  6. Resolving whether botanic gardens are on the road to conservation or a pathway for plant invasions.

    Science.gov (United States)

    Hulme, Philip E

    2015-06-01

    A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non-native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non-native species; the relative composition of threatened, ornamental, or invasive non-native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non-native plants occurred in one or more living collections (99%), less than one-quarter of red-listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non-native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non-native species (20) as red-listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non-native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10-fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future

  7. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.

  8. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    Science.gov (United States)

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  9. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  10. Preferential uptake of soil nitrogen forms by grassland plant species.

    Science.gov (United States)

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  11. Predicting species' maximum dispersal distances from simple plant traits.

    Science.gov (United States)

    Tamme, Riin; Götzenberger, Lars; Zobel, Martin; Bullock, James M; Hooftman, Danny A P; Kaasik, Ants; Pärtel, Meelis

    2014-02-01

    Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.

  12. Human disturbance and upward expansion of plants in a warming climate

    Science.gov (United States)

    Dainese, Matteo; Aikio, Sami; Hulme, Philip E.; Bertolli, Alessio; Prosser, Filippo; Marini, Lorenzo

    2017-08-01

    Climate change is expected to trigger an upward expansion of plants in mountain regions and, although there is strong evidence that many native species have already shifted their distributions to higher elevations, little is known regarding how fast non-native species might respond to climate change. By analysing 131,394 occurrence records of 1,334 plant species collected over 20 years in the European Alps, we found that non-natives are spreading upwards approximately twice as fast as natives. Whereas the spread of natives was enhanced by traits favouring longer dispersal distances, this was not the case for non-natives. This was due to the non-native species pool already being strongly biased towards species that had traits facilitating spread. A large proportion of native and non-native species seemed to be able to spread upwards faster than the current velocity of climate change. In particular, long-distance dispersal events and proximity to roads proved to be key drivers for the observed rapid spread. Our findings highlight that invasions by non-native species into native alpine communities are a potentially significant additional pressure on these vulnerable ecosystems that are already likely to suffer dramatic vegetation changes with ongoing warming and increasing human activity in mountain regions.

  13. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  14. Biodiversity of Asterina species on Neotropical host plants: new species and records from Panama.

    Science.gov (United States)

    Hofmann, T A; Piepenbring, M

    2011-01-01

    Two new species of the genus Asterina are described from living leaves collected in provinces Chiriquí and Bocas del Toro in western Panama. Asterina alloplecti on Alloplectus ichtyoderma (Gesneriaceae) differs from other Asterina on Gesneriaceae by its stalked appressoria and host relationship. Asterina compsoneurae on Compsoneura sprucei (Myristicaceae) can be distinguished from other members of Asterina on Myristicaceae by its larger ascomata, larger, prominently spinose ascospores and host relationship. New records for Panama are Asterina corallopoda from a new host plant species (Solanum trizygum, Solanaceae), A. diplopoda, A. ekmanii from a new host plant species (Gonzalagunia rudis, Rubiaceae), A. siphocampyli from a new host plant genus and species (Burmeistera vulgaris, Campanulaceae) and A. styracina from a new host-plant species (Styrax argenteus, Styracaceae). This study increases the number of species of Asterina known for Panama from 12 to 19 and the number of Asterinaceae from 14 to 21. Asterina corallopoda, A. diplopoda, A. ekmanii, A. siphocampyli and A. styracina are illustrated for the first time. A phylogeny inferred from the analysis of LSU rDNA sequences of species of Asterina is presented. The diversity and host-plant patterns of known Neotropical species of Asterina are discussed.

  15. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  16. Metalaxyl toxicity, uptake, and distribution in several ornamental plant species.

    Science.gov (United States)

    Wilson, P C; Whitwell, T; Klaine, S J

    2001-01-01

    Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.

  17. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    Science.gov (United States)

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved.

  18. Comparative cross-species alternative splicing in plants.

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  19. The Language of Reactive Oxygen Species Signaling in Plants

    Directory of Open Access Journals (Sweden)

    Soumen Bhattacharjee

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of specific proteins or expression of genes by changing redox balance of the cell. The network of redox signals orchestrates metabolism for regulating energy production to utilization, interfering with primary signaling agents (hormones to respond to changing environmental cues at every stage of plant development. The oxidative lipid peroxidation products and the resulting generated products thereof (associated with stress and senescence also represent “biological signals,” which do not require preceding activation of genes. Unlike ROS-induced expression of genes, these lipid peroxidation products produce nonspecific response to a large variety of environmental stresses. The present review explores the specific and nonspecific signaling language of reactive oxygen species in plant acclamatory defense processes, controlled cell death, and development. Special emphasis is given to ROS and redox-regulated gene expression and the role of redox-sensitive proteins in signal

  20. Rare and endangered species of plants--the soviet side.

    Science.gov (United States)

    Elias, T S

    1983-01-07

    In late 1972, the Soviet Union embarked on a program to identify and document plant species that are threatened with extinction. Perhaps 2000 species in the Soviet Union are in need of monitoring or protective measures, while nearly 200 may be in immediate danger of extinction. Currently, the Soviet Union has an official, national list of endangered species, and each of the 15 republics has prepared a regional list. Once a revised national list is prepared, Soviet scientists hope that the Supreme Soviet will pass a law protecting those species. A corresponding law for endangered animals was passed in 1980.

  1. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  2. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  3. Rare and endangered plant species of the Chinese Altai Mountains

    Institute of Scientific and Technical Information of China (English)

    Marina; V.OLONOVA

    2010-01-01

    Altai (also named Altay in China) Mountain Country (Mountain System) is a unique natural region,located on the border between different floristic regimes of the Boreal and ancient Mediterranean sub-kingdoms,where distribution of plant species is actually limited. It is known to have sufficient endemic floral biodiversity in the Northern Asia. Many plants of Altai Mountain System need effective care and proper conservation measures for their survival and longer-term protection. Important Plant Area identified as the IUCN (the International Union for Conservation of Nature),specified criteria attract global attention for protection of floral biodiversity across the world. The records of 71 plant species from the Chinese Altai Mountains attributed to the criterion A and the dark conifer forests of Chinese Altai Mountains satisfied the criterion C,which may help qualify to fulfill the national obligation of the Convention on Biological Diversity.

  4. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae).

    Science.gov (United States)

    Starr, Julian R; Naczi, Robert F C; Chouinard, Brianna N

    2009-05-01

    We investigate the species discriminatory power of a subset of the proposed plant barcoding loci (matK, rbcL, rpoC1, rpoB, trnH-psbA) in Carex, a cosmopolitan genus that represents one of the three largest plant genera on earth (c. 2000 species). To assess the ability of barcoding loci to resolve Carex species, we focused our sampling on three of the taxonomically best-known groups in the genus, sections Deweyanae (6/8 species sampled), Griseae (18/21 species sampled), and Phyllostachyae (10/10 species sampled). Each group represents one of three major phylogenetic lineages previously identified in Carex and its tribe Cariceae, thus permitting us to evaluate the potential of DNA barcodes to broadly identify species across the tribe and to differentiate closely related sister species. Unlike some previous studies that have suggested that plant barcoding could achieve species identification rates around 90%, our results suggest that no single locus or multilocus barcode examined will resolve much greater than 60% of Carex species. In fact, no multilocus combination can significantly increase the resolution and statistical support (i.e., ≥ 70% bootstrap) for species than matK alone, even combinations involving the second most variable region, trnH-psbA. Results suggest that a matK barcode could help with species discovery as 47% of Carex taxa recently named or resolved within cryptic complexes in the past 25 years also formed unique species clusters in upgma trees. Comparisons between the nrDNA internal transcribed spacer region (ITS) and matK in sect. Phyllostachyae suggest that matK not only discriminates more species (50-60% vs. 25%), but it provides more resolved phylogenies than ITS. Given the low levels of species resolution in rpoC1 and rpoB (0-13%), and difficulties with polymerase chain reaction amplification and DNA sequencing in rbcL and trnH-psbA (alignment included), we strongly advocate that matK should be part of a universal plant barcoding system

  5. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  6. Rhizobia species: A Boon for "Plant Genetic Engineering".

    Science.gov (United States)

    Patel, Urmi; Sinha, Sarika

    2011-10-01

    Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. "Rhizobia mediated transformation technology."

  7. Cupriavidus plantarum sp. nov., a plant-associated species.

    Science.gov (United States)

    Estrada-de Los Santos, Paulina; Solano-Rodríguez, Roosivelt; Matsumura-Paz, Lucía Tomiko; Vásquez-Murrieta, María Soledad; Martínez-Aguilar, Lourdes

    2014-11-01

    During a survey of plant-associated bacteria in northeast Mexico, a group of 13 bacteria was isolated from agave, maize and sorghum plants rhizosphere. This group of strains was related to Cupriavidus respiraculi (99.4 %), but a polyphasic investigation based on DNA-DNA hybridization analysis, other genotypic studies and phenotypic features showed that this group of strains actually belongs to a new Cupriavidus species. Consequently, taking all the results together, the description of Cupriavidus plantarum sp. nov. is proposed.

  8. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  9. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  10. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  11. Plant antiherbivore defenses in Fabaceae species of the Chaco

    Directory of Open Access Journals (Sweden)

    T. E. Lima

    Full Text Available Abstract The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense – defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species, leaves (67%, and reproductive organs (56%. The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  12. Metal species involved in long distance metal transport in plants

    Science.gov (United States)

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  13. Species Richness in Relation to the Presence of Crop Plants in Families of Higher Plants

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-10-01

    Full Text Available Crop species richness and percentages of cultivated plants in 75 families comprisingmore than 220000 species were analyzed. Three major groups have been made. The first group is including the “big five” families with 10000 and more species in each. The second group comprises 50 families with more than thousand and up to 10000 species and finally the third group contains families with relatively high numbers of crop species. The percentage of cultivated species is various, from 0.16 to 7.25 in group 1, 0 to 7.24 in group 2 and 2.30 to 32.5 in group 3. The results show that there is a positive correlation (r = + 0.56 between number of crop plants and species diversity of the families.

  14. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies

    DEFF Research Database (Denmark)

    Kuebbing, Sara E; Patterson, Courtney M; Classen, Aimée T;

    2016-01-01

    To maximize limited conservation funds and prioritize management projects that are likely to succeed, accurate assessment of invasive nonnative species impacts is essential. A common challenge to prioritization is a limited knowledge of the difference between the impacts of a single nonnative spe...

  15. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  16. Multiple strategies for drought survival among woody plant species

    OpenAIRE

    Pivovaroff, AL; Pasquini, SC; De Guzman, ME; Alstad, KP; Stemke, JS; Santiago, LS

    2015-01-01

    © 2015 British Ecological Society Drought-induced mortality and regional dieback of woody vegetation are reported from numerous locations around the world. Yet within any one site, predicting which species are most likely to survive global change-type drought is a challenge. We studied the diversity of drought survival traits of a community of 15 woody plant species in a desert-chaparral ecotone. The vegetation was a mix of chaparral and desert shrubs, as well as endemic species that only occ...

  17. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  18. The effect of plant species on soil nitrogen mineralization

    NARCIS (Netherlands)

    Krift, van der A.J.; Berendse, F.

    2001-01-01

    1. To ascertain the influence of different plant species on nitrogen (N) cycling, we performed a long-term garden experiment with six grasses and five dicots with different potential growth rates, that are adapted to habitats with different nutrient supplies. We measured in situ N mineralization and

  19. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  20. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  1. Accumulation of K+ and Cs+ in Tropical Plant Species

    Science.gov (United States)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  2. The role of CVS (and FIA) data and genetic tests in assessing species vulnerability to invasive pests and changing climate

    Science.gov (United States)

    R.A. Sniezko; H.E. Lintz

    2017-01-01

    United States tree species and their associated ecosystems, managed forests, and urban plantings are increasingly vulnerable to non-native invasive pathogens and insects as well as effects associated with a changing climate. Some species, such as whitebark pine (Pinus albicaulis), have been proposed for listing under the Endangered Species Act. To...

  3. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  4. What role does plant physiology play in limiting species distribution?

    Science.gov (United States)

    De Kauwe, M. G.; Medlyn, B. E.; Beaumont, L.; Duursma, R.; Baumgartner, J.

    2015-12-01

    To predict vulnerability of tree species to changes in climate, we need to understand what processes are currently limiting their distributions. Although the limits to distribution is among the most fundamental of ecological questions, there are few studies that determine quantitatively which processes can explain observed distributions. Focusing on two contrasting Eucalypt species, a fast-growing coastal species (E. saligna) and a slower-growing inland species (E. sideroxylon), we examined to what extent plant physiological characteristics limit species distributions. The ecophysiology of both species has been extensively characterised in both controlled and field environments. We parameterised an ecosystem model (GDAY, Generic Decomposition and Yield) for both species, using the best available experimental data. We then used the model to predict the spatial distribution of productivity for these species in eastern Australia, and compared these predictions with the actual distributions. The results of this comparison allow us to identify where the distributions of these species are limited by physiological constraints on productivity, and consequently their vulnerability to changes in climate.

  5. Accidental introductions are an important source of invasive plants in the continental United States.

    Science.gov (United States)

    Lehan, Nora E; Murphy, Julia R; Thorburn, Lukas P; Bradley, Bethany A

    2013-07-01

    Preventing new plant invasions is critical for reducing large-scale ecological change. Most studies have focused on the deliberate introduction of nonnatives via the ornamental plant trade. However, accidental introduction may be an important source of nonnative, invasive plants. Using Web and literature searches, we compiled pathways of introduction to the United States for 1112 nonnative plants identified as invasive in the continental United States. We assessed how the proportion of accidentally and deliberately introduced invasive plants varies over time and space and by growth habit across the lower 48 states. Deliberate introductions of ornamentals are the primary source of invasive plants in the United States, but accidental introductions through seed contaminants are an important secondary source. Invasive forbs and grasses are the most likely to have arrived accidentally through seed contaminants, while almost all nonnative, invasive trees were introduced deliberately. Nonnative plants invading eastern states primarily arrived deliberately as ornamentals, while a high proportion of invasive plants in western states arrived accidentally as seed contaminants. Accidental introductions may be increasing in importance through time. Before 1850, 10 of 89 (11%) of invasive plants arrived accidentally. After 1900, 20 of 65 (31%) arrived accidentally. Recently enacted screening protocols and weed risk assessments aim to reduce the number of potentially invasive species arriving to the United States via deliberate introduction pathways. Increasing proportions of accidentally introduced invasive plants, particularly associated with contaminated seed imports across the western states, suggest that accidental introduction pathways also need to be considered in future regulatory decisions.

  6. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  7. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  8. Temporal introduction patterns of invasive alien plant species to Australia

    Directory of Open Access Journals (Sweden)

    Brad Murray

    2012-05-01

    Full Text Available We examined temporal introduction patterns of 132 invasive alien plant species (IAPS to Australia since European colonisation in 1770. Introductions of IAPS were high during 1810–1820 (10 species, 1840–1880 (51 species, 38 of these between 1840 and 1860 and 1930–1940 (9 species. Conspicuously few introductions occurred during 10-year periods directly preceding each introduction peak. Peaks during early European settlement (1810–1820 and human range expansion across the continent (1840-1860 both coincided with considerable growth in Australia’s human population. We suggest that population growth during these times increased the likelihood of introduced plant species becoming invasive as a result of increased colonization and propagule pressure. Deliberate introductions of IAPS (104 species far outnumbered accidental introductions (28 species and were particularly prominent during early settlement. Cosmopolitan IAPS (25 species and those native solely to South America (53 species, Africa (27 species and Asia (19 species have been introduced deliberately and accidentally to Australia across a broad period of time. A small number of IAPS, native solely to Europe (5 species and North America (2 species, were all introduced to Australia prior to 1880. These contrasting findings for native range suggest some role for habitat matching, with similar environmental conditions in Australia potentially driving the proliferation of IAPS native to southern-hemisphere regions. Shrub, tree and vine species dominated IAPS introduced prior to 1840, with no grasses or forbs introduced during early colonisation. Since 1840, all five growth forms have been introduced deliberately and accidentally in relatively large numbers across a broad period of time. In particular, a large number of grass and forb IAPS were deliberately introduced between 1840 and 1860, most likely a direct result of the introduction of legislation promoting intensive agriculture across

  9. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  10. Methylated arsenic species in plants originate from soil microorganisms.

    Science.gov (United States)

    Lomax, Charlotte; Liu, Wen-Ju; Wu, Liyou; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; McGrath, Steve P; Meharg, Andrew A; Miller, Anthony J; Zhao, Fang-Jie

    2012-02-01

    • Inorganic arsenic (iAs) is a ubiquitous human carcinogen, and rice (Oryza sativa) is the main contributor to iAs in the diet. Methylated pentavalent As species are less toxic and are routinely found in plants; however, it is currently unknown whether plants are able to methylate As. • Rice, tomato (Solanum lycopersicum) and red clover (Trifolium pratense) were exposed to iAs, monomethylarsonic acid (MMA(V)), or dimethylarsinic acid (DMA(V)), under axenic conditions. Rice seedlings were also grown in two soils under nonsterile flooded conditions, and rice plants exposed to arsenite or DMA(V) were grown to maturity in nonsterile hydroponic culture. Arsenic speciation in samples was determined by HPLC-ICP-MS. • Methylated arsenicals were not found in the three plant species exposed to iAs under axenic conditions. Axenically grown rice was able to take up MMA(V) or DMA(V), and reduce MMA(V) to MMA(III) but not convert it to DMA(V). Methylated As was detected in the shoots of soil-grown rice, and in rice grain from nonsterile hydroponic culture. GeoChip analysis of microbial genes in a Bangladeshi paddy soil showed the presence of the microbial As methyltransferase gene arsM. • Our results suggest that plants are unable to methylate iAs, and instead take up methylated As produced by microorganisms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  12. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  13. Pollinators visit related plant species across 29 plant-pollinator networks.

    Science.gov (United States)

    Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø

    2014-06-01

    Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant-pollinator networks of varying sizes, with "clade specialization" increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization.

  14. The cobblers stick to their lasts : pollinators prefer native over alien plant species in a multi-species experiment

    OpenAIRE

    Chrobock, Thomas; Winiger, Pius; Fischer, Markus; van Kleunen, Mark

    2013-01-01

    The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whethe...

  15. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta; Zak, Marcelo R; Bartoloni, Norberto

    2009-01-01

    In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions.

  16. Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?

    Science.gov (United States)

    Bell, Colin; Carrillo, Yolima; Boot, Claudia M; Rocca, Jennifer D; Pendall, Elise; Wallenstein, Matthew D

    2014-01-01

    As a consequence of the tight linkages among soils, plants and microbes inhabiting the rhizosphere, we hypothesized that soil nutrient and microbial stoichiometry would differ among plant species and be correlated within plant rhizospheres. We assessed plant tissue carbon (C) : nitrogen (N) : phosphorus (P) ratios for eight species representing four different plant functional groups in a semiarid grassland during near-peak biomass. Using intact plant species-specific rhizospheres, we examined soil C : N : P, microbial biomass C : N, and soil enzyme C : N : P nutrient acquisition activities. We found that few of the plant species' rhizospheres demonstrated distinct stoichiometric properties from other plant species and unvegetated soil. Plant tissue nutrient ratios and components of below-ground rhizosphere stoichiometry predominantly differed between the C4 plant species Buchloe dactyloides and the legume Astragalus laxmannii. The rhizospheres under the C4 grass B. dactyloides exhibited relatively higher microbial C and lower soil N, indicative of distinct soil organic matter (SOM) decomposition and nutrient mineralization activities. Assessing the ecological stoichiometry among plant species' rhizospheres is a high-resolution tool useful for linking plant community composition to below-ground soil microbial and nutrient characteristics. By identifying how rhizospheres differ among plant species, we can better assess how plant-microbial interactions associated with ecosystem-level processes may be influenced by plant community shifts.

  17. Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands

    DEFF Research Database (Denmark)

    Steinbauer, Manuel; Irl, Severin David Howard; González-Mancebo, Juana Maria

    2016-01-01

    and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. Methods: We assess the vascular plant species richness as well as the number and percentage of endemic species and non-native species......Background: Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial......-Madeira endemics did not show a relationship with elevation. Non-native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1200 m elevation. Above that limit no non-native species were present in the studied elevational gradients. Conclusion: Ecological...

  18. Hybrid Viability and Fertility in Co-occuring Plant Species

    Science.gov (United States)

    Hernandez, E.; Garcia, C.; Yost, J.

    2012-12-01

    Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.

  19. Behavioral Response of Nothanguina phyllobia to Selected Plant Species.

    Science.gov (United States)

    Robinson, A F; Orr, C C; Abernathy, J R

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics.

  20. Assessment of predatory ability of native and non-native freshwater gammaridean species: A rapid test with water fleas as prey

    Directory of Open Access Journals (Sweden)

    B.E.M.W. STOFFELS, J.S. TUMMERS, G. VAN DER VELDE, D. PLATVOET, H.W.M. HENDRIKS, R.S.E.W. LEUVEN

    2011-12-01

    Full Text Available Predation rate with relation to species, sex and water temperature was tested among four different gammaridean species: Dikerogammarus villosus, Gammarus roeselii, Gammarus pulex and Gammarus fossarum. Tests were performed in microcosms in climate-controlled rooms at five different temperatures. Daphnia magna, a common water flea, served as prey. On ave- rage D. villosus showed the highest consumption rate of Daphnia magna over the entire temperature range, followed in decreasing order by G. pulex, G. roeselii and G. fossarum. The predation rate of all species showed a distinct peak at 20°C. Correction of predation rates for body size gave somewhat different results. D. villosus is then still the most predatory of all gammaridean species tested followed by G. pulex, G. fossarum and G. roeselii. The outcome of the Daphnia tests is consistent with results of other studies with different prey. This supports that the Daphnia test is a good and quick indicator of the predatory abilities in gammaridean species at varying temperatures, and allows the prediction of how changing temperature regimes influence invasion impacts [Current Zoology 57 (6: 836–843, 2011].

  1. Assessment of predatory ability of native and non-native freshwater gammaridean species: A rapid test with water fleas as prey

    Institute of Scientific and Technical Information of China (English)

    B.E.M.W. STOFFELS; J.S. TUMMERS; G. VAN DER VELDE; D. PLAT-VOET; H.W.M. HENDRIKS; R.S.E.W. LEUVEN

    2011-01-01

    Predation rate with relation to species,sex and water temperature was tested among four different gammaridean species:Dikerogammarus villosus,Gammarus roeselii,Gammarus pulex and Gammarus fossarum.Tests were performed in microcosms in climate-controlled rooms at five different temperatures.Daphnia magna,a common water flea,served as prey.On average D.villosus showed the highest consumption rate of Daphnia magna over the entire temperature range,followed in decreasing order by G.pulex,G.roeselii and G.fossarum.The predation rate of all species showed a distinct peak at 20℃.Correction of predation rates for body size gave somewhat different results.D.villosus is then still the most predatory of all gammaridean species tested followed by G.pulex,G.fossarum and G.roeselii.The outcome of the Daphnia tests is consistent with results of other studies with different prey.This supports that the Daphnia test is a good and quick indicator of the predatory abilities in gammaridean species at varying temperatures,and allows the prediction of how changing temperature regimes influence invasion impacts [Current Zoology 57 (6):836-843,2011 ].

  2. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  3. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to preven

  4. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l).

  5. Gymnosporangium Species – An Important Issue of Plant Protection

    Directory of Open Access Journals (Sweden)

    Lāce Baiba

    2017-06-01

    Full Text Available Rusts (Fungi, Basidiomycota, Pucciniomycotina, Pucciniomycetes, Pucciniales are one of the most important causal agents of diseases and they are infecting many plants including cereals and field crops, vegetables, trees and many ornamentals. They have been studied for a long time and have economic importance among the plant diseases caused by agents of different species of fungi. In Europe, thirteen rust genera have been reported, of which the genus Gymnosporangium is the second largest after genus Phragmidium. The most significant fruit tree rust pathogen is the genus Gymnosporangium. The literature review shows quite limited scientific information about this genus and its species. Studies have mainly focused on some stages of the pathogen development cycle, which are significant for the spread of diseases - uredo and teleito stages. Special attention of the review was paid to European pear rust (caused by G. sabinae (Dicks. G. Winter, the distribution of which has increased during the last ten years, especially in organic pear orchards. Currently there is a limited number of scientific publications about European pear rust, and they are mainly based only on observations in vitro without trials in the field, despite the fact that it has become one of the most devastating diseases. Therefore, the presented review analyses the rust exploration history, diversity and distribution of species, life cycle, development biology and plant protection issues.

  6. Floristic characteristics of alien invasive seed plant species in China

    Directory of Open Access Journals (Sweden)

    CONGYAN WANG

    Full Text Available ABSTRACT This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  7. Psychoactive plant species – actual list of plants prohibited in Poland

    Directory of Open Access Journals (Sweden)

    Simonienko, Katarzyna

    2013-06-01

    Full Text Available According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520. the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where – among primeval cultures – are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  8. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  9. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  10. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  11. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  12. UNMANNED AERIAL VEHICLES FOR ALIEN PLANT SPECIES DETECTION AND MONITORING

    Directory of Open Access Journals (Sweden)

    P. Dvořák

    2015-08-01

    Full Text Available Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms by using purposely designed unmanned aircraft (UAV. We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid. Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded. The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  13. Plant inter-species effects on rhizosphere priming effect and nitrogen acquisition by plants

    Science.gov (United States)

    Sun, Yue; Xu, Xingliang; Yang, Baijie; Kuzyakov, Yakov

    2015-04-01

    Rhizosphere interactions play a central role linking roots-soil system and regulate various aspects of nutrient cycling. Rhizodeposition inputs are known to change soil organic matter (SOM) decomposition via rhizosphere priming effects (RPEs) through enhancing soil biological activity and altering microbial community structure. The magnitude of RPEs varies widely among plant-species and root biomass possibly due to different quality and quantity of rhizodeposits. However, it is virtually unknown whether the RPEs are influenced by plant inter-species interactions and how these processes affect N mineralization and available N for plants. Monocultures of maize (M) and soybean (S), and mixed cultures of maize/maize (MM), soybean/soybean (SS), maize/soybean (MS) were grown over a 45-day greenhouse experiment. We labeled them with plant litter that was enriched in13C and 15N. The 15N distributions in plants and microbial biomass were measured at 14, 35, and 45days after labeling. The RPEs were positive under all plants, ranging from 11.7% to 138.3% and gradually decreased with plant growth. The RPE in the SS was significantly higher than these in others treatments at 14 days, while at 45 days it was higher in the MS than these from their monocultures, suggesting that the RPE was enhanced by the inter-species effects of maize and soybean. The litter decomposition ratio and 15N recovery of plants and microorganism increased with the root growth across all plants. The 15N recovery of plants in the MS (14.2%) was higher than these in the MM (12.3%) and SS(9.7%) at 45 days. Similarly, the 15N recovery of microorganism in the corresponding treatments was 6.7%, 2.2%, and 6.8%, respectively. The MS showed higher soil organic N mineralization amount than that from all soybean and maize monocultures at 45 days. We conclude that plant inter-species interactions may have significant effect on rhizosphere priming and modify the plant N uptake from litter resource and SOM.

  14. Imaging techniques for elements and element species in plant science.

    Science.gov (United States)

    Wu, Bei; Becker, J Sabine

    2012-05-01

    Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.

  15. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism.

    Science.gov (United States)

    Inui, Y; Itioka, T; Murase, K; Yamaoka, R; Itino, T

    2001-10-01

    The partnership in the Crematogaster-Macaranga ant-plant interaction is highly species-specific. Because a mutualistic relationship on a Macaranga plant starts with colonization by a foundress queen of a partner Crematogaster species, we hypothesized that the foundress queens select their partner plant species by chemical recognition. We tested this hypothesis with four sympatric Macaranga species and their Crematogaster plant-ant species. We demonstrated that foundress Crematogaster queens can recognize their partner Macaranga species by contact with the surface of the seedlings, that they can recognize compounds from the stem surface of seedlings of their partner plant species, and that the gas chromatographic profiles are characteristic of the plant species. These findings support the hypothesis that foundress queens of the Crematogaster plant-ant species select their partner Macaranga species by recognizing nonvolatile chemical characteristics of the stem surfaces of seedlings.

  16. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  17. Invasive non-native species of fish in upper Paraná river Basin, Brazil: variations of caloric content in Cichla kelberi

    Directory of Open Access Journals (Sweden)

    Luis Alberto Espínola

    Full Text Available The allocation of assimilated energy may be influenced by seasonal changes, growth, and reproductive cycle of fish, food consumption and environmental conditions. The objective of this research was to evaluate the energetic variations of Cichla kelberi in the upper Paraná River floodplain, analyzing the caloric content in muscles, gonadosomatic index (GSI, and the condition factor between assessed systems, sex, and stage of gonadal maturation. The results obtained in the present study permit assuring that this is a species that efficiently converts the resources of the environment into energy. Although presenting higher condition factor in the environment where there is a greater ease in getting food (Paraná subsystem, the energy identified in the muscles was the same in both subsystems. During the process of gonadal maturation there is optimization in energy accumulation in the muscles of females, before and after reproductive period, and somatic growth occurs significantly when the individual is not reproducing. Further detailed studies on ecological mechanisms influencing the success of the species, as the presence of competitors and preference for native preys, are needed to implement effective management measures aimed at preventing that the species proliferation in the environment is even more damaging to local biodiversity.

  18. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  19. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  20. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Science.gov (United States)

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies

  1. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... August 12, 2013 Part II Department of Commerce National Oceanic and Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife and... Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife...

  2. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  3. Managing conflicts arising from fisheries enhancements based on non-native fishes in southern Africa.

    Science.gov (United States)

    Ellender, B R; Woodford, D J; Weyl, O L F; Cowx, I G

    2014-12-01

    Southern Africa has a long history of non-native fish introductions for the enhancement of recreational and commercial fisheries, due to a perceived lack of suitable native species. This has resulted in some important inland fisheries being based on non-native fishes. Regionally, these introductions are predominantly not benign, and non-native fishes are considered one of the main threats to aquatic biodiversity because they affect native biota through predation, competition, habitat alteration, disease transfer and hybridization. To achieve national policy objectives of economic development, food security and poverty eradication, countries are increasingly looking towards inland fisheries as vehicles for development. As a result, conflicts have developed between economic and conservation objectives. In South Africa, as is the case for other invasive biota, the control and management of non-native fishes is included in the National Environmental Management: Biodiversity Act. Implementation measures include import and movement controls and, more recently, non-native fish eradication in conservation priority areas. Management actions are, however, complicated because many non-native fishes are important components in recreational and subsistence fisheries that contribute towards regional economies and food security. In other southern African countries, little attention has focussed on issues and management of non-native fishes, and this is cause for concern. This paper provides an overview of introductions, impacts and fisheries in southern Africa with emphasis on existing and evolving legislation, conflicts, implementation strategies and the sometimes innovative approaches that have been used to prioritize conservation areas and manage non-native fishes.

  4. Short communication: occurrence of Arcobacter species in industrial dairy plants.

    Science.gov (United States)

    Serraino, A; Giacometti, F

    2014-01-01

    The present study investigated the presence of Arcobacter spp. in industrial dairy plants. Between February and September 2013, pasteurized milk used for cheesemaking, processing and cleaning water, cheese, and environmental samples from different plant sites, including surfaces in contact or not in contact with food, were sampled. A total of 126 samples were analyzed by the cultural method and isolates were identified by multiplex PCR. Arcobacter spp. were isolated from 22 of 75 environmental samples (29.3%): of them, 22.7% were surfaces in contact with food and 38.7% surfaces not in contact with food. A total of 135 Arcobacter spp. isolates were obtained; of these, 129 and 6 were identified as Arcobacter butzleri and Arcobacter cryaerophilus, respectively. All food processing water and pasteurized milk samples were negative for Arcobacter species. We were not able to determine the primary source of contamination, but the isolation of both A. butzleri and A. cryaerophilus in surfaces in contact with food before and during manufacturing suggests that Arcobacter spp. are not or are only partially affected by routine sanitizing procedures in the industrial dairy plants studied. The efficacy of sanitizing procedures should be evaluated and further studies are needed to determine whether certain Arcobacter strains persist for long periods of time in industrial dairy plants and whether they can survive in different types of cheese in cases of postprocessing contamination.

  5. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  6. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  7. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers...

  8. Increased plant carbon translocation linked to overyielding in grassland species mixtures

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bardgett, R.D.

    2012-01-01

    Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and det

  9. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  10. Mineral contents from some fabaceous plant species of Rajasthan desert

    Directory of Open Access Journals (Sweden)

    B.B.S.Kapoor

    2013-12-01

    Full Text Available Evaluation of mineral contents from three selected plant species of Fabaceae family growing in arid region of Rajasthan Desert was carried out. The roots, shoots and fruits of Clitoria ternatea, Sesbania bispinosa and Tephrosia purpurea collected from two different areas Chhatargarh area (Bikaner district and Ratangarh area (Churu district were analysed for mineral contents. The maximum Calcium (3.86%, Phosphorus (0.48%, Potassium (0.92% and Sodium (1.08% contents were found in roots and shoots of Grewia tenax collected from study area.

  11. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  12. Differential response of a local population of entomopathogenic nematodes to non-native herbivore induced plant volatiles (HIPV) in the laboratory and field

    Science.gov (United States)

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which the compounds we...

  13. Non-native seagrass

    NARCIS (Netherlands)

    van Tussenbroek, B.I.; van Katwijk, M.M.; Bouma, T.J.; van der Heide, T.; Govers, L.L.; Leuven, R.S.E.W.

    2016-01-01

    Seagrasses comprise 78 species and are rarely invasive. But the seagrass Halophila stipulacea, firstly recorded in the Caribbean in the year 2002, has spread quickly throughout the region. Previous works have described this species as invasive in the Caribbean, forming dense mats that exclude native

  14. Does seeding after severe forest fires in western USA mitigate negative impacts on soils and plant communities?

    Science.gov (United States)

    D. Peppin; P. Fule; J. Beyers; C. Sieg; M. Hunter

    2011-01-01

    Broadcast seeding is one of the most widely used post-wildfire emergency response treatments intended to reduce soil erosion, increase vegetative ground cover, and minimize establishment and spread of non-native plant species. However, seeding treatments can also have negative effects such as competition with recovering native plant communities and inadvertent...

  15. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system.

  16. History of nonnative Monk Parakeets in Mexico.

    Science.gov (United States)

    Hobson, Elizabeth A; Smith-Vidaurre, Grace; Salinas-Melgoza, Alejandro

    2017-01-01

    Nonnative Monk Parakeets have been reported in increasing numbers across many cities in Mexico, and were formally classified as an invasive species in Mexico in late 2016. However, there has not been a large-scale attempt to determine how international pet trade and national and international governmental regulations have played a part in colonization, and when the species appeared in different areas. We describe the changes in regulations that led the international pet trade market to shift to Mexico, then used international trade data to determine how many parakeets were commercially imported each year and where those individuals originated. We also quantified the recent increases in Monk Parakeet (Myiopsitta monachus) sightings in Mexico in both the scientific literature and in citizen science reports. We describe the timeline of increased reports to understand the history of nonnative Monk Parakeets in Mexico. As in other areas where the species has colonized, the main mode of transport is through the international pet trade. Over half a million Monk Parakeets were commercially imported to Mexico during 2000-2015, with the majority of importation (90%) occurring in 2008-2014, and almost all (98%) were imported from Uruguay. The earliest record of a free-flying Monk Parakeet was observed during 1994-1995 in Mexico City, but sightings of the parakeets did not become geographically widespread in either the scientific literature or citizen science databases until 2012-2015. By 2015, parakeets had been reported in 97 cities in Mexico. Mexico City has consistently seen steep increases in reporting since this species was first reported in Mexico. Here we find that both national and international legal regulations and health concerns drove a rise and fall in Monk Parakeet pet trade importations, shortly followed by widespread sightings of feral parakeets across Mexico. Further monitoring of introduced Monk Parakeet populations in Mexico is needed to understand the

  17. Stem photosynthesis and hydraulics are coordinated in desert plant species.

    Science.gov (United States)

    Ávila-Lovera, Eleinis; Zerpa, Antonio J; Santiago, Louis S

    2017-08-21

    Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  19. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  20. Spatial arrangement overrules environmental factors to structure native and non-native assemblages of synanthropic harvestmen.

    Directory of Open Access Journals (Sweden)

    Christoph Muster

    Full Text Available Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens. Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance exceeded the environmental (10.6% and shared (4% components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.

  1. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  2. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  3. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges

    NARCIS (Netherlands)

    Reinhart, K.O.; Packer, A.; Van der Putten, W.H.; Clay, K.A.

    2003-01-01

    One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges,

  4. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  5. How important is long-distance seed dispersal for the regional survival of plant species?

    OpenAIRE

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species' dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed di...

  6. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness.

    Science.gov (United States)

    Fraser, Lauchlan H; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin; Askarizadeh, Diana; Bartha, Sandor; Beierkuhnlein, Carl; Bennett, Jonathan A; Bittel, Alex; Boldgiv, Bazartseren; Boldrini, Ilsi I; Bork, Edward; Brown, Leslie; Cabido, Marcelo; Cahill, James; Carlyle, Cameron N; Campetella, Giandiego; Chelli, Stefano; Cohen, Ofer; Csergo, Anna-Maria; Díaz, Sandra; Enrico, Lucas; Ensing, David; Fidelis, Alessandra; Fridley, Jason D; Foster, Bryan; Garris, Heath; Goheen, Jacob R; Henry, Hugh A L; Hohn, Maria; Jouri, Mohammad Hassan; Klironomos, John; Koorem, Kadri; Lawrence-Lodge, Rachael; Long, Ruijun; Manning, Pete; Mitchell, Randall; Moora, Mari; Müller, Sandra C; Nabinger, Carlos; Naseri, Kamal; Overbeck, Gerhard E; Palmer, Todd M; Parsons, Sheena; Pesek, Mari; Pillar, Valério D; Pringle, Robert M; Roccaforte, Kathy; Schmidt, Amanda; Shang, Zhanhuan; Stahlmann, Reinhold; Stotz, Gisela C; Sugiyama, Shu-ichi; Szentes, Szilárd; Thompson, Don; Tungalag, Radnaakhand; Undrakhbold, Sainbileg; van Rooyen, Margaretha; Wellstein, Camilla; Wilson, J Bastow; Zupo, Talita

    2015-07-17

    The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

  7. Effects of vehicle exhaust emissions on urban wild plant species.

    Science.gov (United States)

    Bell, J N B; Honour, S L; Power, S A

    2011-01-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  9. Ecophysiological studies of Mediterranean plant species at the Castelporziano estate

    Science.gov (United States)

    Manes, Fausto; Seufert, Günther; Vitale, Marcello

    The aim of this work was to characterize the eco-physiological performance of the main plant species of the Castelporziano site by single leaf investigations. We measured the leaf gas exchange of Quercus ilex L., Pinus pinea L., Pistacia lentiscus L. and Asphodelus microcarpus L. for several days. Additionally, the xylem water potential of Quercus ilex, Pinus pinea and Pistacia lentiscus was recorded in order to obtain more physiological background information for the discussion of the trace gas emissions. This study indicates significantly different physiological responses to the different environmental conditions. In particular, summer conditions (high values of light, air temperature and low xylem water potentials) caused the depression of photosynthesis in Quercus ilex and Pinus pinea but did not affect photosynthesis of Pistacia lentiscus and Asphodelus microcarpus. This should be taken into account when discussing VOC emission rates and fluxes.

  10. Response of xylem-feeding leafhopper to host plant species and plant quality.

    Science.gov (United States)

    Rossi, A M; Brodbeck, B V; Strong, D R

    1996-04-01

    Carneocephala floridana, an oligophagous leafhopper that inhabits the salt marshes along the coasts of Florida, utilizesBorrichia frutescens andSalicornia virginica (both herbs) as primary summer hosts, but uses two grasses,Distichlis spicata andSpartina alterniflora, during the winter. We tested whether the seasonal patterns of abundance and apparent host-switching byCarneocephala are related to plant quality. In laboratory experiments, nymphs ofCarneocephala reared on nonfertilized control plants of the two herbs produced adults that were similar in size to field-collected insects. OnlyCarneocephala raised at the lowest densities onSpartina andDistichlis from the highest fertilizer treatments produced adults similar in body mass to those reared on nonfertilizedBorrichia andSalicornia. ForDistichlis, superior quality (high foliar nitrogen) plants were able to mitigate the negative effect of nymphal crowding on adult body mass. However, laboratory fertilization regimes produced an extremely high foliar nitrogen content in the two herbs and the organic acid concentration in the xylem fluid ofBorrichia, the only host species suitable for xylem fluid extraction, increased 2.5- to 3-fold. Total amino acid concentration in the xylem fluid of fertilizedBorrichia decreased compared to nonfertilized plants.Carneocephala demonstrated reduced feeding efficiencies on high nitrogenBorrichia. Our results suggest thatCarneocephala prefers, and performs better on, plants with high nitrogen content up to a threshold, beyond which high nitrogen levels result in reduced leafhopper feeding rates and assimilation efficiencies.

  11. Phytotoxicity of soluble graphitic nanofibers to model plant species.

    Science.gov (United States)

    Gorka, Danielle E; Jeger, Jonathan Litvak; Zhang, Hongbo; Ma, Yanwen; Colman, Benjamin P; Bernhardt, Emily S; Liu, Jie

    2016-12-01

    Carbon nanomaterials are considered promising for applications in energy storage, catalysis, and electronics. This has motivated study of their potential environmental toxicity. Recently, a novel nanomaterial consisting of graphene oxide wrapped around a carbon nanotube (CNT) core was synthesized. The resulting soluble graphitic nanofibers were found to have superior catalytic properties, which could result in their use in fuel cells. Before this material undergoes widespread use, its environmental toxicity must be determined because of its aqueous solubility. The authors used the plant species Lolium multiflorum, Solanum lycopersicum, and Lactuca sativa to study the toxicity of the soluble graphitic nanofibers, as well as multiwalled carbon nanotubes (MWCNTs) and graphene oxide, all synthesized in-house. Soluble graphitic nanofiber-exposed plant roots and shoots showed decreased growth, with roots showing more toxicity than shoots. Decreased pH of nanomaterial solutions corresponded to insignificantly decreased root growth, suggesting that another mechanism of toxicity must exist. Agglomeration and adsorption of soluble graphitic nanofibers onto the roots likely caused the remaining toxicity because a gray layer could be seen around the surface of the root. Multiwalled carbon nanotubes showed little toxicity over the concentration range tested, whereas graphene oxide showed a unique pattern of high toxicity at both the lowest and highest concentrations tested. Overall, soluble graphitic nanofibers showed moderate toxicity between that of the more toxic graphene oxide and the relatively nontoxic MWCNTs. Environ Toxicol Chem 2016;35:2941-2947. © 2016 SETAC.

  12. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    Directory of Open Access Journals (Sweden)

    Xoaquín Moreira

    Full Text Available Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves. We found that both forms of plant diversity had positive effects on stem (but not leaf defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer

  13. Species area relationships in mediterranean-climate plant communities

    Science.gov (United States)

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  15. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...... of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant...

  16. The invasion of non-native grasses into California grasslands has caused a shift in energy partitioning between latent and sensible heat flux, reduced albedo and higher surface temperatures

    Science.gov (United States)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2012-12-01

    In California, native grasses have been largely displaced across millions of acres of grassland habitat by the invasion of non-native grasses from Mediterranean Europe. Although seemingly subtle, this shift in grass species composition has altered the water and energy cycles in these ecosystems due to a shift in life cycle strategy. Native California grasses are perennial and long-lived. To survive California's long summer drought, they possess deep roots to harvest moisture along the full depth of the soil profile. Aboveground, most California perennial grasses are bunchy and dense, covering the ground and restricting soil evaporation. Their growing season extends over most of the year, thus maintaining an unbroken interaction along the soil-plant-atmosphere continuum, and enabling the plants to draw water from deep soil layers well into the dry summer. In contrast, the now-dominant non-native grasses are annuals. They grow from seed each year when Autumn rains begin, and die with the onset of summer drought. Aboveground, non-native annuals are sparse relative to native perennials, and possess a shallow root system with the large majority of root biomass above 20 cm depth. To determine the impact of this land cover shift on ecosystem water and energy cycles, we measured the components of the surface energy balance at a grassland site in northern coastal California where remnant perennial grasses are found growing alongside regions that have undergone non-native invasion. Specifically, in locations dominated by each grass type, we measured net radiation and ground and canopy heat flux through the surface renewal method. We also measured midday PAR albedo to determine the impact of grassland invasion on energy capture. In three years of measurements, corresponding to average, wet and dry years, we found that energy partitioning during the growing season is similar between grass types. However, once non-native annual grasses senesce in mid to late spring, the ratio

  17. 78 FR 64637 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

    Science.gov (United States)

    2013-10-29

    ... danger of extinction throughout all their ranges as the result of ongoing threats that include the... and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15 Species on...-AY09 Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

  18. Towards a working list of all known plant species

    National Research Council Canada - National Science Library

    E. N. Lughadha

    2004-01-01

    .... The adoption of the Global Strategy for Plant Conservation has reinforced the urgent need for a global plant checklist to support, facilitate and monitor the conservation and sustainable use of plant...

  19. Invasive species and coal bed methane development in the Powder River Basin, Wyoming

    Science.gov (United States)

    Bergquist, E.; Evangelista, P.; Stohlgren, T.J.; Alley, N.

    2007-01-01

    One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ?? 2.7% (mean ?? 1 SE) in the secondary disturbance subplots to 17.7 ?? 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ?? 8.4% in the discharge areas to 14.7 ?? 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity. ?? Springer Science+Business Media B.V. 2006.

  20. Invasive species and coal bed methane development in the Powder River Basin, Wyoming.

    Science.gov (United States)

    Bergquist, E; Evangelista, P; Stohlgren, T J; Alley, N

    2007-05-01

    One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 +/- 2.7% (mean +/- 1 SE) in the secondary disturbance subplots to 17.7 +/- 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 +/- 8.4% in the discharge areas to 14.7 +/- 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity.

  1. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    J. M. QUEIROZ

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  2. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  3. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  4. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  5. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-01-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  6. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil

    NARCIS (Netherlands)

    Cong, Wen-Feng; van Ruijven, Jasper; van der Werf, Wopke; De Deyn, Gerlinde B.; Mommer, Liesje; Berendse, Frank; Hoffland, Ellis

    2015-01-01

    Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic m

  7. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  8. Integrated Spatial Models of Non Native Plant Invasion, Fire Risk, and Wildlife Habitat to Support Conservation of Military and Adjacent Lands in the Arid Southwest

    Science.gov (United States)

    2015-12-01

    2002). These species are largely characterized by early winter germination, high viable seed loads, and multiple dispersal mechanisms; in combination...approach to mapping improved our B. tournefortii models, likely because spatial heterogeneity in precipitation drove phenological variability across...via dispersal from wind, vehicles, and water. Table 1: Attributes of non-native invasive plant species targeted by this study. Genus Type

  9. Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host

    NARCIS (Netherlands)

    Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W.

    2016-01-01

    Many species have been introduced worldwide into areas outside their natural range. Often these non-native species are introduced without their natural enemies, which sometimes leads to uncontrolled population growth. It is rarely reported that an introduced species provides a new resource for a nat

  10. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  11. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  12. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  13. Advances in seed conservation of wild plant species: a review of recent research

    National Research Council Canada - National Science Library

    Hay, Fiona R; Probert, Robin J

    2013-01-01

    .... Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management...

  14. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose.

  15. Microhabitat interactions of non-native pumpkinseed Lepomis gibbosus in a Mediterranean-type stream suggest no evidence for impact on endemic fishes

    Directory of Open Access Journals (Sweden)

    Top Nildeniz

    2016-01-01

    Full Text Available The pumpkinseed Lepomis gibbosus was introduced to Europe and parts of the Mediterranean Region more than 100 years ago. However, relatively little is known of its potential ecological impacts on the native species and freshwater ecosystems of Anatolia (Turkey, where the species is currently established in ponds and rivers. In this study, interactions between L. gibbosus and native and non-native stream fishes were investigated between June 2009 and May 2010 in Sarıçay Stream, a Mediterranean-type water course. Microhabitat preferences for depth, substratum composition, distance from bank and from vegetation, plant cover, velocity, turbidity and light intensity were studied by Constrained Quadratic Ordination. The species sampled in larger frequency of occurrence (and for which microhabitat relationships could be investigated comprised endemic Smyrna chub Petroleuciscus smyrnaeus and Aegean chub Squalius fellowesii, and non-native L. gibbosus (both juveniles and adults and topmouth gudgeon Pseudorasbora parva. Adult L. gibbosus were found to prefer locations closer to the bank with less turbid water, plant cover, light intensity, woody structure and with sandy substratum whilst avoiding riffle habitats with coarser debris, deeper water, dense submersed aquatic vegetation and higher velocities. These preferences overlapped with those for the other non-native species P. parva, but not with those for the endemic species and for L. gibbosus juveniles. The results of this study suggest that the potential for adverse impacts through competition for habitat of adult L. gibbosus with the native fish fauna is not apparent in Sarıçay Stream.

  16. Performance of dryland and wetland plant species on extensive green roofs

    Science.gov (United States)

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further

  17. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  18. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Science.gov (United States)

    Strong, Justin S; Leroux, Shawn J

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  19. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves.

    Science.gov (United States)

    Wang, Chunjing; Liu, Chengzhu; Wan, Jizhong; Zhang, Zhixiang

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves.

  20. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  1. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation. Udgivelsesdato: 2002...

  2. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  3. 78 FR 23983 - Endangered and Threatened Wildlife and Plants; Threatened Status for Eriogonum codium

    Science.gov (United States)

    2013-04-23

    ... determined that Umtanum desert buckwheat is threated by wildfire, nonnative plants, seed predation, small... throughout the Pacific Northwest, and the Cascade Range generates a rain shadow that limits rain and snowfall... indirect means, including soil disturbance, compaction, and importation of invasive species by seed carried...

  4. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad ShoaibAmjad; MuhammadArshad

    2014-01-01

    To document ethnobotanical informations of useful woody plant species in the region of Kotli, Azad Kashmir. Methods: An ethnobotanical survey was conducted in Kotli. Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment. Results: The present study documented the etnobotanical uses of 33 woody plant species. Most of the species have been used for dual purpose. Only 5 species are used for one purpose. Study revealed all species have medicinal value, among which 21 were used as fuel wood species, 16 as fodder species, 4 as timber wood species, 12 as edible fruit species, 6 as fence or hedge plant, 7 as ornamental species and 12 species had other uses. Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  5. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    Science.gov (United States)

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  6. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    Science.gov (United States)

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  7. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  8. Population size structure of non-native fishes along longitudinal gradients in a highly regulated Mediterranean basin.

    Directory of Open Access Journals (Sweden)

    Fátima Amat-Trigo

    2015-10-01

    Documented changes in fish size metrics at population levels can demonstrate trends in non-native fishes at basin scale, however, the collinearity with spatial gradients and the species-specific response could make it a difficult undertaking.

  9. Fruit Plants Species along Corridor in Kopendukuh Village as a Resource for Rural Tourism Development

    Directory of Open Access Journals (Sweden)

    Widya Kristiyanti Putri

    2015-02-01

    Full Text Available This research aims to identify fruit plants species which is potential for tourism attraction, spatially describes fruit plants distribution and identify local people’s response for fruit plants as tourims attraction in Kopendukuh village, Banyuwangi. Survey was done along the villages corridors. The fruit plant species along corridors was identified and mapped using GPS. Furthermore, semi-structural interview was used to gain informations of local people response about fruit plants as tourism attraction. There were about 18 species and 162 individuals were found along corridor of Kopendukuh village. Fruit plants always found in local home gardens along rural corridor. Local peoples argue that fruit planst s important for numerous purposes. Local people support tourism development in rural area which based on the fruit plants richness (i.e. agrotourism. Keywords: fruit plants, mapping, corridor, rural tourism.

  10. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  11. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  12. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  13. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  14. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by fi

  15. 78 FR 47582 - Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner...

    Science.gov (United States)

    2013-08-06

    ... Fish and Wildlife Service 50 CFR Part 17 RIN 1018-AY55 Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner and Smalleye Shiner AGENCY: Fish and Wildlife Service... procedures for adding species to the Federal Lists of Endangered and Threatened Wildlife and Plants....

  16. The occurrence of alien plant species in field margins in Finland

    OpenAIRE

    Jauni, Miia; Hyvönen, Terho

    2009-01-01

    The results suggest that alien plant species comprise an important part of the biodiversity of Finnish field margins and semi-natural agricultural habitats. The role of field margins as dispersal corridors for invasive alien plants is limited for certain species.

  17. Influence of plant species on population dynamics, genotypic diversity and antibiotic production by indigenous Pseudomonas spp

    NARCIS (Netherlands)

    Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M.

    2005-01-01

    The population dynamics, genotypic diversity and activity of naturally-occurring 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. was investigated for four plant species (wheat, sugar beet, potato, lily) grown in two different soils. All four plant species tested, except lily and in some

  18. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by

  19. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log-tran...

  20. Heavy metal uptake by selected marsh plant species grown in hydroponic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Sturgis, T.C.; Landin, M.C.

    1975-01-01

    Eight marsh plant species (Cyperus esculentus, Scirpus validus, Spartina patens, Scirpus robustus, Triglochin maritima, Distichlis spicata, Spartina alterniflora, and Spartina foliosa) were grown under greenhouse conditions in chemically controlled nutrient solutions. Heavy metals (zinc, cadmium, nickel, chromium, and lead) were added to the nutrient solutions at levels of 0, 0.5, and 1.0 mg/l. Plant parts (leaves, rhizomes, tubers, and roots) were harvested separately for each species and analyzed for heavy metal content. The concentration and plant uptake of heavy metals in each plant species will be discussed.

  1. Altitudinal Pattern of Plant Species Diversity in Shennongjia Mountains, Central China

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming ZHAO; Wei-Lie CHEN; Zi-Qiang TIAN; Zong-Qiang XIE

    2005-01-01

    One hundred and sixty plots, approximately every 100 m above sea level (a.s.l.) along an altitudinal gradient from 470 to 3 080 m a.s.l, at the southern and northern watershed of Mt. Shennongjia,China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the "mid-altitude bulge" was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1 500 m a.s.l.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.l. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt.Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a

  2. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  3. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Science.gov (United States)

    Choe, Hyeyeong; Thorne, James H; Seo, Changwan

    2016-01-01

    Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the threshold and scale

  4. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  5. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  6. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis.

    Science.gov (United States)

    Douda, Jan; Doudová-Kochánková, Jana; Boublík, Karel; Drašnarová, Alena

    2012-06-01

    It has been suggested that a heterogeneous environment enhances species richness and allows for the coexistence of species. However, there is increasing evidence that environmental heterogeneity can have no effect or even a negative effect on plant species richness and plant coexistence at a local scale. We examined whether plant species richness increases with local heterogeneity in the water table depth, microtopography, pH and light availability in a swamp forest community at three local spatial scales (grain: 0.6, 1.2 and 11.4 m). We also used the variance partitioning approach to assess the relative contributions of niche-based and other spatial processes to species occurrence. We found that heterogeneity in microtopography and light availability positively correlated with species richness, in accordance with the habitat heterogeneity hypothesis. However, we recorded different heterogeneity-diversity relationships for particular functional species groups. An increase in the richness of bryophytes and woody plant species was generally related to habitat heterogeneity at all measured spatial scales, whereas a low impact on herbaceous species richness was recorded only at the 11.4 m scale. The distribution of herbaceous plants was primarily explained by other spatial processes, such as dispersal, in contrast to the occurrence of bryophytes, which was better explained by environmental factors. Our results suggest that both niche-based and other spatial processes are important determinants of the plant composition and species turnover at local spatial scales in swamp forests.

  7. Moose as a vector for non-indigenous plant species in Alaska

    Science.gov (United States)

    White sweetclover and narrowleaf hawksbeard are non-indigenous invasive plant species in Alaska that are rapidly spreading, including into areas that are otherwise free of non-indigenous plants. There has been concern that native moose could be dispersing viable seed from these plants after ingestio...

  8. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native co

  9. Rhizosphere microbial community and its response to plant species and soil history

    NARCIS (Netherlands)

    Garbeva, P.V.; van Elsas, J.D.; Van Veen, J.A.

    2008-01-01

    The plant rhizosphere is a dynamic environment in which many parameters may influence the population structure, diversity and activity of the microbial community. Two important factors determining the structure of microbial community present in the vicinity of plant roots are plant species and soil

  10. Beyond Arabidopsis: the circadian clock in non-model plant species.

    Science.gov (United States)

    McClung, C Robertson

    2013-05-01

    Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Plant Species Richness and Nitrogen Deposition can Alter Microbial Assimilation of New Photosynthate

    Science.gov (United States)

    Chung, H.; Zak, D.; Reich, P.

    2009-12-01

    Microbial assimilation of recent photosynthate was analyzed in a 6-year-long field experiment to determine how plant species richness impacts microbial metabolism of new photosynthate, and how this may be modified by atmospheric N deposition. Our study was conducted at the BioCON (Biodiversity, CO2, and Nitrogen) FACE (Free-Air Carbon dioxide Enrichment) experiment located at the Cedar Creek Natural History area in Minnesota, USA. In this experiment, plant species richness, atmospheric N deposition, and atmospheric CO2 concentration were manipulated in concert. The depleted δ13C of fumigation CO2 enabled us to investigate the effect of plant species richness and atmospheric N deposition on the metabolism of soil microbial communities in the elevated CO2 treatment. We determined the δ13C of bacterial, actinobacterial, and fungal phospholipid fatty acids (PLFA). In the elevated CO2 conditions of this study, the δ13C of bacterial PLFAs (i15:0, i16:0, 16:1ω7c, 16:1ω9c, 10Me16:0, and 10Me18:0) and the fungal PLFA 18:1ω9c was significantly lower in species-rich plant communities than in species-poor plant communities, indicating that microbial incorporation of new C increased with plant species richness. Despite an increase in plant production, total PLFA decreased under N deposition by 27%. Moreover, N deposition also decreased fungal relative abundance in species-rich plant communities. In our study, plant species richness directly increased microbial incorporation of new photosynthate, providing a mechanistic link between greater plant detritus production in species-rich plant communities and larger and more active soil microbial community.

  12. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  13. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  14. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    Science.gov (United States)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of

  15. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  16. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...... consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5.  Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each...

  17. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  18. Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae).

    Science.gov (United States)

    Weingartner, E; Wahlberg, N; Nylin, S

    2006-03-01

    The ability of insects to utilize different host plants has been suggested to be a dynamic and transient phase. During or after this phase, species can shift to novel host plants or respecialize on ancestral ones. Expanding the range of host plants might also be a factor leading to higher levels of net speciation rates. In this paper, we have studied the possible importance of host plant range for diversification in the genus Polygonia (Nymphalidae, Nymphalini). We have compared species richness between sistergroups in order to find out if there are any differences in number of species between clades including species that utilize only the ancestral host plants ('urticalean rosids') and their sisterclades with a broader (or in some cases potentially broader) host plant repertoire. Four comparisons could be made, and although these are not all phylogenetically or statistically independent, all showed clades including butterfly species using other or additional host plants than the urticalean rosids to be more species-rich than their sisterclade restricted to the ancestral host plants. These results are consistent with the theory that expansions in host plant range are involved in the process of diversification in butterflies and other phytophagous insects, in line with the general theory that plasticity may drive speciation.

  19. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  20. Concentrations and Soil-To-Plant Transfer Factor of Selenium in Soil and Plant Species from an Arid Area

    Science.gov (United States)

    Sakizadeh, Mohamad; Mehrabi Sharafabadi, Fatemeh; Shayegan, Eshagh; Ghorbani, Hadi

    2016-10-01

    The concentration of selenium in 97 plants related to seven different species and the associated soil samples was considered in an arid area in the central part of Iran. The mean of Se in the soil samples varied from 0.17 to 0.43 mgkg-1 which is within the worldwide range. There was a highly significant correlation (r=0.688, pfruit) were higher than stem/stalk implying the facile translocation of this element in the considered plant species. The higher than one bio concentration factors (BCFs) of selenium for the chives, spindle tree and wheat is indicative of high phytoremediation potential for these plants.

  1. 77 FR 63927 - Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered...

    Science.gov (United States)

    2012-10-17

    ... and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered and Designating... 17 RIN 1018-AY09 Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island... previously listed plant species. Isodendrion pyrifolium, listed as an endangered species on March 4, 1994...

  2. Species Diversity in Northern California Salt Marshes: Functional Significance of Parasitic Plant Interactions

    OpenAIRE

    Grewell, Brenda J.

    2004-01-01

    I studied how parasitic plant interactions contribute to species coexistence in tidal wetlands of northern California. First, I address the effects of the native parasite Cuscuta salina on species interactions and plant community structure, showed that Cuscuta is restricted to nutrient poor areas with significant canopy gaps and high species diversity. I examined timing, level, and frequency of host infectivity and identified Plantago maritima as the primary host. I experimentally removed Cus...

  3. The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland.

    Science.gov (United States)

    Dostálek, Tomáš; Pánková, Hana; Münzbergová, Zuzana; Rydlová, Jana

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are expected to be one of the key drivers determining the diversity of natural plant communities, especially in nutrient-poor and dry habitats. Several previous studies have explored the importance of AMF for the composition of plant communities in various types of habitats. Surprisingly, studies of the role of AMF in nutrient-poor dry grassland communities dominated by less mycotrophic plant species are still relatively rare. We present the results of a 3-year study in which a plant community in a species-rich dry grassland was subjected to the fungicide carbendazim to suppress AMF colonization. We tested the effect of the fungicide on the following parameters: the plant species composition; the number of plant species; the cover of the rare, highly mycorrhiza-dependent species Aster amellus; the cover of the dominant, less mycorrhiza-dependent species Brachypodium pinnatum; and the cover of graminoids and perennial forbs. In addition, we examined the mycorrhizal inoculation potential of the soil. We found that the suppression of AMF with fungicide resulted in substantial changes in plant species composition and significant decrease in species richness, the cover of A. amellus and the cover of perennial forbs. In contrast the species increasing their cover after fungicide application were graminoids--the C3 grasses B. pinnatum and Bromus erectus and the sedge Carex flacca. These species appear to be less mycorrhiza dependent. Moreover, due to their clonal growth and efficient nutrient usage, they are, most likely, better competitors than perennial forbs under fungicide application. Our results thus suggest that AMF are an essential part of the soil communities supporting a high diversity of plant species in species-rich dry grasslands in nutrient-poor habitats. The AMF are especially important for the maintenance of the populations of perennial forbs, many of which are rare and endangered in the area.

  4. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  5. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  6. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  7. Rejoinder to Harrison (2008): The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; Curtis Flather; Catherine S. Jarnevich; David T. Barnett; John Kartesz

    2008-01-01

    We find ourselves in general agreement with many of Harrison's remarks especially since we both find our data present a ' strong case that at county to state scales, exotic plant invasions have led to few native plant extinctions' (emphasis added, Harrison 2007: 000). Where we differ appears related to the breadth of scales to which our conclusions may...

  8. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  9. Adaptive radiation of gall-inducing insects within a single host-plant species.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2007-04-01

    Speciation of plant-feeding insects is typically associated with host-plant shifts, with subsequent divergent selection and adaptation to the ecological conditions associated with the new plant. However, a few insect groups have apparently undergone speciation while remaining on the same host-plant species, and such radiations may provide novel insights into the causes of adaptive radiation. We used mitochondrial and nuclear DNA to infer a phylogeny for 14 species of gall-inducing Asphondylia flies (Diptera: Cecidomyiidae) found on Larrea tridentata (creosote bush), which have been considered to be monophyletic based on morphological evidence. Our phylogenetic analyses provide strong support for extensive within-host plant speciation in this group, and it demonstrates that diversification has involved numerous shifts between different plant organs (leaves, buds, flowers, and stems) of the same host-plant species. Within-plant speciation of Asphondylia is thus apparently facilitated by the opportunity to partition the plant ecologically. One clade exhibits temporal isolation among species, which may have facilitated divergence via allochronic shifts. Using a novel method based on Bayesian reconstruction, we show that the rate of change in an ecomorphological trait, ovipositor length, was significantly higher along branches with inferred shifts between host-plant organs than along branches without such shifts. This finding suggests that Larrea gall midges exhibit close morphological adaptation to specific host-plant parts, which may mediate ecological transitions via disruptive selection.

  10. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  11. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  12. Ecological specialization and rarity indices estimated for a large number of plant species in France

    Directory of Open Access Journals (Sweden)

    Samira Mobaied

    2015-06-01

    Here, we present a list of specialization and rarity values for more than 2800 plant species of continental France, which were computed from the large botanical and ecological dataset SOPHY. Three specialization indices were calculated using species co-occurrence data. All three indices are based on (dissimilarity among plant communities containing a focal species, quantified either as beta diversity in an additive (Fridley et al., 2007 [6] or multiplicative (Zeleny, 2008 [15] partitioning of diversity or as the multiple site similarity of Baselga et al. (2007 [1]. Species rarity was calculated as the inverse of a species occurrence.

  13. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  14. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  15. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  16. The role of cattle in maintaining plant species diversity in wet dune valleys

    NARCIS (Netherlands)

    Aptroot, A.; van Dobben, H. F.; Slim, P. A.; Olff, H.

    2007-01-01

    The succession of species-rich wetland vegetation in dune valleys into species-poor dwarf shrub vegetation was followed by means of permanent vegetation plots, in which the cover of vascular plant, moss and lichen species were recorded over a period of up to 33 years. Low density cattle grazing is a

  17. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have be...

  18. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Science.gov (United States)

    Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors.

  19. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  20. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  1. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  2. Leaf traits are good predictors of plant performance across 53 rain forest species

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.

    2006-01-01

    We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assi

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  5. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    Science.gov (United States)

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  6. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  7. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    Science.gov (United States)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  8. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation.

    Science.gov (United States)

    Vieira, Denise R P; Amaral, Flavia MaM; Maciel, Márcia C G; Nascimento, Flávia R F; Libério, Silvana A; Rodrigues, Vandílson P

    2014-09-29

    Ethnopharmacological surveys show that several plant species are used empirically by the population, in oral diseases. However, it is necessary to check the properties of these plant species. To evaluate in vitro antimicrobial activity against Streptococcus mutans from plant species selected in a previous ethnopharmacology study. An ethnopharmacological survey was conducted with users of a dental clinic school services, located in Sao Luis, Maranhão, Brazil, aiming to identify plant species used in oral diseases treatment. From the ethnopharmacological survey, species were selected for in vitro antimicrobial activity evaluation against Streptococcus mutans, by agar diffusion method and determination of Minimum Inhibitory Concentration (MIC). Two hundred and seventy one people participated in the research: 55.7% reported the use of plants for medicinal purposes, 29.5% of which have knowledge and/or use plants for some type of oral disease. Thirty four species belonging to 24 (twenty four) botanical families were reported, being Aloe vera L., Anacardium occidentale L., Schinus terebinthifolius Raddi, Chenopodium ambrosioides L. and Punica granatum L. the most cited. The most commonly reported indications were healing after tooth extraction, followed by toothache, inflammation and bleeding gums., The determination of Minimum Inhibitory Concentration (MIC) demonstrated that Punica granatum L., Psidium guajava L. and Schinus terebinthifolius Raddi showed similar activity to 0.12% chlorhexidine, used as positive control. That result is important to follow up the study of these species in the search for new anticariogenic agents originated by plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The exploration of plant species in nature reserve of Mount Mutis East Nusa Tenggara Province

    Directory of Open Access Journals (Sweden)

    Solikin Solikin

    2016-04-01

    Full Text Available This research was aimed to explore and inventory the plant diversity, especially medicinal plants in Nature Reserve of Mount Mutis. Data were collected in Fatumnasi Village, Fatumnasi District of South Central Timor Regency in Octo-ber 2011 through plant exploration and interview the local people. Plants inventory was conducted along the tracks during exploration. Herbs vegetation analysis was conducted among the tree stands of Eucalyptus urophylla. In addi-tion, orchid vegetation analysis was only conducted to orchids that have been found attaching to Eucalyptus urophylla trees. Results showed that there were about 52 family, 78 genera and 84 species of plants in the observed area. Tree species was dominated by 'ampupu' (Eucalyptus urophylla, while orchid species was dominated by Eria retusa. Herbaceous plant communities were dominated by Centella asiatica, Cyperus sp. and Cynodon dactylon. There were about eight plant species of medicinal plants and one food plant species found in the forestthat have been known by local people. Keywords: exploration, inventory, Mount Mutis, nature reserve

  10. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  11. Plant responses to climatic extremes: within-species variation equals among-species variation

    DEFF Research Database (Denmark)

    Malyshev, Andrey; Arfin Kahn, Mohammed A.S.; Beierkuhnlein, Carl

    2016-01-01

    , root 15N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among- species variation for each seed......) and for practical applications (e.g., biodiversity conservation)....

  12. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.

    Science.gov (United States)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C; Semple, Kirk T

    2013-02-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of (14)C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of (14)C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of (14)C-phenanthrene degradation; lag phase, maximum rates and total extents of (14)C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities.

  13. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    Directory of Open Access Journals (Sweden)

    Tim Schnoor

    Full Text Available Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation, and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We

  14. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    Science.gov (United States)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a

  15. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  16. Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship

    Science.gov (United States)

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750

  17. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Science.gov (United States)

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A Q; Silva, Mara S A; Vieira, Marisa C L; Izzo, Thiago J; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  18. Root uptake of organic contaminants into plants: Species differences

    OpenAIRE

    Orita, Naho

    2012-01-01

    Trace amounts of xenobiotic organic contaminants have been frequently identified in the environment, including surface water and wastewater streams, and some are even in drinking water. The concern of unintended ingestion by humans or wildlife of such compounds resulting from the uptake by plants has risen in recent years. Although the uptake of a variety of xenobiotic organic contaminants by plants has been reported and the contaminants are found in the fruits in some cases, the differences ...

  19. Nitrogen and protein contents in some aquatic plant species

    OpenAIRE

    Krystyna Bytniewska

    2015-01-01

    Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L.) Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein conten...

  20. Moving Uphill: Microbial Facilitation at the Leading Edge of Plant Species Distributional Shifts

    Science.gov (United States)

    Suding, K.; Farrer, E.; Spasojevic, M.; Porazinska, D.; Bueno de Mesquita, C.; Schmidt, S. K.

    2016-12-01

    Climate change is expected to influence species distributions and reshuffle patterns of biodiversity. A key challenge to our understanding of these effects is that biotic interactions - new species to compete with, new stressors that increase dependence on facilitation, new prey or predators - will likely affect the ability of species to track climate at the leading edges of their distributional range. While it is well established that soil biota strongly influence plant abundance and diversity, it has been difficult to quantify the key belowground dynamics. This presentation will investigate the influence of one key biotic interaction, between plants and soil microbiota, on the ability of plant species to track climate change and expand their range uphill in a high montane system in the Front Range of Colorado. High-resolution photography from 1972 and 2008 indicate colonization of tundra vegetation in formerly unvegetated areas. Observational work on the distributions patterns of both plants and soil microbiota (bacteria, fungi and nematodes) in a spatially-explicit grid at the upper edge of plant distributions indicate strong, mostly positive, associations between plant species and soil taxa. Abiotic factors, while important, consistently underpredicted the occurrence of plant species and, in nine of the 12 most common tundra plants, co-occurring microbial taxa were important predictors of plant occurrence. Comparison of plant and microbial distributional patterns in 2007 and 2015 indicate the influence of microbial community composition on assembly and beta-diversity of the plant community over time. Plant colonization patterns in this region previously devoid of vegetation will likely influence carbon, nitrogen and phosphorus dynamics, with downstream consequences on nutrient limitation and phytoplankton composition in alpine lakes.

  1. The Army Priority List of At-Risk Species: 2009-2010 Status Update

    Science.gov (United States)

    2010-09-01

    gophers by dogs and cats . The magnitude of threat is high due to populations with patchy and isolat- ed distributions in habitats highly desirable for...than 1100 individuals. This species is threatened by feral pigs, goats, and axis deer that degrade and destroy habitat and may prey on it; by...by feral pigs that degrade and destroy habitat and may eat this plant, nonnative plants that compete for light and nutrients, and stream diversion

  2. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  3. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  4. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  5. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  6. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Kadri Koorem; Price, Jodi N; Mari Moora

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two specie...

  7. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  8. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  9. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  10. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    Science.gov (United States)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    Since its introduction to the western U.S. more than a century ago, tamarisk (Tamarix spp.) has become dominant or sub-dominant over many major arid, and semi-arid river systems and their tributaries. The presence of tamarisk has been cited for reducing water availability for human enterprise and biodiversity, displacing native vegetation and for reducing habitat quality for wildlife. With increasing emphasis by public and private sectors on controlling saltcedar (Tamarix chinensis) in the western US, there will likely be a dramatic change in riparian vegetation composition over the course of the next several decades. The rates at which these changes will occur, and the resultant effects on riparian insects and birds that utilize insects for food, are presently unknown. Effects on riparian vegetation communities, resulting from changes in host plant species composition, will likely include changes in plant biomass, microclimate changes, and plant species diversity. These changes could potentially have a profound impact on migratory and breeding birds within riparian corridors throughout the southwest. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. This beetle has successfully defoliated tamarisk where it has been introduced, but there are currently no comprehensive programs in place for monitoring the rapid spread of Diorhabda, the impact of defoliation on habitat and water resources, or the long-term impact of defoliation on tamarisk. We used higher spatial resolution ASTER data and coarser MODIS data for monitoring defoliation caused by Diorhabda elongata and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summers 2007, 2008. We measured stem sap flux, leaf carbon isotope ratios, leaf area, LAI, and vegetation indices from mounted visible and infrared cameras and satellite imagery. The cameras were paired on towers installed 30

  11. Plant species with extremely small populations (PSESP in China: A seed and spore biology perspective

    Directory of Open Access Journals (Sweden)

    Ellie Merrett Wade

    2016-10-01

    Full Text Available Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP. Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination of at-risk species? We have used China's PSESP (the first group listing as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP, storage characteristics are only known for 8% of PSESP (10 species. Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

  12. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Tsai

    Full Text Available The spatial structure of species richness is often characterized by the species-area relationship (SAR. However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha, northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals of target species departs (i.e., positively, negatively, or with no obvious trend from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate or decreases (repel neighborhood species richness. We found that (i accumulators were dominant at small interaction distances (30 m; (iii repellers were rarely detected; and (iv large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow might create the spatial heterogeneity of species richness and promote positive species interactions.

  13. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.

    Science.gov (United States)

    Jambhulkar, Hemlata P; Juwarkar, Asha A

    2009-05-01

    A field experiment was conducted on a 10-hectare area on fly ash dump at Khaperkheda Thermal Power Plant, Nagpur, India, where different ecologically and economically important plant species were planted using bioremediation technology. The technology involves the use of organic amendment and selection of suitable plant species along with site-specific nitrogen-fixing strains of biofertilizers. The study was conducted to find out the metal accumulation potential of different plant species. The total heavy metal contents in fly ash were determined and their relative abundance was found in the order of Fe>Mn>Zn>Cu>Ni>Cr>Pb>Cd. Fly ash samples had acidic pH, low electrical conductivity, low level of organic carbon and trace amounts of N and P. Plantation of divergent species was done on fly ash dump using the bioremediation technique. After 3 years of plantation, luxuriant growth of these species was found covering almost the entire fly ash dump. The results of the metal analysis of these species indicated that iron accumulated to the greatest extent in vegetation followed by Mn, Ni, Zn, Cu, Cr and Pb. Cassia siamea was found to accumulate all metals at higher concentrations compared to other species. The experimental study revealed that C. siamea could be used as a hyper-accumulator plant for bioremediation of fly ash dump.

  14. How do Plant Morphological Characteristics, Species Composition and Richness Regulate Eco-hydrological Function?

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hong Wang; Chang-Qun Duan

    2010-01-01

    Although considerable research has focused on the relationship between ecosystem structure and function, interactions of plant morphological characteristics, species composition and richness with eco-hydrological functions remain unclear. We measured water adherence (i.e. the capacity of a plant species to retain water), documented plant surface morphology and observed surface runoff at three sites in China. The adhering water ratios for each plant species differed, ranging from 17.1% to 151.5% in leaves, and from 14.4% to 41.1% in branches. Small, light-weight, soft, non-cuticularized leaves that were densely situated on small branches showed good water adherence. The next best adherence was found by branches with intermediately coarse surfaces. The plant species with high standing biomass also showed good water adherence, and the contribution of a species to total adherence was dependent upon its aboveground standing biomass. Vegetation parameters strongly affected water adherence,whereas the effect of species richness was not significant. Conversely, species richness showed a significant influence on surface runoff. The effect of plant morphological characteristics and composition constitutes a basic process in the regulation of eco-hydrological function, and vegetation parameters play somewhat different roles in that regulation. The key roles must therefore be considered from a management perspective.

  15. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    socio-economic impacts such as interrupting the supply of ecosystem goods ... programs of three IAPs in two urban nature reserves within the eThekwini Municipality. ...... do we understand the impacts of alien species on ecosystem services?

  16. Exotic and indigenous problem plants species used, by the Bapedi ...

    African Journals Online (AJOL)

    EB

    Department of Biodiversity, School of Molecular and Life Sciences, University of Limpopo, ... verum, and Citrullus lanatus are reported for the first time in the treatment of the investigated STIs. ... valuable species may be lost through improper.

  17. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... The discharge was collected from a drainage pipe at the base of each of the 150 containers. ... The species that performed well for all three nutrients include .... layers were placed below the Malmesbury shale, comprising of.

  18. Comparative pharmacognosy of medicinal plant species used as Prsniparni

    Directory of Open Access Journals (Sweden)

    S Lalitha

    2012-01-01

    Full Text Available Background: Substitution or adulteration of a particular genuine drug with other species due to demand exceeding the supply of the original species, is rampant in the present trade scenario. As a result, proper authentication of the drug for safe administration as an herbal medicine assumes paramount significance. Aim: Prsniparni, Uraria picta (Jacq. DC., is one such drug for which three different botanical entities are commonly used as substitutes, namely U. lagopodoides (L.DC; Desmodium gangeticum (L. DC., and Pseudarthria viscida (L. Wight and Arn.; all belonging to the family Fabaceae. The anatomical, histochemical and powder microscopic characters of the four species were compared in the field-collected samples to validate the quality herbal drug and to find the similarity and dissimilarity of the substitute species. Materials and Methods: Histological and histochemical characters were studied using sectioned materials following standard protocols. Histochemical methods were adopted to localize the presence of the primary metabolites such as starch, lipids, total proteins and amino acids and the secondary metabolites such as volatile oils, resins, tannins, lignin and pectin. Results: The present study shows that the authentic species U. picta and substitute species U. lagopodoides showing higher similarities of 90% based on histology, histochemistry and powder microscopy analysis. Other two candidates, D. gangeticum and P. viscida showing 60 % and 55% similarities, respectively, when compared to U. picta. Thus, the similarity matrix were developed using characters based on anatomical, histochemical and powder microscopy. Conclusion: Ayurvedic texts suggest use of substitute herbs for the rare species. The substitution is proved to be logical by our studies that U. lagopodoides can be used as a substitute species in the place of U. picta under Prsniparni and also the present study validates the genuinity of the drug by anatomical

  19. What are plants doing and when? Using plant phenology to facilitate sustainable natural resources management

    Science.gov (United States)

    Chong, Geneva W.; Allen, Leslie A.

    2012-01-01

    Climate change models for the northern Rocky Mountains predict changes in temperature and water availability that in turn will alter vegetation. Changes include timing of plant life-history events, or phenology, such as green-up, flowering and senescence, and shifts in species composition. Moreover, climate changes may favor different species, such as nonnative, annual grasses over native species. Changes in vegetation could make forage for ungulates, sage-grouse, and livestock available earlier in the growing season, but shifts in species composition and phenology may also result in earlier senescence (die-off or dormancy) and reduced overall forage production.

  20. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  1. A Rose by Any Other Name: Plant Identification Knowledge & Socio-Demographics.

    Science.gov (United States)

    Robinson, Beth S; Inger, Richard; Gaston, Kevin J

    2016-01-01

    Concern has been expressed over societal losses of plant species identification skills. These losses have potential implications for engagement with conservation issues, gaining human wellbeing benefits from biodiversity (such as those resulting from nature-based recreational activities), and early warning of the spread of problematic species. However, understanding of the prevailing level of species identification skills, and of its key drivers, remains poor. Here, we explore socio-demographic factors influencing plant identification knowledge and ability to classify plants as native or non-native, employing a novel method of using real physical plants, rather than photographs or illustrations. We conducted face-to-face surveys at three different sites chosen to capture respondents with a range of socio-demographic circumstances, in Cornwall, UK. We found that survey participants correctly identified c.60% of common plant species, were significantly worse at naming non-native than native plants, and that less than 20% of people recognised Japanese knotweed Fallopia japonica, which is a widespread high profile invasive non-native in the study region. Success at naming plants was higher if participants were female, a member of at least one environmental, conservation or gardening organisation, in an older age group (than the base category of 18-29 years), or a resident (rather than visitor) of the study area. Understanding patterns of variation in plant identification knowledge can inform the development of education and engagement strategies, for example, by targeting sectors of society where knowledge is lowest. Furthermore, greater understanding of general levels of identification of problematic invasive non-native plants can guide awareness and education campaigns to mitigate their impacts.

  2. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species.

    Science.gov (United States)

    Keser, Lidewij H; Visser, Eric J W; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

  3. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  4. Proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action

    CSIR Research Space (South Africa)

    Nel, JL

    2004-01-01

    Full Text Available Many invasive alien plant species in South Africa are already well-established and cause substantial damage, while scores of others are at the early stages of invasion (only recently introduced and/or entering a phase of rapid population growth...

  5. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    Science.gov (United States)

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  6. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  7. Tree-Dwelling Ants: Contrasting Two Brazilian Cerrado Plant Species without Extrafloral Nectaries

    Directory of Open Access Journals (Sweden)

    Jonas Maravalhas

    2012-01-01

    Full Text Available Ants dominate vegetation stratum, exploiting resources like extrafloral nectaries (EFNs and insect honeydew. These interactions are frequent in Brazilian cerrado and are well known, but few studies compare ant fauna and explored resources between plant species. We surveyed two cerrado plants without EFNs, Roupala montana (found on preserved environments of our study area and Solanum lycocarpum (disturbed ones. Ants were collected and identified, and resources on each plant noted. Ant frequency and richness were higher on R. montana (67%; 35 spp than S. lycocarpum (52%; 26, the occurrence of the common ant species varied between them, and similarity was low. Resources were explored mainly by Camponotus crassus and consisted of scale insects, aphids, and floral nectaries on R. montana and two treehopper species on S. lycocarpum. Ants have a high diversity on cerrado plants, exploring liquid and prey-based resources that vary in time and space and affect their presence on plants.

  8. Population Age Structures of Tree Species in Four Plant Communities in the Great Dismal Swamp, Virginia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of the present study was to determine the age structures of species occurring in four plant communities in the Great Dismal Swamp, Virginia, by...

  9. Vascular Plant Species Occurrences - Okefenokee National Wildlife Refuge, Charlton, Clinch, and Ware Counties GA

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This spreadsheet contains up-to-date (2016) information on the occurrence of vascular plant species observed within the Okefenokee NWR since 1932. This list should...

  10. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  11. Contaminant Removal of Domestic Wastewater by Constructed Wetlands: Effects of Plant Species

    Institute of Scientific and Technical Information of China (English)

    Qiong Yang; Zhang-He Chen; Jian-Gang Zhao; Bin-He Gu

    2007-01-01

    A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, length×width×depth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands.Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communls Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.

  12. Antimicrobial activity of some endemic plant species from Turkey

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... For the determination of antimicrobial activity, 3 g of ground plant parts were ... negative control, 1 ml of methanol – 5 ml of deionized water mixture ..... CAM. 2: 259-263. Dülger B, Ceyhan M, Alitsaous M, Uğurlu E (1999).

  13. New species and new records of plants in Guiana

    NARCIS (Netherlands)

    Cowan, Richard S.

    1957-01-01

    For several years, The New York Botanical Garden has conducted a study of vegetation overlying certain ferruginous areas principally in Venezuela. During the winter of 1954-55, field work was organized to continue reconnaissance of plant-cover growing on iron-cap or ore-bodies in northeastern

  14. New species and new records of plants in Guiana

    NARCIS (Netherlands)

    Cowan, Richard S.

    1957-01-01

    For several years, The New York Botanical Garden has conducted a study of vegetation overlying certain ferruginous areas principally in Venezuela. During the winter of 1954-55, field work was organized to continue reconnaissance of plant-cover growing on iron-cap or ore-bodies in northeastern Brazil

  15. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; De Boer, W.; Van der Putten, W.H.

    2012-01-01

    Soilorganisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soilorganisms may promote plantspecies of characteristic habitats, and suppress plantspecies of disturbed habitats. We classi

  16. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... Thus, molecular analysis reveals that the micropropagation system described is a ... polymorphic DNA; MP, mother plant; PCR, polymerase chain reaction; CTAB, cetyltrimethylammonium .... bands, which were monomorphic for all the analyzed ... and RAPD could be a good molecular marker to evaluate.

  17. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  18. A comparison of plant species for rearing Asian citrus psyllid

    Science.gov (United States)

    Five plant genotypes were compared with respect to Asian citrus psyllid (ACP) reproduction potential: Bergera koenigii, Citrus aurantiifolia, C. macrophylla, C. taiwanica and Murraya paniculata. Asian citrus psyllid reproduction is dependent on young flush and thus Asian citrus psyllid production po...

  19. Effects of Drought on Plant Species Diversity and Productivity in the Oak Forests of Western Iran

    OpenAIRE

    Hassan Pourbabaei; Verya Rahimi; Mohammad Naghi Adel

    2014-01-01

    A severe drought in 2008 extensively damaged a variety of economic, social, agricultural and natural resources in Iran. This study investigated the effects of the 2008 drought on plant species composition, diversity and productivity in Western Iran. To this end, plant species diversity in the drought year (2008) was compared to pre-drought (2007) and post-drought (2009) diversity. The Shannon-Wiener diversity index and Margalef richness index had significant differences between years, dec...

  20. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  1. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species

    OpenAIRE

    Honnay, Olivier; Jacquemyn, Hans; Bossuyt, B; Hermy, Martin

    2005-01-01

    Habitat fragmentation is one of the major threats to species diversity. In this review, we discuss how the genetic and demographic structure of fragmented populations of herbaceous forest plant species is affected by increased genetic drift and inbreeding, reduced mate availability, altered interactions with pollinators, and changed environmental conditions through edge effects. Reported changes in population genetic and demographic structure of fragmented plant populations have, however, not...

  2. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  3. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  4. The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings.

    Science.gov (United States)

    Parraga-Aguado, Isabel; Gonzalez-Alcaraz, Maria Nazaret; Alvarez-Rogel, Jose; Jimenez-Carceles, Francisco J; Conesa, Hector M

    2013-05-01

    Phytomanagement in terms of phytostabilisation is considered a suitable method to decrease environmental risks of metal(loid) enriched mine tailings. The goal of this study was to identify plant-favourable edaphic niches in mine tailings from a semiarid area, in order to obtain relevant information for further phytostabilisation procedures. For this purpose, a transect-designed sampling from non-disturbed soils to two mine tailings was performed, including the description of soil and plant ecology gradients. Plant ecological indicators showed several stages in plant succession: from weeds to stable patches of late successional plant species. PCA results revealed that plant distribution at the tailings was driven mainly by salinity while metal(loid) concentrations played a minor role. The presence of soil desiccation cracks generated low salinity patches which facilitated favourable niches for plant establishment. Edaphic-patch distribution may condition phytostabilisation since ploughing or the employment of certain amendments should take into account favourable niches for plant growth.

  5. Patch size and isolation predict plant species density in a naturally fragmented forest.

    Science.gov (United States)

    Munguía-Rosas, Miguel A; Montiel, Salvador

    2014-01-01

    Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.

  6. Patch size and isolation predict plant species density in a naturally fragmented forest.

    Directory of Open Access Journals (Sweden)

    Miguel A Munguía-Rosas

    Full Text Available Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest. We surveyed the vascular flora (except lianas and epiphytes of 19 forest patches using five belt transects (50×4 m each per patch (area sampled per patch = 0.1 ha. As predicted, plant species density was positively associated (logarithmically with patch size and negatively associated (linearly with patch isolation (distance to the nearest patch. Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation, however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.

  7. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Science.gov (United States)

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  8. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Science.gov (United States)

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  9. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  10. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  11. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    Directory of Open Access Journals (Sweden)

    Milena Nikolova

    2011-01-01

    Full Text Available Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH assay. An aluminum chloride colorimetric method was used for flavonoid determination. The amount of phenolic compounds in the extracts was estimated by using the Folin-Ciocalteu reagent. Results: As a result of screening, it was found that the significant antioxidant properties possess several unstudied until now plant species (Veronica bellidioides L., V. kellereri Deg. et Urm, V. vindobonensis (M. Fisher M. Fisher, V. beccabunga L., V. rhodopaea L., V. austriaca (Velen. Degen., Clinopodium vulgare L., Stachys recta L., Clematis vitalba L., and Xeranthemum annum L.. The antioxidant potential of the new species is comparable to that of reference medicinal plants. Conclusions: The existing data presented here provide new information for antioxidant potential of plant species that have not been traditionally used as medicinal plants.

  12. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  13. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  14. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    Science.gov (United States)

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  15. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Shilin Chen

    Full Text Available BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2 of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. CONCLUSIONS: The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  16. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  17. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  18. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; Boer, de W.; Cornelissen, J.H.C.; Putten, van der W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  19. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Science.gov (United States)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  20. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants

    NARCIS (Netherlands)

    Leeggangers, H.A.C.F.; Moreno Pachón, N.M.; Gude, H.; Immink, G.H.

    2013-01-01

    The extensive characterization of plant genes and genome sequences summed to the continuous development of biotechnology tools, has played a major role in understanding biological processes in plant model species. The challenge for the near future is to generate methods and pipelines for an efficien

  1. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    Science.gov (United States)

    2017-05-01

    mixture, Sigma-Aldrich] for 3 months ( Phillips , Bernhardt, and Schle- singer). Ten replicate plants were grown per species. Plants were then transferred to...pp.105.070334. Phillips , Richard P., Emily S. Bernhardt, and William H. Schlesinger. 2009. “Elevated CO2 Increases Root Exudation from Loblolly

  2. The new flora of northeastern USA: quantifying introduced plant species occupancy in forest ecosystems.

    Science.gov (United States)

    Schulz, Bethany K; Gray, Andrew N

    2013-05-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment of introduced species occupancy in native plant communities over broad regions. Vegetation data from 1,302 forest inventory plots across 24 states in northeastern and mid-western USA were used to examine and compare the distribution of introduced species in relation to forest fragmentation across ecological provinces and forest types, and to examine correlations between native and introduced species richness. There were 305 introduced species recorded, and 66 % of all forested plots had at least one introduced species. Forest edge plots had higher constancy and occupancy of introduced species than intact forest plots, but the differences varied significantly among ecological provinces and, to a lesser degree, forest types. Weak but significant positive correlations between native and introduced species richness were observed most often in intact forests. Rosa multiflora was the most common introduced species recorded across the region, but Hieracium aurantiacum and Epipactus helleborine were dominant in some ecological provinces. Identifying regions and forest types with high and low constancies and occupation by introduced species can help target forest stands where management actions will be the most effective. Identifying seemingly benign introduced species that are more prevalent than realized will help focus attention on newly emerging invasives.

  3. Pathogenicity of eight formae speciales of Fusarium oxysporum Schlecht. in relation to different plants species

    Directory of Open Access Journals (Sweden)

    Maria Wagner

    2014-08-01

    Full Text Available Eight formae speciales of Fusarium oxysporum were isolated from plants of aster, flax, bean, pea, tomato, carnation, yellow lupine and pine, showing visible symptoms of wilting. Plants of the eight species were inoculated with each of the studied formae speciales of F. oxysporum, F. oxysporum f. sp. lupini could be reisolated only from lupine, while the others were pathogenic for the hosts and showed ability to colonize another plants.

  4. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib Amjad

    2014-12-01

    Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  5. Marketing time predicts naturalization of horticultural plants.

    Science.gov (United States)

    Pemberton, Robert W; Liu, Hong

    2009-01-01

    Horticulture is an important source of naturalized plants, but our knowledge about naturalization frequencies and potential patterns of naturalization in horticultural plants is limited. We analyzed a unique set of data derived from the detailed sales catalogs (1887-1930) of the most important early Florida, USA, plant nursery (Royal Palm Nursery) to detect naturalization patterns of these horticultural plants in the state. Of the 1903 nonnative species sold by the nursery, 15% naturalized. The probability of plants becoming naturalized increases significantly with the number of years the plants were marketed. Plants that became invasive and naturalized were sold for an average of 19.6 and 14.8 years, respectively, compared to 6.8 years for non-naturalized plants, and the naturalization of plants sold for 30 years or more is 70%. Unexpectedly, plants that were sold earlier were less likely to naturalize than those sold later. The nursery's inexperience, which caused them to grow and market many plants unsuited to Florida during their early period, may account for this pattern. Plants with pantropical distributions and those native to both Africa and Asia were more likely to naturalize (42%), than were plants native to other smaller regions, suggesting that plants with large native ranges were more likely to naturalize. Naturalization percentages also differed according to plant life form, with the most naturalization occurring in aquatic herbs (36.8%) and vines (30.8%). Plants belonging to the families Araceae, Apocynaceae, Convolvulaceae, Moraceae, Oleaceae, and Verbenaceae had higher than expected naturalization. Information theoretic model selection indicated that the number of years a plant was sold, alone or together with the first year a plant was sold, was the strongest predictor of naturalization. Because continued importation and marketing of nonnative horticultural plants will lead to additional plant naturalization and invasion, a comprehensive approach

  6. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...

  7. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  8. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  9. Population dynamics of Scirtothrips dorsalis (Thysanoptera: Thripidae) and other thrips species on two ornamental host plant species in Southern Florida.

    Science.gov (United States)

    Mannion, Catharine M; Derksen, Andrew I; Seal, Dakshina R; Osborne, Lance S; Martin, Cliff G

    2014-08-01

    Since its 2005 introduction into the United States, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has become a problematic pest of agronomic, vegetable, fruit, and ornamental plants. Knowledge of its population dynamics may help managers better monitor and control S. dorsalis. Population estimates were recorded for S. dorsalis and other thrips species on Knock-Out rose (Rosa 'Radrazz') and green buttonwood (Conocarpus erectus L.) from July 2007 to September 2008 in two field plots (one per plant species) in Homestead, FL. Yellow sticky card traps and samples of terminals, flowers, buds, and leaves were collected. S. dorsalis accounted for 95% of all thrips individuals collected from plants and 84% from traps with the remainder including at least 18 other thrips species. More thrips were caught on or flying near rose plants (47,438) than on or near buttonwoods (5,898), and on-plant densities of S. dorsalis appeared higher for rose than for buttonwood. Compared with rose leaves, rose buds, terminals, and flowers each had higher numbers of S. dorsalis, and buds and terminals had higher densities. On each host plant species, S. dorsalis density fluctuated over time with peaks in the late spring, summer, and fall, but populations were consistently low in the late winter and early spring. On roses, increased plant damage ratings correlated with reduced numbers of flowers and buds, reduced mean flower areas, and increased on-plant number and density of S. dorsalis. There were positive correlations over time between S. dorsalis density and plant damage rating for rose flowers (R = 0.78; P = 0.0003) and for buttonwood terminals (R = 0.90; P = 0.0001). Yellow sticky card traps were effective for monitoring S. dorsalis and may be especially useful and economically justified for the most susceptible hosts, but they also work well for less susceptible hosts. A good S. dorsalis scouting program should hence consider trap catches and symptoms such as leaf

  10. Plant Species Richness After Revegetation on The Reclaimed Coal Mine Land of PT Adaro Indonesia, South Kalimantan

    Directory of Open Access Journals (Sweden)

    Mochamad Arief Soendjoto

    2015-02-01

    Full Text Available The focus of monitoring was the plant purposely cultivated because after re-vegetation, there were a very few of other plants growing naturally on reclimed coal mining area which were recorded, whereas these plants had important values. The research aimed to record all plants and to identify predominant plants over the reclaimed land of PT Adaro Indonesia. There were four sampling locations with 13 squares of 50 × 20 m2 on each location established and on each square there were 5 plots of 2 × 2 m2 plotse made. Both plant species and its individual number of woodyplantsaplings were recorded on each square, so in each plot, there were small species and its individual number of either woody-plant seedlings or non-woody plants (herbs/shrubs, grasses, ferns. The relative density and the relative frequency of woody or non-woody plants were summed to obtain the important value index (IVI of each successional stage. There were 107 plant species consisting of 32, 43, 27, and 5 species of saplings,seedlings/herbs/shrubs, grasses, and ferns respectively. From those species, 16 species of woody plants and 2 species of herbs were planted purposely,other species grew naturally and even some of them were dominants. Either the number of plants or the dominating plant is varied according to the sampling location and the growing stage.Keywords: plant, revegetation, richness, sapling, seedling

  11. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  12. Allelopathic effect of a native species on a major plant invader in Europe

    Science.gov (United States)

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasiv